Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscil...
Saved in:
Published in | The European journal of neuroscience Vol. 55; no. 9-10; pp. 2632 - 2650 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
When emotional memories are formed under stress, the effects of slow wave sleep on retention of those memories differs depending on the sleep measure. Although time spent in slow wave sleep was positively associated with emotional memory following stress, the coupling of sleep spindles and slow oscillations during slow wave sleep was negatively associated with emotional memory following stress. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. |
---|---|
AbstractList | Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. When emotional memories are formed under stress, the effects of slow wave sleep on retention of those memories differs depending on the sleep measure. Although time spent in slow wave sleep was positively associated with emotional memory following stress, the coupling of sleep spindles and slow oscillations during slow wave sleep was negatively associated with emotional memory following stress. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. Abstract Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. |
Author | Kim, Sara Y. Daley, Ryan T. Denis, Dan Kark, Sarah M. Kensinger, Elizabeth A. Payne, Jessica D. |
Author_xml | – sequence: 1 givenname: Dan orcidid: 0000-0003-3740-7587 surname: Denis fullname: Denis, Dan email: ddenis@nd.edu organization: University of Notre Dame – sequence: 2 givenname: Sara Y. orcidid: 0000-0003-0105-3772 surname: Kim fullname: Kim, Sara Y. organization: University of Notre Dame – sequence: 3 givenname: Sarah M. surname: Kark fullname: Kark, Sarah M. organization: University of California, Irvine – sequence: 4 givenname: Ryan T. surname: Daley fullname: Daley, Ryan T. organization: Boston College – sequence: 5 givenname: Elizabeth A. surname: Kensinger fullname: Kensinger, Elizabeth A. organization: Boston College – sequence: 6 givenname: Jessica D. surname: Payne fullname: Payne, Jessica D. organization: University of Notre Dame |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33511691$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9OJCEQh4nR6Oh68AUMyV700ApDQ8NxY_yzG7Medjfx1qGhWpnQzQjdTubmI_iMPskyjnowkUtVwscXqn67aLMPPSB0QMkJzecUZv0J5ZRNN9CEloIUigu5iSZEcVZIKm530G5KM0KIFCXfRjuMcUqFohPU_fFhgUMyzns9uNC_PD2nueutB2zCOPeuv8Mu4R7u8vUj-CXWKQXj9AAWL9xwj6ELq4fa4y63cYnbELtXV-581q8UaYiQ0je01WqfYP-t7qF_F-d_z66K65vLn2c_rgvDpJwWYPLP24Zz0xBOmBK6ZaYiVjDBVCWJstZqQyxhjWkqK7lUTOqy4qIFClSxPXS09s5jeBghDXXnkoE8Yg9hTPW0lExSRdU0o98_obMwxjxNpkRFCJWMl5k6XlMmhpQitPU8uk7HZU1JvcqgzhnUrxlk9vDNODYd2A_yfekZOF0DC-dh-bWpPv_1e638D_TKlQU |
CitedBy_id | crossref_primary_10_1111_ejn_15980 crossref_primary_10_1007_s40675_024_00291_y crossref_primary_10_1111_ejn_15718 crossref_primary_10_1093_cercor_bhae183 crossref_primary_10_1080_02699931_2023_2221843 crossref_primary_10_1101_lm_053685_122 crossref_primary_10_3758_s13415_023_01113_4 crossref_primary_10_2147_NSS_S286701 crossref_primary_10_1016_j_ynstr_2023_100516 |
Cites_doi | 10.1016/j.neuron.2017.11.020 10.1016/j.neuropsychologia.2010.07.030 10.3389/fnhum.2013.00313 10.18637/jss.v031.i10 10.1093/cercor/bht349 10.1016/j.psyneuen.2019.04.001 10.1016/j.neuroimage.2011.05.074 10.1038/nature04286 10.1101/lm.132106 10.1016/j.sleep.2014.12.022 10.3934/Neuroscience.2014.1.39 10.3389/fpsyg.2019.01014 10.1523/JNEUROSCI.4991-13.2014 10.1016/j.smrv.2020.101313 10.1038/nn0311‐272 10.1016/j.nlm.2012.10.006 10.1016/j.neurobiolaging.2018.03.030 10.1080/15402000701557383 10.1101/2020.01.07.897413 10.1101/lm.051383.120 10.1007/s00221‐013‐3779‐7 10.1152/physrev.00032.2012 10.3389/fnint.2012.00108 10.1371/journal.pone.0121945 10.1037/0033‐2909.111.1.172 10.1162/jocn.1997.9.4.534 10.1101/2020.05.28.122168 10.1016/j.neuropsychologia.2019.107277 10.1016/j.neuron.2017.06.025 10.1101/lm.026252.112 10.1016/j.nlm.2014.08.013 10.1093/sleep/zsy175 10.1093/cercor/bhn155 10.1037/bul0000100 10.1101/lm.36801 10.1371/journal.pone.0144720 10.1016/j.cobeha.2017.09.006 10.1162/jocn_a_00433 10.1371/journal.pone.0033079 10.1016/j.smrv.2008.08.002 10.3389/fpsyg.2019.00020 10.1016/j.psyneuen.2011.12.001 10.1007/s11910‐013‐0430‐8 10.1002/hipo.23138 10.1371/journal.pone.0089849 10.1016/j.smrv.2020.101305 10.1016/j.cobeha.2019.12.009 10.1038/s41593-019-0467-3 10.1038/nn.4119 10.1016/j.neuropsychologia.2015.10.014 10.1073/pnas.0409848102 10.1523/JNEUROSCI.2834-18.2019 10.1038/nn.3303 10.1038/nrn2762 10.1016/j.nlm.2015.01.008 10.1016/j.neuropsychologia.2018.05.015 10.1038/s41598‐018‐36557‐z 10.1111/psyp.13523 10.1177/0963721410383978 10.1038/nrn1683 10.1111/jsr.12835 10.1038/ncomms15930 10.1523/JNEUROSCI.0638-13.2013 10.1523/JNEUROSCI.2532‐11.2012 10.1096/fj.08-122853 10.1111/j.1467‐9280.2008.02157.x 10.1097/01.PSY.0000021940.35402.51 10.1111/jsr.12968 10.1037/a0016570 10.1016/j.nlm.2016.06.015 10.1016/B978-012370509-9.00181-9 10.1093/sleep/zsaa084 10.1016/j.neuropsychologia.2014.09.016 10.5665/sleep.3750 10.1016/j.sleep.2010.10.010 10.3389/fpsyg.2015.01439 10.1016/j.biopsych.2011.08.008 10.1111/ejn.13478 10.1037/a0038683 10.1038/s41386-020-00833-2 10.1101/lm.047498.118 10.1038/s41386‐019‐0490‐9 10.1016/j.smrv.2020.101280 10.1101/lm.771608 10.1073/pnas.0507774103 10.1101/lm.743507 10.1093/cercor/bht255 10.3758/s13415‐017‐0542‐8 10.1097/WNR.0000000000001274 |
ContentType | Journal Article |
Copyright | 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.15132 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Chemoreception Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2650 |
ExternalDocumentID | 10_1111_ejn_15132 33511691 EJN15132 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation funderid: BCS 1539361; NSF‐GRFP DGE1258923 – fundername: National Institutes of Health funderid: S10OD020039 – fundername: Sigmi Xi – fundername: NRSE funderid: 5F31MH113304‐02 – fundername: NIMH NIH HHS grantid: R01 MH124004 – fundername: NIMH NIH HHS grantid: F31 MH113304 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3882-ec095fb55cb050396af3c70d636397809dddac0d03bcb7d858938a4756fe1e193 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Sat Oct 26 04:18:45 EDT 2024 Thu Oct 10 17:25:35 EDT 2024 Fri Aug 23 01:49:36 EDT 2024 Sat Nov 02 12:30:35 EDT 2024 Sat Aug 24 01:08:31 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Keywords | sleep cortisol slow waves polysomnography |
Language | English |
License | 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3882-ec095fb55cb050396af3c70d636397809dddac0d03bcb7d858938a4756fe1e193 |
Notes | Funding information Edited by: Oliver Robinson Data were collected at institution 3. All data were analyzed at institution 1. This work was supported by NSF grant BCS 1539361 awarded to E.A.K and J.D.P, NIH shared instrumentation grant S10OD020039 (Harvard Center for Brain Science, CBS), and NSF‐GRFP DGE1258923 to S.M.K, pre‐doctoral NRSE fellowship 5F31MH113304‐02 to S.M.K, Sigmi Xi Grant‐in‐Aid of Research to S.M.K. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3740-7587 0000-0003-0105-3772 |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/ejn.15132 |
PMID | 33511691 |
PQID | 2670018354 |
PQPubID | 34057 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2483819192 proquest_journals_2670018354 crossref_primary_10_1111_ejn_15132 pubmed_primary_33511691 wiley_primary_10_1111_ejn_15132_EJN15132 |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2015; 78 2017; 8 2013; 25 2010; 19 2019; 10 2017; 45 2012; 19 2018; 41 2020; 57 2011; 57 2011; 12 2011; 14 2014; 63 2013; 7 1997; 9 2014a; 1 2012; 71 2009; 13 2013; 16 2013; 99 2020; 52 2019; 22 2020; 51 2005; 102 1992; 111 2019; 28 2014; 14 2016; 40 2019; 29 2020; 45 2007; 5 2020; 136 2020; 43 2014; 9 2009; 19 2014b; 232 2009; 23 2015; 15 2019; 9 2015; 6 2015; 16 2015; 18 2006; 13 2019; 30 2015; 122 2008; 19 2015; 10 2005; 437 2008 2008; 15 2013; 93 2009; 135 2020; 33 2019; 106 2012; 37 2012; 32 2007; 14 2018; 25 2018; 68 2017; 95 2018; 19 2015; 25 2010; 48 2009; 31 2018; 117 2013; 33 2002; 64 2021 2017; 17 2020 2001; 8 2020; 27 2014; 37 2016; 133 2005; 6 2019b; 30 2017; 143 2012; 6 2012; 7 2018; 97 2019a; 39 1925 2014; 34 2006; 103 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_41_1 e_1_2_12_66_1 e_1_2_12_87_1 Fisher R. A. (e_1_2_12_29_1) 1925 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_64_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 Mylonas D. (e_1_2_12_58_1) 2019; 29 e_1_2_12_68_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_81_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_77_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_75_1 Demanuele C. (e_1_2_12_20_1) 2016; 40 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_73_1 e_1_2_12_94_1 e_1_2_12_50_1 e_1_2_12_71_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_27_1 Denis D. (e_1_2_12_21_1) 2021 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_9_1 |
References_xml | – volume: 111 start-page: 172 year: 1992 end-page: 175 article-title: Comparing correlated correlation coefficients publication-title: Psychological Bulletin – volume: 16 start-page: 564 year: 2015 end-page: 569 article-title: Impairment of sleep‐related memory consolidation in schizophrenia: Relevance of sleep spindles? publication-title: Sleep Medicine – volume: 10 year: 2019 article-title: Preferential consolidation of emotional memory during sleep: A meta‐analysis publication-title: Frontiers in Psychology – year: 2021 – volume: 22 start-page: 1598 year: 2019 end-page: 1610 article-title: Mechanisms of systems memory consolidation during sleep publication-title: Nature Neuroscience – volume: 45 start-page: 2189 year: 2020 end-page: 2197 article-title: The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: A randomized clinical trial publication-title: Neuropsychopharmacology – volume: 16 start-page: 139 year: 2013 end-page: 145 article-title: Sleep‐dependent memory triage: Evolving generalization through selective processing publication-title: Nature Neuroscience – volume: 71 start-page: 154 year: 2012 end-page: 161 article-title: Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation? publication-title: Biological Psychiatry – volume: 122 start-page: 122 year: 2015 end-page: 130 article-title: Dissociating the contributions of slow‐wave sleep and rapid eye movement sleep to emotional item and source memory publication-title: Neurobiology of Learning and Memory – volume: 11 start-page: 114 year: 2010 end-page: 126 article-title: The memory function of sleep publication-title: Nature Reviews Neuroscience – volume: 117 start-page: 84 year: 2018 end-page: 91 article-title: Sleep divergently affects cognitive and automatic emotional response in children publication-title: Neuropsychologia – volume: 31 year: 2009 article-title: CircStat: A Matlab toolbox for circular statistics publication-title: Journal of Statistical Software – volume: 57 start-page: 1534 year: 2011 end-page: 1541 article-title: Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures publication-title: NeuroImage – volume: 133 start-page: 136 year: 2016 end-page: 144 article-title: Sleep before and after learning promotes the consolidation of both neutral and emotional information regardless of REM presence publication-title: Neurobiology of Learning and Memory – volume: 10 year: 2015 article-title: cocor: A comprehensive solution for the statistical comparison of correlations publication-title: PLoS One – volume: 13 start-page: 259 year: 2006 end-page: 262 article-title: Sleep after learning aids memory recall publication-title: Learning & Memory – volume: 28 year: 2019 article-title: Phase‐amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation publication-title: Journal of Sleep Research – volume: 9 year: 2014 article-title: Selective REM‐sleep deprivation does not diminish emotional memory consolidation in young healthy subjects publication-title: PLoS One – volume: 7 year: 2012 article-title: Memory for semantically related and unrelated declarative information: The benefit of sleep, the cost of wake publication-title: PLoS One – volume: 232 start-page: 1415 year: 2014b end-page: 1427 article-title: Laugh yourself to sleep: Memory consolidation for humorous information publication-title: Experimental Brain Research – volume: 45 start-page: 31 year: 2020 end-page: 44 article-title: Neurochemical mechanisms for memory processing during sleep: Basic findings in humans and neuropsychiatric implications publication-title: Neuropsychopharmacology – volume: 48 start-page: 3459 year: 2010 end-page: 3469 article-title: fMRI studies of successful emotional memory encoding: A quantitative meta‐analysis publication-title: Neuropsychologia – volume: 12 start-page: 672 year: 2011 end-page: 679 article-title: Reduced sleep‐associated consolidation of declarative memory in attention‐deficit/hyperactivity disorder publication-title: Sleep Medicine – volume: 19 start-page: 1158 year: 2009 end-page: 1166 article-title: REM sleep, prefrontal theta, and the consolidation of human emotional memory publication-title: Cerebral Cortex – volume: 14 start-page: 861 year: 2007 end-page: 868 article-title: Stress administered prior to encoding impairs neutral but enhances emotional long‐term episodic memories publication-title: Learning & Memory – volume: 52 year: 2020 article-title: Reinventing polysomnography in the age of precision medicine publication-title: Sleep Medicine Reviews – volume: 37 start-page: 1029 year: 2014 end-page: 1030 article-title: Seeing the forest through the trees publication-title: Sleep – volume: 7 year: 2013 article-title: Neural traces of stress: Cortisol related sustained enhancement of amygdala‐hippocampal functional connectivity publication-title: Frontiers in Human Neuroscience – volume: 43 year: 2020 article-title: The effect of zolpidem on memory consolidation over a night of sleep publication-title: Sleep – volume: 78 start-page: 221 year: 2015 end-page: 230 article-title: Effect of emotional valence on retrieval‐related recapitulation of encoding activity in the ventral visual stream publication-title: Neuropsychologia – volume: 9 start-page: 534 year: 1997 end-page: 547 article-title: Effects of early and late nocturnal sleep on declarative and procedural memory publication-title: Journal of Cognitive Neuroscience – volume: 33 start-page: 7234 year: 2013 end-page: 7244 article-title: Functional connectivity from the amygdala to the hippocampus grows stronger after stress publication-title: Journal of Neuroscience – volume: 45 start-page: 478 year: 2017 end-page: 489 article-title: Memory under stress: From single systems to network changes publication-title: European Journal of Neuroscience – volume: 15 start-page: 233 year: 2008 end-page: 237 article-title: Sleep directly following learning benefits consolidation of spatial associative memory publication-title: Learning & Memory – volume: 41 year: 2018 article-title: Large‐scale structure and individual fingerprints of locally coupled sleep oscillations publication-title: Sleep – volume: 30 start-page: 800 year: 2019b end-page: 804 article-title: Physiological arousal and visuocortical connectivity predict subsequent vividness of negative memories publication-title: NeuroReport – volume: 51 year: 2020 article-title: Sleep's impact on emotional recognition memory: A meta‐analysis of whole‐night, nap, and REM sleep effects publication-title: Sleep Medicine Reviews – volume: 103 start-page: 756 year: 2006 end-page: 761 article-title: Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 663 year: 2008 end-page: 685 – volume: 143 start-page: 636 year: 2017 end-page: 675 article-title: The effects of acute stress on episodic memory: A meta‐analysis and integrative review publication-title: Psychological Bulletin – volume: 25 start-page: 1565 year: 2015 end-page: 1575 article-title: Complementary roles of slow‐wave sleep and rapid eye movement sleep in emotional memory consolidation publication-title: Cerebral Cortex – volume: 8 start-page: 112 year: 2001 end-page: 119 article-title: Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep publication-title: Learning & Memory – volume: 33 start-page: 57 year: 2020 end-page: 64 article-title: Neural correlates of sleep, stress, and selective memory consolidation publication-title: Current Opinion in Behavioral Sciences – volume: 52 year: 2020 article-title: The microstructure of REM sleep: Why phasic and tonic? publication-title: Sleep Medicine Reviews – volume: 68 start-page: 34 year: 2018 end-page: 47 article-title: Preferential consolidation of emotionally salient information during a nap is preserved in middle age publication-title: Neurobiology of Aging – volume: 19 start-page: 781 year: 2008 end-page: 788 article-title: Sleep preferentially enhances memory for emotional components of scenes publication-title: Psychological Science – volume: 95 start-page: 424 year: 2017 end-page: 435 article-title: Thalamic spindles promote memory formation during sleep through triple phase‐locking of cortical, thalamic, and hippocampal rhythms publication-title: Neuron – volume: 13 start-page: 309 year: 2009 end-page: 321 article-title: The whats and whens of sleep‐dependent memory consolidation publication-title: Sleep Medicine Reviews – volume: 19 start-page: 290 year: 2010 end-page: 295 article-title: Sleep's role in the consolidation of emotional episodic memories publication-title: Current Directions in Psychological Science – volume: 23 start-page: 3629 year: 2009 end-page: 3636 article-title: Enhancing influence of intranasal interleukin‐6 on slow‐wave activity and memory consolidation during sleep publication-title: The FASEB Journal – volume: 106 start-page: 138 year: 2019 end-page: 146 article-title: Stress and the medial temporal lobe at rest: Functional connectivity is associated with both memory and cortisol publication-title: Psychoneuroendocrinology – volume: 136 year: 2020 article-title: Forgotten but not gone: FMRI evidence of implicit memory for negative stimuli 24 hours after the initial study episode publication-title: Neuropsychologia – volume: 63 start-page: 285 year: 2014 end-page: 292 article-title: Sleep spindles provide indirect support to the consolidation of emotional encoding contexts publication-title: Neuropsychologia – volume: 17 start-page: 1186 year: 2017 end-page: 1209 article-title: Remembering specific features of emotional events across time: The role of REM sleep and prefrontal theta oscillations publication-title: Cognitive, Affective, & Behavioural Neuroscience – volume: 32 start-page: 1035 year: 2012 end-page: 1042 article-title: Processing of emotional reactivity and emotional memory over sleep publication-title: Journal of Neuroscience – volume: 25 start-page: 646 year: 2015 end-page: 657 article-title: Sleep and cortisol interact to support memory consolidation publication-title: Cerebral Cortex – volume: 19 start-page: 36 year: 2018 end-page: 43 article-title: Stress, sleep, and the selective consolidation of emotional memories publication-title: Current Opinion in Behavioral Sciences, Emotion‐cognition Interactions – volume: 437 start-page: 1272 year: 2005 end-page: 1278 article-title: Sleep‐dependent memory consolidation publication-title: Nature – year: 1925 – volume: 99 start-page: 1 year: 2013 end-page: 9 article-title: The role of REM sleep in the processing of emotional memories: Evidence from behavior and event‐related potentials publication-title: Neurobiology of Learning and Memory – volume: 10 year: 2015 article-title: Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans publication-title: PLoS One – volume: 9 year: 2019 article-title: Precise slow oscillation‐spindle coupling promotes memory consolidation in younger and older adults publication-title: Scientific Reports – volume: 30 start-page: 829 issue: 8 year: 2019 end-page: 841 article-title: Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation publication-title: Hippocampus – volume: 93 start-page: 681 year: 2013 end-page: 766 article-title: About sleep's role in memory publication-title: Physiological Reviews – volume: 102 start-page: 2626 year: 2005 end-page: 2631 article-title: Remembering one year later: Role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1 start-page: 39 year: 2014a end-page: 51 article-title: The influence of sleep on the consolidation of positive emotional memories: Preliminary evidence publication-title: AIMS Neuroscience – volume: 19 start-page: 264 year: 2012 end-page: 267 article-title: Involvement of spindles in memory consolidation is slow wave sleep‐specific publication-title: Learning & Memory – volume: 6 start-page: 463 year: 2005 end-page: 475 article-title: Stress and the brain: From adaptation to disease publication-title: Nature Reviews Neuroscience – volume: 122 start-page: 110 year: 2015 end-page: 121 article-title: The role of rapid eye movement sleep for amygdala‐related memory processing publication-title: Neurobiology of Learning and Memory – volume: 5 start-page: 256 year: 2007 end-page: 278 article-title: The effect of psychosocial stress on sleep: A review of polysomnographic evidence publication-title: Behavioral Sleep Medicine – volume: 25 start-page: 611 year: 2018 end-page: 619 article-title: Post‐encoding stress enhances mnemonic discrimination of negative stimuli publication-title: Learning & Memory – volume: 6 year: 2015 article-title: The role of REM sleep theta activity in emotional memory publication-title: Frontiers in Psychology – volume: 29 year: 2019 article-title: Naps reliably estimate nocturnal sleep spindle density in health and schizophrenia publication-title: Journal of Sleep Research – volume: 39 start-page: 3130 year: 2019a end-page: 3143 article-title: Post‐encoding amygdala‐visuosensory coupling is associated with negative memory bias in healthy young adults publication-title: Journal of Neuroscience – volume: 15 start-page: 176 year: 2015 end-page: 186 article-title: Napping and the selective consolidation of negative aspects of scenes publication-title: Emotion – volume: 135 start-page: 731 year: 2009 end-page: 748 article-title: Overnight therapy? The role of sleep in emotional brain processing publication-title: Psychological Bulletin – volume: 57 year: 2020 article-title: Understanding the interplay of sleep and aging: Methodological challenges publication-title: Psychophysiology – volume: 14 start-page: 272 year: 2011 end-page: 274 article-title: Sleep on it!: Stabilizing and transforming memories during sleep publication-title: Nature Neuroscience – volume: 6 year: 2012 article-title: Sleep promotes lasting changes in selective memory for emotional scenes publication-title: Frontiers in Integrative Neuroscience – volume: 64 start-page: 627 year: 2002 end-page: 634 article-title: Changes in emotional responses to aversive pictures across periods rich in slow‐wave sleep versus rapid eye movement sleep publication-title: Psychosomatic Medicine – year: 2020 – volume: 25 start-page: 1597 year: 2013 end-page: 1610 article-title: Pharmacologically increasing sleep spindles enhances recognition for negative and high‐arousal memories publication-title: Journal of Cognitive Neuroscience – volume: 14 year: 2014 article-title: Differential effects of non‐REM and REM sleep on memory consolidation? publication-title: Current Neurology and Neuroscience Reports – volume: 40 year: 2016 article-title: Coordination of slow waves with sleep spindles predicts sleep‐dependent memory consolidation in schizophrenia publication-title: Sleep – volume: 10 year: 2019 article-title: Psychosocial stress before a nap increases sleep latency and decreases early slow‐wave activity publication-title: Frontiers in Psychology – volume: 27 start-page: 451 year: 2020 end-page: 456 article-title: The roles of item exposure and visualization success in the consolidation of memories across wake and sleep publication-title: Learning & Memory – volume: 8 start-page: 15930 year: 2017 article-title: Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource publication-title: Nature Communications. – volume: 37 start-page: 1039 year: 2012 end-page: 1047 article-title: Endogenous cortisol is associated with functional connectivity between the amygdala and medial prefrontal cortex publication-title: Psychoneuroendocrinology – volume: 18 start-page: 1679 year: 2015 end-page: 1686 article-title: Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep publication-title: Nature Neuroscience – volume: 97 start-page: 221 year: 2018 end-page: 230 article-title: Old brains come uncoupled in sleep: Slow wave‐spindle synchrony, brain atrophy, and forgetting publication-title: Neuron – volume: 34 start-page: 11096 year: 2014 end-page: 11105 article-title: Post‐error slowing as a consequence of disturbed low‐frequency oscillatory phase entrainment publication-title: Journal of Neuroscience – ident: e_1_2_12_36_1 doi: 10.1016/j.neuron.2017.11.020 – ident: e_1_2_12_56_1 doi: 10.1016/j.neuropsychologia.2010.07.030 – ident: e_1_2_12_86_1 doi: 10.3389/fnhum.2013.00313 – ident: e_1_2_12_8_1 doi: 10.18637/jss.v031.i10 – ident: e_1_2_12_11_1 doi: 10.1093/cercor/bht349 – ident: e_1_2_12_77_1 doi: 10.1016/j.psyneuen.2019.04.001 – ident: e_1_2_12_89_1 doi: 10.1016/j.neuroimage.2011.05.074 – ident: e_1_2_12_82_1 doi: 10.1038/nature04286 – ident: e_1_2_12_30_1 doi: 10.1101/lm.132106 – ident: e_1_2_12_33_1 doi: 10.1016/j.sleep.2014.12.022 – ident: e_1_2_12_13_1 doi: 10.3934/Neuroscience.2014.1.39 – ident: e_1_2_12_49_1 doi: 10.3389/fpsyg.2019.01014 – ident: e_1_2_12_88_1 doi: 10.1523/JNEUROSCI.4991-13.2014 – ident: e_1_2_12_48_1 doi: 10.1016/j.smrv.2020.101313 – ident: e_1_2_12_61_1 doi: 10.1038/nn0311‐272 – ident: e_1_2_12_34_1 doi: 10.1016/j.nlm.2012.10.006 – ident: e_1_2_12_4_1 doi: 10.1016/j.neurobiolaging.2018.03.030 – ident: e_1_2_12_43_1 doi: 10.1080/15402000701557383 – volume-title: Statistical methods for research workers year: 1925 ident: e_1_2_12_29_1 contributor: fullname: Fisher R. A. – ident: e_1_2_12_17_1 doi: 10.1101/2020.01.07.897413 – ident: e_1_2_12_23_1 doi: 10.1101/lm.051383.120 – ident: e_1_2_12_14_1 doi: 10.1007/s00221‐013‐3779‐7 – volume: 40 start-page: zsw013 year: 2016 ident: e_1_2_12_20_1 article-title: Coordination of slow waves with sleep spindles predicts sleep‐dependent memory consolidation in schizophrenia publication-title: Sleep contributor: fullname: Demanuele C. – ident: e_1_2_12_74_1 doi: 10.1152/physrev.00032.2012 – ident: e_1_2_12_63_1 doi: 10.3389/fnint.2012.00108 – ident: e_1_2_12_24_1 doi: 10.1371/journal.pone.0121945 – ident: e_1_2_12_51_1 doi: 10.1037/0033‐2909.111.1.172 – ident: e_1_2_12_71_1 doi: 10.1162/jocn.1997.9.4.534 – ident: e_1_2_12_50_1 doi: 10.1101/2020.05.28.122168 – ident: e_1_2_12_42_1 doi: 10.1016/j.neuropsychologia.2019.107277 – ident: e_1_2_12_47_1 doi: 10.1016/j.neuron.2017.06.025 – ident: e_1_2_12_15_1 doi: 10.1101/lm.026252.112 – ident: e_1_2_12_35_1 doi: 10.1016/j.nlm.2014.08.013 – ident: e_1_2_12_16_1 doi: 10.1093/sleep/zsy175 – ident: e_1_2_12_60_1 doi: 10.1093/cercor/bhn155 – ident: e_1_2_12_78_1 doi: 10.1037/bul0000100 – ident: e_1_2_12_92_1 doi: 10.1101/lm.36801 – ident: e_1_2_12_59_1 doi: 10.1371/journal.pone.0144720 – ident: e_1_2_12_67_1 doi: 10.1016/j.cobeha.2017.09.006 – ident: e_1_2_12_38_1 doi: 10.1162/jocn_a_00433 – ident: e_1_2_12_70_1 doi: 10.1371/journal.pone.0033079 – ident: e_1_2_12_26_1 doi: 10.1016/j.smrv.2008.08.002 – ident: e_1_2_12_2_1 doi: 10.3389/fpsyg.2019.00020 – ident: e_1_2_12_90_1 doi: 10.1016/j.psyneuen.2011.12.001 – ident: e_1_2_12_3_1 doi: 10.1007/s11910‐013‐0430‐8 – ident: e_1_2_12_44_1 doi: 10.1002/hipo.23138 – ident: e_1_2_12_53_1 doi: 10.1371/journal.pone.0089849 – ident: e_1_2_12_79_1 doi: 10.1016/j.smrv.2020.101305 – ident: e_1_2_12_45_1 doi: 10.1016/j.cobeha.2019.12.009 – ident: e_1_2_12_46_1 doi: 10.1038/s41593-019-0467-3 – ident: e_1_2_12_81_1 doi: 10.1038/nn.4119 – ident: e_1_2_12_39_1 doi: 10.1016/j.neuropsychologia.2015.10.014 – ident: e_1_2_12_27_1 doi: 10.1073/pnas.0409848102 – ident: e_1_2_12_40_1 doi: 10.1523/JNEUROSCI.2834-18.2019 – ident: e_1_2_12_83_1 doi: 10.1038/nn.3303 – ident: e_1_2_12_25_1 doi: 10.1038/nrn2762 – ident: e_1_2_12_31_1 doi: 10.1016/j.nlm.2015.01.008 – ident: e_1_2_12_9_1 doi: 10.1016/j.neuropsychologia.2018.05.015 – volume-title: sleepLDF: SO‐spindle coupling year: 2021 ident: e_1_2_12_21_1 contributor: fullname: Denis D. – ident: e_1_2_12_54_1 doi: 10.1038/s41598‐018‐36557‐z – ident: e_1_2_12_55_1 doi: 10.1111/psyp.13523 – ident: e_1_2_12_66_1 doi: 10.1177/0963721410383978 – ident: e_1_2_12_19_1 doi: 10.1038/nrn1683 – ident: e_1_2_12_52_1 doi: 10.1111/jsr.12835 – ident: e_1_2_12_73_1 doi: 10.1038/ncomms15930 – ident: e_1_2_12_32_1 doi: 10.1523/JNEUROSCI.0638-13.2013 – ident: e_1_2_12_5_1 doi: 10.1523/JNEUROSCI.2532‐11.2012 – ident: e_1_2_12_6_1 doi: 10.1096/fj.08-122853 – ident: e_1_2_12_69_1 doi: 10.1111/j.1467‐9280.2008.02157.x – ident: e_1_2_12_91_1 doi: 10.1097/01.PSY.0000021940.35402.51 – volume: 29 start-page: e12968 year: 2019 ident: e_1_2_12_58_1 article-title: Naps reliably estimate nocturnal sleep spindle density in health and schizophrenia publication-title: Journal of Sleep Research doi: 10.1111/jsr.12968 contributor: fullname: Mylonas D. – ident: e_1_2_12_93_1 doi: 10.1037/a0016570 – ident: e_1_2_12_12_1 doi: 10.1016/j.nlm.2016.06.015 – ident: e_1_2_12_64_1 doi: 10.1016/B978-012370509-9.00181-9 – ident: e_1_2_12_87_1 – ident: e_1_2_12_95_1 doi: 10.1093/sleep/zsaa084 – ident: e_1_2_12_10_1 doi: 10.1016/j.neuropsychologia.2014.09.016 – ident: e_1_2_12_62_1 doi: 10.5665/sleep.3750 – ident: e_1_2_12_72_1 doi: 10.1016/j.sleep.2010.10.010 – ident: e_1_2_12_37_1 doi: 10.3389/fpsyg.2015.01439 – ident: e_1_2_12_94_1 doi: 10.1016/j.biopsych.2011.08.008 – ident: e_1_2_12_76_1 doi: 10.1111/ejn.13478 – ident: e_1_2_12_68_1 doi: 10.1037/a0038683 – ident: e_1_2_12_57_1 doi: 10.1038/s41386-020-00833-2 – ident: e_1_2_12_18_1 doi: 10.1101/lm.047498.118 – ident: e_1_2_12_22_1 – ident: e_1_2_12_28_1 doi: 10.1038/s41386‐019‐0490‐9 – ident: e_1_2_12_75_1 doi: 10.1016/j.smrv.2020.101280 – ident: e_1_2_12_85_1 doi: 10.1101/lm.771608 – ident: e_1_2_12_84_1 doi: 10.1073/pnas.0507774103 – ident: e_1_2_12_65_1 doi: 10.1101/lm.743507 – ident: e_1_2_12_7_1 doi: 10.1093/cercor/bht255 – ident: e_1_2_12_80_1 doi: 10.3758/s13415‐017‐0542‐8 – ident: e_1_2_12_41_1 doi: 10.1097/WNR.0000000000001274 |
SSID | ssj0008645 |
Score | 2.4796298 |
Snippet | Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly... Abstract Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2632 |
SubjectTerms | Activity patterns Cortisol Electroencephalography Emotions Emotions - physiology Humans Oscillations Polysomnography Sleep Sleep - physiology Sleep, Slow-Wave slow waves |
Title | Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.15132 https://www.ncbi.nlm.nih.gov/pubmed/33511691 https://www.proquest.com/docview/2670018354 https://www.proquest.com/docview/2483819192 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5VvcAF2C6PwC4yCCEuqZLmYUecqtKqWokegEo9IEWxY1fdbdMVbYXKaX8Cv5FfsjPOY7e7QkLkZCmOnYxnMuPxzDcA72SGV2Q8l_sycFFDa1cYaVzUbUIlGZdCUzby50k8noZns2jWgo91LkyJD9E43Egy7P-aBDyTm1tCrs-LLqqrgP6_fsApnOvTlxvoKBHbAsUEp-YKP55VqEIUxdM8eaiL7hmYh_aqVTijx_C9ftUyzuSiu9vKrvp1B8XxP7_lCTyqDFHWLznnCFq66MBxv8BN-GrP3jMbGmp97h14MKjLwh3D6uty_ZMRBOayDKP7c_V7c7kgrAam1jtK8J2zxYYVem4xxZd7llUsoHNGbl-my9JBOPuK4nz3rMmgxNYSh6chyiSWpzAdDb8Nxm5Vs8FVARnrWiHFjYwiJQlpJokzEyju5XFAJ4jCS_I8z5SXe4FUkuciQntJZCGPYqN9jdbkM2gX60K_ACZCn5N1lKieCU3IRcR1jopWy8QziS8ceFuvXnpZQnOk9ZYGCZpagjpwUq9rWknnJu1RbpJPLi8H3jS3kY50WJIVer3DPqGwm9kEh3he8kMzS0Cnr3HiO_DBrurfp0-HZxPbePnvXV_Bwx7lWNioyhNob3_s9ClaPlv52rL4Nf0GAY4 |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5F9EAvbYG2pARYqqrqxZEd_62lXqIQlALJoQUpl8ryrncRkDgRSVSlJx6BZ-yTMLP-gbSqhPBpJa937dkZz-zszDcAn0SCl69tK3SEa6GGVhbXQluo27iMklBwRdnI_UHQO_eOh_6wBl_LXJgcH6JyuJFkmP81CTg5pB9JubrKmqivXPwBv0Bxd0ksD78_gEfxwJQoJkA1izvBsMAVojie6tFVbfSPiblqsRqVc_QafpYvm0eaXDcXc9GUv__CcXzu17yBV4Utyto582xATWWbsNXOcB8-XrLPzESHGrf7Jqx3yspwWzD-MZr8YoSCOcoj6f7c3s2mlwTXwORkQTm-F-xyxjJ1YWDFR0uWFFygUkaeX6by6kE4-5hCfZesSqLE1giHpyHyPJa3cH7UPev0rKJsgyVdsteVRJJr4ftSENhMFCTalaGdBi4dInI7StM0kXZqu0KKMOU-mkw88UI_0MpRaFC-g7VskqltYNxzQjKQItnSnvZC7ocqRV2rRGTryOF1-FguXzzN0TnicleDBI0NQevQKBc2LgR0FrcoPckhr1cdDqrbSEc6L0kyNVlgH4-b_WyEQ7zPGaKaxaUD2CBy6vDFLOv_p4-7xwPT-PD0rvuw3jvrn8an3wYnO_CyRSkXJsiyAWvzm4XaRUNoLvYMv98D_L0Fpw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hkNpeCoVCw6NdKlT14siOX2txQpSI8oiqUqQckCzvCwGJE5FEKJz4CfxGfgkz60dLKyRUn1byetfenfF8uzvzDcCWyPAKjevEnvAdtNDa4UYYB20bl0kWC64pGvm4E-2fBgfdsDsD21UsTMEPUW-4kWbY_zUp-FCZP5RcX-ZNNFc-_n_ngghFlRDRz9_cUTyyGYqJT83hXtQtaYXIjad-9Kkx-gdhPgWs1uK05-GsetfC0eSqORmLprz9i8bxPz9mAd6WSJTtFKLzDmZ0vghLOzmuwvtT9oVZ31C76b4Ir3ervHBL0D_pDW4YcWD2Cj-6h7v70fCCyBqYHEwowvecXYxYrs8tqXhvyrJSBrRitO_LdJE7CHvvk6PvlNUhlFjqYfPURBHF8h5O23u_dvedMmmDI31C61riiBsRhlIQ1UwSZcaXsasin44QuZsopTLpKtcXUsSKhwiYeBbEYWS0pxFOLsNsPsj1B2A88GKCR4lsmcAEMQ9jrdDSapG4JvF4Az5Xs5cOC26OtFrT4ICmdkAbsF7Na1qq5yhtUXCSR3teDdisb-M40mlJluvBBOsE3K5mE2xipZCHuhefjl-jxGvAVzurz3ef7h10bGH15VU_wasf39rp0ffO4Rq8aVG8hfWwXIfZ8fVEbyAKGouPVtofAfLLBFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slow+oscillation-spindle+coupling+is+negatively+associated+with+emotional+memory+formation+following+stress&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Denis%2C+Dan&rft.au=Kim%2C+Sara+Y&rft.au=Kark%2C+Sarah+M&rft.au=Daley%2C+Ryan+T&rft.date=2022-05-01&rft.eissn=1460-9568&rft.volume=55&rft.issue=9-10&rft.spage=2632&rft_id=info:doi/10.1111%2Fejn.15132&rft_id=info%3Apmid%2F33511691&rft.externalDocID=33511691 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |