Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology
Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone ma...
Saved in:
Published in | Histopathology Vol. 86; no. 1; pp. 158 - 170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0309-0167 1365-2559 1365-2559 |
DOI | 10.1111/his.15353 |
Cover
Loading…
Abstract | Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Current MDS and AML classifications are based on a hierarchical interplay of morphology (green) and genetics (blue). In future, disease classification could be based primarily on unbiased clustering analysis of genetic aberrations, gene expression and methylation profile; morphology and ontogeny would be separate qualifiers that further inform therapeutic decisionmaking. |
---|---|
AbstractList | Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.
Current MDS and AML classifications are based on a hierarchical interplay of morphology (green) and genetics (blue). In future, disease classification could be based primarily on unbiased clustering analysis of genetic aberrations, gene expression and methylation profile; morphology and ontogeny would be separate qualifiers that further inform therapeutic decisionmaking. Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification. Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi‐allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut‐offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine‐learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher‐level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification. Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification.Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified based on a combination of morphological, clinical and genetic features. Specifically, the percentage of myeloblasts in the blood and bone marrow is a key feature that has historically separated MDS from AML and, together with several other morphological parameters, defines distinct disease entities within MDS. Both MDS and AML have recurrent genetic abnormalities that are increasingly influencing their definitions and subclassification. For example, in 2022, two new MDS entities were recognised based on the presence of SF3B1 mutation or bi-allelic TP53 abnormalities. Genomic information is more objective and reproducible than morphological analyses, which are subject to interobserver variability and arbitrary numeric cut-offs. Nevertheless, the integration of genomic data with traditional morphological features in myeloid neoplasm classification has proved challenging by virtue of its sheer complexity; gene expression and methylation profiling also can provide information regarding disease pathogenesis, adding to the complexity. New machine-learning technologies have the potential to effectively integrate multiple diagnostic modalities and improve on historical classification systems. Going forward, the application of machine learning and advanced statistical methods to large patient cohorts can refine future classifications by advancing unbiased and robust previously unrecognised disease subgroups. Future classifications will probably incorporate these newer technologies and higher-level analyses that emphasise genomic disease entities over traditional morphologically defined entities, thus promoting more accurate diagnosis and patient risk stratification. |
Author | Bewersdorf, Jan Philipp Wang, Yu‐Hung Della Porta, Matteo G Hasserjian, Robert P |
Author_xml | – sequence: 1 givenname: Matteo G orcidid: 0000-0002-1984-1614 surname: Della Porta fullname: Della Porta, Matteo G organization: IRCCS Humanitas Clinical and Research Center and Humanitas University – sequence: 2 givenname: Jan Philipp orcidid: 0000-0003-3352-0902 surname: Bewersdorf fullname: Bewersdorf, Jan Philipp organization: Yale University and Yale Cancer Center – sequence: 3 givenname: Yu‐Hung orcidid: 0000-0003-4483-5627 surname: Wang fullname: Wang, Yu‐Hung organization: National Taiwan University Hospital – sequence: 4 givenname: Robert P orcidid: 0000-0002-7753-0697 surname: Hasserjian fullname: Hasserjian, Robert P email: rhasserjian@mgh.harvard.edu organization: Massachusetts General Hospital, Harvard Medical School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39450427$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1vFSEUBmBiauztx8I_YEjc2MX0wgB3BndN09omTbqorifAnFEqA1c-YmbpP5fbW100UTYk5DlvOOccoQMfPCD0lpJzWs_6m03nVDDBXqEVZRvRtELIA7QijMiG0E13iI5SeiSEdqxt36BDJrkgvO1W6Nd1ySUCHm0Ek23wCVuP5wVcGJe0dSpla3Ba_BjDDGntIewe54SVH7EyJcNe2xE7KN8VzFZhU0mykzVqF_kRT7UY610YNqH4nHAOWNvgwtflBL2elEtw-nwfoy_XV58vb5q7-0-3lxd3jWF9zxoFGlqmeoBpYlL3AsZRc1mboEozwfXUamEor-0aM6meC6W07IUisnLSsmP0YZ-7jeFHgZSH2SYDzqnaU0kDoy0RUnRiU-n7F_QxlOjr76riXHaEi76qd8-q6BnGYRvtrOIy_BluBWd7YGJIKcL0l1Ay7BY31MUNT4urdv3CGpufppejsu5_FT-tg-Xf0cPN7cO-4jcWZ6xZ |
CitedBy_id | crossref_primary_10_1016_j_cca_2025_120220 |
Cites_doi | 10.1093/ajcp/aqab172 10.3324/haematol.2017.181842 10.1186/s13045-024-01571-4 10.1182/blood.2021011320 10.1007/s11899-012-0140-3 10.1056/EVIDoa2200310 10.1038/s41375-022-01613-1 10.1182/blood-2013-08-518886 10.1002/ajh.25769 10.1038/modpathol.2015.55 10.1158/2159-8290.CD-16-1032 10.1038/s41375-022-01631-z 10.1182/blood-2014-11-610543 10.1182/blood-2013-03-492884 10.1158/2643-3230.BCD-20-0162 10.1038/modpathol.2010.194 10.1016/j.exphem.2022.09.002 10.1182/blood.2022015850 10.1182/blood.2023020078 10.1038/s41591-020-1008-z 10.1182/blood-2010-04-279794 10.1002/ajh.26812 10.1182/blood-2010-08-301713 10.3324/haematol.2021.280487 10.1200/JCO.2016.67.3616 10.1056/NEJMoa061292 10.1200/JCO.20.01659 10.1182/blood.2021011304 10.1182/blood.2020004850 10.1016/S0145-2126(00)00088-6 10.1056/NEJMoa1611604 10.1182/blood-2017-05-783050 10.1182/blood-2016-03-643544 10.1016/j.critrevonc.2022.103607 10.1177/20406207241257904 10.1038/s41375-022-01783-y 10.1038/s41467-023-38515-4 10.1182/blood.2022016867 10.1182/blood.2022015849 10.1200/JCO.2014.60.0890 10.1038/s41467-022-34211-x 10.1007/s00277-012-1565-4 10.1038/s41375-022-01724-9 10.1016/S0140-6736(23)00874-7 10.1182/blood.2022015853 10.18632/oncotarget.3460 10.3390/cancers14061583 10.1111/j.1365-2141.1982.tb02771.x 10.1016/S2352-3026(23)00159-X 10.1007/s00277-014-2100-6 10.1016/j.stem.2018.10.004 10.1016/S2352-3026(23)00340-X 10.1038/nature13968 10.1200/JCO.22.01784 10.1038/s41598-020-76510-7 10.1182/blood-2015-08-663237 10.1056/NEJMoa1301689 10.1056/NEJMoa1516192 10.1182/blood-2010-09-307314 10.1056/NEJMoa1408617 10.1038/leu.2014.161 10.1016/j.ccr.2012.10.007 10.1182/blood.V74.1.395.395 10.1182/blood.2022018221 10.1182/blood.2023021199 10.1182/blood.2023023727 10.1200/CCI.24.00008 10.1182/blood-2008-10-182782 10.1182/blood-2016-11-749903 10.1158/1078-0432.CCR-23-0538 10.1016/j.exphem.2015.06.003 10.1016/S2352-3026(24)00251-5 10.1172/JCI78752 10.3324/haematol.2010.023101 10.1002/cyto.b.22044 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. Copyright © 2025 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: Copyright © 2025 John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1111/his.15353 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1365-2559 |
EndPage | 170 |
ExternalDocumentID | 39450427 10_1111_his_15353 HIS15353 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3SF 3UE 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA GSXLS H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M J5H K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 Y6R YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 8FD FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3883-aebe23a8eeff39b85eddb494271ab354bf2b5c14016ccfa845aab985a0939b023 |
IEDL.DBID | DR2 |
ISSN | 0309-0167 1365-2559 |
IngestDate | Fri Jul 11 09:39:21 EDT 2025 Fri Jul 25 09:53:25 EDT 2025 Mon Jul 21 05:51:28 EDT 2025 Thu Apr 24 22:52:06 EDT 2025 Tue Jul 01 00:36:17 EDT 2025 Wed Jan 22 17:14:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | genetics classification cytogenetics myelodysplastic syndrome acute myeloid leukaemia next‐generation sequencing |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3883-aebe23a8eeff39b85eddb494271ab354bf2b5c14016ccfa845aab985a0939b023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1984-1614 0000-0003-4483-5627 0000-0003-3352-0902 0000-0002-7753-0697 |
OpenAccessLink | https://doi.org/10.1111/his.15353 |
PMID | 39450427 |
PQID | 3144970458 |
PQPubID | 1086360 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_3120595756 proquest_journals_3144970458 pubmed_primary_39450427 crossref_primary_10_1111_his_15353 crossref_citationtrail_10_1111_his_15353 wiley_primary_10_1111_his_15353_HIS15353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 2025-Jan 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Histopathology |
PublicationTitleAlternate | Histopathology |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2022; 171 2011; 117 2023; 142 2023; 141 2023; 37 1982; 51 2013; 368 2015; 33 2013; 122 2023; 104 2024; 143 2009; 113 2024; 144 2014; 371 2023; 2 2024 2020; 10 2022; 139 2016; 34 1989; 74 2023; 29 2024; 8 2010; 116 2020; 95 2021; 39 2015; 43 2022; 36 2011; 24 2020; 136 2014; 93 2012; 22 2014; 125 2017; 129 2023; 98 2023; 10 2015; 6 2023; 14 2021; 2 2015; 126 2000; 24 2015; 125 2018; 103 2023; 402 2013; 92 2024; 11 2017; 130 2016; 127 2018; 23 2024; 15 2017; 376 2024; 17 2022; 115 2022; 157 2006; 355 2023; 41 2022; 140 2015; 28 2021 2015; 20 2021; 138 2022; 13 2020; 26 2015; 518 2022; 14 2016; 374 2022; 1 2012; 7 2022; 107 2010; 95 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 (e_1_2_9_6_1) 2024 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 Bernard E (e_1_2_9_72_1) 2022; 1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 143 start-page: 1139 year: 2024 end-page: 1156 article-title: Comparing malignant monocytosis across the updated WHO and ICC classifications of 2022 publication-title: Blood – volume: 140 start-page: 1345 year: 2022 end-page: 1377 article-title: Diagnosis and management of AML in adults: 2022 ELN recommendations from an international expert panel publication-title: Blood – volume: 113 start-page: 1906 year: 2009 end-page: 1908 article-title: Clinical characterization of acute myeloid leukemia with myelodysplasia‐related changes as defined by the 2008 WHO classification system publication-title: Blood – volume: 402 start-page: 373 year: 2023 end-page: 385 article-title: Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis‐stimulating agent‐naive, transfusion‐dependent, lower‐risk myelodysplastic syndromes (COMMANDS): Interim analysis of a phase 3, open‐label, randomised controlled trial publication-title: Lancet – volume: 116 start-page: 6147 year: 2010 end-page: 6148 article-title: The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate‐risk cytogenetics is dependent on NPM1 mutational status publication-title: Blood – volume: 24 start-page: 983 year: 2000 end-page: 992 article-title: Validation of the WHO proposals for a new classification of primary myelodysplastic syndromes: A retrospective analysis of 1600 patients publication-title: Leuk. Res. – volume: 28 start-page: 965 year: 2015 end-page: 976 article-title: Reproducibility and prognostic significance of morphologic dysplasia in de novo acute myeloid leukemia publication-title: Mod. Pathol. – volume: 74 start-page: 395 year: 1989 end-page: 408 article-title: Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: A multivariate analysis of prognostic factors in 370 patients publication-title: Blood – volume: 98 start-page: 481 year: 2023 end-page: 492 article-title: Comparison of the international consensus and 5th WHO edition classifications of adult myelodysplastic syndromes and acute myeloid leukemia publication-title: Am. J. Hematol. – year: 2021 – volume: 23 start-page: 700 year: 2018 end-page: 713 article-title: PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy publication-title: Cell Stem Cell – volume: 7 start-page: 868 year: 2017 end-page: 883 article-title: Epigenetic identity in AML depends on disruption of nonpromoter regulatory elements and is affected by antagonistic effects of mutations in epigenetic modifiers publication-title: Cancer Discov. – volume: 10 start-page: 19555 year: 2020 article-title: Gene expression signatures associated with sensitivity to azacitidine in myelodysplastic syndromes publication-title: Sci. Rep. – volume: 43 start-page: 869 year: 2015 end-page: 879 article-title: Multilineage dysplasia as assessed by immunophenotype has no impact on clinical‐biological features and outcome of NPM1‐mutated acute myeloid leukemia publication-title: Exp. Hematol. – volume: 142 start-page: 2247 year: 2023 end-page: 2257 article-title: Diagnosis and classification of myelodysplastic syndromes publication-title: Blood – volume: 22 start-page: 683 year: 2012 end-page: 697 article-title: An Inv(16) (p13.3q24.3)‐encoded CBFA2T3‐GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia publication-title: Cancer Cell – volume: 36 start-page: 1703 year: 2022 end-page: 1719 article-title: The 5th edition of the World Health Organization classification of Haematolymphoid Tumours: Myeloid and histiocytic/dendritic neoplasms publication-title: Leukemia – volume: 144 start-page: 1617 year: 2024 end-page: 1632 article-title: Molecular taxonomy of myelodysplastic syndromes and its clinical implications publication-title: Blood – volume: 140 start-page: 1200 year: 2022 end-page: 1228 article-title: International consensus classification of myeloid neoplasms and acute Leukemias: Integrating morphologic, clinical, and genomic data publication-title: Blood – volume: 26 start-page: 1549 year: 2020 end-page: 1556 article-title: Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes publication-title: Nat. Med. – volume: 126 start-page: 2362 year: 2015 end-page: 2365 article-title: Targeted sequencing identifies patients with preclinical MDS at high risk of disease progression publication-title: Blood – volume: 139 start-page: 323 year: 2022 end-page: 332 article-title: Distinguishing AML from MDS: A fixed blast percentage may no longer be optimal publication-title: Blood – volume: 122 start-page: 2943 year: 2013 end-page: 2964 article-title: Diagnosis and treatment of primary myelodysplastic syndromes in adults: Recommendations from the European LeukemiaNet publication-title: Blood – volume: 15 year: 2024 article-title: Integrated genetic, epigenetic, and immune landscape of TP53 mutant AML and higher risk MDS treated with azacitidine publication-title: Ther. Adv. Hematol – volume: 95 start-page: 1849 year: 2010 end-page: 1856 article-title: Prevalence, incidence and types of mild anemia in the elderly: The ‘health and anemia’ population‐based study publication-title: Haematologica – volume: 171 year: 2022 article-title: Diagnosis and treatment of therapy‐related acute myeloid leukemia publication-title: Crit. Rev. Oncol. Hematol. – volume: 36 start-page: 1939 year: 2022 end-page: 1942 article-title: AML, NOS and AML‐MRC as defined by multilineage dysplasia share a common mutation pattern which is distinct from AML‐MRC as defined by MDS‐related cytogenetics publication-title: Leukemia – volume: 129 start-page: 2584 year: 2017 end-page: 2587 article-title: More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia publication-title: Blood – volume: 37 start-page: 500 year: 2023 end-page: 502 article-title: Mutations in spliceosome genes in myelodysplastic neoplasms and their association to ring sideroblasts publication-title: Leukemia – volume: 140 start-page: 2228 year: 2022 end-page: 2247 article-title: Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia publication-title: Blood – volume: 355 start-page: 1456 year: 2006 end-page: 1465 article-title: Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion publication-title: N. Engl. J. Med. – volume: 127 start-page: 2391 year: 2016 end-page: 2405 article-title: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia publication-title: Blood – volume: 122 start-page: 3616 year: 2013 end-page: 3627 article-title: Clinical and biological implications of driver mutations in myelodysplastic syndromes publication-title: Blood – volume: 130 start-page: 2642 year: 2017 end-page: 2653 article-title: Gene expression and risk of leukemic transformation in myelodysplasia publication-title: Blood – volume: 51 start-page: 189 year: 1982 end-page: 199 article-title: Proposals for the classification of the myelodysplastic syndromes publication-title: Br. J. Haematol. – volume: 11 year: 2024 – volume: 141 start-page: 534 year: 2023 end-page: 549 article-title: Germ line DDX41 mutations define a unique subtype of myeloid neoplasms publication-title: Blood – volume: 7 start-page: 310 year: 2012 end-page: 320 article-title: Dysplasia has a differential diagnosis: Distinguishing genuine myelodysplastic syndromes (MDS) from mimics, imitators, copycats and impostors publication-title: Curr. Hematol. Malig. Rep. – volume: 116 start-page: 2742 year: 2010 end-page: 2751 article-title: Multilineage dysplasia (MLD) in acute myeloid leukemia (AML) correlates with MDS‐related cytogenetic abnormalities and a prior history of MDS or MDS/MPN but has no independent prognostic relevance: A comparison of 408 cases classified as ‘AML not otherwise specified’ (AML‐NOS) or ‘AML with myelodysplasia‐related changes’ (AML‐MRC) publication-title: Blood – volume: 125 start-page: 1367 year: 2014 end-page: 1376 article-title: Acute myeloid leukemia ontogeny is defined by distinct somatic mutations publication-title: Blood – volume: 374 start-page: 2209 year: 2016 end-page: 2221 article-title: Genomic classification and prognosis in acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 368 start-page: 2059 year: 2013 end-page: 2074 article-title: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia publication-title: N. Engl. J. Med. – volume: 8 year: 2024 article-title: MOSAIC: An artificial intelligence‐based framework for multimodal analysis, classification, and personalized prognostic assessment in rare cancers publication-title: JCO. Clin. Cancer. Inform – volume: 136 start-page: 157 year: 2020 end-page: 170 article-title: SF3B1‐mutant MDS as a distinct disease subtype: A proposal from the international working Group for the Prognosis of MDS publication-title: Blood – volume: 29 start-page: 4256 year: 2023 end-page: 4267 article-title: Integrated genomic and transcriptomic analysis improves disease classification and risk stratification of MDS with ring sideroblasts publication-title: Clin. Cancer Res. – volume: 20 start-page: 66 year: 2015 end-page: 75 article-title: Minimal morphological criteria for defining bone marrow dysplasia: A basis for clinical implementation of WHO classification of myelodysplastic syndromes publication-title: Leukemia – volume: 518 start-page: 552 year: 2015 end-page: 555 article-title: Role of TP53 mutations in the origin and evolution of therapy‐related acute myeloid leukaemia publication-title: Nature – year: 2024 article-title: Data‐driven, harmonized classification system for myelodysplastic syndromes: A consensus study from the international consortium for myelodysplastic syndromes (icMDS) publication-title: Lancet. Hematol – volume: 13 start-page: 6524 year: 2022 article-title: MIR retrotransposons link the epigenome and the transcriptome of coding genes in acute myeloid leukemia publication-title: Nat. Commun. – volume: 33 start-page: 3641 year: 2015 end-page: 3649 article-title: Epidemiology and clinical significance of secondary and therapy‐related acute myeloid leukemia: A National Population‐Based Cohort Study publication-title: J. Clin. Oncol. – volume: 17 start-page: 56 year: 2024 article-title: A practical approach on the classifications of myeloid neoplasms and acute leukemia: WHO and ICC publication-title: J. Hematol. Oncol. – volume: 371 start-page: 2488 year: 2014 end-page: 2498 article-title: Age‐related clonal hematopoiesis associated with adverse outcomes publication-title: N. Engl. J. Med. – volume: 103 start-page: 626 year: 2018 end-page: 633 article-title: Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO classification‐defined cytogenetic abnormalities publication-title: Haematologica – volume: 14 start-page: 3136 year: 2023 article-title: Molecular patterns identify distinct subclasses of myeloid neoplasia publication-title: Nat. Commun. – volume: 376 start-page: 536 year: 2017 end-page: 547 article-title: Prognostic mutations in myelodysplastic syndrome after stem‐cell transplantation publication-title: N. Engl. J. Med. – volume: 34 start-page: 3627 year: 2016 end-page: 3637 article-title: Clinical effects of driver somatic mutations on the outcomes of patients with myelodysplastic syndromes treated with allogeneic hematopoietic stem‐cell transplantation publication-title: J. Clin. Oncol. – volume: 2 start-page: 238 year: 2021 end-page: 249 article-title: Machine learning of bone marrow histopathology identifies genetic and clinical determinants in patients with MDS publication-title: Blood. Cancer. Discov – volume: 138 start-page: 2093 year: 2021 end-page: 2105 article-title: Clinical relevance of clonal hematopoiesis in persons aged >/=80 years publication-title: Blood – volume: 11 start-page: e51 year: 2024 end-page: e61 article-title: Predicting cytopenias, progression, and survival in patients with clonal cytopenia of undetermined significance: A prospective cohort study publication-title: Lancet. Haematol – volume: 1 year: 2022 article-title: Molecular international prognostic scoring system for myelodysplastic syndromes publication-title: N Engl. J Med. Evid – volume: 125 start-page: 1857 year: 2015 end-page: 1872 article-title: Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia publication-title: J. Clin. Invest. – volume: 107 start-page: 2232 year: 2022 end-page: 2237 article-title: Pure erythroid leukemia is characterized by biallelic TP53 inactivation and abnormal p53 expression patterns in de novo and secondary cases publication-title: Haematologica – volume: 92 start-page: 19 year: 2013 end-page: 24 article-title: Inter‐observer variance with the diagnosis of myelodysplastic syndromes (MDS) following the 2008 WHO classification publication-title: Ann. Hematol. – volume: 39 start-page: 1223 year: 2021 end-page: 1233 article-title: Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes publication-title: J. Clin. Oncol. – volume: 93 start-page: 1695 year: 2014 end-page: 1703 article-title: Multilineage dysplasia is associated with a poorer prognosis in patients with de novo acute myeloid leukemia with intermediate‐risk cytogenetics and wild‐type NPM1 publication-title: Ann. Hematol. – volume: 157 start-page: 691 year: 2022 end-page: 700 article-title: Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia‐related changes and De novo acute myeloid leukemia publication-title: Am. J. Clin. Pathol. – volume: 14 year: 2022 article-title: Immunophenotypic analysis of acute Megakaryoblastic leukemia: A EuroFlow study publication-title: Cancers (Basel) – volume: 36 start-page: 2939 year: 2022 end-page: 2946 article-title: Finding consistency in classifications of myeloid neoplasms: A perspective on behalf of the international workshop for myelodysplastic syndromes publication-title: Leukemia – volume: 104 start-page: 77 year: 2023 end-page: 86 article-title: Clinical application of flow cytometry in patients with unexplained cytopenia and suspected myelodysplastic syndrome: A report of the European LeukemiaNet international MDS‐flow cytometry working group publication-title: Cytometry B Clin. Cytom. – volume: 10 start-page: e767 year: 2023 end-page: e776 article-title: Standardising acute myeloid leukaemia classification systems: A perspective from a panel of international experts publication-title: Lancet. Haematol – volume: 115 start-page: 44 year: 2022 end-page: 53 article-title: Transcriptomic signatures of Hypomethylating agent failure in myelodysplastic syndromes and chronic myelomonocytic leukemia publication-title: Exp. Hematol. – volume: 95 start-page: 612 year: 2020 end-page: 622 article-title: Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy publication-title: Am. J. Hematol. – volume: 6 start-page: 8388 year: 2015 end-page: 8396 article-title: Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia‐related changes publication-title: Oncotarget – volume: 140 start-page: 1193 year: 2022 end-page: 1199 article-title: Developing a classification of hematologic neoplasms in the era of precision medicine publication-title: Blood – volume: 2 year: 2023 article-title: Prediction of risk for myeloid malignancy in clonal hematopoiesis publication-title: NEJM Evidence – volume: 117 start-page: 2137 year: 2011 end-page: 2145 article-title: The impact of therapy‐related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML publication-title: Blood – volume: 24 start-page: 375 year: 2011 end-page: 383 article-title: Pure erythroid leukemia: A reassessment of the entity using the 2008 World Health Organization classification publication-title: Mod. Pathol. – volume: 41 start-page: 2827 year: 2023 end-page: 2842 article-title: Real‐world validation of molecular international prognostic scoring system for myelodysplastic syndromes publication-title: J. Clin. Oncol. – ident: e_1_2_9_59_1 doi: 10.1093/ajcp/aqab172 – ident: e_1_2_9_54_1 doi: 10.3324/haematol.2017.181842 – ident: e_1_2_9_9_1 doi: 10.1186/s13045-024-01571-4 – ident: e_1_2_9_38_1 doi: 10.1182/blood.2021011320 – volume-title: Haematolymphoid Tumours year: 2024 ident: e_1_2_9_6_1 – ident: e_1_2_9_41_1 doi: 10.1007/s11899-012-0140-3 – ident: e_1_2_9_37_1 doi: 10.1056/EVIDoa2200310 – ident: e_1_2_9_5_1 doi: 10.1038/s41375-022-01613-1 – ident: e_1_2_9_27_1 doi: 10.1182/blood-2013-08-518886 – ident: e_1_2_9_55_1 doi: 10.1002/ajh.25769 – ident: e_1_2_9_53_1 doi: 10.1038/modpathol.2015.55 – ident: e_1_2_9_28_1 doi: 10.1158/2159-8290.CD-16-1032 – ident: e_1_2_9_60_1 doi: 10.1038/s41375-022-01631-z – ident: e_1_2_9_57_1 doi: 10.1182/blood-2014-11-610543 – ident: e_1_2_9_74_1 doi: 10.1182/blood-2013-03-492884 – ident: e_1_2_9_19_1 doi: 10.1158/2643-3230.BCD-20-0162 – ident: e_1_2_9_67_1 doi: 10.1038/modpathol.2010.194 – ident: e_1_2_9_25_1 doi: 10.1016/j.exphem.2022.09.002 – ident: e_1_2_9_7_1 doi: 10.1182/blood.2022015850 – ident: e_1_2_9_12_1 doi: 10.1182/blood.2023020078 – ident: e_1_2_9_45_1 doi: 10.1038/s41591-020-1008-z – ident: e_1_2_9_48_1 doi: 10.1182/blood-2010-04-279794 – ident: e_1_2_9_8_1 doi: 10.1002/ajh.26812 – ident: e_1_2_9_63_1 doi: 10.1182/blood-2010-08-301713 – ident: e_1_2_9_68_1 doi: 10.3324/haematol.2021.280487 – ident: e_1_2_9_76_1 doi: 10.1200/JCO.2016.67.3616 – ident: e_1_2_9_79_1 doi: 10.1056/NEJMoa061292 – ident: e_1_2_9_18_1 doi: 10.1200/JCO.20.01659 – ident: e_1_2_9_43_1 doi: 10.1182/blood.2021011304 – ident: e_1_2_9_10_1 doi: 10.1182/blood.2020004850 – ident: e_1_2_9_4_1 doi: 10.1016/S0145-2126(00)00088-6 – ident: e_1_2_9_77_1 doi: 10.1056/NEJMoa1611604 – ident: e_1_2_9_26_1 doi: 10.1182/blood-2017-05-783050 – ident: e_1_2_9_46_1 doi: 10.1182/blood-2016-03-643544 – ident: e_1_2_9_62_1 doi: 10.1016/j.critrevonc.2022.103607 – volume: 1 year: 2022 ident: e_1_2_9_72_1 article-title: Molecular international prognostic scoring system for myelodysplastic syndromes publication-title: N Engl. J Med. Evid – ident: e_1_2_9_31_1 doi: 10.1177/20406207241257904 – ident: e_1_2_9_11_1 doi: 10.1038/s41375-022-01783-y – ident: e_1_2_9_17_1 doi: 10.1038/s41467-023-38515-4 – ident: e_1_2_9_75_1 doi: 10.1182/blood.2022016867 – ident: e_1_2_9_13_1 doi: 10.1182/blood.2022015849 – ident: e_1_2_9_61_1 doi: 10.1200/JCO.2014.60.0890 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-022-34211-x – ident: e_1_2_9_15_1 doi: 10.1007/s00277-012-1565-4 – ident: e_1_2_9_22_1 doi: 10.1038/s41375-022-01724-9 – ident: e_1_2_9_14_1 – ident: e_1_2_9_78_1 doi: 10.1016/S0140-6736(23)00874-7 – ident: e_1_2_9_32_1 doi: 10.1182/blood.2022015853 – ident: e_1_2_9_51_1 doi: 10.18632/oncotarget.3460 – ident: e_1_2_9_69_1 doi: 10.3390/cancers14061583 – ident: e_1_2_9_2_1 doi: 10.1111/j.1365-2141.1982.tb02771.x – ident: e_1_2_9_44_1 doi: 10.1016/S2352-3026(23)00159-X – ident: e_1_2_9_50_1 doi: 10.1007/s00277-014-2100-6 – ident: e_1_2_9_65_1 doi: 10.1016/j.stem.2018.10.004 – ident: e_1_2_9_36_1 doi: 10.1016/S2352-3026(23)00340-X – ident: e_1_2_9_64_1 doi: 10.1038/nature13968 – ident: e_1_2_9_73_1 doi: 10.1200/JCO.22.01784 – ident: e_1_2_9_24_1 doi: 10.1038/s41598-020-76510-7 – ident: e_1_2_9_35_1 doi: 10.1182/blood-2015-08-663237 – ident: e_1_2_9_56_1 doi: 10.1056/NEJMoa1301689 – ident: e_1_2_9_58_1 doi: 10.1056/NEJMoa1516192 – ident: e_1_2_9_49_1 doi: 10.1182/blood-2010-09-307314 – ident: e_1_2_9_34_1 doi: 10.1056/NEJMoa1408617 – ident: e_1_2_9_40_1 doi: 10.1038/leu.2014.161 – ident: e_1_2_9_70_1 doi: 10.1016/j.ccr.2012.10.007 – ident: e_1_2_9_3_1 doi: 10.1182/blood.V74.1.395.395 – ident: e_1_2_9_71_1 doi: 10.1182/blood.2022018221 – ident: e_1_2_9_42_1 doi: 10.1182/blood.2023021199 – ident: e_1_2_9_21_1 doi: 10.1182/blood.2023023727 – ident: e_1_2_9_16_1 doi: 10.1200/CCI.24.00008 – ident: e_1_2_9_47_1 doi: 10.1182/blood-2008-10-182782 – ident: e_1_2_9_66_1 doi: 10.1182/blood-2016-11-749903 – ident: e_1_2_9_23_1 doi: 10.1158/1078-0432.CCR-23-0538 – ident: e_1_2_9_52_1 doi: 10.1016/j.exphem.2015.06.003 – ident: e_1_2_9_20_1 doi: 10.1016/S2352-3026(24)00251-5 – ident: e_1_2_9_30_1 doi: 10.1172/JCI78752 – ident: e_1_2_9_33_1 doi: 10.3324/haematol.2010.023101 – ident: e_1_2_9_39_1 doi: 10.1002/cyto.b.22044 |
SSID | ssj0017322 |
Score | 2.4480345 |
SecondaryResourceType | review_article |
Snippet | Myelodysplastic syndromes/neoplasms (MDS) and acute myeloid leukaemia (AML) are neoplastic haematopoietic cell proliferations that are diagnosed and classified... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 158 |
SubjectTerms | acute myeloid leukaemia Acute myeloid leukemia classification Classification systems cytogenetics DNA methylation Gene expression genetics Genomics Hematopoietic stem cells Humans Information processing Learning algorithms Leukemia Leukemia, Myeloid, Acute - classification Leukemia, Myeloid, Acute - diagnosis Leukemia, Myeloid, Acute - genetics Leukemia, Myeloid, Acute - pathology Machine Learning Morphology Myelodysplastic syndrome Myelodysplastic syndromes Myelodysplastic Syndromes - classification Myelodysplastic Syndromes - diagnosis Myelodysplastic Syndromes - genetics Myelodysplastic Syndromes - pathology next‐generation sequencing p53 Protein Tumors |
Title | Future directions in myelodysplastic syndromes/neoplasms and acute myeloid leukaemia classification: from blast counts to biology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fhis.15353 https://www.ncbi.nlm.nih.gov/pubmed/39450427 https://www.proquest.com/docview/3144970458 https://www.proquest.com/docview/3120595756 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPaBeoKU8ti3IRRy4ZNm148SGE0KstpXgAFTqASmyHUdddTdbNcmhvfWfd8Z5QHlIqDdLGceJPWN_9oy_AXjNJwl30zyPuHImir1MI21THQnPlZ_mCdc2sH1-SeYn8fGpPN2A9_1dmJYfYjhwI8sI8zUZuLHVL0Z-tqjGaK6SmD4pVosA0deBOmqaip8eBAq171iFKIpnqHl3LfoDYN7Fq2HBmT2CH_2ntnEm5-OmtmN3_RuL4z3_ZRsedkCUfWg1Zwc2fPkYHnzuXO27cDMLbCOsXfNIOdmiZKsrv1znV9UFgm6syHrCg-ptSaHoplpVzJQ5M66pfSu9yNnSN-fGrxaGOQLrFJ0UFOIdo9stzNLLWMhaUbF6zTpiqCdwMvv0_eM86vI1RE4oJSKDCsGFUd4XhdBWSZ_nNtYxT6fGChnbglvpaEeXOFcYFUtjrFbSTDSKI3h4CpvluvTPgSEs0g6hoRQTH6M2WW8lTsRKFVi2nI_gTT9ymevIzCmnxjLrNzXYpVno0hG8GkQvWgaPvwkd9MOfdUZcZQI3mzolT_IIDofHaH7kUzHYrQ3JcASoiHmTETxr1WZoRehYUioT_Ngw-P9uPpsffQuFvf8X3YctTrmIw3HQAWzWl41_gQCpti-DJdwCtsgO9Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEX3tCFAgZx4JLtrh0nNuKCgNUW2h6glXpBke04YtXdbNUkh3LjnzPjPKA8JMTNUsZxYs_Ynz3jbwCe80nC3TTPI66ciWIv00jbVEfCc-WnecK1DWyfB8n8KH5_LI834FV_F6blhxgO3MgywnxNBk4H0j9Z-ZdFNUZ7leISXKaM3mSWbz8O5FHTVPzwIVCwfccrRHE8Q9WLq9FvEPMiYg1LzuwGfO4_to00ORk3tR27r7_wOP7v39yE6x0WZa9b5bkFG768DVf2O2_7Hfg2C4QjrF32SD_ZomSrc79c5-fVKeJurMh6zoNqp6RodFOtKmbKnBnX1L6VXuRs6ZsT41cLwxzhdQpQCjrxktEFF2bpZSwkrqhYvWYdN9RdOJq9O3wzj7qUDZETSonIoE5wYZT3RSG0VdLnuY11zNOpsULGtuBWOtrUJc4VRsXSGKuVNBON4ogf7sFmuS79FjBERtohOpRi4mNUKOutxLlYqQLLlvMRvOiHLnMdnzml1Vhm_b4GuzQLXTqCZ4PoaUvi8Seh7X78s86Oq0zgflOn5EwewdPhMVoguVUMdmtDMhwxKsLeZAT3W70ZWhE6lpTNBD82jP7fm8_mu59C4cG_iz6Bq_PD_b1sb_fgw0O4xik1cTgd2obN-qzxjxAv1fZxMIvvgr4TDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVcyhsWChjEgUuWXT8SG06IstryqBBQqQekyK-IVXezqyY5lBv_nLHzgPKQEDdLGceJPWN_Y4-_AXhMJym1U-cSKq1OuBdZokymEuap9FOXUmUi2-dhOj_ir4_F8RY87-_CtPwQw4ZbsIw4XwcD37jiJyP_sqjGaK6CXYCLPJ3I4Hntfxi4o6YZ-3GEEGLtO1qhEMYzVD2_GP2GMM8D1rjizC7D5_5b20CTk3FTm7H9-guN43_-zBXY7ZAoedGqzlXY8uU12HnXnbVfh2-zSDdC2kUvaCdZlGR15pdrd1ZtEHVjRdIzHlRPyxCLrqtVRXTpiLZN7VvphSNL35xov1poYgNaD-FJUSOekXC9hZjwMhLTVlSkXpOOGeoGHM1efXo5T7qEDYllUrJEo0ZQpqX3RcGUkcI7Z7jiNJtqwwQ3BTXCBpcutbbQkgutjZJCTxSKI3q4CdvluvS3gSAuUhaxoWATz1GdjDcCZ2IpCywbSkfwpB-53HZs5iGpxjLvvRrs0jx26QgeDaKblsLjT0J7_fDnnRVXOUNvU2XhKHkED4fHaH_hUEVjtzZBhiJCRdCbjuBWqzZDK0xxEXKZ4MfGwf978_n84GMs3Pl30Qew835_lr89OHxzFy7RkJc4bg3twXZ92vh7CJZqcz8axXdkCxHG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+directions+in+myelodysplastic+syndromes%2Fneoplasms+and+acute+myeloid+leukaemia+classification%3A+from+blast+counts+to+biology&rft.jtitle=Histopathology&rft.au=Della+Porta%2C+Matteo+G&rft.au=Bewersdorf%2C+Jan+Philipp&rft.au=Yu%E2%80%90Hung+Wang&rft.au=Hasserjian%2C+Robert+P&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0309-0167&rft.eissn=1365-2559&rft.volume=86&rft.issue=1&rft.spage=158&rft.epage=170&rft_id=info:doi/10.1111%2Fhis.15353&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0309-0167&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0309-0167&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0309-0167&client=summon |