Single‐stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production

A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of cent...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology progress Vol. 39; no. 2; pp. e3323 - n/a
Main Authors O'Mara, Brian, Singh, Naveen Kumar, Menendez, Alicia, Tipton, Barbara, Vail, Andrew, Voloshin, Alexei, Buechler, Ying, Anderson, Sean M.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process‐related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2‐micron membrane filter, clarify the HCCF based on size‐exclusion, adsorptive, and charge‐based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single‐stage CCD, is identified as an alternative strategy to a three‐stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single‐stage clarification process was compared to a three‐stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%–30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single‐stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.
AbstractList A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process‐related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2‐micron membrane filter, clarify the HCCF based on size‐exclusion, adsorptive, and charge‐based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single‐stage CCD, is identified as an alternative strategy to a three‐stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single‐stage clarification process was compared to a three‐stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%–30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single‐stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.
Abstract A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster Ovary (CHO) harvest cell culture fluid (HCCF). Clarification of a CHO HCCF is a complex and costly process, involving multiple stages of centrifugation and/or depth filtration to remove cells and debris and to reduce process‐related impurities such as host cell protein (HCP), nucleic acids, and lipids. When using depth filtration, the filter train consists of multiple filters of varying ratios, layers, pore sizes, and adsorptive properties. The depth filters, in combination with a 0.2‐micron membrane filter, clarify the HCCF based on size‐exclusion, adsorptive, and charge‐based mechanisms, and provide robust bioburden control. Each stage of the clarification process requires time, labor, and utilities, with product loss at each step. Here, use of the 3M™ Harvest RC Chromatographic Clarifier, a single‐stage CCD, is identified as an alternative strategy to a three‐stage filtration train. The CCD results in less overall filter area, less volume for flushing, and higher yield. Using bioprocess cost modeling, the single‐stage clarification process was compared to a three‐stage filtration process. By compressing the CHO HCCF clarification to a single chromatographic stage, the overall cost of the clarification process was reduced by 17%–30%, depending on bioreactor scale. The main drivers for the cost reduction were reduced total filtration area, labor, time, and utilities. The benefits of the single‐stage harvest process extended throughout the downstream process, resulting in a 25% relative increase in cumulative yield with comparable impurity clearance.
Author Singh, Naveen Kumar
Menendez, Alicia
Anderson, Sean M.
Buechler, Ying
Voloshin, Alexei
Vail, Andrew
O'Mara, Brian
Tipton, Barbara
Author_xml – sequence: 1
  givenname: Brian
  orcidid: 0000-0002-2145-5659
  surname: O'Mara
  fullname: O'Mara, Brian
  email: brianomara6@gmail.com
  organization: Ambrx, Inc
– sequence: 2
  givenname: Naveen Kumar
  orcidid: 0000-0002-9440-9266
  surname: Singh
  fullname: Singh, Naveen Kumar
  organization: Ambrx, Inc
– sequence: 3
  givenname: Alicia
  surname: Menendez
  fullname: Menendez, Alicia
  organization: Ambrx, Inc
– sequence: 4
  givenname: Barbara
  surname: Tipton
  fullname: Tipton, Barbara
  organization: Ambrx, Inc
– sequence: 5
  givenname: Andrew
  surname: Vail
  fullname: Vail, Andrew
  organization: 3M
– sequence: 6
  givenname: Alexei
  surname: Voloshin
  fullname: Voloshin, Alexei
  organization: 3M
– sequence: 7
  givenname: Ying
  surname: Buechler
  fullname: Buechler, Ying
  organization: Ambrx, Inc
– sequence: 8
  givenname: Sean M.
  orcidid: 0000-0002-0365-2552
  surname: Anderson
  fullname: Anderson, Sean M.
  email: sanderson11@mmm.com
  organization: 3M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36598038$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9O3DAQxi1EBcufAy9QWeJCD4GxnXidI6zagoQE4s_ZmjjOrlESb-0ExK2P0Gfsk9RhKYdKPY1G8_M3n-fbI9u97y0hRwxOGQA_q4Z1OBWCiy0yYwWHTIIQ22Sm5oXM5qVQu2QvxicAUCD5DtkVsigVCDUj473rl639_fNXHHBpqVkF3-HglwHXK2eoaTG4xhkcnO-pb-hi5XobLb3ELg420JtnDK_U2LalKwzPNg402Ho0NlLjU5OerIMfrOunmgaT0AH51GAb7eF73SeP374-LC6z65vvV4vz68wIpURWqNzwmmGe11AqabgCJhGFnJsGygIUa7CuWFU3DecVggSGDIs6fVQAV0bsk5ONblr9Y0zedOfi5BV768eo-VyC4pAXZUKP_0Gf_Bj65E5Pa_OSS1Uk6suGMsHHGGyj18F16QKagZ6y0FMWesoisZ_fFceqs_UH-ff4CTjbAC-uta__V9IXD7d3b5J_ABEwl4Y
CitedBy_id crossref_primary_10_1002_bit_28584
crossref_primary_10_1016_j_seppur_2024_126579
Cites_doi 10.1002/bit.24848
10.1002/(SICI)1097-0290(20000705)69:1<74::AID-BIT9>3.0.CO;2-K
10.1016/j.tibtech.2012.10.004
10.1021/bp050274w
10.1002/bit.26964
10.1023/A:1008142709419
10.1002/btpr.2882
10.1089/gen.32.7.17
10.1016/j.chroma.2019.02.056
10.1002/(SICI)1097-0290(20000205)67:3<265::AID-BIT2>3.0.CO;2-J
10.1002/bit.260440609
10.1002/biot.200800117
10.1002/9783527800599.ch14
10.1046/j.1423-0410.2003.00312.x
10.1002/bit.260460206
10.1128/aem.50.6.1375-1377.1985
10.1021/bp070414x
ContentType Journal Article
Copyright 2023 3M Company. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
2023 3M Company. Biotechnology Progress published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 3M Company. published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
– notice: 2023 3M Company. Biotechnology Progress published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
DOI 10.1002/btpr.3323
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
Wiley Online Library
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Biotechnology Research Abstracts
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage n/a
ExternalDocumentID 10_1002_btpr_3323
36598038
BTPR3323
Genre article
Journal Article
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
24P
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
ID FETCH-LOGICAL-c3883-584c2d1a44d0986c28016aa367cf095081fadb1bdff22ba0601a1a5d0003028c3
IEDL.DBID 24P
ISSN 8756-7938
IngestDate Sat Aug 17 02:52:09 EDT 2024
Fri Sep 13 03:07:22 EDT 2024
Fri Aug 23 02:58:27 EDT 2024
Sat Sep 28 08:15:48 EDT 2024
Sat Aug 24 00:59:40 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fiber chromatography
host cell protein
depth filtration
process economics
yield
Language English
License Attribution-NonCommercial-NoDerivs
2023 3M Company. Biotechnology Progress published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3883-584c2d1a44d0986c28016aa367cf095081fadb1bdff22ba0601a1a5d0003028c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2145-5659
0000-0002-9440-9266
0000-0002-0365-2552
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.3323
PMID 36598038
PQID 2801492685
PQPubID 2034897
PageCount 10
ParticipantIDs proquest_miscellaneous_2760820459
proquest_journals_2801492685
crossref_primary_10_1002_btpr_3323
pubmed_primary_36598038
wiley_primary_10_1002_btpr_3323_BTPR3323
PublicationCentury 2000
PublicationDate March/April 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March/April 2023
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Prog
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2002; 15
2000; 69
2000; 67
2006; 22
1995; 46
2019; 35
2013; 31
2009
1994; 44
2019; 116
2017
2008; 24
2003; 27
2006; 4
2005; 3
2008; 3
2013; 110
1985; 50
1999; 8
2019; 1595
2003; 85
2012; 32
Kelley B (e_1_2_9_13_1) 2009
e_1_2_9_20_1
Whitford WG (e_1_2_9_5_1) 2006; 4
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_4_1
Yavorsky D (e_1_2_9_18_1) 2003; 27
e_1_2_9_3_1
e_1_2_9_2_1
Lander R (e_1_2_9_6_1) 2005; 3
Tipton B (e_1_2_9_16_1) 2002; 15
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_19_1
Kelley B (e_1_2_9_8_1) 2009
References_xml – volume: 15
  start-page: 43
  issue: 9
  year: 2002
  end-page: 50
  article-title: Retrovirus and parvovirus clearance from an affinity column product using adsorptive depth filtration
  publication-title: Biopharm
– volume: 24
  start-page: 488
  issue: 3
  year: 2008
  end-page: 495
  article-title: Advances in primary recovery: centrifugation and membrane technology
  publication-title: Biotechnol Prog
– volume: 1595
  start-page: 28
  year: 2019
  end-page: 38
  article-title: Identification and tracking of problematic host cell proteins removed by a synthetic, highly functionalized nonwoven media in downstream bioprocessing of monoclonal antibodies
  publication-title: J Chromatogr A
– volume: 35
  issue: 6
  year: 2019
  article-title: Enhancing protein a performance in mAb processing: a method to reduce and rapidly evaluate host cell DNA levels during primary clarification
  publication-title: Biotechnol Prog
– volume: 8
  start-page: 281
  issue: 6
  year: 1999
  end-page: 291
  article-title: Characterisation of a generic monoclonal antibody harvesting system for adsorption of DNA by depth filters and various membranes
  publication-title: Bioseparation
– volume: 46
  start-page: 132
  issue: 2
  year: 1995
  end-page: 138
  article-title: Assessment of a disc stack centrifuge for use in mammalian cell separation
  publication-title: Biotechnol Bioeng
– start-page: 1
  year: 2009
  end-page: 23
– volume: 116
  start-page: 1669
  issue: 7
  year: 2019
  end-page: 1683
  article-title: Impact of depth filtration on disulfide bond reduction during downstream processing of monoclonal antibodies from CHO cell cultures
  publication-title: Biotechnol Bioeng
– volume: 4
  start-page: 30
  issue: 4
  year: 2006
  end-page: 40
  article-title: Fed‐batch mammalian cell culture in bioproduction
  publication-title: Bio Proc Int
– volume: 85
  start-page: 20
  issue: 1
  year: 2003
  end-page: 24
  article-title: Evaluation of depth filtration to remove prion challenge from an immune globulin preparation
  publication-title: Vox Sang
– volume: 3
  start-page: 1185
  issue: 9–10
  year: 2008
  end-page: 1200
  article-title: Implementation of advanced technologies in commercial monoclonal antibody production
  publication-title: Biotechnol J
– volume: 50
  start-page: 1375
  issue: 6
  year: 1985
  end-page: 1377
  article-title: Endotoxin removal by charge‐modified filters
  publication-title: Appl Environ Microbiol
– volume: 44
  start-page: 727
  issue: 6
  year: 1994
  end-page: 735
  article-title: Characterization of a recombinant antibody produced in the course of a high yield fed‐batch process
  publication-title: Biotechnol Bioeng
– start-page: 417
  year: 2017
  end-page: 468
  article-title: Advanced bioprocess engineering: fed‐batch and perfusion processes
  publication-title: Appl Bioeng
– volume: 69
  start-page: 74
  issue: 1
  year: 2000
  end-page: 82
  article-title: Achievement of high cell density and high antibody productivity by a controlled‐fed perfusion bioreactor process
  publication-title: Biotechnol Bioeng
– volume: 3
  start-page: 32
  year: 2005
  end-page: 40
  article-title: Efficient, scalable clarification of diverse bioprocess streams
  publication-title: Bioproc Int
– volume: 31
  start-page: 147
  issue: 3
  year: 2013
  end-page: 154
  article-title: Single‐use disposable technologies for biopharmaceutical manufacturing
  publication-title: Trends Biotechnol
– volume: 22
  start-page: 288
  issue: 1
  year: 2006
  end-page: 296
  article-title: Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification
  publication-title: Biotechnol Prog
– start-page: 443
  year: 2009
  end-page: 452
– volume: 110
  start-page: 1964
  issue: 7
  year: 2013
  end-page: 1972
  article-title: Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters
  publication-title: Biotechnol Bioeng
– volume: 67
  start-page: 265
  issue: 3
  year: 2000
  end-page: 273
  article-title: The use of laboratory centrifugation studies to predict performance of industrial machines: studies of shear‐insensitive and shear‐sensitive materials
  publication-title: Biotechnol Bioeng
– volume: 27
  start-page: 62
  issue: 3
  year: 2003
  end-page: 77
  article-title: The clarification of bioreactor cell cultures for biopharmaceuticals
  publication-title: Pharmaceut Technol
– volume: 32
  start-page: 42
  issue: 7
  year: 2012
  end-page: 43
  article-title: Single‐use depth‐filtration system
  publication-title: Gene Eng Biotechnol News
– ident: e_1_2_9_21_1
  doi: 10.1002/bit.24848
– ident: e_1_2_9_2_1
  doi: 10.1002/(SICI)1097-0290(20000705)69:1<74::AID-BIT9>3.0.CO;2-K
– ident: e_1_2_9_20_1
  doi: 10.1016/j.tibtech.2012.10.004
– ident: e_1_2_9_10_1
  doi: 10.1021/bp050274w
– ident: e_1_2_9_22_1
  doi: 10.1002/bit.26964
– ident: e_1_2_9_11_1
  doi: 10.1023/A:1008142709419
– start-page: 443
  volume-title: Industrialization of mAb Production Technology: the Bioprocessing Industry at a Crossroads
  year: 2009
  ident: e_1_2_9_8_1
  contributor:
    fullname: Kelley B
– start-page: 1
  volume-title: Downstream Processing of Monoclonal Antibodies: Current Practices and Future Opportunities. 9
  year: 2009
  ident: e_1_2_9_13_1
  contributor:
    fullname: Kelley B
– ident: e_1_2_9_23_1
  doi: 10.1002/btpr.2882
– volume: 4
  start-page: 30
  issue: 4
  year: 2006
  ident: e_1_2_9_5_1
  article-title: Fed‐batch mammalian cell culture in bioproduction
  publication-title: Bio Proc Int
  contributor:
    fullname: Whitford WG
– ident: e_1_2_9_19_1
  doi: 10.1089/gen.32.7.17
– ident: e_1_2_9_24_1
  doi: 10.1016/j.chroma.2019.02.056
– ident: e_1_2_9_9_1
  doi: 10.1002/(SICI)1097-0290(20000205)67:3<265::AID-BIT2>3.0.CO;2-J
– ident: e_1_2_9_4_1
  doi: 10.1002/bit.260440609
– ident: e_1_2_9_15_1
  doi: 10.1002/biot.200800117
– ident: e_1_2_9_3_1
  doi: 10.1002/9783527800599.ch14
– ident: e_1_2_9_12_1
  doi: 10.1046/j.1423-0410.2003.00312.x
– volume: 3
  start-page: 32
  year: 2005
  ident: e_1_2_9_6_1
  article-title: Efficient, scalable clarification of diverse bioprocess streams
  publication-title: Bioproc Int
  contributor:
    fullname: Lander R
– volume: 27
  start-page: 62
  issue: 3
  year: 2003
  ident: e_1_2_9_18_1
  article-title: The clarification of bioreactor cell cultures for biopharmaceuticals
  publication-title: Pharmaceut Technol
  contributor:
    fullname: Yavorsky D
– ident: e_1_2_9_7_1
  doi: 10.1002/bit.260460206
– ident: e_1_2_9_14_1
  doi: 10.1128/aem.50.6.1375-1377.1985
– ident: e_1_2_9_17_1
  doi: 10.1021/bp070414x
– volume: 15
  start-page: 43
  issue: 9
  year: 2002
  ident: e_1_2_9_16_1
  article-title: Retrovirus and parvovirus clearance from an affinity column product using adsorptive depth filtration
  publication-title: Biopharm
  contributor:
    fullname: Tipton B
SSID ssj0008062
Score 2.4465399
Snippet A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster...
A single-stage clarification was developed using a single-use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese Hamster...
Abstract A single‐stage clarification was developed using a single‐use chromatographic clarification device (CCD) to recover a recombinant protein from Chinese...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e3323
SubjectTerms Adsorptivity
Animals
Bioreactors
Cell culture
Centrifugation
Charge coupled devices
CHO Cells
Chromatography
Cricetinae
Cricetulus
depth filtration
fiber chromatography
Filters
Filtration
Filtration - methods
Fluid filters
host cell protein
Impurities
Labor
Lipids
Membrane filters
Nucleic acids
Ovaries
process economics
Proteins
Recombinant Proteins - genetics
Robust control
Utilities
yield
Title Single‐stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.3323
https://www.ncbi.nlm.nih.gov/pubmed/36598038
https://www.proquest.com/docview/2801492685/abstract/
https://search.proquest.com/docview/2760820459
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LToQwFL0ZdaML41t0NNW4cINCC0yJK5-ZmPiIj8QdKW1REwXDzLj2E_xGv8R7YQY1xsQNhdBScu5te9q05wJsSe1b7tvURWot3CCMtZsqpVzjKxF5mZ-pDp0dPjuPurfB6V1414K90VmYWh-iWXCjllH119TAVdrb_RINTfsv5Y4QXIzBBNIaSS7Ng8umG5ZeFU0U-XjkohPKkayQx3eboj8Ho18M8ydhrUackxmYHlJFtl_bdhZaNp-DqW8CgvMwuMbkyX68vSPJu7dMP5QFUtBahvpRM43zVtoLVMHPioxRuGzbs6yrnkkhgV28IgCMVu_ZgypJcoOVJOZqe0wX-IBFKiWHx5xSU0vNLsDtyfHNYdcdBlJwtZBSuEgyNEf0g8B4sYw0x2EpUmiMjs48CgOLJjGpn5os4zxVJNGifBWaasLEpRaLMJ4XuV0G5uN3hI6VCXVMXCa23FNhbPzQdDwjYwc2R4gmL7VeRlIrI_OEYE8IdgfaI6yTYZPpJfRTpF4oQwc2mtfo7ISBym0xwDydiCgLupQDS7WNmlpEFMbSE9KB7cpof1efHNxcXtHNyv-zrsIkBZqvd5-1YbxfDuwa0pF-ul65HV6Prvgn1g_ezQ
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEMdHpRyAA-XdtKWYigOXbBN7nXUkLoCoFugDla3UC4oc22mrlqTK7vbAiY_AZ-STMGNvtrQICXFKojzseGbivxPnNwAvlEkdT10Zo7QWcV_mJi611rFNtciSKq30gP4d3tnNhgf9D4fycAFedf_CBD7E_IUbRYZ_XlOA0wvpzUtqaDk5b3tCcHEDbmK4Sz-g2r-ER6nEpxNFQZ7F6IWq4wolfHN-6tXe6A-JeVWx-i5nawm-dJUNM01Oe9NJ2TPfrnEc__du7sHdmRZlr4Pz3IcFVz-AO78RCh_C9DMuztzP7z9QRR45Zo7bBjVu4FyfGGZwYEyTjbx9WVMxysftxo4N9VdCMLC9C6wTo88D7Fi3xPRgLdFi3ZiZBjfwFI-KOKlpaQPL9hEcbL0bvR3Gs0wNsRFKiRhVjOFo3n7fJrnKDMd-L9No7YGpEsoziza3ZVraquK81MSA0amW1o_IuDLiMSzWTe2WgaV4HWFybaXJSSzljida5jaVdpBYlUew0VmsOA9AjiKgl3lBbVhQG0aw1tmymMXkuKBKER5RyQiez3djNFEb6No1UzxmkJEmQp-N4EnwgXkpIpO5SoSK4KW35N-LL96MPu3Tysq_H_oMbg1HO9vF9vvdj6twm7Lah6lua7A4aafuKWqfSbnuXfwXt9sCVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NTtwwEMdHlEqoPUBLvwK0NaiHXrIkdpJ11FOBrrblUxQkDkiRYzsFFZJVdpcDJx6BZ-yTdCbeLKVVpaonJ4qdOJ5x_E9i_wbgndSh5aHNfZTWwo_iVPu5Uso3oRJJUISF6tLa4d29pH8cfTmJT2bgQ7sWxvEhph_cqGc0z2vq4ANTrN9BQ_PRoO4IwcUDeBglgpNLbx3esaNk0EQTRT2e-OiEssUKBXx9WvT-YPSHwrwvWJsRp7cAp21d3UST753xKO_o698wjv95M09gfqJE2UfnOk9hxpaL8PgXPuEzGH_F5ML-uLlFDfnNMn1WV6hwHeX6XDONr8U01aixLqsKRtG47dCyvrokAAPbv8IqMfo5wM5UTUQPVhMr1g6ZrnAHizSgiPOSUuNIts_huPfpaLPvT-I0-FpIKXzUMJqjcaPIBKlMNMdRL1Fo664uAooyixY3eZibouA8V0SAUaGKTfM-xqUWL2C2rEr7CliI5xE6VSbWKUml1PJAxakJY9MNjEw9WGsNlg0cjiNz4GWeURtm1IYerLSmzCY9cphRpQiOKGMPVqeHsS9RG6jSVmPM001IEaHHevDSucD0KiKJUxkI6cH7xpB_v3y2cXRwSBtL_571LcwdbPWync9728vwiELau3luKzA7qsf2NQqfUf6mcfCfvbwBAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90stage+chromatographic+clarification+of+Chinese+Hamster+Ovary+cell+harvest+reduces+cost+of+protein+production&rft.jtitle=Biotechnology+progress&rft.au=O%27Mara%2C+Brian&rft.au=Singh%2C+Naveen+Kumar&rft.au=Menendez%2C+Alicia&rft.au=Tipton%2C+Barbara&rft.date=2023-03-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=39&rft.issue=2&rft_id=info:doi/10.1002%2Fbtpr.3323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_btpr_3323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon