Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization

Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization. Methods Data sets consisting of B0, B1+ maps, and virtual ob...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 6; pp. 3140 - 3153
Main Authors Herrler, Jürgen, Liebig, Patrick, Gumbrecht, Rene, Ritter, Dieter, Schmitter, Sebastian, Maier, Andreas, Schmidt, Manuel, Uder, Michael, Doerfler, Arnd, Nagel, Armin M.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization. Methods Data sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. Results All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. Conclusion UPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
AbstractList PurposeTo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization.MethodsData sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.ResultsAll pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.ConclusionUPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. Data sets consisting of B , maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization. Methods Data sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. Results All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. Conclusion UPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization.PURPOSETo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization.Data sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.METHODSData sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.RESULTSAll pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.CONCLUSIONUPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Click here for author‐reader discussions
Author Gumbrecht, Rene
Maier, Andreas
Liebig, Patrick
Schmitter, Sebastian
Nagel, Armin M.
Uder, Michael
Schmidt, Manuel
Doerfler, Arnd
Ritter, Dieter
Herrler, Jürgen
Author_xml – sequence: 1
  givenname: Jürgen
  orcidid: 0000-0002-4620-8216
  surname: Herrler
  fullname: Herrler, Jürgen
  email: juergen.herrler@uk-erlangen.de
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 2
  givenname: Patrick
  orcidid: 0000-0001-7342-3715
  surname: Liebig
  fullname: Liebig, Patrick
  organization: Siemens Healthineers GmbH
– sequence: 3
  givenname: Rene
  surname: Gumbrecht
  fullname: Gumbrecht, Rene
  organization: Siemens Healthineers GmbH
– sequence: 4
  givenname: Dieter
  surname: Ritter
  fullname: Ritter, Dieter
  organization: Siemens Healthineers GmbH
– sequence: 5
  givenname: Sebastian
  orcidid: 0000-0003-4410-6790
  surname: Schmitter
  fullname: Schmitter, Sebastian
  organization: Physikalisch‐Technische Bundesanstalt (PTB)
– sequence: 6
  givenname: Andreas
  surname: Maier
  fullname: Maier, Andreas
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 7
  givenname: Manuel
  surname: Schmidt
  fullname: Schmidt, Manuel
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 8
  givenname: Michael
  surname: Uder
  fullname: Uder, Michael
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 9
  givenname: Arnd
  surname: Doerfler
  fullname: Doerfler, Arnd
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)
– sequence: 10
  givenname: Armin M.
  orcidid: 0000-0003-0948-1421
  surname: Nagel
  fullname: Nagel, Armin M.
  organization: German Cancer Research Centre (DKFZ)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33400302$$D View this record in MEDLINE/PubMed
BookMark eNp90c1u1DAQAGALFdFt4cALIEtc2kPa8U8Sh1u1YqFSq0pAz5H_VnLl2MFOioo48Ag8I0-Cu7vlUKk9WRp9M-OZOUB7IQaL0FsCJwSAng5pOKGi4ewFWpCa0orWHd9DC2g5VIx0fB8d5HwDAF3X8ldonzEOwIAu0K-VzBOOwbtg__7-o-c8xcH9tAYfra6W11-P8SiT9N56PCUZ8uBydjHgcfbZ5g_4DOs4KBfkdB-NazwHd2tTln5HsAwGu2DcrTNzicZxcqXBxr9GL9eyoDe79xBdrz5-W36uLq4-nS_PLirNhGCVESCoFB1RQnStZrShiknV2Y4SIo2oFdeNUdDSljWia2pVi9YQLTUHYhVjh-hoW3dM8fts89SXMbT1XgYb59xT3tYcKIAo9P0jehPnFMrviir92rrhpKh3OzWrwZp-TG6Q6a5_2GsBx1ugU8w52fV_QqC_v1lfbtZvblbs6SOr3bTZT9m4889l_HDe3j1dur_8crnN-Af98ajv
CitedBy_id crossref_primary_10_1007_s10334_024_01149_8
crossref_primary_10_1002_mrm_30185
crossref_primary_10_1002_mrm_30201
crossref_primary_10_1002_mrm_29510
crossref_primary_10_1007_s10334_023_01085_z
crossref_primary_10_1002_mrm_28982
crossref_primary_10_1002_mrm_30346
crossref_primary_10_1002_mrm_29376
crossref_primary_10_1002_mrm_29132
crossref_primary_10_1002_mrm_30329
crossref_primary_10_1002_nbm_4717
crossref_primary_10_1002_mrm_28745
crossref_primary_10_1016_j_neuroimage_2021_117986
crossref_primary_10_1002_mrm_29459
crossref_primary_10_1016_j_mri_2022_08_006
crossref_primary_10_1002_mrm_29412
crossref_primary_10_1088_1361_6560_ada683
crossref_primary_10_1088_1361_6560_aca4b7
crossref_primary_10_1177_17562864221143834
crossref_primary_10_1002_mrm_30072
crossref_primary_10_1016_j_artmed_2022_102460
crossref_primary_10_1002_mrm_29180
crossref_primary_10_1007_s10334_023_01134_7
crossref_primary_10_3389_fphy_2021_701330
crossref_primary_10_1002_mrm_30495
crossref_primary_10_1002_mrm_30014
crossref_primary_10_1002_mrm_29884
crossref_primary_10_1002_mrm_30137
crossref_primary_10_1002_mrm_30359
crossref_primary_10_1002_nbm_4728
crossref_primary_10_1109_TMI_2024_3515035
crossref_primary_10_1002_mrm_29569
crossref_primary_10_1016_j_mri_2024_03_037
crossref_primary_10_1002_mrm_28952
crossref_primary_10_1002_mrm_29402
crossref_primary_10_1097_RLI_0000000000000820
crossref_primary_10_1016_j_zemedi_2021_12_003
Cites_doi 10.1002/mrm.24800
10.1371/journal.pone.0183562
10.1287/ijoc.1060.0175
10.1109/TMI.2004.824151
10.1002/mrm.21513
10.1002/mrm.20840
10.1016/j.mri.2013.12.005
10.1002/mrm.23118
10.1109/TMI.2015.2478880
10.3174/ajnr.A4180
10.1002/mrm.24749
10.1002/mrm.22978
10.1002/mrm.27870
10.1002/mrm.21221
10.1002/jmri.24573
10.1088/0031-9155/52/17/022
10.1002/jmri.25164
10.1002/mrm.27773
10.1002/mrm.21476
10.1002/mrm.20011
10.1002/mrm.27645
10.1002/mrm.22423
10.1002/mrm.22927
10.1088/0031-9155/55/2/N01
10.1002/mrm.26021
10.1016/j.pnmrs.2018.06.001
10.1002/mrm.27001
10.1002/nbm.3313
10.1109/TMI.2013.2295465
10.1002/mrm.25677
10.1016/j.neuroimage.2012.05.068
10.1002/mrm.21013
10.1002/mrm.26148
10.1002/nbm.2844
10.1002/mrm.10353
10.1002/mrm.25828
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28643
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 3153
ExternalDocumentID 33400302
10_1002_mrm_28643
MRM28643
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3883-d8082a891b8897c3262b3ab9e9211ad85b4c6db0727368965b587d1cac401eb33
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 04:35:07 EDT 2025
Fri Jul 25 12:18:38 EDT 2025
Wed Feb 19 02:28:52 EST 2025
Tue Jul 01 04:26:59 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
Wed Jan 22 16:29:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords kT points
7 T
parallel transmission (pTx)
SPINS
ultra-high-field MRI
universal pulses
Language English
License Attribution
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-d8082a891b8897c3262b3ab9e9211ad85b4c6db0727368965b587d1cac401eb33
Notes Funding information
Siemens Healthcare GmbH
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7342-3715
0000-0003-0948-1421
0000-0002-4620-8216
0000-0003-4410-6790
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28643
PMID 33400302
PQID 2492175641
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_2475402008
proquest_journals_2492175641
pubmed_primary_33400302
crossref_primary_10_1002_mrm_28643
crossref_citationtrail_10_1002_mrm_28643
wiley_primary_10_1002_mrm_28643_MRM28643
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 55
2007; 19
2015; 36
2013; 26
2006; 56
2006; 55
2004; 23
2016; 76
2016; 75
2008; 59
2018; 80
2008
2018; 109
2007; 52
2007; 57
2016; 35
1995; 8
2010; 64
2019; 82
2004; 51
2019; 81
2017; 77
2015; 41
2017; 12
2011; 66
2003; 49
2016; 29
1972; 35
2012; 67
2014; 71
2014; 33
2014; 32
2016; 44
2012; 62
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Gerchberg RW (e_1_2_7_28_1) 1972; 35
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Ackerman MJ (e_1_2_7_34_1) 1995; 8
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 55
  start-page: 719
  year: 2006
  end-page: 724
  article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity
  publication-title: Magn Reson Med
– volume: 67
  start-page: 72
  year: 2012
  end-page: 80
  article-title: kT ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume
  publication-title: Magn Reson Med
– volume: 76
  start-page: 20
  year: 2016
  end-page: 31
  article-title: Subject‐ and resource‐specific monitoring and proactive management of parallel radiofrequency transmission
  publication-title: Magn Reson Med
– volume: 41
  start-page: 13
  year: 2015
  end-page: 33
  article-title: MRI at 7 Tesla and above: demonstrated and potential capabilities
  publication-title: J Magn Reson Imaging
– volume: 23
  start-page: 520
  year: 2004
  end-page: 525
  article-title: Theoretical and numerical aspects of transmit SENSE
  publication-title: IEEE Trans Med Imaging
– volume: 8
  start-page: 1195
  year: 1995
  end-page: 1198
  article-title: The visible human data set: an image resource for anatomical visualization
  publication-title: Medinfo
– volume: 29
  start-page: 1145
  year: 2016
  end-page: 1161
  article-title: Parallel transmission for ultrahigh‐field imaging
  publication-title: NMR Biomed
– volume: 19
  start-page: 328
  year: 2007
  end-page: 340
  article-title: Scatter search and local NLP solvers: a multistart framework for global optimization
  publication-title: INFORMS J Comput
– volume: 55
  start-page: N23
  year: 2010
  end-page: N38
  article-title: The virtual family–development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 56
  start-page: 918
  year: 2006
  end-page: 922
  article-title: Exploring the limits of RF shimming for high‐field MRI of the human head
  publication-title: Magn Reson Med
– volume: 35
  start-page: 237
  year: 1972
  end-page: 246
  article-title: Practical algorithm for determination of phase from image and diffraction plane pictures
  publication-title: Optik
– volume: 35
  start-page: 468
  year: 2016
  end-page: 479
  article-title: Joint design of excitation k‐space trajectory and RF pulse for small‐tip 3D tailored excitation in MRI
  publication-title: IEEE Trans Med Imaging
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 26
  start-page: 265
  year: 2013
  end-page: 275
  article-title: A theoretical and experimental comparison of different techniques for B(1) mapping at very high fields
  publication-title: NMR Biomed
– volume: 51
  start-page: 775
  issue: 4
  year: 2004
  end-page: 784
  article-title: Parallel excitation with an array of transmit coils
  publication-title: Magn Reson Med
– volume: 52
  start-page: 5429
  year: 2007
  end-page: 5441
  article-title: 7 T body MRI: B1 shimming with simultaneous SAR reduction
  publication-title: Phys Med Biol
– volume: 75
  start-page: 801
  year: 2016
  end-page: 809
  article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays
  publication-title: Magn Reson Med
– volume: 33
  start-page: 739
  year: 2014
  end-page: 748
  article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints
  publication-title: IEEE Trans Med Imaging
– volume: 57
  start-page: 842
  year: 2007
  end-page: 847
  article-title: Reduction of transmitter B1 inhomogeneity with transmit SENSE slice‐select pulses
  publication-title: Magn Reson Med
– volume: 59
  start-page: 908
  year: 2008
  end-page: 915
  article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels
  publication-title: Magn Reson Med
– volume: 62
  start-page: 2140
  year: 2012
  end-page: 2150
  article-title: Parallel‐transmission‐enabled magnetization‐prepared rapid gradient‐echo T1‐weighted imaging of the human brain at 7 T
  publication-title: Neuroimage
– volume: 12
  year: 2017
  article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: a validation study on two commercial RF coils
  publication-title: PLoS One
– volume: 71
  start-page: 1446
  year: 2014
  end-page: 1457
  article-title: Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade‐offs in low flip‐angle parallel transmit pulse design
  publication-title: Magn Reson Med
– volume: 82
  start-page: 2016
  year: 2019
  end-page: 2031
  article-title: SmartPulse, a machine learning approach for calibration‐free dynamic RF shimming: preliminary study in a clinical environment
  publication-title: Magn Reson Med
– volume: 109
  start-page: 1
  year: 2018
  end-page: 50
  article-title: Pros and cons of ultra‐high‐field MRI/MRS for human application
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 80
  start-page: 53
  year: 2018
  end-page: 65
  article-title: Design of universal parallel‐transmit refocusing kT ‐point pulses and application to 3D T2 ‐weighted imaging at 7T
  publication-title: Magn Reson Med
– volume: 67
  start-page: 1303
  year: 2012
  end-page: 1315
  article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses
  publication-title: Magn Reson Med
– volume: 82
  start-page: 924
  year: 2019
  end-page: 934
  article-title: Whole‐brain B1 ‐mapping using three‐dimensional DREAM
  publication-title: Magn Reson Med
– year: 2008
– volume: 66
  start-page: 1468
  year: 2011
  end-page: 1476
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn Reson Med
– volume: 59
  start-page: 396
  year: 2008
  end-page: 409
  article-title: Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1204
  year: 2015
  end-page: 1215
  article-title: Ultra‐high‐field MR neuroimaging
  publication-title: AJNR Am J Neuroradiol
– volume: 77
  start-page: 635
  year: 2017
  end-page: 643
  article-title: Universal pulses: a new concept for calibration‐free parallel transmission
  publication-title: Magn Reson Med
– volume: 81
  start-page: 3202
  year: 2019
  end-page: 3208
  article-title: Robust nonadiabatic T2 preparation using universal parallel‐transmit kT ‐point pulses for 3D FLAIR imaging at 7 T
  publication-title: Magn Reson Med
– volume: 71
  start-page: 966
  year: 2014
  end-page: 977
  article-title: Cerebral TOF angiography at 7T: impact of B1(+) shimming with a 16‐channel transceiver array
  publication-title: Magn Reson Med
– volume: 49
  start-page: 144
  year: 2003
  end-page: 150
  article-title: Transmit SENSE
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1170
  year: 2016
  end-page: 1182
  article-title: Fast three‐dimensional inner volume excitations using parallel transmission and optimized k‐space trajectories
  publication-title: Magn Reson Med
– volume: 32
  start-page: 314
  year: 2014
  end-page: 320
  article-title: A modified multi‐echo AFI for simultaneous B1(+) magnitude and phase mapping
  publication-title: Magn Reson Imaging
– volume: 44
  start-page: 486
  year: 2016
  end-page: 499
  article-title: Towards high‐resolution 4D flow MRI in the human aorta using kt‐GRAPPA and B1+ shimming at 7T
  publication-title: J Magn Reson Imaging
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.24800
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0183562
– ident: e_1_2_7_35_1
  doi: 10.1287/ijoc.1060.0175
– ident: e_1_2_7_12_1
  doi: 10.1109/TMI.2004.824151
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.21513
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.20840
– ident: e_1_2_7_38_1
  doi: 10.1016/j.mri.2013.12.005
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.23118
– ident: e_1_2_7_16_1
  doi: 10.1109/TMI.2015.2478880
– ident: e_1_2_7_3_1
  doi: 10.3174/ajnr.A4180
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.24749
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.22978
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.27870
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.21221
– ident: e_1_2_7_26_1
  doi: 10.1002/jmri.24573
– ident: e_1_2_7_10_1
  doi: 10.1088/0031-9155/52/17/022
– ident: e_1_2_7_8_1
  doi: 10.1002/jmri.25164
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.27773
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.21476
– ident: e_1_2_7_13_1
  doi: 10.1002/mrm.20011
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.27645
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.22423
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.22927
– ident: e_1_2_7_33_1
  doi: 10.1088/0031-9155/55/2/N01
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.26021
– ident: e_1_2_7_4_1
  doi: 10.1016/j.pnmrs.2018.06.001
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.27001
– volume: 8
  start-page: 1195
  year: 1995
  ident: e_1_2_7_34_1
  article-title: The visible human data set: an image resource for anatomical visualization
  publication-title: Medinfo
– ident: e_1_2_7_27_1
– ident: e_1_2_7_5_1
  doi: 10.1002/nbm.3313
– ident: e_1_2_7_30_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.25677
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2012.05.068
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.21013
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.26148
– volume: 35
  start-page: 237
  year: 1972
  ident: e_1_2_7_28_1
  article-title: Practical algorithm for determination of phase from image and diffraction plane pictures
  publication-title: Optik
– ident: e_1_2_7_40_1
  doi: 10.1109/TMI.2013.2295465
– ident: e_1_2_7_39_1
  doi: 10.1002/nbm.2844
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.10353
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25828
SSID ssj0009974
Score 2.5247085
Snippet Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of...
Click here for author‐reader discussions
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of...
PurposeTo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3140
SubjectTerms 7 T
Adiabatic
Adolescent
Adult
Algorithms
Brain - diagnostic imaging
Brain Injuries - diagnostic imaging
Case-Control Studies
Circular polarization
Customization
Data acquisition
Datasets
Female
Homogeneity
Humans
Image Processing, Computer-Assisted - methods
kT points
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Mathematical analysis
Optimization
parallel transmission (pTx)
Regularization
SPINS
ultra‐high‐field MRI
universal pulses
Young Adult
Title Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28643
https://www.ncbi.nlm.nih.gov/pubmed/33400302
https://www.proquest.com/docview/2492175641
https://www.proquest.com/docview/2475402008
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB7SQEsvTZr-bZoEtfSQHrxZy7ItJacQuoTCtiXtQg4FI8kShO56Q2xfQg99hD5jn6QjyXZIf6D0ZvCYkeXRzDfSzGeAVzKmOS0ljSSi74gJKyJlMxOlqdJCaWWkdY3Cs3fZ6Zy9PU_P1-Co74UJ_BDDhptbGd5fuwUuVX1wQxq6vFqOKceAiv7X1Wo5QHR2Qx0lRGBgzpnzM4L1rEITejA8eTsW_QYwb-NVH3CmG_C5H2qoM_kybhs11te_sDj-57tswoMOiJLjYDkPYc1UW3Bv1h21b8FdXxuq60fwdSrrhgQ1P7591y3ixeXFtSnJ_vT9yfzja-L4wxcLsyCNi3xoOW4Ljly2GHbrQ3JMcDiYgHsbICtL2lAMgtqDCJFVSS6GzjCyQje27PpDH8N8-ubTyWnU_bQh0gnnSVRyBBWSi1hxLnKN6JCqRCphBKaasuSpYjor1cThpoyLLFUpz8tYS42ZHmb2yRNYr1aVeQaE0jhLNTfWyoyViK8nSc6tiK2SktuEjmC__3yF7hjN3Y81FkXgYqYFzmvh53UELwfRy0Dj8Sehnd4Gim4l14VjVESIlbF4BC-G2ziT7mBFVmbVOpk8dXn4hI_gabCdQUuSMOdI3WC9BfxdfTE7m_mL7X8XfQ73qSuy8dtCO7DeXLVmF1FSo_bgDmUf9vyi-AlHLBDQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAuW1tIBBHMoh243zshGXqmK1QFOk0pV6qSLbsaWK3WzVTS4VB34Cv7G_pGM7SVUeEuIWKRON48zjG2f8GeCNCGlGS0EDgeg7iLnhgTSpDpJEKi6V1MLYjcL5fjqZxp-OkqMVeN_thfH8EP2Cm_UMF6-tg9sF6e0r1tD52XxIGWbUG3DTnujtCqqDK_Iozj0HcxbbSMPjjldoRLf7R69no98g5nXE6lLO-B4cd4P1nSbfhk0th-r8Fx7H_32b-7DWYlGy443nAazoah1u5-3f9nW45dpD1fIhfB-LZU28nosfP1WDkHF-cq5LsjX-sjv9-pZYCvHZTM9IbZMfGo9dhSOnDWbe5TuyQ3A8WIM7MyALQxrfD4LavQgRVUlO-s1hZIGRbN5uEX0E0_GHw91J0J7bEKiIsSgoGeIKwXgoGeOZQoBIZSQk1xyrTVGyRMYqLeXIQqeU8TSRCcvKUAmFxR4W99FjWK0WlX4KhNIwTRTTxog0LhFij6KMGR4aKQQzER3AVvf9CtWSmtuzNWaFp2OmBc5r4eZ1AK970VPP5PEnoc3OCIrWmZeFJVVElJXG4QBe9bdxJu2_FVHpRWNlssSW4iM2gCfeeHotURTbWGoH60zg7-qL_CB3F8_-XfQl3Jkc5nvF3sf9zxtwl9qeG7dKtAmr9VmjnyNoquUL5xuXzX4UFA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHMoh28RJHBtOVUtUHltQYaUekCLbsaWK3eyqm1wqDvwEfiO_hHGcpCoPCXGLlInGcWY839gzXwCeyYhmtJQ0kIi-g0RYESjLTJCmSgullZHWNQpPDtnBNHlznB6vwcu-F8bzQwwbbs4z2vXaOfiytDvnpKHz0_mYcgyol-BywkLuTHr_6Jw7SghPwZwlbqERSU8rFNKd4dGLweg3hHkRsLYRJ78On_ux-kKTL-OmVmN99guN43--zA241iFRsutN5yasmWoTNibdWfsmXGmLQ_XqFnzN5aomXs2Pb991g4BxfnJmSrKdv9-bfnxOHIH4bGZmpHahD03H7cGRZYNxd_WC7BIcDmbgrRGQhSWNrwZB7V6EyKokJ0NrGFngOjbvGkRvwzR_9WnvIOj-2hDomPM4KDmiCslFpDgXmUZ4SFUslTACc01Z8lQlmpUqdMCJccFSlfKsjLTUmOphah_fgfVqUZl7QCiNWKq5sVaypESAHcYZtyKySkpuYzqC7f7zFbqjNHd_1pgVnoyZFjivRTuvI3g6iC49j8efhLZ6Gyg6V14VjlIRMRZLohE8GW7jTLqTFVmZReNkstQl4iEfwV1vO4OWOE7cSuoG21rA39UXk6NJe3H_30Ufw8aH_bx49_rw7QO4Sl3BTbtFtAXr9WljHiJiqtWj1jN-AqbEEsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+online%E2%80%90customized+%28FOCUS%29+parallel+transmission+pulses%3A+A+combination+of+universal+pulses+and+individual+optimization&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Herrler%2C+J%C3%BCrgen&rft.au=Liebig%2C+Patrick&rft.au=Gumbrecht%2C+Rene&rft.au=Ritter%2C+Dieter&rft.date=2021-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=6&rft.spage=3140&rft.epage=3153&rft_id=info:doi/10.1002%2Fmrm.28643&rft.externalDBID=10.1002%252Fmrm.28643&rft.externalDocID=MRM28643
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon