Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology

Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone ma...

Full description

Saved in:
Bibliographic Details
Published inHistopathology Vol. 86; no. 1; pp. 158 - 170
Main Authors Della Porta, Matteo G, Bewersdorf, Jan Philipp, Wang, Yu‐Hung, Hasserjian, Robert P
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text
ISSN0309-0167
1365-2559
1365-2559
DOI10.1111/his.15353

Cover

Loading…
Abstract Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification. Current MDS and AML classifications are based on a hierarchical interplay of morphology (green) and genetics (blue). In future, disease classification could be based primarily on unbiased clustering analysis of genetic aberrations, gene expression and methylation profile; morphology and ontogeny would be separate qualifiers that further inform therapeutic decisionmaking.
AbstractList Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification. Current MDS and AML classifications are based on a hierarchical interplay of morphology (green) and genetics (blue). In future, disease classification could be based primarily on unbiased clustering analysis of genetic aberrations, gene expression and methylation profile; morphology and ontogeny would be separate qualifiers that further inform therapeutic decisionmaking.
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Author Bewersdorf, Jan Philipp
Wang, Yu‐Hung
Della Porta, Matteo G
Hasserjian, Robert P
Author_xml – sequence: 1
  givenname: Matteo G
  orcidid: 0000-0002-1984-1614
  surname: Della Porta
  fullname: Della Porta, Matteo G
  organization: IRCCS Humanitas Clinical and Research Center and Humanitas University
– sequence: 2
  givenname: Jan Philipp
  orcidid: 0000-0003-3352-0902
  surname: Bewersdorf
  fullname: Bewersdorf, Jan Philipp
  organization: Yale University and Yale Cancer Center
– sequence: 3
  givenname: Yu‐Hung
  orcidid: 0000-0003-4483-5627
  surname: Wang
  fullname: Wang, Yu‐Hung
  organization: National Taiwan University Hospital
– sequence: 4
  givenname: Robert P
  orcidid: 0000-0002-7753-0697
  surname: Hasserjian
  fullname: Hasserjian, Robert P
  email: rhasserjian@mgh.harvard.edu
  organization: Massachusetts General Hospital, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39450427$$D View this record in MEDLINE/PubMed
BookMark eNp90U1vFSEUBmBiauztx8I_YEjc2MX0wgB3BndN09omTbqorifAnFEqA1c-YmbpP5fbW100UTYk5DlvOOccoQMfPCD0lpJzWs_6m03nVDDBXqEVZRvRtELIA7QijMiG0E13iI5SeiSEdqxt36BDJrkgvO1W6Nd1ySUCHm0Ek23wCVuP5wVcGJe0dSpla3Ba_BjDDGntIewe54SVH7EyJcNe2xE7KN8VzFZhU0mykzVqF_kRT7UY610YNqH4nHAOWNvgwtflBL2elEtw-nwfoy_XV58vb5q7-0-3lxd3jWF9zxoFGlqmeoBpYlL3AsZRc1mboEozwfXUamEor-0aM6meC6W07IUisnLSsmP0YZ-7jeFHgZSH2SYDzqnaU0kDoy0RUnRiU-n7F_QxlOjr76riXHaEi76qd8-q6BnGYRvtrOIy_BluBWd7YGJIKcL0l1Ay7BY31MUNT4urdv3CGpufppejsu5_FT-tg-Xf0cPN7cO-4jcWZ6xZ
CitedBy_id crossref_primary_10_1016_j_cca_2025_120220
Cites_doi 10.1093/ajcp/aqab172
10.3324/haematol.2017.181842
10.1186/s13045-024-01571-4
10.1182/blood.2021011320
10.1007/s11899-012-0140-3
10.1056/EVIDoa2200310
10.1038/s41375-022-01613-1
10.1182/blood-2013-08-518886
10.1002/ajh.25769
10.1038/modpathol.2015.55
10.1158/2159-8290.CD-16-1032
10.1038/s41375-022-01631-z
10.1182/blood-2014-11-610543
10.1182/blood-2013-03-492884
10.1158/2643-3230.BCD-20-0162
10.1038/modpathol.2010.194
10.1016/j.exphem.2022.09.002
10.1182/blood.2022015850
10.1182/blood.2023020078
10.1038/s41591-020-1008-z
10.1182/blood-2010-04-279794
10.1002/ajh.26812
10.1182/blood-2010-08-301713
10.3324/haematol.2021.280487
10.1200/JCO.2016.67.3616
10.1056/NEJMoa061292
10.1200/JCO.20.01659
10.1182/blood.2021011304
10.1182/blood.2020004850
10.1016/S0145-2126(00)00088-6
10.1056/NEJMoa1611604
10.1182/blood-2017-05-783050
10.1182/blood-2016-03-643544
10.1016/j.critrevonc.2022.103607
10.1177/20406207241257904
10.1038/s41375-022-01783-y
10.1038/s41467-023-38515-4
10.1182/blood.2022016867
10.1182/blood.2022015849
10.1200/JCO.2014.60.0890
10.1038/s41467-022-34211-x
10.1007/s00277-012-1565-4
10.1038/s41375-022-01724-9
10.1016/S0140-6736(23)00874-7
10.1182/blood.2022015853
10.18632/oncotarget.3460
10.3390/cancers14061583
10.1111/j.1365-2141.1982.tb02771.x
10.1016/S2352-3026(23)00159-X
10.1007/s00277-014-2100-6
10.1016/j.stem.2018.10.004
10.1016/S2352-3026(23)00340-X
10.1038/nature13968
10.1200/JCO.22.01784
10.1038/s41598-020-76510-7
10.1182/blood-2015-08-663237
10.1056/NEJMoa1301689
10.1056/NEJMoa1516192
10.1182/blood-2010-09-307314
10.1056/NEJMoa1408617
10.1038/leu.2014.161
10.1016/j.ccr.2012.10.007
10.1182/blood.V74.1.395.395
10.1182/blood.2022018221
10.1182/blood.2023021199
10.1182/blood.2023023727
10.1200/CCI.24.00008
10.1182/blood-2008-10-182782
10.1182/blood-2016-11-749903
10.1158/1078-0432.CCR-23-0538
10.1016/j.exphem.2015.06.003
10.1016/S2352-3026(24)00251-5
10.1172/JCI78752
10.3324/haematol.2010.023101
10.1002/cyto.b.22044
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright © 2025 John Wiley & Sons Ltd
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: Copyright © 2025 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1111/his.15353
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2559
EndPage 170
ExternalDocumentID 39450427
10_1111_his_15353
HIS15353
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3SF
3UE
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
GSXLS
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
J5H
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
Y6R
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3883-aebe23a8eeff39b85eddb494271ab354bf2b5c14016ccfa845aab985a0939b023
IEDL.DBID DR2
ISSN 0309-0167
1365-2559
IngestDate Fri Jul 11 09:39:21 EDT 2025
Fri Jul 25 09:53:25 EDT 2025
Mon Jul 21 05:51:28 EDT 2025
Thu Apr 24 22:52:06 EDT 2025
Tue Jul 01 00:36:17 EDT 2025
Wed Jan 22 17:14:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords genetics
classification
cytogenetics
myelodysplastic syndrome
acute myeloid leukaemia
next‐generation sequencing
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-aebe23a8eeff39b85eddb494271ab354bf2b5c14016ccfa845aab985a0939b023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1984-1614
0000-0003-4483-5627
0000-0003-3352-0902
0000-0002-7753-0697
OpenAccessLink https://doi.org/10.1111/his.15353
PMID 39450427
PQID 3144970458
PQPubID 1086360
PageCount 13
ParticipantIDs proquest_miscellaneous_3120595756
proquest_journals_3144970458
pubmed_primary_39450427
crossref_primary_10_1111_his_15353
crossref_citationtrail_10_1111_his_15353
wiley_primary_10_1111_his_15353_HIS15353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-Jan
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Histopathology
PublicationTitleAlternate Histopathology
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2022; 171
2011; 117
2023; 142
2023; 141
2023; 37
1982; 51
2013; 368
2015; 33
2013; 122
2023; 104
2024; 143
2009; 113
2024; 144
2014; 371
2023; 2
2024
2020; 10
2022; 139
2016; 34
1989; 74
2023; 29
2024; 8
2010; 116
2020; 95
2021; 39
2015; 43
2022; 36
2011; 24
2020; 136
2014; 93
2012; 22
2014; 125
2017; 129
2023; 98
2023; 10
2015; 6
2023; 14
2021; 2
2015; 126
2000; 24
2015; 125
2018; 103
2023; 402
2013; 92
2024; 11
2017; 130
2016; 127
2018; 23
2024; 15
2017; 376
2024; 17
2022; 115
2022; 157
2006; 355
2023; 41
2022; 140
2015; 28
2021
2015; 20
2021; 138
2022; 13
2020; 26
2015; 518
2022; 14
2016; 374
2022; 1
2012; 7
2022; 107
2010; 95
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
(e_1_2_9_6_1) 2024
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Bernard E (e_1_2_9_72_1) 2022; 1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 143
  start-page: 1139
  year: 2024
  end-page: 1156
  article-title: Comparing malignant monocytosis across the updated WHO and ICC classifications of 2022
  publication-title: Blood
– volume: 140
  start-page: 1345
  year: 2022
  end-page: 1377
  article-title: Diagnosis and management of AML in adults: 2022 ELN recommendations from an international expert panel
  publication-title: Blood
– volume: 113
  start-page: 1906
  year: 2009
  end-page: 1908
  article-title: Clinical characterization of acute myeloid leukemia with myelodysplasia‐related changes as defined by the 2008 WHO classification system
  publication-title: Blood
– volume: 402
  start-page: 373
  year: 2023
  end-page: 385
  article-title: Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis‐stimulating agent‐naive, transfusion‐dependent, lower‐risk myelodysplastic syndromes (COMMANDS): Interim analysis of a phase 3, open‐label, randomised controlled trial
  publication-title: Lancet
– volume: 116
  start-page: 6147
  year: 2010
  end-page: 6148
  article-title: The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate‐risk cytogenetics is dependent on NPM1 mutational status
  publication-title: Blood
– volume: 24
  start-page: 983
  year: 2000
  end-page: 992
  article-title: Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: A retrospective analysis of 1600 patients
  publication-title: Leuk. Res.
– volume: 28
  start-page: 965
  year: 2015
  end-page: 976
  article-title: Reproducibility and prognostic significance of morphologic dysplasia in de novo acute myeloid leukemia
  publication-title: Mod. Pathol.
– volume: 74
  start-page: 395
  year: 1989
  end-page: 408
  article-title: Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: A multivariate analysis of prognostic factors in 370 patients
  publication-title: Blood
– volume: 98
  start-page: 481
  year: 2023
  end-page: 492
  article-title: Comparison of the international consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia
  publication-title: Am. J. Hematol.
– year: 2021
– volume: 23
  start-page: 700
  year: 2018
  end-page: 713
  article-title: PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 868
  year: 2017
  end-page: 883
  article-title: Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers
  publication-title: Cancer Discov.
– volume: 10
  start-page: 19555
  year: 2020
  article-title: Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes
  publication-title: Sci. Rep.
– volume: 43
  start-page: 869
  year: 2015
  end-page: 879
  article-title: Multilineage dysplasia as assessed by immunophenotype has no impact on clinical‐biological features and outcome of NPM1‐mutated acute myeloid leukemia
  publication-title: Exp. Hematol.
– volume: 142
  start-page: 2247
  year: 2023
  end-page: 2257
  article-title: Diagnosis and classification of myelodysplastic syndromes
  publication-title: Blood
– volume: 22
  start-page: 683
  year: 2012
  end-page: 697
  article-title: An Inv(16) (p13.3q24.3)‐encoded CBFA2T3‐GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia
  publication-title: Cancer Cell
– volume: 36
  start-page: 1703
  year: 2022
  end-page: 1719
  article-title: The 5th edition of the World Health Organization classification of Haematolymphoid Tumours: Myeloid and histiocytic/dendritic neoplasms
  publication-title: Leukemia
– volume: 144
  start-page: 1617
  year: 2024
  end-page: 1632
  article-title: Molecular taxonomy of myelodysplastic syndromes and its clinical implications
  publication-title: Blood
– volume: 140
  start-page: 1200
  year: 2022
  end-page: 1228
  article-title: International consensus classification of myeloid neoplasms and acute Leukemias: Integrating morphologic, clinical, and genomic data
  publication-title: Blood
– volume: 26
  start-page: 1549
  year: 2020
  end-page: 1556
  article-title: Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
  publication-title: Nat. Med.
– volume: 126
  start-page: 2362
  year: 2015
  end-page: 2365
  article-title: Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression
  publication-title: Blood
– volume: 139
  start-page: 323
  year: 2022
  end-page: 332
  article-title: Distinguishing AML from MDS: A fixed blast percentage may no longer be optimal
  publication-title: Blood
– volume: 122
  start-page: 2943
  year: 2013
  end-page: 2964
  article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: Recommendations from the European LeukemiaNet
  publication-title: Blood
– volume: 15
  year: 2024
  article-title: Integrated genetic, epigenetic, and immune landscape of TP53 mutant AML and higher risk MDS treated with azacitidine
  publication-title: Ther. Adv. Hematol
– volume: 95
  start-page: 1849
  year: 2010
  end-page: 1856
  article-title: Prevalence, incidence and types of mild anemia in the elderly: The ‘health and anemia’ population‐based study
  publication-title: Haematologica
– volume: 171
  year: 2022
  article-title: Diagnosis and treatment of therapy‐related acute myeloid leukemia
  publication-title: Crit. Rev. Oncol. Hematol.
– volume: 36
  start-page: 1939
  year: 2022
  end-page: 1942
  article-title: AML, NOS and AML‐MRC as defined by multilineage dysplasia share a common mutation pattern which is distinct from AML‐MRC as defined by MDS‐related cytogenetics
  publication-title: Leukemia
– volume: 129
  start-page: 2584
  year: 2017
  end-page: 2587
  article-title: More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia
  publication-title: Blood
– volume: 37
  start-page: 500
  year: 2023
  end-page: 502
  article-title: Mutations in spliceosome genes in myelodysplastic neoplasms and their association to ring sideroblasts
  publication-title: Leukemia
– volume: 140
  start-page: 2228
  year: 2022
  end-page: 2247
  article-title: Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia
  publication-title: Blood
– volume: 355
  start-page: 1456
  year: 2006
  end-page: 1465
  article-title: Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion
  publication-title: N. Engl. J. Med.
– volume: 127
  start-page: 2391
  year: 2016
  end-page: 2405
  article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
  publication-title: Blood
– volume: 122
  start-page: 3616
  year: 2013
  end-page: 3627
  article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes
  publication-title: Blood
– volume: 130
  start-page: 2642
  year: 2017
  end-page: 2653
  article-title: Gene expression and risk of leukemic transformation in myelodysplasia
  publication-title: Blood
– volume: 51
  start-page: 189
  year: 1982
  end-page: 199
  article-title: Proposals for the classification of the myelodysplastic syndromes
  publication-title: Br. J. Haematol.
– volume: 11
  year: 2024
– volume: 141
  start-page: 534
  year: 2023
  end-page: 549
  article-title: Germ line DDX41 mutations define a unique subtype of myeloid neoplasms
  publication-title: Blood
– volume: 7
  start-page: 310
  year: 2012
  end-page: 320
  article-title: Dysplasia has a differential diagnosis: Distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors
  publication-title: Curr. Hematol. Malig. Rep.
– volume: 116
  start-page: 2742
  year: 2010
  end-page: 2751
  article-title: Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS‐related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: A comparison of 408 cases classified as ‘AML not otherwise specified’ (AML‐NOS) or ‘AML with myelodysplasia‐related changes’ (AML‐MRC)
  publication-title: Blood
– volume: 125
  start-page: 1367
  year: 2014
  end-page: 1376
  article-title: Acute myeloid leukemia ontogeny is defined by distinct somatic mutations
  publication-title: Blood
– volume: 374
  start-page: 2209
  year: 2016
  end-page: 2221
  article-title: Genomic classification and prognosis in acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 368
  start-page: 2059
  year: 2013
  end-page: 2074
  article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
  publication-title: N. Engl. J. Med.
– volume: 8
  year: 2024
  article-title: MOSAIC: An artificial intelligence‐based framework for multimodal analysis, classification, and personalized prognostic assessment in rare cancers
  publication-title: JCO. Clin. Cancer. Inform
– volume: 136
  start-page: 157
  year: 2020
  end-page: 170
  article-title: SF3B1‐mutant MDS as a distinct disease subtype: A proposal from the international working Group for the Prognosis of MDS
  publication-title: Blood
– volume: 29
  start-page: 4256
  year: 2023
  end-page: 4267
  article-title: Integrated genomic and transcriptomic analysis improves disease classification and risk stratification of MDS with ring sideroblasts
  publication-title: Clin. Cancer Res.
– volume: 20
  start-page: 66
  year: 2015
  end-page: 75
  article-title: Minimal morphological criteria for defining bone marrow dysplasia: A basis for clinical implementation of WHO classification of myelodysplastic syndromes
  publication-title: Leukemia
– volume: 518
  start-page: 552
  year: 2015
  end-page: 555
  article-title: Role of TP53 mutations in the origin and evolution of therapy‐related acute myeloid leukaemia
  publication-title: Nature
– year: 2024
  article-title: Data‐driven, harmonized classification system for myelodysplastic syndromes: A consensus study from the international consortium for myelodysplastic syndromes (icMDS)
  publication-title: Lancet. Hematol
– volume: 13
  start-page: 6524
  year: 2022
  article-title: MIR retrotransposons link the epigenome and the transcriptome of coding genes in acute myeloid leukemia
  publication-title: Nat. Commun.
– volume: 33
  start-page: 3641
  year: 2015
  end-page: 3649
  article-title: Epidemiology and clinical significance of secondary and therapy‐related acute myeloid leukemia: A National Population‐Based Cohort Study
  publication-title: J. Clin. Oncol.
– volume: 17
  start-page: 56
  year: 2024
  article-title: A practical approach on the classifications of myeloid neoplasms and acute leukemia: WHO and ICC
  publication-title: J. Hematol. Oncol.
– volume: 371
  start-page: 2488
  year: 2014
  end-page: 2498
  article-title: Age‐related clonal hematopoiesis associated with adverse outcomes
  publication-title: N. Engl. J. Med.
– volume: 103
  start-page: 626
  year: 2018
  end-page: 633
  article-title: Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO classification‐defined cytogenetic abnormalities
  publication-title: Haematologica
– volume: 14
  start-page: 3136
  year: 2023
  article-title: Molecular patterns identify distinct subclasses of myeloid neoplasia
  publication-title: Nat. Commun.
– volume: 376
  start-page: 536
  year: 2017
  end-page: 547
  article-title: Prognostic mutations in myelodysplastic syndrome after stem‐cell transplantation
  publication-title: N. Engl. J. Med.
– volume: 34
  start-page: 3627
  year: 2016
  end-page: 3637
  article-title: Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem‐cell transplantation
  publication-title: J. Clin. Oncol.
– volume: 2
  start-page: 238
  year: 2021
  end-page: 249
  article-title: Machine learning of bone marrow histopathology identifies genetic and clinical determinants in patients with MDS
  publication-title: Blood. Cancer. Discov
– volume: 138
  start-page: 2093
  year: 2021
  end-page: 2105
  article-title: Clinical relevance of clonal hematopoiesis in persons aged >/=80 years
  publication-title: Blood
– volume: 11
  start-page: e51
  year: 2024
  end-page: e61
  article-title: Predicting cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: A prospective cohort study
  publication-title: Lancet. Haematol
– volume: 1
  year: 2022
  article-title: Molecular international prognostic scoring system for myelodysplastic syndromes
  publication-title: N Engl. J Med. Evid
– volume: 125
  start-page: 1857
  year: 2015
  end-page: 1872
  article-title: Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia
  publication-title: J. Clin. Invest.
– volume: 107
  start-page: 2232
  year: 2022
  end-page: 2237
  article-title: Pure erythroid leukemia is characterized by biallelic TP53 inactivation and abnormal p53 expression patterns in de novo and secondary cases
  publication-title: Haematologica
– volume: 92
  start-page: 19
  year: 2013
  end-page: 24
  article-title: Inter‐observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification
  publication-title: Ann. Hematol.
– volume: 39
  start-page: 1223
  year: 2021
  end-page: 1233
  article-title: Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes
  publication-title: J. Clin. Oncol.
– volume: 93
  start-page: 1695
  year: 2014
  end-page: 1703
  article-title: Multilineage dysplasia is associated with a poorer prognosis in patients with de novo acute myeloid leukemia with intermediate‐risk cytogenetics and wild‐type NPM1
  publication-title: Ann. Hematol.
– volume: 157
  start-page: 691
  year: 2022
  end-page: 700
  article-title: Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia‐related changes and De novo acute myeloid leukemia
  publication-title: Am. J. Clin. Pathol.
– volume: 14
  year: 2022
  article-title: Immunophenotypic analysis of acute Megakaryoblastic leukemia: A EuroFlow study
  publication-title: Cancers (Basel)
– volume: 36
  start-page: 2939
  year: 2022
  end-page: 2946
  article-title: Finding consistency in classifications of myeloid neoplasms: A perspective on behalf of the international workshop for myelodysplastic syndromes
  publication-title: Leukemia
– volume: 104
  start-page: 77
  year: 2023
  end-page: 86
  article-title: Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet international MDS‐flow cytometry working group
  publication-title: Cytometry B Clin. Cytom.
– volume: 10
  start-page: e767
  year: 2023
  end-page: e776
  article-title: Standardising acute myeloid leukaemia classification systems: A perspective from a panel of international experts
  publication-title: Lancet. Haematol
– volume: 115
  start-page: 44
  year: 2022
  end-page: 53
  article-title: Transcriptomic signatures of Hypomethylating agent failure in myelodysplastic syndromes and chronic myelomonocytic leukemia
  publication-title: Exp. Hematol.
– volume: 95
  start-page: 612
  year: 2020
  end-page: 622
  article-title: Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy
  publication-title: Am. J. Hematol.
– volume: 6
  start-page: 8388
  year: 2015
  end-page: 8396
  article-title: Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia‐related changes
  publication-title: Oncotarget
– volume: 140
  start-page: 1193
  year: 2022
  end-page: 1199
  article-title: Developing a classification of hematologic neoplasms in the era of precision medicine
  publication-title: Blood
– volume: 2
  year: 2023
  article-title: Prediction of risk for myeloid malignancy in clonal hematopoiesis
  publication-title: NEJM Evidence
– volume: 117
  start-page: 2137
  year: 2011
  end-page: 2145
  article-title: The impact of therapy‐related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML
  publication-title: Blood
– volume: 24
  start-page: 375
  year: 2011
  end-page: 383
  article-title: Pure erythroid leukemia: A reassessment of the entity using the 2008 World Health Organization classification
  publication-title: Mod. Pathol.
– volume: 41
  start-page: 2827
  year: 2023
  end-page: 2842
  article-title: Real‐world validation of molecular international prognostic scoring system for myelodysplastic syndromes
  publication-title: J. Clin. Oncol.
– ident: e_1_2_9_59_1
  doi: 10.1093/ajcp/aqab172
– ident: e_1_2_9_54_1
  doi: 10.3324/haematol.2017.181842
– ident: e_1_2_9_9_1
  doi: 10.1186/s13045-024-01571-4
– ident: e_1_2_9_38_1
  doi: 10.1182/blood.2021011320
– volume-title: Haematolymphoid Tumours
  year: 2024
  ident: e_1_2_9_6_1
– ident: e_1_2_9_41_1
  doi: 10.1007/s11899-012-0140-3
– ident: e_1_2_9_37_1
  doi: 10.1056/EVIDoa2200310
– ident: e_1_2_9_5_1
  doi: 10.1038/s41375-022-01613-1
– ident: e_1_2_9_27_1
  doi: 10.1182/blood-2013-08-518886
– ident: e_1_2_9_55_1
  doi: 10.1002/ajh.25769
– ident: e_1_2_9_53_1
  doi: 10.1038/modpathol.2015.55
– ident: e_1_2_9_28_1
  doi: 10.1158/2159-8290.CD-16-1032
– ident: e_1_2_9_60_1
  doi: 10.1038/s41375-022-01631-z
– ident: e_1_2_9_57_1
  doi: 10.1182/blood-2014-11-610543
– ident: e_1_2_9_74_1
  doi: 10.1182/blood-2013-03-492884
– ident: e_1_2_9_19_1
  doi: 10.1158/2643-3230.BCD-20-0162
– ident: e_1_2_9_67_1
  doi: 10.1038/modpathol.2010.194
– ident: e_1_2_9_25_1
  doi: 10.1016/j.exphem.2022.09.002
– ident: e_1_2_9_7_1
  doi: 10.1182/blood.2022015850
– ident: e_1_2_9_12_1
  doi: 10.1182/blood.2023020078
– ident: e_1_2_9_45_1
  doi: 10.1038/s41591-020-1008-z
– ident: e_1_2_9_48_1
  doi: 10.1182/blood-2010-04-279794
– ident: e_1_2_9_8_1
  doi: 10.1002/ajh.26812
– ident: e_1_2_9_63_1
  doi: 10.1182/blood-2010-08-301713
– ident: e_1_2_9_68_1
  doi: 10.3324/haematol.2021.280487
– ident: e_1_2_9_76_1
  doi: 10.1200/JCO.2016.67.3616
– ident: e_1_2_9_79_1
  doi: 10.1056/NEJMoa061292
– ident: e_1_2_9_18_1
  doi: 10.1200/JCO.20.01659
– ident: e_1_2_9_43_1
  doi: 10.1182/blood.2021011304
– ident: e_1_2_9_10_1
  doi: 10.1182/blood.2020004850
– ident: e_1_2_9_4_1
  doi: 10.1016/S0145-2126(00)00088-6
– ident: e_1_2_9_77_1
  doi: 10.1056/NEJMoa1611604
– ident: e_1_2_9_26_1
  doi: 10.1182/blood-2017-05-783050
– ident: e_1_2_9_46_1
  doi: 10.1182/blood-2016-03-643544
– ident: e_1_2_9_62_1
  doi: 10.1016/j.critrevonc.2022.103607
– volume: 1
  year: 2022
  ident: e_1_2_9_72_1
  article-title: Molecular international prognostic scoring system for myelodysplastic syndromes
  publication-title: N Engl. J Med. Evid
– ident: e_1_2_9_31_1
  doi: 10.1177/20406207241257904
– ident: e_1_2_9_11_1
  doi: 10.1038/s41375-022-01783-y
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-023-38515-4
– ident: e_1_2_9_75_1
  doi: 10.1182/blood.2022016867
– ident: e_1_2_9_13_1
  doi: 10.1182/blood.2022015849
– ident: e_1_2_9_61_1
  doi: 10.1200/JCO.2014.60.0890
– ident: e_1_2_9_29_1
  doi: 10.1038/s41467-022-34211-x
– ident: e_1_2_9_15_1
  doi: 10.1007/s00277-012-1565-4
– ident: e_1_2_9_22_1
  doi: 10.1038/s41375-022-01724-9
– ident: e_1_2_9_14_1
– ident: e_1_2_9_78_1
  doi: 10.1016/S0140-6736(23)00874-7
– ident: e_1_2_9_32_1
  doi: 10.1182/blood.2022015853
– ident: e_1_2_9_51_1
  doi: 10.18632/oncotarget.3460
– ident: e_1_2_9_69_1
  doi: 10.3390/cancers14061583
– ident: e_1_2_9_2_1
  doi: 10.1111/j.1365-2141.1982.tb02771.x
– ident: e_1_2_9_44_1
  doi: 10.1016/S2352-3026(23)00159-X
– ident: e_1_2_9_50_1
  doi: 10.1007/s00277-014-2100-6
– ident: e_1_2_9_65_1
  doi: 10.1016/j.stem.2018.10.004
– ident: e_1_2_9_36_1
  doi: 10.1016/S2352-3026(23)00340-X
– ident: e_1_2_9_64_1
  doi: 10.1038/nature13968
– ident: e_1_2_9_73_1
  doi: 10.1200/JCO.22.01784
– ident: e_1_2_9_24_1
  doi: 10.1038/s41598-020-76510-7
– ident: e_1_2_9_35_1
  doi: 10.1182/blood-2015-08-663237
– ident: e_1_2_9_56_1
  doi: 10.1056/NEJMoa1301689
– ident: e_1_2_9_58_1
  doi: 10.1056/NEJMoa1516192
– ident: e_1_2_9_49_1
  doi: 10.1182/blood-2010-09-307314
– ident: e_1_2_9_34_1
  doi: 10.1056/NEJMoa1408617
– ident: e_1_2_9_40_1
  doi: 10.1038/leu.2014.161
– ident: e_1_2_9_70_1
  doi: 10.1016/j.ccr.2012.10.007
– ident: e_1_2_9_3_1
  doi: 10.1182/blood.V74.1.395.395
– ident: e_1_2_9_71_1
  doi: 10.1182/blood.2022018221
– ident: e_1_2_9_42_1
  doi: 10.1182/blood.2023021199
– ident: e_1_2_9_21_1
  doi: 10.1182/blood.2023023727
– ident: e_1_2_9_16_1
  doi: 10.1200/CCI.24.00008
– ident: e_1_2_9_47_1
  doi: 10.1182/blood-2008-10-182782
– ident: e_1_2_9_66_1
  doi: 10.1182/blood-2016-11-749903
– ident: e_1_2_9_23_1
  doi: 10.1158/1078-0432.CCR-23-0538
– ident: e_1_2_9_52_1
  doi: 10.1016/j.exphem.2015.06.003
– ident: e_1_2_9_20_1
  doi: 10.1016/S2352-3026(24)00251-5
– ident: e_1_2_9_30_1
  doi: 10.1172/JCI78752
– ident: e_1_2_9_33_1
  doi: 10.3324/haematol.2010.023101
– ident: e_1_2_9_39_1
  doi: 10.1002/cyto.b.22044
SSID ssj0017322
Score 2.4480345
SecondaryResourceType review_article
Snippet Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms acute myeloid leukaemia
Acute myeloid leukemia
classification
Classification systems
cytogenetics
DNA methylation
Gene expression
genetics
Genomics
Hematopoietic stem cells
Humans
Information processing
Learning algorithms
Leukemia
Leukemia, Myeloid, Acute - classification
Leukemia, Myeloid, Acute - diagnosis
Leukemia, Myeloid, Acute - genetics
Leukemia, Myeloid, Acute - pathology
Machine Learning
Morphology
Myelodysplastic syndrome
Myelodysplastic syndromes
Myelodysplastic Syndromes - classification
Myelodysplastic Syndromes - diagnosis
Myelodysplastic Syndromes - genetics
Myelodysplastic Syndromes - pathology
next‐generation sequencing
p53 Protein
Tumors
Title Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhis.15353
https://www.ncbi.nlm.nih.gov/pubmed/39450427
https://www.proquest.com/docview/3144970458
https://www.proquest.com/docview/3120595756
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBeoKU8ti3IRRy4ZNm148SGE0KstpXgAFTqASmyHUdddTdbNcmhvfWfd8Z5QHlIqDdLGceJPWN_9oy_AXjNJwl30zyPuHImir1MI21THQnPlZ_mCdc2sH1-SeYn8fGpPN2A9_1dmJYfYjhwI8sI8zUZuLHVL0Z-tqjGaK6SmD4pVosA0deBOmqaip8eBAq171iFKIpnqHl3LfoDYN7Fq2HBmT2CH_2ntnEm5-OmtmN3_RuL4z3_ZRsedkCUfWg1Zwc2fPkYHnzuXO27cDMLbCOsXfNIOdmiZKsrv1znV9UFgm6syHrCg-ptSaHoplpVzJQ5M66pfSu9yNnSN-fGrxaGOQLrFJ0UFOIdo9stzNLLWMhaUbF6zTpiqCdwMvv0_eM86vI1RE4oJSKDCsGFUd4XhdBWSZ_nNtYxT6fGChnbglvpaEeXOFcYFUtjrFbSTDSKI3h4CpvluvTPgSEs0g6hoRQTH6M2WW8lTsRKFVi2nI_gTT9ymevIzCmnxjLrNzXYpVno0hG8GkQvWgaPvwkd9MOfdUZcZQI3mzolT_IIDofHaH7kUzHYrQ3JcASoiHmTETxr1WZoRehYUioT_Ngw-P9uPpsffQuFvf8X3YctTrmIw3HQAWzWl41_gQCpti-DJdwCtsgO9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEX3tCFAgZx4JLtrh0nNuKCgNUW2h6glXpBke04YtXdbNUkh3LjnzPjPKA8JMTNUsZxYs_Ynz3jbwCe80nC3TTPI66ciWIv00jbVEfCc-WnecK1DWyfB8n8KH5_LI834FV_F6blhxgO3MgywnxNBk4H0j9Z-ZdFNUZ7leISXKaM3mSWbz8O5FHTVPzwIVCwfccrRHE8Q9WLq9FvEPMiYg1LzuwGfO4_to00ORk3tR27r7_wOP7v39yE6x0WZa9b5bkFG768DVf2O2_7Hfg2C4QjrF32SD_ZomSrc79c5-fVKeJurMh6zoNqp6RodFOtKmbKnBnX1L6VXuRs6ZsT41cLwxzhdQpQCjrxktEFF2bpZSwkrqhYvWYdN9RdOJq9O3wzj7qUDZETSonIoE5wYZT3RSG0VdLnuY11zNOpsULGtuBWOtrUJc4VRsXSGKuVNBON4ogf7sFmuS79FjBERtohOpRi4mNUKOutxLlYqQLLlvMRvOiHLnMdnzml1Vhm_b4GuzQLXTqCZ4PoaUvi8Seh7X78s86Oq0zgflOn5EwewdPhMVoguVUMdmtDMhwxKsLeZAT3W70ZWhE6lpTNBD82jP7fm8_mu59C4cG_iz6Bq_PD_b1sb_fgw0O4xik1cTgd2obN-qzxjxAv1fZxMIvvgr4TDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVcyhsWChjEgUuWXT8SG06IstryqBBQqQekyK-IVXezqyY5lBv_nLHzgPKQEDdLGceJPWN_Y4-_AXhMJym1U-cSKq1OuBdZokymEuap9FOXUmUi2-dhOj_ir4_F8RY87-_CtPwQw4ZbsIw4XwcD37jiJyP_sqjGaK6CXYCLPJ3I4Hntfxi4o6YZ-3GEEGLtO1qhEMYzVD2_GP2GMM8D1rjizC7D5_5b20CTk3FTm7H9-guN43_-zBXY7ZAoedGqzlXY8uU12HnXnbVfh2-zSDdC2kUvaCdZlGR15pdrd1ZtEHVjRdIzHlRPyxCLrqtVRXTpiLZN7VvphSNL35xov1poYgNaD-FJUSOekXC9hZjwMhLTVlSkXpOOGeoGHM1efXo5T7qEDYllUrJEo0ZQpqX3RcGUkcI7Z7jiNJtqwwQ3BTXCBpcutbbQkgutjZJCTxSKI3q4CdvluvS3gSAuUhaxoWATz1GdjDcCZ2IpCywbSkfwpB-53HZs5iGpxjLvvRrs0jx26QgeDaKblsLjT0J7_fDnnRVXOUNvU2XhKHkED4fHaH_hUEVjtzZBhiJCRdCbjuBWqzZDK0xxEXKZ4MfGwf978_n84GMs3Pl30Qew835_lr89OHxzFy7RkJc4bg3twXZ92vh7CJZqcz8axXdkCxHG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+directions+in+myelodysplastic+syndromes%2Fneoplasms+and+acute+myeloid+leukaemia+classification%3A+from+blast+counts+to+biology&rft.jtitle=Histopathology&rft.au=Della+Porta%2C+Matteo+G&rft.au=Bewersdorf%2C+Jan+Philipp&rft.au=Yu%E2%80%90Hung+Wang&rft.au=Hasserjian%2C+Robert+P&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0309-0167&rft.eissn=1365-2559&rft.volume=86&rft.issue=1&rft.spage=158&rft.epage=170&rft_id=info:doi/10.1111%2Fhis.15353&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-0167&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-0167&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-0167&client=summon