The triangular space of abiotic stress tolerance in woody species: a unified trade‐off model
Summary Tolerance of abiotic stress in woody plants is known to be constrained by biological trade‐offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations. U...
Saved in:
Published in | The New phytologist Vol. 229; no. 3; pp. 1354 - 1362 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Summary
Tolerance of abiotic stress in woody plants is known to be constrained by biological trade‐offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations.
Using the most extensive database available on shade, drought, waterlogging and cold tolerance for 799 northern hemisphere woody species, we determined the number of dimensions needed to summarise their tolerance combinations, and the best trade‐off model among those currently available, for description of the interdependence between tolerances.
Two principal component analysis (PCA) dimensions summarised stress tolerance combinations. They defined a triangular stress tolerance space (STS). The first STS dimension reflected segregation between drought‐tolerant and waterlogging‐tolerant species. The second reflected shade tolerance, which is independent of the other tolerances. Cold tolerance scaled weakly with both dimensions. Tolerance combinations across the species in the database were limited by boundary‐line trade‐offs.
The STS reconciles all major theories about trade‐offs between abiotic stress tolerances, providing a unified trade‐off model and a set of coordinates that can be used to examine how other aspects of plant biology, such as plant functional traits, change within the limits of abiotic stress tolerance. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0028-646X 1469-8137 |
DOI: | 10.1111/nph.16952 |