The triangular space of abiotic stress tolerance in woody species: a unified trade‐off model

Summary Tolerance of abiotic stress in woody plants is known to be constrained by biological trade‐offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations. U...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 229; no. 3; pp. 1354 - 1362
Main Authors Puglielli, Giacomo, Hutchings, Michael J., Laanisto, Lauri
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary Tolerance of abiotic stress in woody plants is known to be constrained by biological trade‐offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations. Using the most extensive database available on shade, drought, waterlogging and cold tolerance for 799 northern hemisphere woody species, we determined the number of dimensions needed to summarise their tolerance combinations, and the best trade‐off model among those currently available, for description of the interdependence between tolerances. Two principal component analysis (PCA) dimensions summarised stress tolerance combinations. They defined a triangular stress tolerance space (STS). The first STS dimension reflected segregation between drought‐tolerant and waterlogging‐tolerant species. The second reflected shade tolerance, which is independent of the other tolerances. Cold tolerance scaled weakly with both dimensions. Tolerance combinations across the species in the database were limited by boundary‐line trade‐offs. The STS reconciles all major theories about trade‐offs between abiotic stress tolerances, providing a unified trade‐off model and a set of coordinates that can be used to examine how other aspects of plant biology, such as plant functional traits, change within the limits of abiotic stress tolerance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-646X
1469-8137
DOI:10.1111/nph.16952