Computer‐aided diagnosis based on enhancement of degraded fundus photographs
Purpose Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to impr...
Saved in:
Published in | Acta ophthalmologica (Oxford, England) Vol. 96; no. 3; pp. e320 - e326 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1755-375X 1755-3768 1755-3768 |
DOI | 10.1111/aos.13573 |
Cover
Abstract | Purpose
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.
Methods
A new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.
Results
The study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.
Conclusion
The relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis. |
---|---|
AbstractList | Purpose
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.
Methods
A new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.
Results
The study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.
Conclusion
The relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis. PurposeRetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.MethodsA new method is used to enhance degraded‐quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast‐limited adaptive histogram equalization. Human visual system (HVS)‐based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.ResultsThe study included 191 degraded‐quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0–1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age‐related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.ConclusionThe relatively simple method for enhancing degraded‐quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS‐based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer‐aided diagnosis. Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis. Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.PURPOSERetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images.A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.METHODSA new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement.The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.RESULTSThe study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier.The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis.CONCLUSIONThe relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis. |
Author | Ye, Juan Xu, Yufeng Jin, Kai Zhou, Mei Wang, Shaoze Lou, Lixia Qian, Dahong |
Author_xml | – sequence: 1 givenname: Kai surname: Jin fullname: Jin, Kai organization: the Second Affiliated Hospital of Zhejiang University – sequence: 2 givenname: Mei surname: Zhou fullname: Zhou, Mei organization: East China Normal University – sequence: 3 givenname: Shaoze surname: Wang fullname: Wang, Shaoze organization: Zhejiang University – sequence: 4 givenname: Lixia surname: Lou fullname: Lou, Lixia organization: the Second Affiliated Hospital of Zhejiang University – sequence: 5 givenname: Yufeng surname: Xu fullname: Xu, Yufeng organization: the Second Affiliated Hospital of Zhejiang University – sequence: 6 givenname: Juan orcidid: 0000-0003-1196-5716 surname: Ye fullname: Ye, Juan email: yejuan@zju.edu.cn organization: the Second Affiliated Hospital of Zhejiang University – sequence: 7 givenname: Dahong surname: Qian fullname: Qian, Dahong email: dahong.qian@sjtu.edu.cn organization: Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29090844$$D View this record in MEDLINE/PubMed |
BookMark | eNp90ctKxDAUBuAgiveFLyAFN7oYTZo2TZcyeANxFiq4C2lz4kTapCYtMjsfwWf0SYzOOIsBzSYXvnM45N9B69ZZQOiA4FMS15l04ZTQvKBraJsUeT6iBePry3P-tIV2QnjBmBHGsk20lZa4xDzLttHd2LXd0IP_fP-QRoFKlJHP1gUTkkqGeHc2ATuVtoYWbJ84nSh49vKb6sGqISTd1PUuPnXTsIc2tGwC7C_2XfR4efEwvh7dTq5uxue3o5pyTkcFB0aIyjglpcYaK85qVfCCUc0zJfMqzVlWlRmpdaVTrikFyVSqKSNpjRnQXXQ879t59zpA6EVrQg1NIy24IQhS5jzPSIp5pEcr9MUN3sbpRIopLiIsyqgOF2qoWlCi86aVfiZ-fyqCkzmovQvBg14SgsV3CiKmIH5SiPZsxdaml71xtvfSNP9VvJkGZn-3FueT-3nFFx60mFQ |
CitedBy_id | crossref_primary_10_1016_j_aopr_2022_100078 crossref_primary_10_1038_s41598_023_34212_w crossref_primary_10_1007_s11036_021_01888_1 crossref_primary_10_1038_s41598_020_73486_2 crossref_primary_10_1007_s11517_019_02106_7 crossref_primary_10_1136_bjo_2024_325403 crossref_primary_10_3390_sym13112089 |
Cites_doi | 10.1117/1.OE.54.1.013107 10.1159/000329597 10.1016/S0161-6420(87)33604-8 10.1016/j.zemedi.2006.11.005 10.1007/s11517-016-1469-x 10.1109/ICTSS.2013.6588092 10.1007/s10278-013-9617-4 10.1109/TMI.2015.2506902 10.1109/TMI.2016.2550102 10.1371/journal.pone.0122332 10.1167/iovs.10-7075 10.1167/iovs.12-11449 10.1109/42.41493 10.1155/2016/5075612 10.1364/JOSAA.14.002873 10.1136/bjo.2009.176784 10.1016/j.preteyeres.2005.07.001 10.1007/s00330-012-2379-4 10.1117/1.3652709 10.1117/1.JBO.19.1.016023 10.1136/bjo.2004.051334 10.1364/OL.25.001804 10.1167/iovs.08-2364 10.1016/j.patrec.2006.09.007 10.1016/j.media.2004.07.001 10.1016/j.media.2009.05.005 10.1148/radiographics.20.5.g00se311479 |
ContentType | Journal Article |
Copyright | 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd. Copyright © 2018 Acta Ophthalmologica Scandinavica Foundation |
Copyright_xml | – notice: 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd – notice: 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd. – notice: Copyright © 2018 Acta Ophthalmologica Scandinavica Foundation |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 |
DOI | 10.1111/aos.13573 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1755-3768 |
EndPage | e326 |
ExternalDocumentID | 29090844 10_1111_aos_13573 AOS13573 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Zhejiang Provincial Program for Cultivation of High‐Level Innovative Health Talents – fundername: Natural Science Foundation of China funderid: 81471748 – fundername: Zhejiang Provincial Program for Medical and Health Science Co‐sponsored by Province and Ministry funderid: 2016137996 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 23M 24P 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACMXC ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EBC EBD EBS EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S GODZA H.X HF~ HGLYW HZI HZ~ IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2W P2X P2Z P4B P4D P6G PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V9Y W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WVDHM WXI WXSBR X7M XG1 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 1OB 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 |
ID | FETCH-LOGICAL-c3883-78e611d48319f0f0d86cd78763f84da5b2564b941cfbf28f33ea6d2f3612c06e3 |
IEDL.DBID | DR2 |
ISSN | 1755-375X 1755-3768 |
IngestDate | Fri Sep 05 06:00:21 EDT 2025 Wed Aug 13 04:40:05 EDT 2025 Wed Feb 19 02:43:39 EST 2025 Tue Jul 01 01:55:17 EDT 2025 Thu Apr 24 23:10:47 EDT 2025 Wed Jan 22 17:05:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | detection enhancement retina fundus image |
Language | English |
License | 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3883-78e611d48319f0f0d86cd78763f84da5b2564b941cfbf28f33ea6d2f3612c06e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1196-5716 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/aos.13573 |
PMID | 29090844 |
PQID | 2030758579 |
PQPubID | 1036384 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1958541208 proquest_journals_2030758579 pubmed_primary_29090844 crossref_primary_10_1111_aos_13573 crossref_citationtrail_10_1111_aos_13573 wiley_primary_10_1111_aos_13573_AOS13573 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2018 2018-05-00 2018-May 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Malden |
PublicationTitle | Acta ophthalmologica (Oxford, England) |
PublicationTitleAlternate | Acta Ophthalmol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2007; 17 2000; 25 1987; 94 2015; 54 1989; 8 2000; 20 2015; 10 2016; 54 2014; 27 2011; 52 1994; 47 2016; 2016 2002 2011; 16 2016; 35 2005; 89 2011; 226 2007; 28 2009; 13 2013; 54 2009; 50 2005; 9 1997; 14 2006; 25 2014; 19 2013 2010; 3 2012; 22 2010; 94 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Zuiderveld K (e_1_2_5_31_1) 1994; 47 e_1_2_5_29_1 Abramoff MD (e_1_2_5_2_1) 2010; 3 Zhao Y (e_1_2_5_30_1) 2015; 10 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_18_1 Gonzalez RC (e_1_2_5_11_1) 2002 |
References_xml | – volume: 35 start-page: 1046 year: 2016 end-page: 1055 article-title: Human visual system‐based fundus image quality assessment of portable fundus camera photographs publication-title: IEEE Trans Med Imaging – start-page: 215 year: 2013 end-page: 217 – volume: 47 start-page: 4 year: 1994 end-page: 485 article-title: Contrast limited adaptive histogram equalization publication-title: Graphics Gems – volume: 28 start-page: 516 year: 2007 end-page: 522 article-title: Enhancing retinal image by the Contourlet transform publication-title: Pattern Recogn Lett – volume: 14 start-page: 2873 year: 1997 end-page: 2883 article-title: Aberrations and retinal image quality of the normal human eye publication-title: J Opt Soc Am A Opt Image Sci Vis – volume: 10 start-page: e0122332 year: 2015 article-title: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase publication-title: PLoS ONE – volume: 19 start-page: 16023 year: 2014 article-title: Restoration of retinal images with space‐variant blur publication-title: J Biomed Opt – volume: 52 start-page: 5862 year: 2011 end-page: 5871 article-title: Automatic detection of diabetic retinopathy and age‐related macular degeneration in digital fundus images publication-title: Invest Ophthalmol Vis Sci – volume: 9 start-page: 179 year: 2005 end-page: 190 article-title: Luminosity and contrast normalization in retinal images publication-title: Med Image Anal – volume: 3 start-page: 169 year: 2010 end-page: 208 article-title: Retinal imaging and image analysis publication-title: IEEE Trans Med Imaging – volume: 25 start-page: 99 year: 2006 end-page: 127 article-title: Retinal image analysis: concepts, applications and potential publication-title: Prog Retin Eye Res – volume: 35 start-page: 2107 year: 2016 end-page: 2118 article-title: Enhancement of vascular structures in 3D and 2D angiographic images publication-title: IEEE Trans Med Imaging – volume: 13 start-page: 650 year: 2009 end-page: 658 article-title: Retinal image analysis based on mixture models to detect hard exudates publication-title: Med Image Anal – volume: 8 start-page: 401 year: 1989 end-page: 406 article-title: Restoration of retinal images obtained through cataracts publication-title: IEEE Trans Med Imaging – volume: 89 start-page: 891 year: 2005 end-page: 896 article-title: The impact of the health technology board for Scotland's grading model on referrals to ophthalmology services publication-title: Br J Ophthalmol – volume: 54 start-page: 3019 year: 2013 end-page: 3027 article-title: Automatic drusen quantification and risk assessment of age‐related macular degeneration on color fundus images publication-title: Invest Ophthalmol Vis Sci – volume: 22 start-page: 1430 year: 2012 end-page: 1441 article-title: Current status and guidelines for the assessment of tumour vascular support with dynamic contrast‐enhanced computed tomography publication-title: Eur Radiol – year: 2002 – volume: 25 start-page: 1804 year: 2000 end-page: 1806 article-title: High‐resolution retinal images obtained by deconvolution from wave‐front sensing publication-title: Opt Lett – volume: 54 start-page: 1793 year: 2016 end-page: 1806 article-title: A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs publication-title: Med Biol Eng Compu – volume: 50 start-page: 787 year: 2009 end-page: 792 article-title: A model for the effect of disturbances in the optical media on the OCT image quality publication-title: Invest Ophthalmol Vis Sci – volume: 54 start-page: 013107 year: 2015 article-title: Retinex image enhancement via a learned dictionary publication-title: Opt Eng – volume: 2016 start-page: 5075612 year: 2016 article-title: Retinal fundus image enhancement using the normalized convolution and noise removing publication-title: Int J Biomed Imaging – volume: 226 start-page: 161 year: 2011 end-page: 181 article-title: Digital ocular fundus imaging: a review publication-title: Ophthalmologica – volume: 20 start-page: 1479 year: 2000 end-page: 1491 article-title: Image processing algorithms for digital mammography: a pictorial essay publication-title: Radiographics – volume: 94 start-page: 1606 year: 2010 end-page: 1610 article-title: Automated grading for diabetic retinopathy: a large‐scale audit using arbitration by clinical experts publication-title: Br J Ophthalmol – volume: 16 start-page: 116016 year: 2011 article-title: Retinal image restoration by means of blind deconvolution publication-title: J Biomed Opt – volume: 27 start-page: 152 year: 2014 end-page: 160 article-title: Computer‐aided diagnosis of breast DCE‐MRI images using bilateral asymmetry of contrast enhancement between two breasts publication-title: J Digit Imaging – volume: 17 start-page: 67 year: 2007 end-page: 72 article-title: [Image diagnostic of the retina with fundus cameras] publication-title: Z Med Phys – volume: 94 start-page: 10 year: 1987 end-page: 13 article-title: Enhancement of fundus photographs taken through cataracts publication-title: Ophthalmology – volume: 3 start-page: 169 year: 2010 ident: e_1_2_5_2_1 article-title: Retinal imaging and image analysis publication-title: IEEE Trans Med Imaging – ident: e_1_2_5_5_1 doi: 10.1117/1.OE.54.1.013107 – ident: e_1_2_5_4_1 doi: 10.1159/000329597 – ident: e_1_2_5_23_1 doi: 10.1016/S0161-6420(87)33604-8 – ident: e_1_2_5_16_1 doi: 10.1016/j.zemedi.2006.11.005 – volume: 47 start-page: 4 year: 1994 ident: e_1_2_5_31_1 article-title: Contrast limited adaptive histogram equalization publication-title: Graphics Gems – ident: e_1_2_5_6_1 doi: 10.1007/s11517-016-1469-x – ident: e_1_2_5_27_1 doi: 10.1109/ICTSS.2013.6588092 – ident: e_1_2_5_29_1 doi: 10.1007/s10278-013-9617-4 – ident: e_1_2_5_28_1 doi: 10.1109/TMI.2015.2506902 – ident: e_1_2_5_14_1 doi: 10.1109/TMI.2016.2550102 – volume: 10 start-page: e0122332 year: 2015 ident: e_1_2_5_30_1 article-title: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase publication-title: PLoS ONE doi: 10.1371/journal.pone.0122332 – ident: e_1_2_5_3_1 doi: 10.1167/iovs.10-7075 – ident: e_1_2_5_12_1 doi: 10.1167/iovs.12-11449 – ident: e_1_2_5_22_1 doi: 10.1109/42.41493 – ident: e_1_2_5_7_1 doi: 10.1155/2016/5075612 – ident: e_1_2_5_17_1 doi: 10.1364/JOSAA.14.002873 – ident: e_1_2_5_9_1 doi: 10.1136/bjo.2009.176784 – ident: e_1_2_5_21_1 doi: 10.1016/j.preteyeres.2005.07.001 – ident: e_1_2_5_20_1 doi: 10.1007/s00330-012-2379-4 – ident: e_1_2_5_18_1 doi: 10.1117/1.3652709 – ident: e_1_2_5_19_1 doi: 10.1117/1.JBO.19.1.016023 – ident: e_1_2_5_24_1 doi: 10.1136/bjo.2004.051334 – ident: e_1_2_5_13_1 doi: 10.1364/OL.25.001804 – ident: e_1_2_5_15_1 doi: 10.1167/iovs.08-2364 – ident: e_1_2_5_8_1 doi: 10.1016/j.patrec.2006.09.007 – ident: e_1_2_5_10_1 doi: 10.1016/j.media.2004.07.001 – volume-title: Digital image processing year: 2002 ident: e_1_2_5_11_1 – ident: e_1_2_5_26_1 doi: 10.1016/j.media.2009.05.005 – ident: e_1_2_5_25_1 doi: 10.1148/radiographics.20.5.g00se311479 |
SSID | ssj0061664 |
Score | 2.2584338 |
Snippet | Purpose
Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can... Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise... PurposeRetinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e320 |
SubjectTerms | Adolescent Adult Aged Aged, 80 and over Algorithms Child Child, Preschool detection Diabetes mellitus Diabetic retinopathy Diagnosis Diagnosis, Computer-Assisted - methods enhancement Female Follow-Up Studies fundus image Fundus Oculi Glaucoma Humans Image Enhancement Macular degeneration Male Middle Aged Quality Quality control Retina Retina - diagnostic imaging Retinal Diseases - diagnosis Retinopathy Retrospective Studies Visual system Young Adult |
Title | Computer‐aided diagnosis based on enhancement of degraded fundus photographs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faos.13573 https://www.ncbi.nlm.nih.gov/pubmed/29090844 https://www.proquest.com/docview/2030758579 https://www.proquest.com/docview/1958541208 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-UwFD6Ii8HNqKOj18cQxYWbStKmuSmuZBwR4V5hRuEuhNLmgcMMrUzv3bjyJ_gb_SWe0xfqKIi7Qk9Impwv50ty-gVgT7rICZHYQNnMBjI0PNCJU4grjuFfa69rne7RWJ1eyrNJPJmDw-5fmEYfot9wI2TU8zUBPMurJyDPyooubRiS0qeIFOnmH__spaOUULV0FEbHGEEUT1pVIcri6Us-j0X_EcznfLUOOCeLcNU1tckz-XMwm-YH5vaFiuMHv2UJPrdElB01nrMMc674Ap9G7VH7Coy7-x4e7u5JRtIy22Tl_a4YhT7LyoK54pq8hnYYWemZJeUJMsVoaWcVu7kup40kdrUKlyc_Lr6fBu3lC4GJtI6CoXZKCCs1YtRzz61Wxg5Jv85rabM4R64k80QK43Mfah9FLlM29BFSJsOVi77CfFEWbh0Yko5MWO5M7BQJ2CfcOlw3eWG4McLmA9jvhiE1rTI5XZDxN-1WKNg_ad0_A9jtTW8aOY7XjLa6sUxbRFZpSLMZro2GyQB2-teIJTogyQpXzrB0ggZShFwPYK3xgb6WMOEJ11JiY-uRfLv69Oj8V_2w8X7TTVhAJqabTMotmJ_-m7ltZDvT_Fvt1o99k_qE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB61RSpcgFJalhYwFYdesrITx-tIvVRAtdDuItFW2ksVJf5RK1BSkd0LJx6BZ-yTdCZ_aoFKqLdIGcuOPeP5xp58A_BOusgJkdhA2cwGMjQ80IlTaFcc3b_WXtc83ZOpGp_Kz7N4tgR73b8wDT9Ef-BGllHv12TgdCB9w8qzsqKqDaNoGR5IBBoUen342pNHKaFq8ij0jzGaUTxreYUoj6dvetsb_QUxbyPW2uUcPIGzbrBNpsm34WKeD83PP3gc7_s1T-Fxi0XZfqM8a7DkimewOmlv29dh2pV8uPr1m5gkLbNNYt5Fxcj7WVYWzBXnpDh0yMhKzyyRT5AoOky7qNjleTlvWLGr53B68PHk_Tho6y8EJtI6CkbaKSGs1GimnntutTJ2RBR2XkubxTnCJZknUhif-1D7KHKZsqGPEDUZrly0AStFWbgXwBB3ZMJyZ2KniMM-4dZh6OSF4cYImw9gt1uH1LTk5FQj43vaBSk4P2k9PwPY6UUvG0aOfwltd4uZtkZZpSFtaBgejZIBvO1foznRHUlWuHKBrRMUkCLkegCbjRL0vYQJT7iWEgdbL-Xd3af7X47rh5f_L_oGHo5PJkfp0afp4RY8QmCmm8TKbViZ_1i4Vwh-5vnrWsevASjs_qM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKiEu9EELW6B1UQ9cguzE8TrqCbVd0QfbqoC0h0pR4rG1CJSsmt1LT_wEfiO_hHFeKqWVUG-RMpYdez7PZ3vyGeCNtJEVIsFAYYaBDA0PdGIV4YpT-Nfa6Vqn-2isDk_lp0k8WYK33b8wjT5Ev-HmkVHP1x7gM3S_gTwrK39pwzB6AA-lIibhGdH3XjtKCVVrR1F4jAlF8aSVFfJpPH3R28HoDsO8TVjriDN6BD-6tjaJJuf7i3m-b379IeP4nx_zGNZaJsoOGtd5Aku2eAorR-1Z-zqMuwsfri-vvI4kMmzS8s4q5mMfsrJgtph6t_FbjKx0DL30hDelcImLis2m5bzRxK6ewenow8m7w6C9fSEwkdZRMNRWCYFSE0gddxy1Mjj0AnZOS8zinMiSzBMpjMtdqF0U2Uxh6CLiTIYrGz2H5aIs7CYwYh2ZQG5NbJVXsE84Wlo4OWG4MQLzAex1w5CaVprc35BxkXZLFOqftO6fAez2prNGj-NvRtvdWKYtJKs09NMZLY6GyQBe968JTP6EJCtsuaDSCRlIEXI9gI3GB_pawoQnXEtJja1H8t_Vpwdfj-uHF_c3fQUr396P0i8fx5-3YJVYmW6yKrdhef5zYXeI-czzl7WH3wAz4_1S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+based+on+enhancement+of+degraded+fundus+photographs&rft.jtitle=Acta+ophthalmologica+%28Oxford%2C+England%29&rft.au=Jin%2C+Kai&rft.au=Zhou%2C+Mei&rft.au=Wang%2C+Shaoze&rft.au=Lou%2C+Lixia&rft.date=2018-05-01&rft.issn=1755-3768&rft.eissn=1755-3768&rft.volume=96&rft.issue=3&rft.spage=e320&rft_id=info:doi/10.1111%2Faos.13573&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-375X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-375X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-375X&client=summon |