CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes

We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 39; no. 6; pp. 328 - 337
Main Authors Calvello, Simone, Piccardo, Matteo, Rao, Shashank Vittal, Soncini, Alessandro
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 05.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc. Lanthanide single molecule magnets are important systems for the development of molecular memories, with ab initio methodologies being an important tool for their characterization. In this work, we present a new software for the calculation of crystal field states for lanthanide single molecule magnets. Based on a new method we recently developed, we compare it with a currently available program, showing that our method is more efficient without any significant loss in accuracy.
AbstractList We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc.
We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc. Lanthanide single molecule magnets are important systems for the development of molecular memories, with ab initio methodologies being an important tool for their characterization. In this work, we present a new software for the calculation of crystal field states for lanthanide single molecule magnets. Based on a new method we recently developed, we compare it with a currently available program, showing that our method is more efficient without any significant loss in accuracy.
We have developed and implemented a new ab initio code, C eres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin‐orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree–Fock (CAHF) algorithm for the determination of 4 f quasi‐atomic active orbitals common to all multi‐electron spin manifolds contributing to the ground spin‐orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi‐Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem‐specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state–of–the–art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in C eres , represents a more time‐efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non‐perturbative spin‐orbit coupling effects. © 2017 Wiley Periodicals, Inc.
Author Rao, Shashank Vittal
Piccardo, Matteo
Calvello, Simone
Soncini, Alessandro
Author_xml – sequence: 1
  givenname: Simone
  orcidid: 0000-0002-5025-2578
  surname: Calvello
  fullname: Calvello, Simone
  organization: University of Melbourne
– sequence: 2
  givenname: Matteo
  orcidid: 0000-0003-2770-7447
  surname: Piccardo
  fullname: Piccardo, Matteo
  organization: University of Melbourne
– sequence: 3
  givenname: Shashank Vittal
  surname: Rao
  fullname: Rao, Shashank Vittal
  organization: University of Melbourne
– sequence: 4
  givenname: Alessandro
  orcidid: 0000-0002-6779-7304
  surname: Soncini
  fullname: Soncini, Alessandro
  email: asoncini@unimelb.edu.au
  organization: University of Melbourne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29159814$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1rFTEUhoNU7G3rwj8gATd2MW0ymWQy7spw-yEFQVvobsgkJzaXmeSaZNAu_eemva0LwdWBl-c8vPAeoD0fPCD0jpITSkh9utH6pOaUsldoRUknqk62d3toRWhXV1Jwuo8OUtoQQhgXzRu0X3eUd5I2K_S7X39df_uEzzxWI3beZRewDgawAeO0ymBwDjjfA9Zq0sukCuBxsE8RTKBzDN5pnHJcdF4iYOUNntV3D7nE2xi2ELOD9PgzKZ_vlXdFr8O8neAXpCP02qopwdvne4huz9c3_WV1_eXiqj-7rjSTklWGEy1Na4SywlpGRtmKFlopobFtQ6SSlDeGQ4lGSzkjlo1cCM5qK2rbADtEH3feUunHAikPs0saptIJwpIG2gnRdTWTrKAf_kE3YYm-tCuUbBgjsqkLdbyjdAwpRbDDNrpZxYeBkuFxl6HsMjztUtj3z8ZlnMH8JV-GKMDpDvjpJnj4v2n43Pc75R85U5jv
CitedBy_id crossref_primary_10_1039_D1CP05469D
crossref_primary_10_1021_acs_inorgchem_2c03457
crossref_primary_10_1021_acs_jctc_1c00853
crossref_primary_10_1021_acs_inorgchem_9b01610
crossref_primary_10_1039_D0CP00539H
crossref_primary_10_1002_jcc_25062
crossref_primary_10_1002_jcc_25171
crossref_primary_10_1016_j_ccr_2021_213984
crossref_primary_10_1039_C9SC03133B
crossref_primary_10_1002_jcc_25565
crossref_primary_10_1002_jcc_25113
crossref_primary_10_1039_D1CP05488K
crossref_primary_10_1038_s41467_023_38169_2
crossref_primary_10_1021_acs_inorgchem_0c02956
Cites_doi 10.1002/anie.201107453
10.1002/chem.201101838
10.1063/1.463096
10.1002/chem.201605102
10.1002/jcc.540100111
10.1021/acs.jctc.5b01048
10.1002/jcc.24221
10.1143/JPSJ.62.2924
10.1002/jcc.25062
10.1016/0009-2614(96)00119-4
10.1016/0301-0104(80)80045-0
10.1002/anie.200800283
10.1090/S0025-5718-1970-0258249-6
10.1016/0009-2614(80)80396-4
10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O
10.1039/C5CC07541F
10.1093/comjnl/13.3.317
10.1016/0003-4916(74)90333-9
10.1093/imamat/6.3.222
10.1002/anie.201004027
10.1063/1.4739763
10.1002/anie.201205938
10.1021/ja8100038
10.1080/00268977400102581
10.1007/978-1-4899-1983-0_3
10.1021/ic402367c
10.1039/C1DT11301A
10.1002/9783527673476.ch6
10.1039/b516376p
10.1039/c3sc22300k
10.1021/cr400018q
10.1063/1.473833
10.1016/j.inoche.2012.10.008
10.1002/jcc.540030413
10.1039/c1sc00513h
10.1002/jcc.23981
10.1016/S0009-2614(02)00498-0
10.1063/1.455063
10.1039/c2dt31388j
10.1002/jcc.25113
10.1090/S0025-5718-1980-0572855-7
10.3762/bjnano.5.236
10.1002/jcc.20393
10.1002/jcc.540030314
10.1039/C6CP02325H
10.2140/pjm.1966.16.1
10.1039/c1dt10050e
10.1002/chem.201103816
10.1002/chem.201302600
10.1080/00268977400102171
10.1039/c4sc00751d
10.1039/C5DT03345D
10.1063/1.441359
10.1103/PhysRevB.79.134419
10.1090/S0025-5718-1970-0274029-X
10.1007/BF01321865
10.1038/ncomms3551
10.1093/acprof:oso/9780198567530.001.0001
10.1039/c1cp22689d
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID NPM
AAYXX
CITATION
JQ2
7X8
DOI 10.1002/jcc.25113
DatabaseName PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList ProQuest Computer Science Collection
MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 337
ExternalDocumentID 10_1002_jcc_25113
29159814
JCC25113
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council (Discovery Project)
  funderid: DP150103254
– fundername: Australian Government Research Training Program Scholarship
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
NPM
AAYXX
CITATION
JQ2
7X8
ID FETCH-LOGICAL-c3883-d50c8d7d6af6ff30b8767e788e4f7408a8154d5ee78bf1530f3b566532f62f4e3
IEDL.DBID DR2
ISSN 0192-8651
IngestDate Fri Aug 16 23:39:28 EDT 2024
Thu Oct 10 17:58:34 EDT 2024
Fri Aug 23 04:54:19 EDT 2024
Sat Sep 28 08:38:01 EDT 2024
Sat Aug 24 01:19:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords ab initio
electronic structure theory
lanthanide single molecule magnets
configurational average
crystal field levels
Language English
License 2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-d50c8d7d6af6ff30b8767e788e4f7408a8154d5ee78bf1530f3b566532f62f4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6779-7304
0000-0002-5025-2578
0000-0003-2770-7447
OpenAccessLink http://minerva-access.unimelb.edu.au/bitstreams/72c8d060-3e87-5d7d-b24b-43db150e4df6/download
PMID 29159814
PQID 1984330842
PQPubID 48816
PageCount 10
ParticipantIDs proquest_miscellaneous_1966992383
proquest_journals_1984330842
crossref_primary_10_1002_jcc_25113
pubmed_primary_29159814
wiley_primary_10_1002_jcc_25113_JCC25113
PublicationCentury 2000
PublicationDate March 5, 2018
PublicationDateYYYYMMDD 2018-03-05
PublicationDate_xml – month: 03
  year: 2018
  text: March 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1980; 48
1970; 6
2015; 36
1966; 16
2013; 4
2013; 27
1993; 62
2006; 35
2002; 357
2011; 13
2012; 18
2011; 17
1992; 97
2012; 51
2013; 19
1970; 111
2014; 5
1997; 106
1980; 73
2017; 38
1974; 82
2006; 27
2015; 44
1982; 3
2013; 52
1987
1988; 89
2013; 113
1996; 251
2012; 137
1981; 74
1989
1996; 17
2011; 2
2012
2011
2010
2011; 40
2017; 23
2016; 52
2006
2009; 131
2016; 18
1980; 151
1970; 109
2016; 12
1970; 13
1982; 45
2016; 5
2009; 79
2010; 49
1989; 10
2008; 47
2017
2016
2015
2012; 41
1974; 28
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_29_1
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
Helgaker T. (e_1_2_5_30_1) 2012
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
Schling B. (e_1_2_5_38_1) 2011
e_1_2_5_66_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
Fletcher R. (e_1_2_5_31_1) 1987
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
McWeeny R. (e_1_2_5_28_1) 1989
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – year: 2011
– volume: 5
  start-page: 2267
  year: 2014
  publication-title: Beilstein J. Nanotech.
– volume: 41
  start-page: 13556
  year: 2012
  publication-title: Dalton Trans.
– volume: 106
  start-page: 9708
  year: 1997
  publication-title: J. Phys. Chem.
– volume: 18
  start-page: 15807
  year: 2016
  publication-title: Phys. Chem., Chem. Phys.
– volume: 89
  start-page: 2185
  year: 1988
  publication-title: J. Chem. Phys.
– year: 1989
– volume: 111
  start-page: 647
  year: 1970
  publication-title: Math. Comput.
– volume: 17
  start-page: 1836
  year: 1996
  publication-title: J. Comput. Chem.
– volume: 131
  start-page: 5573
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1719
  year: 2013
  publication-title: Chem. Sci.
– volume: 3
  start-page: 385
  year: 1982
  publication-title: J. Comput. Chem.
– volume: 51
  start-page: 1606
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 127
  year: 2013
  publication-title: Inorg. Chem. Commun.
– volume: 52
  start-page: 13770
  year: 2013
  publication-title: Inorg. Chem.
– volume: 18
  start-page: 2484
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 13
  start-page: 317
  year: 1970
  publication-title: Comput. J.
– volume: 19
  start-page: 13726
  year: 2013
  publication-title: Chem.–Eur. J.
– volume: 48
  start-page: 157
  year: 1980
  publication-title: Chem. Phys.
– volume: 28
  start-page: 819
  year: 1974
  publication-title: Mol. Phys.
– volume: 357
  start-page: 230
  year: 2002
  publication-title: Chem. Phys. Lett.
– volume: 44
  start-page: 18270
  year: 2015
  publication-title: Dalton Trans.
– volume: 137
  start-page: 064112
  year: 2012
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 1148
  year: 2016
  publication-title: J. Chem. Theory Comput.
– volume: 36
  start-page: 1664
  year: 2015
  publication-title: J. Comput. Chem.
– volume: 5
  start-page: 506
  year: 2016
  publication-title: J. Comput. Chem.
– volume: 251
  start-page: 365
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 13
  start-page: 20086
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 79
  start-page: 134419
  year: 2009
  publication-title: Phys. Rev. B
– volume: 17
  start-page: 12476
  year: 2011
  publication-title: Chem. Eur. J.
– year: 1987
– start-page: 153
  year: 2015
  end-page: 184
– volume: 113
  start-page: 5110
  year: 2013
  publication-title: Chem. Rev.
– volume: 97
  start-page: 2571
  year: 1992
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 1273
  year: 1974
  publication-title: Mol. Phys.
– year: 2016
– volume: 27
  start-page: 926
  year: 2006
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 104
  year: 1989
  publication-title: J. Comput. Chem.
– volume: 3
  start-page: 556
  year: 1982
  publication-title: J. Comp. Chem.
– volume: 151
  start-page: 773
  year: 1980
  publication-title: Math. Comput.
– volume: 16
  start-page: 1
  year: 1966
  publication-title: Pac. J. Math.
– volume: 49
  start-page: 7448
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 40
  start-page: 5579
  year: 2011
  publication-title: Dalton Trans.
– year: 2010
– volume: 45
  start-page: 289
  year: 1982
  publication-title: Z. Phys. B Condens. Matter
– year: 2012
– volume: 109
  start-page: 23
  year: 1970
  publication-title: Math. Comput.
– volume: 35
  start-page: 557
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 2775
  year: 2017
  article-title: A full‐pivoting algorithm for the Cholesky decomposition of two‐electron repulsion and spin‐orbit coupling integrals
  publication-title: J. Comput. Chem.
– volume: 4
  start-page: 2551
  year: 2013
  publication-title: Nat. Commun.
– volume: 5
  start-page: 3287
  year: 2014
  publication-title: Chem. Sci.
– volume: 82
  start-page: 89
  year: 1974
  publication-title: Ann. Phys.
– year: 2006
– volume: 47
  start-page: 4126
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  start-page: 2924
  year: 1993
  publication-title: J. Phys. Soc. Jpn.
– volume: 23
  start-page: 3708
  year: 2017
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 2078
  year: 2011
  publication-title: Chem. Sci.
– volume: 52
  start-page: 350
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 222
  year: 1970
  publication-title: J. Inst. Math. Appl.
– start-page: 251
  year: 1987
  end-page: 309
– year: 2017
– volume: 74
  start-page: 2384
  year: 1981
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 2091
  year: 2016
  publication-title: Chem. Commun.
– volume: 73
  start-page: 393
  year: 1980
  publication-title: Chem. Phys. Lett.
– volume: 41
  start-page: 1352
  year: 2012
  publication-title: Dalton Trans.
– ident: e_1_2_5_17_1
  doi: 10.1002/anie.201107453
– ident: e_1_2_5_61_1
  doi: 10.1002/chem.201101838
– ident: e_1_2_5_64_1
  doi: 10.1063/1.463096
– ident: e_1_2_5_10_1
  doi: 10.1002/chem.201605102
– ident: e_1_2_5_45_1
  doi: 10.1002/jcc.540100111
– ident: e_1_2_5_63_1
  doi: 10.1021/acs.jctc.5b01048
– ident: e_1_2_5_7_1
  doi: 10.1002/jcc.24221
– ident: e_1_2_5_29_1
  doi: 10.1143/JPSJ.62.2924
– ident: e_1_2_5_37_1
  doi: 10.1002/jcc.25062
– volume-title: Methods of Molecular Quantum Mechanics
  year: 1989
  ident: e_1_2_5_28_1
  contributor:
    fullname: McWeeny R.
– ident: e_1_2_5_53_1
  doi: 10.1016/0009-2614(96)00119-4
– ident: e_1_2_5_4_1
  doi: 10.1016/0301-0104(80)80045-0
– ident: e_1_2_5_8_1
  doi: 10.1002/anie.200800283
– ident: e_1_2_5_34_1
  doi: 10.1090/S0025-5718-1970-0258249-6
– ident: e_1_2_5_48_1
  doi: 10.1016/0009-2614(80)80396-4
– ident: e_1_2_5_50_1
  doi: 10.1002/(SICI)1096-987X(199612)17:16<1836::AID-JCC4>3.0.CO;2-O
– ident: e_1_2_5_24_1
  doi: 10.1039/C5CC07541F
– ident: e_1_2_5_33_1
  doi: 10.1093/comjnl/13.3.317
– ident: e_1_2_5_42_1
  doi: 10.1016/0003-4916(74)90333-9
– ident: e_1_2_5_32_1
  doi: 10.1093/imamat/6.3.222
– volume-title: The Boost C++ Libraries
  year: 2011
  ident: e_1_2_5_38_1
  contributor:
    fullname: Schling B.
– ident: e_1_2_5_55_1
  doi: 10.1002/anie.201004027
– ident: e_1_2_5_9_1
  doi: 10.1063/1.4739763
– ident: e_1_2_5_18_1
  doi: 10.1002/anie.201205938
– ident: e_1_2_5_16_1
  doi: 10.1021/ja8100038
– ident: e_1_2_5_27_1
  doi: 10.1080/00268977400102581
– ident: e_1_2_5_54_1
  doi: 10.1007/978-1-4899-1983-0_3
– ident: e_1_2_5_22_1
  doi: 10.1021/ic402367c
– ident: e_1_2_5_58_1
  doi: 10.1039/C1DT11301A
– ident: e_1_2_5_23_1
  doi: 10.1002/9783527673476.ch6
– ident: e_1_2_5_1_1
  doi: 10.1039/b516376p
– ident: e_1_2_5_59_1
  doi: 10.1039/c3sc22300k
– ident: e_1_2_5_2_1
  doi: 10.1021/cr400018q
– ident: e_1_2_5_62_1
– ident: e_1_2_5_46_1
  doi: 10.1063/1.473833
– ident: e_1_2_5_60_1
  doi: 10.1016/j.inoche.2012.10.008
– ident: e_1_2_5_49_1
  doi: 10.1002/jcc.540030413
– ident: e_1_2_5_65_1
  doi: 10.1039/c1sc00513h
– volume-title: Molecular Electronic–Structure Theory
  year: 2012
  ident: e_1_2_5_30_1
  contributor:
    fullname: Helgaker T.
– ident: e_1_2_5_41_1
  doi: 10.1002/jcc.23981
– ident: e_1_2_5_6_1
  doi: 10.1016/S0009-2614(02)00498-0
– ident: e_1_2_5_40_1
– ident: e_1_2_5_36_1
  doi: 10.1063/1.455063
– ident: e_1_2_5_14_1
  doi: 10.1039/c2dt31388j
– ident: e_1_2_5_26_1
  doi: 10.1002/jcc.25113
– ident: e_1_2_5_51_1
  doi: 10.1090/S0025-5718-1980-0572855-7
– ident: e_1_2_5_19_1
  doi: 10.3762/bjnano.5.236
– ident: e_1_2_5_43_1
  doi: 10.1002/jcc.20393
– ident: e_1_2_5_44_1
  doi: 10.1002/jcc.540030314
– ident: e_1_2_5_25_1
  doi: 10.1039/C6CP02325H
– volume-title: Practical Methods of Optimization
  year: 1987
  ident: e_1_2_5_31_1
  contributor:
    fullname: Fletcher R.
– ident: e_1_2_5_52_1
  doi: 10.2140/pjm.1966.16.1
– ident: e_1_2_5_56_1
  doi: 10.1039/c1dt10050e
– ident: e_1_2_5_57_1
  doi: 10.1002/chem.201103816
– ident: e_1_2_5_13_1
  doi: 10.1002/chem.201302600
– ident: e_1_2_5_47_1
  doi: 10.1080/00268977400102171
– ident: e_1_2_5_12_1
  doi: 10.1039/c4sc00751d
– ident: e_1_2_5_39_1
– ident: e_1_2_5_20_1
  doi: 10.1039/C5DT03345D
– ident: e_1_2_5_5_1
  doi: 10.1063/1.441359
– ident: e_1_2_5_15_1
  doi: 10.1103/PhysRevB.79.134419
– ident: e_1_2_5_35_1
  doi: 10.1090/S0025-5718-1970-0274029-X
– ident: e_1_2_5_66_1
  doi: 10.1007/BF01321865
– ident: e_1_2_5_21_1
  doi: 10.1038/ncomms3551
– ident: e_1_2_5_3_1
  doi: 10.1093/acprof:oso/9780198567530.001.0001
– ident: e_1_2_5_11_1
  doi: 10.1039/c1cp22689d
SSID ssj0003564
Score 2.3692327
Snippet We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated...
We have developed and implemented a new ab initio code, C eres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 328
SubjectTerms ab initio
Atomic structure
configurational average
Coupling (molecular)
crystal field levels
Crystal structure
Electron spin
Electronic structure
electronic structure theory
Evaluation
lanthanide single molecule magnets
Magnetic properties
Mathematical analysis
Quantum theory
Rare earth elements
Spin-orbit interactions
Title CERES: An ab initio code dedicated to the calculation of the electronic structure and magnetic properties of lanthanide complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.25113
https://www.ncbi.nlm.nih.gov/pubmed/29159814
https://www.proquest.com/docview/1984330842
https://search.proquest.com/docview/1966992383
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VvcAFyqOwZUEGceglWye2E6ecqnRXVSU4oK60h0qRn7Q8kmofEuLGP-_Y2eyqRUiIW-T4kXhm7C8ZzzcA76VxpVfUJzZ43blQPNGioIm0mbdUcSYjgenHT_nZlJ_PxGwHPvSxMB0_xOaHW7CMuF4HA1d6cbQlDf1qzCjg48D0mbIiHOc6_byljmKio45CBJPIXKQ9qxDNjjYt7-5FfwDMu3g1bjiTx3DZP2p3zuTbaLXUI_PrHovjf77LHjxaA1Fy0mnOE9hxzVN4UPX5357B72qM0jkmJw1RmlyHQ0YtCRHwxEbnDkJVsmwJAkiCcjbrNGCk9bFom16HdBS1q7kjqrHkh_rShMBJchPcAPPA5xrafEcJX6nmGruPp9zdT7d4DtPJ-KI6S9YJGxLDpGQob2qkLWyufO49oxqX2sLhR7bjvuBUKomAzQqHRdrjUks90wgnBct8nnnu2D7sNm3jXgLxRSl86hAsacbRklVZlNpmFnUot8qYAbzrRVffdLwcdcfAnNU4m3WczQEMe6HWa9Nc1GkpOWNU8mwAbze3cW6Dp0Q1rl2FOnleIvSV2MWLThk2o2QlIkCZ8gEcRpH-ffj6vKrixcG_V30FDxGSxahHKoawixJyrxH2LPWbqN-3mPD9gQ
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOMClLX3QbYGaqodesnhjO3EqLiiAtrwOFUhcqshPSh8Jgl2p6o1_ztjZ7IqiSqi3yLGdxDNjf_F4vgH4II0rvKI-scHrzoXiiRY5TaRNvaWKMxkJTI9PsuEZPzgX53Ow3cXCtPwQ0w23YBlxvg4GHjakt2asod-N6QeAzOZhEc2dhfwFu19m5FFMtORRiGESmYlBxytE061p0_ur0QOIeR-xxiVn_yl87V62PWnyoz8e6b758xeP4_9-zTN4MsGiZKdVnhWYc_VzWCq7FHAv4LbcQwF9Ijs1UZpchnNGDQlB8MRG_w6iVTJqCGJIgqI2k0xgpPGxaJZhh7QsteNrR1RtyS91UYfYSXIVPAHXgdI1tPmJQv6m6kvsPh50d7_dzUs42987LYfJJGdDYpiUDEVOjbS5zZTPvGdU42ybO_zPdtznnEolEbNZ4bBIe5xtqWcaEaVgqc9Szx17BQt1U7vXQHxeCD9wiJc042jMqsgLbVOLapRZZUwP3neyq65aao6qJWFOKxzNKo5mD9Y6qVYT67ypBoXkjFHJ0x5sTm_j2AZniapdMw51sqxA9Cuxi9VWG6ZPSQsEgXLAe_AxyvTfj68OyjJevHl81XewNDw9PqqOPp8cvoVlRGgxCJKKNVhAabl1REEjvRGV_Q5lLwGq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvvEu3FDCIA5dsvfEjDpyqtKtSoEKISj0gRX7SQklW7a5UceOfM3Y2uyoICXGLHD8Sz4z9JeP5BuCFsr4MmobMRa87F5pnRhQ0Uy4PjmrOVCIwfX8o94_4wbE4XoHXfSxMxw-x-OEWLSOt19HAJy5sL0lDv1o7jPiYXYPrXDIaz3PtflxyRzHRcUchhMmUFKOeVojm24umVzejPxDmVcCadpzxbfjcP2t30OTbcDY1Q_vjNxrH_3yZO3BrjkTJTqc6d2HFN_fgZtUngLsPP6s9FM8rstMQbchpPGXUkhgCT1zy7iBWJdOWIIIkKGg7zwNG2pCKlvl1SMdROzv3RDeOfNdfmhg5SSbRD3AeCV1jmzMU8YluTrH7dMzdX_qLB3A03vtU7WfzjA2ZZUoxFDi1yhVO6iBDYNTgWlt4_Mr2PBScKq0QsTnhscgEXGtpYAbxpGB5kHngnq3DatM2fgNIKEoRRh7RkmEcTVmXRWlc7lCJpNPWDuB5L7p60hFz1B0Fc17jbNZpNgew1Qu1ntvmRT0qFWeoLzwfwLPFbZzb6CrRjW9nsY6UJWJfhV087JRhMUpeIgRUIz6Al0mkfx--PqiqdLH571Wfwo0Pu-P63ZvDt49gDeFZioCkYgtWUVj-MUKgqXmSVP0XY_AAWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CERES%3A+An+ab+initio+code+dedicated+to+the+calculation+of+the+electronic+structure+and+magnetic+properties+of+lanthanide+complexes&rft.jtitle=Journal+of+computational+chemistry&rft.au=Calvello%2C+Simone&rft.au=Piccardo%2C+Matteo&rft.au=Rao%2C+Shashank+Vittal&rft.au=Soncini%2C+Alessandro&rft.date=2018-03-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=39&rft.issue=6&rft.spage=328&rft_id=info:doi/10.1002%2Fjcc.25113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon