Computer‐aided diagnosis based on enhancement of degraded fundus photographs

Purpose Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to impr...

Full description

Saved in:
Bibliographic Details
Published inActa ophthalmologica (Oxford, England) Vol. 96; no. 3; pp. e320 - e326
Main Authors Jin, Kai, Zhou, Mei, Wang, Shaoze, Lou, Lixia, Xu, Yufeng, Ye, Juan, Qian, Dahong
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2018
Subjects
Online AccessGet full text
ISSN1755-375X
1755-3768
1755-3768
DOI10.1111/aos.13573

Cover

Abstract Purpose Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. Methods A new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. Results The study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. Conclusion The relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis.
AbstractList Purpose Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. Methods A new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. Results The study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. Conclusion The relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis.
PurposeRetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.MethodsA new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.ResultsThe study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.ConclusionThe relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis.
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis.
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.PURPOSERetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.METHODSA new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.RESULTSThe study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis.CONCLUSIONThe relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis.
Author Ye, Juan
Xu, Yufeng
Jin, Kai
Zhou, Mei
Wang, Shaoze
Lou, Lixia
Qian, Dahong
Author_xml – sequence: 1
  givenname: Kai
  surname: Jin
  fullname: Jin, Kai
  organization: the Second Affiliated Hospital of Zhejiang University
– sequence: 2
  givenname: Mei
  surname: Zhou
  fullname: Zhou, Mei
  organization: East China Normal University
– sequence: 3
  givenname: Shaoze
  surname: Wang
  fullname: Wang, Shaoze
  organization: Zhejiang University
– sequence: 4
  givenname: Lixia
  surname: Lou
  fullname: Lou, Lixia
  organization: the Second Affiliated Hospital of Zhejiang University
– sequence: 5
  givenname: Yufeng
  surname: Xu
  fullname: Xu, Yufeng
  organization: the Second Affiliated Hospital of Zhejiang University
– sequence: 6
  givenname: Juan
  orcidid: 0000-0003-1196-5716
  surname: Ye
  fullname: Ye, Juan
  email: yejuan@zju.edu.cn
  organization: the Second Affiliated Hospital of Zhejiang University
– sequence: 7
  givenname: Dahong
  surname: Qian
  fullname: Qian, Dahong
  email: dahong.qian@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29090844$$D View this record in MEDLINE/PubMed
BookMark eNp90ctKxDAUBuAgiveFLyAFN7oYTZo2TZcyeANxFiq4C2lz4kTapCYtMjsfwWf0SYzOOIsBzSYXvnM45N9B69ZZQOiA4FMS15l04ZTQvKBraJsUeT6iBePry3P-tIV2QnjBmBHGsk20lZa4xDzLttHd2LXd0IP_fP-QRoFKlJHP1gUTkkqGeHc2ATuVtoYWbJ84nSh49vKb6sGqISTd1PUuPnXTsIc2tGwC7C_2XfR4efEwvh7dTq5uxue3o5pyTkcFB0aIyjglpcYaK85qVfCCUc0zJfMqzVlWlRmpdaVTrikFyVSqKSNpjRnQXXQ879t59zpA6EVrQg1NIy24IQhS5jzPSIp5pEcr9MUN3sbpRIopLiIsyqgOF2qoWlCi86aVfiZ-fyqCkzmovQvBg14SgsV3CiKmIH5SiPZsxdaml71xtvfSNP9VvJkGZn-3FueT-3nFFx60mFQ
CitedBy_id crossref_primary_10_1016_j_aopr_2022_100078
crossref_primary_10_1038_s41598_023_34212_w
crossref_primary_10_1007_s11036_021_01888_1
crossref_primary_10_1038_s41598_020_73486_2
crossref_primary_10_1007_s11517_019_02106_7
crossref_primary_10_1136_bjo_2024_325403
crossref_primary_10_3390_sym13112089
Cites_doi 10.1117/1.OE.54.1.013107
10.1159/000329597
10.1016/S0161-6420(87)33604-8
10.1016/j.zemedi.2006.11.005
10.1007/s11517-016-1469-x
10.1109/ICTSS.2013.6588092
10.1007/s10278-013-9617-4
10.1109/TMI.2015.2506902
10.1109/TMI.2016.2550102
10.1371/journal.pone.0122332
10.1167/iovs.10-7075
10.1167/iovs.12-11449
10.1109/42.41493
10.1155/2016/5075612
10.1364/JOSAA.14.002873
10.1136/bjo.2009.176784
10.1016/j.preteyeres.2005.07.001
10.1007/s00330-012-2379-4
10.1117/1.3652709
10.1117/1.JBO.19.1.016023
10.1136/bjo.2004.051334
10.1364/OL.25.001804
10.1167/iovs.08-2364
10.1016/j.patrec.2006.09.007
10.1016/j.media.2004.07.001
10.1016/j.media.2009.05.005
10.1148/radiographics.20.5.g00se311479
ContentType Journal Article
Copyright 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd
2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Copyright © 2018 Acta Ophthalmologica Scandinavica Foundation
Copyright_xml – notice: 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd
– notice: 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2018 Acta Ophthalmologica Scandinavica Foundation
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/aos.13573
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1755-3768
EndPage e326
ExternalDocumentID 29090844
10_1111_aos_13573
AOS13573
Genre article
Journal Article
GrantInformation_xml – fundername: Zhejiang Provincial Program for Cultivation of High‐Level Innovative Health Talents
– fundername: Natural Science Foundation of China
  funderid: 81471748
– fundername: Zhejiang Provincial Program for Medical and Health Science Co‐sponsored by Province and Ministry
  funderid: 2016137996
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
GODZA
H.X
HF~
HGLYW
HZI
HZ~
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
P6G
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V9Y
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
X7M
XG1
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
1OB
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c3883-78e611d48319f0f0d86cd78763f84da5b2564b941cfbf28f33ea6d2f3612c06e3
IEDL.DBID DR2
ISSN 1755-375X
1755-3768
IngestDate Fri Sep 05 06:00:21 EDT 2025
Wed Aug 13 04:40:05 EDT 2025
Wed Feb 19 02:43:39 EST 2025
Tue Jul 01 01:55:17 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Wed Jan 22 17:05:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords detection
enhancement
retina
fundus image
Language English
License 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-78e611d48319f0f0d86cd78763f84da5b2564b941cfbf28f33ea6d2f3612c06e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1196-5716
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/aos.13573
PMID 29090844
PQID 2030758579
PQPubID 1036384
PageCount 7
ParticipantIDs proquest_miscellaneous_1958541208
proquest_journals_2030758579
pubmed_primary_29090844
crossref_primary_10_1111_aos_13573
crossref_citationtrail_10_1111_aos_13573
wiley_primary_10_1111_aos_13573_AOS13573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2018
2018-05-00
2018-May
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: May 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Malden
PublicationTitle Acta ophthalmologica (Oxford, England)
PublicationTitleAlternate Acta Ophthalmol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 17
2000; 25
1987; 94
2015; 54
1989; 8
2000; 20
2015; 10
2016; 54
2014; 27
2011; 52
1994; 47
2016; 2016
2002
2011; 16
2016; 35
2005; 89
2011; 226
2007; 28
2009; 13
2013; 54
2009; 50
2005; 9
1997; 14
2006; 25
2014; 19
2013
2010; 3
2012; 22
2010; 94
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Zuiderveld K (e_1_2_5_31_1) 1994; 47
e_1_2_5_29_1
Abramoff MD (e_1_2_5_2_1) 2010; 3
Zhao Y (e_1_2_5_30_1) 2015; 10
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_18_1
Gonzalez RC (e_1_2_5_11_1) 2002
References_xml – volume: 35
  start-page: 1046
  year: 2016
  end-page: 1055
  article-title: Human visual system‐based fundus image quality assessment of portable fundus camera photographs
  publication-title: IEEE Trans Med Imaging
– start-page: 215
  year: 2013
  end-page: 217
– volume: 47
  start-page: 4
  year: 1994
  end-page: 485
  article-title: Contrast limited adaptive histogram equalization
  publication-title: Graphics Gems
– volume: 28
  start-page: 516
  year: 2007
  end-page: 522
  article-title: Enhancing retinal image by the Contourlet transform
  publication-title: Pattern Recogn Lett
– volume: 14
  start-page: 2873
  year: 1997
  end-page: 2883
  article-title: Aberrations and retinal image quality of the normal human eye
  publication-title: J Opt Soc Am A Opt Image Sci Vis
– volume: 10
  start-page: e0122332
  year: 2015
  article-title: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase
  publication-title: PLoS ONE
– volume: 19
  start-page: 16023
  year: 2014
  article-title: Restoration of retinal images with space‐variant blur
  publication-title: J Biomed Opt
– volume: 52
  start-page: 5862
  year: 2011
  end-page: 5871
  article-title: Automatic detection of diabetic retinopathy and age‐related macular degeneration in digital fundus images
  publication-title: Invest Ophthalmol Vis Sci
– volume: 9
  start-page: 179
  year: 2005
  end-page: 190
  article-title: Luminosity and contrast normalization in retinal images
  publication-title: Med Image Anal
– volume: 3
  start-page: 169
  year: 2010
  end-page: 208
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Trans Med Imaging
– volume: 25
  start-page: 99
  year: 2006
  end-page: 127
  article-title: Retinal image analysis: concepts, applications and potential
  publication-title: Prog Retin Eye Res
– volume: 35
  start-page: 2107
  year: 2016
  end-page: 2118
  article-title: Enhancement of vascular structures in 3D and 2D angiographic images
  publication-title: IEEE Trans Med Imaging
– volume: 13
  start-page: 650
  year: 2009
  end-page: 658
  article-title: Retinal image analysis based on mixture models to detect hard exudates
  publication-title: Med Image Anal
– volume: 8
  start-page: 401
  year: 1989
  end-page: 406
  article-title: Restoration of retinal images obtained through cataracts
  publication-title: IEEE Trans Med Imaging
– volume: 89
  start-page: 891
  year: 2005
  end-page: 896
  article-title: The impact of the health technology board for Scotland's grading model on referrals to ophthalmology services
  publication-title: Br J Ophthalmol
– volume: 54
  start-page: 3019
  year: 2013
  end-page: 3027
  article-title: Automatic drusen quantification and risk assessment of age‐related macular degeneration on color fundus images
  publication-title: Invest Ophthalmol Vis Sci
– volume: 22
  start-page: 1430
  year: 2012
  end-page: 1441
  article-title: Current status and guidelines for the assessment of tumour vascular support with dynamic contrast‐enhanced computed tomography
  publication-title: Eur Radiol
– year: 2002
– volume: 25
  start-page: 1804
  year: 2000
  end-page: 1806
  article-title: High‐resolution retinal images obtained by deconvolution from wave‐front sensing
  publication-title: Opt Lett
– volume: 54
  start-page: 1793
  year: 2016
  end-page: 1806
  article-title: A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs
  publication-title: Med Biol Eng Compu
– volume: 50
  start-page: 787
  year: 2009
  end-page: 792
  article-title: A model for the effect of disturbances in the optical media on the OCT image quality
  publication-title: Invest Ophthalmol Vis Sci
– volume: 54
  start-page: 013107
  year: 2015
  article-title: Retinex image enhancement via a learned dictionary
  publication-title: Opt Eng
– volume: 2016
  start-page: 5075612
  year: 2016
  article-title: Retinal fundus image enhancement using the normalized convolution and noise removing
  publication-title: Int J Biomed Imaging
– volume: 226
  start-page: 161
  year: 2011
  end-page: 181
  article-title: Digital ocular fundus imaging: a review
  publication-title: Ophthalmologica
– volume: 20
  start-page: 1479
  year: 2000
  end-page: 1491
  article-title: Image processing algorithms for digital mammography: a pictorial essay
  publication-title: Radiographics
– volume: 94
  start-page: 1606
  year: 2010
  end-page: 1610
  article-title: Automated grading for diabetic retinopathy: a large‐scale audit using arbitration by clinical experts
  publication-title: Br J Ophthalmol
– volume: 16
  start-page: 116016
  year: 2011
  article-title: Retinal image restoration by means of blind deconvolution
  publication-title: J Biomed Opt
– volume: 27
  start-page: 152
  year: 2014
  end-page: 160
  article-title: Computer‐aided diagnosis of breast DCE‐MRI images using bilateral asymmetry of contrast enhancement between two breasts
  publication-title: J Digit Imaging
– volume: 17
  start-page: 67
  year: 2007
  end-page: 72
  article-title: [Image diagnostic of the retina with fundus cameras]
  publication-title: Z Med Phys
– volume: 94
  start-page: 10
  year: 1987
  end-page: 13
  article-title: Enhancement of fundus photographs taken through cataracts
  publication-title: Ophthalmology
– volume: 3
  start-page: 169
  year: 2010
  ident: e_1_2_5_2_1
  article-title: Retinal imaging and image analysis
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_5_5_1
  doi: 10.1117/1.OE.54.1.013107
– ident: e_1_2_5_4_1
  doi: 10.1159/000329597
– ident: e_1_2_5_23_1
  doi: 10.1016/S0161-6420(87)33604-8
– ident: e_1_2_5_16_1
  doi: 10.1016/j.zemedi.2006.11.005
– volume: 47
  start-page: 4
  year: 1994
  ident: e_1_2_5_31_1
  article-title: Contrast limited adaptive histogram equalization
  publication-title: Graphics Gems
– ident: e_1_2_5_6_1
  doi: 10.1007/s11517-016-1469-x
– ident: e_1_2_5_27_1
  doi: 10.1109/ICTSS.2013.6588092
– ident: e_1_2_5_29_1
  doi: 10.1007/s10278-013-9617-4
– ident: e_1_2_5_28_1
  doi: 10.1109/TMI.2015.2506902
– ident: e_1_2_5_14_1
  doi: 10.1109/TMI.2016.2550102
– volume: 10
  start-page: e0122332
  year: 2015
  ident: e_1_2_5_30_1
  article-title: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0122332
– ident: e_1_2_5_3_1
  doi: 10.1167/iovs.10-7075
– ident: e_1_2_5_12_1
  doi: 10.1167/iovs.12-11449
– ident: e_1_2_5_22_1
  doi: 10.1109/42.41493
– ident: e_1_2_5_7_1
  doi: 10.1155/2016/5075612
– ident: e_1_2_5_17_1
  doi: 10.1364/JOSAA.14.002873
– ident: e_1_2_5_9_1
  doi: 10.1136/bjo.2009.176784
– ident: e_1_2_5_21_1
  doi: 10.1016/j.preteyeres.2005.07.001
– ident: e_1_2_5_20_1
  doi: 10.1007/s00330-012-2379-4
– ident: e_1_2_5_18_1
  doi: 10.1117/1.3652709
– ident: e_1_2_5_19_1
  doi: 10.1117/1.JBO.19.1.016023
– ident: e_1_2_5_24_1
  doi: 10.1136/bjo.2004.051334
– ident: e_1_2_5_13_1
  doi: 10.1364/OL.25.001804
– ident: e_1_2_5_15_1
  doi: 10.1167/iovs.08-2364
– ident: e_1_2_5_8_1
  doi: 10.1016/j.patrec.2006.09.007
– ident: e_1_2_5_10_1
  doi: 10.1016/j.media.2004.07.001
– volume-title: Digital image processing
  year: 2002
  ident: e_1_2_5_11_1
– ident: e_1_2_5_26_1
  doi: 10.1016/j.media.2009.05.005
– ident: e_1_2_5_25_1
  doi: 10.1148/radiographics.20.5.g00se311479
SSID ssj0061664
Score 2.2584338
Snippet Purpose Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can...
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise...
PurposeRetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e320
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Child
Child, Preschool
detection
Diabetes mellitus
Diabetic retinopathy
Diagnosis
Diagnosis, Computer-Assisted - methods
enhancement
Female
Follow-Up Studies
fundus image
Fundus Oculi
Glaucoma
Humans
Image Enhancement
Macular degeneration
Male
Middle Aged
Quality
Quality control
Retina
Retina - diagnostic imaging
Retinal Diseases - diagnosis
Retinopathy
Retrospective Studies
Visual system
Young Adult
Title Computer‐aided diagnosis based on enhancement of degraded fundus photographs
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faos.13573
https://www.ncbi.nlm.nih.gov/pubmed/29090844
https://www.proquest.com/docview/2030758579
https://www.proquest.com/docview/1958541208
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-UwFD6Ii8HNqKOj18cQxYWbStKmuSmuZBwR4V5hRuEuhNLmgcMMrUzv3bjyJ_gb_SWe0xfqKIi7Qk9Impwv50ty-gVgT7rICZHYQNnMBjI0PNCJU4grjuFfa69rne7RWJ1eyrNJPJmDw-5fmEYfot9wI2TU8zUBPMurJyDPyooubRiS0qeIFOnmH__spaOUULV0FEbHGEEUT1pVIcri6Us-j0X_EcznfLUOOCeLcNU1tckz-XMwm-YH5vaFiuMHv2UJPrdElB01nrMMc674Ap9G7VH7Coy7-x4e7u5JRtIy22Tl_a4YhT7LyoK54pq8hnYYWemZJeUJMsVoaWcVu7kup40kdrUKlyc_Lr6fBu3lC4GJtI6CoXZKCCs1YtRzz61Wxg5Jv85rabM4R64k80QK43Mfah9FLlM29BFSJsOVi77CfFEWbh0Yko5MWO5M7BQJ2CfcOlw3eWG4McLmA9jvhiE1rTI5XZDxN-1WKNg_ad0_A9jtTW8aOY7XjLa6sUxbRFZpSLMZro2GyQB2-teIJTogyQpXzrB0ggZShFwPYK3xgb6WMOEJ11JiY-uRfLv69Oj8V_2w8X7TTVhAJqabTMotmJ_-m7ltZDvT_Fvt1o99k_qE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB61RSpcgFJalhYwFYdesrITx-tIvVRAtdDuItFW2ksVJf5RK1BSkd0LJx6BZ-yTdCZ_aoFKqLdIGcuOPeP5xp58A_BOusgJkdhA2cwGMjQ80IlTaFcc3b_WXtc83ZOpGp_Kz7N4tgR73b8wDT9Ef-BGllHv12TgdCB9w8qzsqKqDaNoGR5IBBoUen342pNHKaFq8ij0jzGaUTxreYUoj6dvetsb_QUxbyPW2uUcPIGzbrBNpsm34WKeD83PP3gc7_s1T-Fxi0XZfqM8a7DkimewOmlv29dh2pV8uPr1m5gkLbNNYt5Fxcj7WVYWzBXnpDh0yMhKzyyRT5AoOky7qNjleTlvWLGr53B68PHk_Tho6y8EJtI6CkbaKSGs1GimnntutTJ2RBR2XkubxTnCJZknUhif-1D7KHKZsqGPEDUZrly0AStFWbgXwBB3ZMJyZ2KniMM-4dZh6OSF4cYImw9gt1uH1LTk5FQj43vaBSk4P2k9PwPY6UUvG0aOfwltd4uZtkZZpSFtaBgejZIBvO1foznRHUlWuHKBrRMUkCLkegCbjRL0vYQJT7iWEgdbL-Xd3af7X47rh5f_L_oGHo5PJkfp0afp4RY8QmCmm8TKbViZ_1i4Vwh-5vnrWsevASjs_qM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKiEu9EELW6B1UQ9cguzE8TrqCbVd0QfbqoC0h0pR4rG1CJSsmt1LT_wEfiO_hHFeKqWVUG-RMpYdez7PZ3vyGeCNtJEVIsFAYYaBDA0PdGIV4YpT-Nfa6Vqn-2isDk_lp0k8WYK33b8wjT5Ev-HmkVHP1x7gM3S_gTwrK39pwzB6AA-lIibhGdH3XjtKCVVrR1F4jAlF8aSVFfJpPH3R28HoDsO8TVjriDN6BD-6tjaJJuf7i3m-b379IeP4nx_zGNZaJsoOGtd5Aku2eAorR-1Z-zqMuwsfri-vvI4kMmzS8s4q5mMfsrJgtph6t_FbjKx0DL30hDelcImLis2m5bzRxK6ewenow8m7w6C9fSEwkdZRMNRWCYFSE0gddxy1Mjj0AnZOS8zinMiSzBMpjMtdqF0U2Uxh6CLiTIYrGz2H5aIs7CYwYh2ZQG5NbJVXsE84Wlo4OWG4MQLzAex1w5CaVprc35BxkXZLFOqftO6fAez2prNGj-NvRtvdWKYtJKs09NMZLY6GyQBe968JTP6EJCtsuaDSCRlIEXI9gI3GB_pawoQnXEtJja1H8t_Vpwdfj-uHF_c3fQUr396P0i8fx5-3YJVYmW6yKrdhef5zYXeI-czzl7WH3wAz4_1S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+based+on+enhancement+of+degraded+fundus+photographs&rft.jtitle=Acta+ophthalmologica+%28Oxford%2C+England%29&rft.au=Jin%2C+Kai&rft.au=Zhou%2C+Mei&rft.au=Wang%2C+Shaoze&rft.au=Lou%2C+Lixia&rft.date=2018-05-01&rft.issn=1755-3768&rft.eissn=1755-3768&rft.volume=96&rft.issue=3&rft.spage=e320&rft_id=info:doi/10.1111%2Faos.13573&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-375X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-375X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-375X&client=summon