CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes
We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the...
Saved in:
Published in | Journal of computational chemistry Vol. 39; no. 6; pp. 328 - 337 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
05.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc.
Lanthanide single molecule magnets are important systems for the development of molecular memories, with ab initio methodologies being an important tool for their characterization. In this work, we present a new software for the calculation of crystal field states for lanthanide single molecule magnets. Based on a new method we recently developed, we compare it with a currently available program, showing that our method is more efficient without any significant loss in accuracy. |
---|---|
AbstractList | We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc. Lanthanide single molecule magnets are important systems for the development of molecular memories, with ab initio methodologies being an important tool for their characterization. In this work, we present a new software for the calculation of crystal field states for lanthanide single molecule magnets. Based on a new method we recently developed, we compare it with a currently available program, showing that our method is more efficient without any significant loss in accuracy. We have developed and implemented a new ab initio code, C eres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4 f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in C eres , represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc. |
Author | Rao, Shashank Vittal Piccardo, Matteo Calvello, Simone Soncini, Alessandro |
Author_xml | – sequence: 1 givenname: Simone orcidid: 0000-0002-5025-2578 surname: Calvello fullname: Calvello, Simone organization: University of Melbourne – sequence: 2 givenname: Matteo orcidid: 0000-0003-2770-7447 surname: Piccardo fullname: Piccardo, Matteo organization: University of Melbourne – sequence: 3 givenname: Shashank Vittal surname: Rao fullname: Rao, Shashank Vittal organization: University of Melbourne – sequence: 4 givenname: Alessandro orcidid: 0000-0002-6779-7304 surname: Soncini fullname: Soncini, Alessandro email: asoncini@unimelb.edu.au organization: University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29159814$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1rFTEUhoNU7G3rwj8gATd2MW0ymWQy7spw-yEFQVvobsgkJzaXmeSaZNAu_eemva0LwdWBl-c8vPAeoD0fPCD0jpITSkh9utH6pOaUsldoRUknqk62d3toRWhXV1Jwuo8OUtoQQhgXzRu0X3eUd5I2K_S7X39df_uEzzxWI3beZRewDgawAeO0ymBwDjjfA9Zq0sukCuBxsE8RTKBzDN5pnHJcdF4iYOUNntV3D7nE2xi2ELOD9PgzKZ_vlXdFr8O8neAXpCP02qopwdvne4huz9c3_WV1_eXiqj-7rjSTklWGEy1Na4SywlpGRtmKFlopobFtQ6SSlDeGQ4lGSzkjlo1cCM5qK2rbADtEH3feUunHAikPs0saptIJwpIG2gnRdTWTrKAf_kE3YYm-tCuUbBgjsqkLdbyjdAwpRbDDNrpZxYeBkuFxl6HsMjztUtj3z8ZlnMH8JV-GKMDpDvjpJnj4v2n43Pc75R85U5jv |
CitedBy_id | crossref_primary_10_1039_D1CP05469D crossref_primary_10_1021_acs_inorgchem_2c03457 crossref_primary_10_1021_acs_jctc_1c00853 crossref_primary_10_1021_acs_inorgchem_9b01610 crossref_primary_10_1039_D0CP00539H crossref_primary_10_1002_jcc_25062 crossref_primary_10_1002_jcc_25171 crossref_primary_10_1016_j_ccr_2021_213984 crossref_primary_10_1039_C9SC03133B crossref_primary_10_1002_jcc_25565 crossref_primary_10_1002_jcc_25113 crossref_primary_10_1039_D1CP05488K crossref_primary_10_1038_s41467_023_38169_2 crossref_primary_10_1021_acs_inorgchem_0c02956 |
Cites_doi | 10.1002/anie.201107453 10.1002/chem.201101838 10.1063/1.463096 10.1002/chem.201605102 10.1002/jcc.540100111 10.1021/acs.jctc.5b01048 10.1002/jcc.24221 10.1143/JPSJ.62.2924 10.1002/jcc.25062 10.1016/0009-2614(96)00119-4 10.1016/0301-0104(80)80045-0 10.1002/anie.200800283 10.1090/S0025-5718-1970-0258249-6 10.1016/0009-2614(80)80396-4 10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O 10.1039/C5CC07541F 10.1093/comjnl/13.3.317 10.1016/0003-4916(74)90333-9 10.1093/imamat/6.3.222 10.1002/anie.201004027 10.1063/1.4739763 10.1002/anie.201205938 10.1021/ja8100038 10.1080/00268977400102581 10.1007/978-1-4899-1983-0_3 10.1021/ic402367c 10.1039/C1DT11301A 10.1002/9783527673476.ch6 10.1039/b516376p 10.1039/c3sc22300k 10.1021/cr400018q 10.1063/1.473833 10.1016/j.inoche.2012.10.008 10.1002/jcc.540030413 10.1039/c1sc00513h 10.1002/jcc.23981 10.1016/S0009-2614(02)00498-0 10.1063/1.455063 10.1039/c2dt31388j 10.1002/jcc.25113 10.1090/S0025-5718-1980-0572855-7 10.3762/bjnano.5.236 10.1002/jcc.20393 10.1002/jcc.540030314 10.1039/C6CP02325H 10.2140/pjm.1966.16.1 10.1039/c1dt10050e 10.1002/chem.201103816 10.1002/chem.201302600 10.1080/00268977400102171 10.1039/c4sc00751d 10.1039/C5DT03345D 10.1063/1.441359 10.1103/PhysRevB.79.134419 10.1090/S0025-5718-1970-0274029-X 10.1007/BF01321865 10.1038/ncomms3551 10.1093/acprof:oso/9780198567530.001.0001 10.1039/c1cp22689d |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | NPM AAYXX CITATION JQ2 7X8 |
DOI | 10.1002/jcc.25113 |
DatabaseName | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | ProQuest Computer Science Collection MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1096-987X |
EndPage | 337 |
ExternalDocumentID | 10_1002_jcc_25113 29159814 JCC25113 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council (Discovery Project) funderid: DP150103254 – fundername: Australian Government Research Training Program Scholarship |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT NPM AAYXX CITATION JQ2 7X8 |
ID | FETCH-LOGICAL-c3883-d50c8d7d6af6ff30b8767e788e4f7408a8154d5ee78bf1530f3b566532f62f4e3 |
IEDL.DBID | DR2 |
ISSN | 0192-8651 |
IngestDate | Fri Aug 16 23:39:28 EDT 2024 Thu Oct 10 17:58:34 EDT 2024 Fri Aug 23 04:54:19 EDT 2024 Sat Sep 28 08:38:01 EDT 2024 Sat Aug 24 01:19:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | ab initio electronic structure theory lanthanide single molecule magnets configurational average crystal field levels |
Language | English |
License | 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3883-d50c8d7d6af6ff30b8767e788e4f7408a8154d5ee78bf1530f3b566532f62f4e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6779-7304 0000-0002-5025-2578 0000-0003-2770-7447 |
OpenAccessLink | http://minerva-access.unimelb.edu.au/bitstreams/72c8d060-3e87-5d7d-b24b-43db150e4df6/download |
PMID | 29159814 |
PQID | 1984330842 |
PQPubID | 48816 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1966992383 proquest_journals_1984330842 crossref_primary_10_1002_jcc_25113 pubmed_primary_29159814 wiley_primary_10_1002_jcc_25113_JCC25113 |
PublicationCentury | 2000 |
PublicationDate | March 5, 2018 |
PublicationDateYYYYMMDD | 2018-03-05 |
PublicationDate_xml | – month: 03 year: 2018 text: March 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of computational chemistry |
PublicationTitleAlternate | J Comput Chem |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1980; 48 1970; 6 2015; 36 1966; 16 2013; 4 2013; 27 1993; 62 2006; 35 2002; 357 2011; 13 2012; 18 2011; 17 1992; 97 2012; 51 2013; 19 1970; 111 2014; 5 1997; 106 1980; 73 2017; 38 1974; 82 2006; 27 2015; 44 1982; 3 2013; 52 1987 1988; 89 2013; 113 1996; 251 2012; 137 1981; 74 1989 1996; 17 2011; 2 2012 2011 2010 2011; 40 2017; 23 2016; 52 2006 2009; 131 2016; 18 1980; 151 1970; 109 2016; 12 1970; 13 1982; 45 2016; 5 2009; 79 2010; 49 1989; 10 2008; 47 2017 2016 2015 2012; 41 1974; 28 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_29_1 e_1_2_5_61_1 e_1_2_5_63_1 e_1_2_5_42_1 e_1_2_5_40_1 Helgaker T. (e_1_2_5_30_1) 2012 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 Schling B. (e_1_2_5_38_1) 2011 e_1_2_5_66_1 e_1_2_5_60_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_20_1 e_1_2_5_41_1 Fletcher R. (e_1_2_5_31_1) 1987 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 McWeeny R. (e_1_2_5_28_1) 1989 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – year: 2011 – volume: 5 start-page: 2267 year: 2014 publication-title: Beilstein J. Nanotech. – volume: 41 start-page: 13556 year: 2012 publication-title: Dalton Trans. – volume: 106 start-page: 9708 year: 1997 publication-title: J. Phys. Chem. – volume: 18 start-page: 15807 year: 2016 publication-title: Phys. Chem., Chem. Phys. – volume: 89 start-page: 2185 year: 1988 publication-title: J. Chem. Phys. – year: 1989 – volume: 111 start-page: 647 year: 1970 publication-title: Math. Comput. – volume: 17 start-page: 1836 year: 1996 publication-title: J. Comput. Chem. – volume: 131 start-page: 5573 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1719 year: 2013 publication-title: Chem. Sci. – volume: 3 start-page: 385 year: 1982 publication-title: J. Comput. Chem. – volume: 51 start-page: 1606 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 127 year: 2013 publication-title: Inorg. Chem. Commun. – volume: 52 start-page: 13770 year: 2013 publication-title: Inorg. Chem. – volume: 18 start-page: 2484 year: 2012 publication-title: Chem. Eur. J. – volume: 13 start-page: 317 year: 1970 publication-title: Comput. J. – volume: 19 start-page: 13726 year: 2013 publication-title: Chem.–Eur. J. – volume: 48 start-page: 157 year: 1980 publication-title: Chem. Phys. – volume: 28 start-page: 819 year: 1974 publication-title: Mol. Phys. – volume: 357 start-page: 230 year: 2002 publication-title: Chem. Phys. Lett. – volume: 44 start-page: 18270 year: 2015 publication-title: Dalton Trans. – volume: 137 start-page: 064112 year: 2012 publication-title: J. Chem. Phys. – volume: 12 start-page: 1148 year: 2016 publication-title: J. Chem. Theory Comput. – volume: 36 start-page: 1664 year: 2015 publication-title: J. Comput. Chem. – volume: 5 start-page: 506 year: 2016 publication-title: J. Comput. Chem. – volume: 251 start-page: 365 year: 1996 publication-title: Chem. Phys. Lett. – volume: 13 start-page: 20086 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 79 start-page: 134419 year: 2009 publication-title: Phys. Rev. B – volume: 17 start-page: 12476 year: 2011 publication-title: Chem. Eur. J. – year: 1987 – start-page: 153 year: 2015 end-page: 184 – volume: 113 start-page: 5110 year: 2013 publication-title: Chem. Rev. – volume: 97 start-page: 2571 year: 1992 publication-title: J. Chem. Phys. – volume: 28 start-page: 1273 year: 1974 publication-title: Mol. Phys. – year: 2016 – volume: 27 start-page: 926 year: 2006 publication-title: J. Comput. Chem. – volume: 10 start-page: 104 year: 1989 publication-title: J. Comput. Chem. – volume: 3 start-page: 556 year: 1982 publication-title: J. Comp. Chem. – volume: 151 start-page: 773 year: 1980 publication-title: Math. Comput. – volume: 16 start-page: 1 year: 1966 publication-title: Pac. J. Math. – volume: 49 start-page: 7448 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 40 start-page: 5579 year: 2011 publication-title: Dalton Trans. – year: 2010 – volume: 45 start-page: 289 year: 1982 publication-title: Z. Phys. B Condens. Matter – year: 2012 – volume: 109 start-page: 23 year: 1970 publication-title: Math. Comput. – volume: 35 start-page: 557 year: 2006 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 2775 year: 2017 article-title: A full‐pivoting algorithm for the Cholesky decomposition of two‐electron repulsion and spin‐orbit coupling integrals publication-title: J. Comput. Chem. – volume: 4 start-page: 2551 year: 2013 publication-title: Nat. Commun. – volume: 5 start-page: 3287 year: 2014 publication-title: Chem. Sci. – volume: 82 start-page: 89 year: 1974 publication-title: Ann. Phys. – year: 2006 – volume: 47 start-page: 4126 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 62 start-page: 2924 year: 1993 publication-title: J. Phys. Soc. Jpn. – volume: 23 start-page: 3708 year: 2017 publication-title: Chem. Eur. J. – volume: 2 start-page: 2078 year: 2011 publication-title: Chem. Sci. – volume: 52 start-page: 350 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 222 year: 1970 publication-title: J. Inst. Math. Appl. – start-page: 251 year: 1987 end-page: 309 – year: 2017 – volume: 74 start-page: 2384 year: 1981 publication-title: J. Chem. Phys. – volume: 52 start-page: 2091 year: 2016 publication-title: Chem. Commun. – volume: 73 start-page: 393 year: 1980 publication-title: Chem. Phys. Lett. – volume: 41 start-page: 1352 year: 2012 publication-title: Dalton Trans. – ident: e_1_2_5_17_1 doi: 10.1002/anie.201107453 – ident: e_1_2_5_61_1 doi: 10.1002/chem.201101838 – ident: e_1_2_5_64_1 doi: 10.1063/1.463096 – ident: e_1_2_5_10_1 doi: 10.1002/chem.201605102 – ident: e_1_2_5_45_1 doi: 10.1002/jcc.540100111 – ident: e_1_2_5_63_1 doi: 10.1021/acs.jctc.5b01048 – ident: e_1_2_5_7_1 doi: 10.1002/jcc.24221 – ident: e_1_2_5_29_1 doi: 10.1143/JPSJ.62.2924 – ident: e_1_2_5_37_1 doi: 10.1002/jcc.25062 – volume-title: Methods of Molecular Quantum Mechanics year: 1989 ident: e_1_2_5_28_1 contributor: fullname: McWeeny R. – ident: e_1_2_5_53_1 doi: 10.1016/0009-2614(96)00119-4 – ident: e_1_2_5_4_1 doi: 10.1016/0301-0104(80)80045-0 – ident: e_1_2_5_8_1 doi: 10.1002/anie.200800283 – ident: e_1_2_5_34_1 doi: 10.1090/S0025-5718-1970-0258249-6 – ident: e_1_2_5_48_1 doi: 10.1016/0009-2614(80)80396-4 – ident: e_1_2_5_50_1 doi: 10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O – ident: e_1_2_5_24_1 doi: 10.1039/C5CC07541F – ident: e_1_2_5_33_1 doi: 10.1093/comjnl/13.3.317 – ident: e_1_2_5_42_1 doi: 10.1016/0003-4916(74)90333-9 – ident: e_1_2_5_32_1 doi: 10.1093/imamat/6.3.222 – volume-title: The Boost C++ Libraries year: 2011 ident: e_1_2_5_38_1 contributor: fullname: Schling B. – ident: e_1_2_5_55_1 doi: 10.1002/anie.201004027 – ident: e_1_2_5_9_1 doi: 10.1063/1.4739763 – ident: e_1_2_5_18_1 doi: 10.1002/anie.201205938 – ident: e_1_2_5_16_1 doi: 10.1021/ja8100038 – ident: e_1_2_5_27_1 doi: 10.1080/00268977400102581 – ident: e_1_2_5_54_1 doi: 10.1007/978-1-4899-1983-0_3 – ident: e_1_2_5_22_1 doi: 10.1021/ic402367c – ident: e_1_2_5_58_1 doi: 10.1039/C1DT11301A – ident: e_1_2_5_23_1 doi: 10.1002/9783527673476.ch6 – ident: e_1_2_5_1_1 doi: 10.1039/b516376p – ident: e_1_2_5_59_1 doi: 10.1039/c3sc22300k – ident: e_1_2_5_2_1 doi: 10.1021/cr400018q – ident: e_1_2_5_62_1 – ident: e_1_2_5_46_1 doi: 10.1063/1.473833 – ident: e_1_2_5_60_1 doi: 10.1016/j.inoche.2012.10.008 – ident: e_1_2_5_49_1 doi: 10.1002/jcc.540030413 – ident: e_1_2_5_65_1 doi: 10.1039/c1sc00513h – volume-title: Molecular Electronic–Structure Theory year: 2012 ident: e_1_2_5_30_1 contributor: fullname: Helgaker T. – ident: e_1_2_5_41_1 doi: 10.1002/jcc.23981 – ident: e_1_2_5_6_1 doi: 10.1016/S0009-2614(02)00498-0 – ident: e_1_2_5_40_1 – ident: e_1_2_5_36_1 doi: 10.1063/1.455063 – ident: e_1_2_5_14_1 doi: 10.1039/c2dt31388j – ident: e_1_2_5_26_1 doi: 10.1002/jcc.25113 – ident: e_1_2_5_51_1 doi: 10.1090/S0025-5718-1980-0572855-7 – ident: e_1_2_5_19_1 doi: 10.3762/bjnano.5.236 – ident: e_1_2_5_43_1 doi: 10.1002/jcc.20393 – ident: e_1_2_5_44_1 doi: 10.1002/jcc.540030314 – ident: e_1_2_5_25_1 doi: 10.1039/C6CP02325H – volume-title: Practical Methods of Optimization year: 1987 ident: e_1_2_5_31_1 contributor: fullname: Fletcher R. – ident: e_1_2_5_52_1 doi: 10.2140/pjm.1966.16.1 – ident: e_1_2_5_56_1 doi: 10.1039/c1dt10050e – ident: e_1_2_5_57_1 doi: 10.1002/chem.201103816 – ident: e_1_2_5_13_1 doi: 10.1002/chem.201302600 – ident: e_1_2_5_47_1 doi: 10.1080/00268977400102171 – ident: e_1_2_5_12_1 doi: 10.1039/c4sc00751d – ident: e_1_2_5_39_1 – ident: e_1_2_5_20_1 doi: 10.1039/C5DT03345D – ident: e_1_2_5_5_1 doi: 10.1063/1.441359 – ident: e_1_2_5_15_1 doi: 10.1103/PhysRevB.79.134419 – ident: e_1_2_5_35_1 doi: 10.1090/S0025-5718-1970-0274029-X – ident: e_1_2_5_66_1 doi: 10.1007/BF01321865 – ident: e_1_2_5_21_1 doi: 10.1038/ncomms3551 – ident: e_1_2_5_3_1 doi: 10.1093/acprof:oso/9780198567530.001.0001 – ident: e_1_2_5_11_1 doi: 10.1039/c1cp22689d |
SSID | ssj0003564 |
Score | 2.3692327 |
Snippet | We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated... We have developed and implemented a new ab initio code, C eres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 328 |
SubjectTerms | ab initio Atomic structure configurational average Coupling (molecular) crystal field levels Crystal structure Electron spin Electronic structure electronic structure theory Evaluation lanthanide single molecule magnets Magnetic properties Mathematical analysis Quantum theory Rare earth elements Spin-orbit interactions |
Title | CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25113 https://www.ncbi.nlm.nih.gov/pubmed/29159814 https://www.proquest.com/docview/1984330842 https://search.proquest.com/docview/1966992383 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvcAFyqOwZUEGceglWye2E6ecqnRXVSU4oK60h0qRn7Q8kmofEuLGP-_Y2eyqRUiIW-T4kXhm7C8ZzzcA76VxpVfUJzZ43blQPNGioIm0mbdUcSYjgenHT_nZlJ_PxGwHPvSxMB0_xOaHW7CMuF4HA1d6cbQlDf1qzCjg48D0mbIiHOc6_byljmKio45CBJPIXKQ9qxDNjjYt7-5FfwDMu3g1bjiTx3DZP2p3zuTbaLXUI_PrHovjf77LHjxaA1Fy0mnOE9hxzVN4UPX5357B72qM0jkmJw1RmlyHQ0YtCRHwxEbnDkJVsmwJAkiCcjbrNGCk9bFom16HdBS1q7kjqrHkh_rShMBJchPcAPPA5xrafEcJX6nmGruPp9zdT7d4DtPJ-KI6S9YJGxLDpGQob2qkLWyufO49oxqX2sLhR7bjvuBUKomAzQqHRdrjUks90wgnBct8nnnu2D7sNm3jXgLxRSl86hAsacbRklVZlNpmFnUot8qYAbzrRVffdLwcdcfAnNU4m3WczQEMe6HWa9Nc1GkpOWNU8mwAbze3cW6Dp0Q1rl2FOnleIvSV2MWLThk2o2QlIkCZ8gEcRpH-ffj6vKrixcG_V30FDxGSxahHKoawixJyrxH2LPWbqN-3mPD9gQ |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOMClLX3QbYGaqodesnhjO3EqLiiAtrwOFUhcqshPSh8Jgl2p6o1_ztjZ7IqiSqi3yLGdxDNjf_F4vgH4II0rvKI-scHrzoXiiRY5TaRNvaWKMxkJTI9PsuEZPzgX53Ow3cXCtPwQ0w23YBlxvg4GHjakt2asod-N6QeAzOZhEc2dhfwFu19m5FFMtORRiGESmYlBxytE061p0_ur0QOIeR-xxiVn_yl87V62PWnyoz8e6b758xeP4_9-zTN4MsGiZKdVnhWYc_VzWCq7FHAv4LbcQwF9Ijs1UZpchnNGDQlB8MRG_w6iVTJqCGJIgqI2k0xgpPGxaJZhh7QsteNrR1RtyS91UYfYSXIVPAHXgdI1tPmJQv6m6kvsPh50d7_dzUs42987LYfJJGdDYpiUDEVOjbS5zZTPvGdU42ybO_zPdtznnEolEbNZ4bBIe5xtqWcaEaVgqc9Szx17BQt1U7vXQHxeCD9wiJc042jMqsgLbVOLapRZZUwP3neyq65aao6qJWFOKxzNKo5mD9Y6qVYT67ypBoXkjFHJ0x5sTm_j2AZniapdMw51sqxA9Cuxi9VWG6ZPSQsEgXLAe_AxyvTfj68OyjJevHl81XewNDw9PqqOPp8cvoVlRGgxCJKKNVhAabl1REEjvRGV_Q5lLwGq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvvEu3FDCIA5dsvfEjDpyqtKtSoEKISj0gRX7SQklW7a5UceOfM3Y2uyoICXGLHD8Sz4z9JeP5BuCFsr4MmobMRa87F5pnRhQ0Uy4PjmrOVCIwfX8o94_4wbE4XoHXfSxMxw-x-OEWLSOt19HAJy5sL0lDv1o7jPiYXYPrXDIaz3PtflxyRzHRcUchhMmUFKOeVojm24umVzejPxDmVcCadpzxbfjcP2t30OTbcDY1Q_vjNxrH_3yZO3BrjkTJTqc6d2HFN_fgZtUngLsPP6s9FM8rstMQbchpPGXUkhgCT1zy7iBWJdOWIIIkKGg7zwNG2pCKlvl1SMdROzv3RDeOfNdfmhg5SSbRD3AeCV1jmzMU8YluTrH7dMzdX_qLB3A03vtU7WfzjA2ZZUoxFDi1yhVO6iBDYNTgWlt4_Mr2PBScKq0QsTnhscgEXGtpYAbxpGB5kHngnq3DatM2fgNIKEoRRh7RkmEcTVmXRWlc7lCJpNPWDuB5L7p60hFz1B0Fc17jbNZpNgew1Qu1ntvmRT0qFWeoLzwfwLPFbZzb6CrRjW9nsY6UJWJfhV087JRhMUpeIgRUIz6Al0mkfx--PqiqdLH571Wfwo0Pu-P63ZvDt49gDeFZioCkYgtWUVj-MUKgqXmSVP0XY_AAWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CERES%3A+An+ab+initio+code+dedicated+to+the+calculation+of+the+electronic+structure+and+magnetic+properties+of+lanthanide+complexes&rft.jtitle=Journal+of+computational+chemistry&rft.au=Calvello%2C+Simone&rft.au=Piccardo%2C+Matteo&rft.au=Rao%2C+Shashank+Vittal&rft.au=Soncini%2C+Alessandro&rft.date=2018-03-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=39&rft.issue=6&rft.spage=328&rft_id=info:doi/10.1002%2Fjcc.25113&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |