Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization
Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization. Methods Data sets consisting of B0, B1+ maps, and virtual ob...
Saved in:
Published in | Magnetic resonance in medicine Vol. 85; no. 6; pp. 3140 - 3153 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization.
Methods
Data sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.
Results
All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.
Conclusion
UPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values. |
---|---|
AbstractList | PurposeTo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization.MethodsData sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.ResultsAll pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.ConclusionUPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values. To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. Data sets consisting of B , maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values. Purpose To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject‐specific optimization. Methods Data sets consisting of B0, B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole‐body MR system. Combined optimization values (COV) were defined as combination of spiral‐nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root‐mean‐square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. Results All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. Conclusion UPs can be used to generate fast online‐customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values. To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization.PURPOSETo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization.Data sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.METHODSData sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion.All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.RESULTSAll pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types.UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.CONCLUSIONUPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values. Click here for author‐reader discussions |
Author | Gumbrecht, Rene Maier, Andreas Liebig, Patrick Schmitter, Sebastian Nagel, Armin M. Uder, Michael Schmidt, Manuel Doerfler, Arnd Ritter, Dieter Herrler, Jürgen |
Author_xml | – sequence: 1 givenname: Jürgen orcidid: 0000-0002-4620-8216 surname: Herrler fullname: Herrler, Jürgen email: juergen.herrler@uk-erlangen.de organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 2 givenname: Patrick orcidid: 0000-0001-7342-3715 surname: Liebig fullname: Liebig, Patrick organization: Siemens Healthineers GmbH – sequence: 3 givenname: Rene surname: Gumbrecht fullname: Gumbrecht, Rene organization: Siemens Healthineers GmbH – sequence: 4 givenname: Dieter surname: Ritter fullname: Ritter, Dieter organization: Siemens Healthineers GmbH – sequence: 5 givenname: Sebastian orcidid: 0000-0003-4410-6790 surname: Schmitter fullname: Schmitter, Sebastian organization: Physikalisch‐Technische Bundesanstalt (PTB) – sequence: 6 givenname: Andreas surname: Maier fullname: Maier, Andreas organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 7 givenname: Manuel surname: Schmidt fullname: Schmidt, Manuel organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 8 givenname: Michael surname: Uder fullname: Uder, Michael organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 9 givenname: Arnd surname: Doerfler fullname: Doerfler, Arnd organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) – sequence: 10 givenname: Armin M. orcidid: 0000-0003-0948-1421 surname: Nagel fullname: Nagel, Armin M. organization: German Cancer Research Centre (DKFZ) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33400302$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c1u1DAQAGALFdFt4cALIEtc2kPa8U8Sh1u1YqFSq0pAz5H_VnLl2MFOioo48Ag8I0-Cu7vlUKk9WRp9M-OZOUB7IQaL0FsCJwSAng5pOKGi4ewFWpCa0orWHd9DC2g5VIx0fB8d5HwDAF3X8ldonzEOwIAu0K-VzBOOwbtg__7-o-c8xcH9tAYfra6W11-P8SiT9N56PCUZ8uBydjHgcfbZ5g_4DOs4KBfkdB-NazwHd2tTln5HsAwGu2DcrTNzicZxcqXBxr9GL9eyoDe79xBdrz5-W36uLq4-nS_PLirNhGCVESCoFB1RQnStZrShiknV2Y4SIo2oFdeNUdDSljWia2pVi9YQLTUHYhVjh-hoW3dM8fts89SXMbT1XgYb59xT3tYcKIAo9P0jehPnFMrviir92rrhpKh3OzWrwZp-TG6Q6a5_2GsBx1ugU8w52fV_QqC_v1lfbtZvblbs6SOr3bTZT9m4889l_HDe3j1dur_8crnN-Af98ajv |
CitedBy_id | crossref_primary_10_1007_s10334_024_01149_8 crossref_primary_10_1002_mrm_30185 crossref_primary_10_1002_mrm_30201 crossref_primary_10_1002_mrm_29510 crossref_primary_10_1007_s10334_023_01085_z crossref_primary_10_1002_mrm_28982 crossref_primary_10_1002_mrm_30346 crossref_primary_10_1002_mrm_29376 crossref_primary_10_1002_mrm_29132 crossref_primary_10_1002_mrm_30329 crossref_primary_10_1002_nbm_4717 crossref_primary_10_1002_mrm_28745 crossref_primary_10_1016_j_neuroimage_2021_117986 crossref_primary_10_1002_mrm_29459 crossref_primary_10_1016_j_mri_2022_08_006 crossref_primary_10_1002_mrm_29412 crossref_primary_10_1088_1361_6560_ada683 crossref_primary_10_1088_1361_6560_aca4b7 crossref_primary_10_1177_17562864221143834 crossref_primary_10_1002_mrm_30072 crossref_primary_10_1016_j_artmed_2022_102460 crossref_primary_10_1002_mrm_29180 crossref_primary_10_1007_s10334_023_01134_7 crossref_primary_10_3389_fphy_2021_701330 crossref_primary_10_1002_mrm_30495 crossref_primary_10_1002_mrm_30014 crossref_primary_10_1002_mrm_29884 crossref_primary_10_1002_mrm_30137 crossref_primary_10_1002_mrm_30359 crossref_primary_10_1002_nbm_4728 crossref_primary_10_1109_TMI_2024_3515035 crossref_primary_10_1002_mrm_29569 crossref_primary_10_1016_j_mri_2024_03_037 crossref_primary_10_1002_mrm_28952 crossref_primary_10_1002_mrm_29402 crossref_primary_10_1097_RLI_0000000000000820 crossref_primary_10_1016_j_zemedi_2021_12_003 |
Cites_doi | 10.1002/mrm.24800 10.1371/journal.pone.0183562 10.1287/ijoc.1060.0175 10.1109/TMI.2004.824151 10.1002/mrm.21513 10.1002/mrm.20840 10.1016/j.mri.2013.12.005 10.1002/mrm.23118 10.1109/TMI.2015.2478880 10.3174/ajnr.A4180 10.1002/mrm.24749 10.1002/mrm.22978 10.1002/mrm.27870 10.1002/mrm.21221 10.1002/jmri.24573 10.1088/0031-9155/52/17/022 10.1002/jmri.25164 10.1002/mrm.27773 10.1002/mrm.21476 10.1002/mrm.20011 10.1002/mrm.27645 10.1002/mrm.22423 10.1002/mrm.22927 10.1088/0031-9155/55/2/N01 10.1002/mrm.26021 10.1016/j.pnmrs.2018.06.001 10.1002/mrm.27001 10.1002/nbm.3313 10.1109/TMI.2013.2295465 10.1002/mrm.25677 10.1016/j.neuroimage.2012.05.068 10.1002/mrm.21013 10.1002/mrm.26148 10.1002/nbm.2844 10.1002/mrm.10353 10.1002/mrm.25828 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine – notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28643 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 3153 |
ExternalDocumentID | 33400302 10_1002_mrm_28643 MRM28643 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3883-d8082a891b8897c3262b3ab9e9211ad85b4c6db0727368965b587d1cac401eb33 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 04:35:07 EDT 2025 Fri Jul 25 12:18:38 EDT 2025 Wed Feb 19 02:28:52 EST 2025 Tue Jul 01 04:26:59 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 Wed Jan 22 16:29:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | kT points 7 T parallel transmission (pTx) SPINS ultra-high-field MRI universal pulses |
Language | English |
License | Attribution 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3883-d8082a891b8897c3262b3ab9e9211ad85b4c6db0727368965b587d1cac401eb33 |
Notes | Funding information Siemens Healthcare GmbH ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7342-3715 0000-0003-0948-1421 0000-0002-4620-8216 0000-0003-4410-6790 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28643 |
PMID | 33400302 |
PQID | 2492175641 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2475402008 proquest_journals_2492175641 pubmed_primary_33400302 crossref_primary_10_1002_mrm_28643 crossref_citationtrail_10_1002_mrm_28643 wiley_primary_10_1002_mrm_28643_MRM28643 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 55 2007; 19 2015; 36 2013; 26 2006; 56 2006; 55 2004; 23 2016; 76 2016; 75 2008; 59 2018; 80 2008 2018; 109 2007; 52 2007; 57 2016; 35 1995; 8 2010; 64 2019; 82 2004; 51 2019; 81 2017; 77 2015; 41 2017; 12 2011; 66 2003; 49 2016; 29 1972; 35 2012; 67 2014; 71 2014; 33 2014; 32 2016; 44 2012; 62 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Gerchberg RW (e_1_2_7_28_1) 1972; 35 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_29_1 Ackerman MJ (e_1_2_7_34_1) 1995; 8 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 55 start-page: 719 year: 2006 end-page: 724 article-title: Fast‐kz three‐dimensional tailored radiofrequency pulse for reduced B1 inhomogeneity publication-title: Magn Reson Med – volume: 67 start-page: 72 year: 2012 end-page: 80 article-title: kT ‐points: short three‐dimensional tailored RF pulses for flip‐angle homogenization over an extended volume publication-title: Magn Reson Med – volume: 76 start-page: 20 year: 2016 end-page: 31 article-title: Subject‐ and resource‐specific monitoring and proactive management of parallel radiofrequency transmission publication-title: Magn Reson Med – volume: 41 start-page: 13 year: 2015 end-page: 33 article-title: MRI at 7 Tesla and above: demonstrated and potential capabilities publication-title: J Magn Reson Imaging – volume: 23 start-page: 520 year: 2004 end-page: 525 article-title: Theoretical and numerical aspects of transmit SENSE publication-title: IEEE Trans Med Imaging – volume: 8 start-page: 1195 year: 1995 end-page: 1198 article-title: The visible human data set: an image resource for anatomical visualization publication-title: Medinfo – volume: 29 start-page: 1145 year: 2016 end-page: 1161 article-title: Parallel transmission for ultrahigh‐field imaging publication-title: NMR Biomed – volume: 19 start-page: 328 year: 2007 end-page: 340 article-title: Scatter search and local NLP solvers: a multistart framework for global optimization publication-title: INFORMS J Comput – volume: 55 start-page: N23 year: 2010 end-page: N38 article-title: The virtual family–development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol – volume: 56 start-page: 918 year: 2006 end-page: 922 article-title: Exploring the limits of RF shimming for high‐field MRI of the human head publication-title: Magn Reson Med – volume: 35 start-page: 237 year: 1972 end-page: 246 article-title: Practical algorithm for determination of phase from image and diffraction plane pictures publication-title: Optik – volume: 35 start-page: 468 year: 2016 end-page: 479 article-title: Joint design of excitation k‐space trajectory and RF pulse for small‐tip 3D tailored excitation in MRI publication-title: IEEE Trans Med Imaging – volume: 64 start-page: 439 year: 2010 end-page: 446 article-title: Rapid B1+ mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn Reson Med – volume: 26 start-page: 265 year: 2013 end-page: 275 article-title: A theoretical and experimental comparison of different techniques for B(1) mapping at very high fields publication-title: NMR Biomed – volume: 51 start-page: 775 issue: 4 year: 2004 end-page: 784 article-title: Parallel excitation with an array of transmit coils publication-title: Magn Reson Med – volume: 52 start-page: 5429 year: 2007 end-page: 5441 article-title: 7 T body MRI: B1 shimming with simultaneous SAR reduction publication-title: Phys Med Biol – volume: 75 start-page: 801 year: 2016 end-page: 809 article-title: Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 Tesla using current receive coil arrays publication-title: Magn Reson Med – volume: 33 start-page: 739 year: 2014 end-page: 748 article-title: On variant strategies to solve the magnitude least squares optimization problem in parallel transmission pulse design and under strict SAR and power constraints publication-title: IEEE Trans Med Imaging – volume: 57 start-page: 842 year: 2007 end-page: 847 article-title: Reduction of transmitter B1 inhomogeneity with transmit SENSE slice‐select pulses publication-title: Magn Reson Med – volume: 59 start-page: 908 year: 2008 end-page: 915 article-title: Magnitude least squares optimization for parallel radio frequency excitation design demonstrated at 7 Tesla with eight channels publication-title: Magn Reson Med – volume: 62 start-page: 2140 year: 2012 end-page: 2150 article-title: Parallel‐transmission‐enabled magnetization‐prepared rapid gradient‐echo T1‐weighted imaging of the human brain at 7 T publication-title: Neuroimage – volume: 12 year: 2017 article-title: Homogeneous non‐selective and slice‐selective parallel‐transmit excitations at 7 Tesla with universal pulses: a validation study on two commercial RF coils publication-title: PLoS One – volume: 71 start-page: 1446 year: 2014 end-page: 1457 article-title: Local specific absorption rate (SAR), global SAR, transmitter power, and excitation accuracy trade‐offs in low flip‐angle parallel transmit pulse design publication-title: Magn Reson Med – volume: 82 start-page: 2016 year: 2019 end-page: 2031 article-title: SmartPulse, a machine learning approach for calibration‐free dynamic RF shimming: preliminary study in a clinical environment publication-title: Magn Reson Med – volume: 109 start-page: 1 year: 2018 end-page: 50 article-title: Pros and cons of ultra‐high‐field MRI/MRS for human application publication-title: Prog Nucl Magn Reson Spectrosc – volume: 80 start-page: 53 year: 2018 end-page: 65 article-title: Design of universal parallel‐transmit refocusing kT ‐point pulses and application to 3D T2 ‐weighted imaging at 7T publication-title: Magn Reson Med – volume: 67 start-page: 1303 year: 2012 end-page: 1315 article-title: Tailored excitation in 3D with spiral nonselective (SPINS) RF pulses publication-title: Magn Reson Med – volume: 82 start-page: 924 year: 2019 end-page: 934 article-title: Whole‐brain B1 ‐mapping using three‐dimensional DREAM publication-title: Magn Reson Med – year: 2008 – volume: 66 start-page: 1468 year: 2011 end-page: 1476 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn Reson Med – volume: 59 start-page: 396 year: 2008 end-page: 409 article-title: Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements publication-title: Magn Reson Med – volume: 36 start-page: 1204 year: 2015 end-page: 1215 article-title: Ultra‐high‐field MR neuroimaging publication-title: AJNR Am J Neuroradiol – volume: 77 start-page: 635 year: 2017 end-page: 643 article-title: Universal pulses: a new concept for calibration‐free parallel transmission publication-title: Magn Reson Med – volume: 81 start-page: 3202 year: 2019 end-page: 3208 article-title: Robust nonadiabatic T2 preparation using universal parallel‐transmit kT ‐point pulses for 3D FLAIR imaging at 7 T publication-title: Magn Reson Med – volume: 71 start-page: 966 year: 2014 end-page: 977 article-title: Cerebral TOF angiography at 7T: impact of B1(+) shimming with a 16‐channel transceiver array publication-title: Magn Reson Med – volume: 49 start-page: 144 year: 2003 end-page: 150 article-title: Transmit SENSE publication-title: Magn Reson Med – volume: 76 start-page: 1170 year: 2016 end-page: 1182 article-title: Fast three‐dimensional inner volume excitations using parallel transmission and optimized k‐space trajectories publication-title: Magn Reson Med – volume: 32 start-page: 314 year: 2014 end-page: 320 article-title: A modified multi‐echo AFI for simultaneous B1(+) magnitude and phase mapping publication-title: Magn Reson Imaging – volume: 44 start-page: 486 year: 2016 end-page: 499 article-title: Towards high‐resolution 4D flow MRI in the human aorta using kt‐GRAPPA and B1+ shimming at 7T publication-title: J Magn Reson Imaging – ident: e_1_2_7_31_1 doi: 10.1002/mrm.24800 – ident: e_1_2_7_25_1 doi: 10.1371/journal.pone.0183562 – ident: e_1_2_7_35_1 doi: 10.1287/ijoc.1060.0175 – ident: e_1_2_7_12_1 doi: 10.1109/TMI.2004.824151 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.21513 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.20840 – ident: e_1_2_7_38_1 doi: 10.1016/j.mri.2013.12.005 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.23118 – ident: e_1_2_7_16_1 doi: 10.1109/TMI.2015.2478880 – ident: e_1_2_7_3_1 doi: 10.3174/ajnr.A4180 – ident: e_1_2_7_7_1 doi: 10.1002/mrm.24749 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.22978 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.27870 – ident: e_1_2_7_15_1 doi: 10.1002/mrm.21221 – ident: e_1_2_7_26_1 doi: 10.1002/jmri.24573 – ident: e_1_2_7_10_1 doi: 10.1088/0031-9155/52/17/022 – ident: e_1_2_7_8_1 doi: 10.1002/jmri.25164 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.27773 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.21476 – ident: e_1_2_7_13_1 doi: 10.1002/mrm.20011 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.27645 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.22423 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.22927 – ident: e_1_2_7_33_1 doi: 10.1088/0031-9155/55/2/N01 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.26021 – ident: e_1_2_7_4_1 doi: 10.1016/j.pnmrs.2018.06.001 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.27001 – volume: 8 start-page: 1195 year: 1995 ident: e_1_2_7_34_1 article-title: The visible human data set: an image resource for anatomical visualization publication-title: Medinfo – ident: e_1_2_7_27_1 – ident: e_1_2_7_5_1 doi: 10.1002/nbm.3313 – ident: e_1_2_7_30_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_7_2_1 doi: 10.1002/mrm.25677 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2012.05.068 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.21013 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.26148 – volume: 35 start-page: 237 year: 1972 ident: e_1_2_7_28_1 article-title: Practical algorithm for determination of phase from image and diffraction plane pictures publication-title: Optik – ident: e_1_2_7_40_1 doi: 10.1109/TMI.2013.2295465 – ident: e_1_2_7_39_1 doi: 10.1002/nbm.2844 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.10353 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.25828 |
SSID | ssj0009974 |
Score | 2.5247085 |
Snippet | Purpose
To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of... Click here for author‐reader discussions To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of... PurposeTo mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra‐high field MRI using a combination of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3140 |
SubjectTerms | 7 T Adiabatic Adolescent Adult Algorithms Brain - diagnostic imaging Brain Injuries - diagnostic imaging Case-Control Studies Circular polarization Customization Data acquisition Datasets Female Homogeneity Humans Image Processing, Computer-Assisted - methods kT points Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Mathematical analysis Optimization parallel transmission (pTx) Regularization SPINS ultra‐high‐field MRI universal pulses Young Adult |
Title | Fast online‐customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28643 https://www.ncbi.nlm.nih.gov/pubmed/33400302 https://www.proquest.com/docview/2492175641 https://www.proquest.com/docview/2475402008 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEB7SQEsvTZr-bZoEtfSQHrxZy7ItJacQuoTCtiXtQg4FI8kShO56Q2xfQg99hD5jn6QjyXZIf6D0ZvCYkeXRzDfSzGeAVzKmOS0ljSSi74gJKyJlMxOlqdJCaWWkdY3Cs3fZ6Zy9PU_P1-Co74UJ_BDDhptbGd5fuwUuVX1wQxq6vFqOKceAiv7X1Wo5QHR2Qx0lRGBgzpnzM4L1rEITejA8eTsW_QYwb-NVH3CmG_C5H2qoM_kybhs11te_sDj-57tswoMOiJLjYDkPYc1UW3Bv1h21b8FdXxuq60fwdSrrhgQ1P7591y3ixeXFtSnJ_vT9yfzja-L4wxcLsyCNi3xoOW4Ljly2GHbrQ3JMcDiYgHsbICtL2lAMgtqDCJFVSS6GzjCyQje27PpDH8N8-ubTyWnU_bQh0gnnSVRyBBWSi1hxLnKN6JCqRCphBKaasuSpYjor1cThpoyLLFUpz8tYS42ZHmb2yRNYr1aVeQaE0jhLNTfWyoyViK8nSc6tiK2SktuEjmC__3yF7hjN3Y81FkXgYqYFzmvh53UELwfRy0Dj8Sehnd4Gim4l14VjVESIlbF4BC-G2ziT7mBFVmbVOpk8dXn4hI_gabCdQUuSMOdI3WC9BfxdfTE7m_mL7X8XfQ73qSuy8dtCO7DeXLVmF1FSo_bgDmUf9vyi-AlHLBDQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAuW1tIBBHMoh243zshGXqmK1QFOk0pV6qSLbsaWK3WzVTS4VB34Cv7G_pGM7SVUeEuIWKRON48zjG2f8GeCNCGlGS0EDgeg7iLnhgTSpDpJEKi6V1MLYjcL5fjqZxp-OkqMVeN_thfH8EP2Cm_UMF6-tg9sF6e0r1tD52XxIGWbUG3DTnujtCqqDK_Iozj0HcxbbSMPjjldoRLf7R69no98g5nXE6lLO-B4cd4P1nSbfhk0th-r8Fx7H_32b-7DWYlGy443nAazoah1u5-3f9nW45dpD1fIhfB-LZU28nosfP1WDkHF-cq5LsjX-sjv9-pZYCvHZTM9IbZMfGo9dhSOnDWbe5TuyQ3A8WIM7MyALQxrfD4LavQgRVUlO-s1hZIGRbN5uEX0E0_GHw91J0J7bEKiIsSgoGeIKwXgoGeOZQoBIZSQk1xyrTVGyRMYqLeXIQqeU8TSRCcvKUAmFxR4W99FjWK0WlX4KhNIwTRTTxog0LhFij6KMGR4aKQQzER3AVvf9CtWSmtuzNWaFp2OmBc5r4eZ1AK970VPP5PEnoc3OCIrWmZeFJVVElJXG4QBe9bdxJu2_FVHpRWNlssSW4iM2gCfeeHotURTbWGoH60zg7-qL_CB3F8_-XfQl3Jkc5nvF3sf9zxtwl9qeG7dKtAmr9VmjnyNoquUL5xuXzX4UFA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHMoh28RJHBtOVUtUHltQYaUekCLbsaWK3eyqm1wqDvwEfiO_hHGcpCoPCXGLlInGcWY839gzXwCeyYhmtJQ0kIi-g0RYESjLTJCmSgullZHWNQpPDtnBNHlznB6vwcu-F8bzQwwbbs4z2vXaOfiytDvnpKHz0_mYcgyol-BywkLuTHr_6Jw7SghPwZwlbqERSU8rFNKd4dGLweg3hHkRsLYRJ78On_ux-kKTL-OmVmN99guN43--zA241iFRsutN5yasmWoTNibdWfsmXGmLQ_XqFnzN5aomXs2Pb991g4BxfnJmSrKdv9-bfnxOHIH4bGZmpHahD03H7cGRZYNxd_WC7BIcDmbgrRGQhSWNrwZB7V6EyKokJ0NrGFngOjbvGkRvwzR_9WnvIOj-2hDomPM4KDmiCslFpDgXmUZ4SFUslTACc01Z8lQlmpUqdMCJccFSlfKsjLTUmOphah_fgfVqUZl7QCiNWKq5sVaypESAHcYZtyKySkpuYzqC7f7zFbqjNHd_1pgVnoyZFjivRTuvI3g6iC49j8efhLZ6Gyg6V14VjlIRMRZLohE8GW7jTLqTFVmZReNkstQl4iEfwV1vO4OWOE7cSuoG21rA39UXk6NJe3H_30Ufw8aH_bx49_rw7QO4Sl3BTbtFtAXr9WljHiJiqtWj1jN-AqbEEsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+online%E2%80%90customized+%28FOCUS%29+parallel+transmission+pulses%3A+A+combination+of+universal+pulses+and+individual+optimization&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Herrler%2C+J%C3%BCrgen&rft.au=Liebig%2C+Patrick&rft.au=Gumbrecht%2C+Rene&rft.au=Ritter%2C+Dieter&rft.date=2021-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=6&rft.spage=3140&rft.epage=3153&rft_id=info:doi/10.1002%2Fmrm.28643&rft.externalDBID=10.1002%252Fmrm.28643&rft.externalDocID=MRM28643 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |