Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress

Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscil...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 55; no. 9-10; pp. 2632 - 2650
Main Authors Denis, Dan, Kim, Sara Y., Kark, Sarah M., Daley, Ryan T., Kensinger, Elizabeth A., Payne, Jessica D.
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. When emotional memories are formed under stress, the effects of slow wave sleep on retention of those memories differs depending on the sleep measure. Although time spent in slow wave sleep was positively associated with emotional memory following stress, the coupling of sleep spindles and slow oscillations during slow wave sleep was negatively associated with emotional memory following stress. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
AbstractList Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long-term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non-stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150-line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation-spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory. When emotional memories are formed under stress, the effects of slow wave sleep on retention of those memories differs depending on the sleep measure. Although time spent in slow wave sleep was positively associated with emotional memory following stress, the coupling of sleep spindles and slow oscillations during slow wave sleep was negatively associated with emotional memory following stress. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Abstract Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly before or after encoding. Slow wave sleep (SWS) is critical for long‐term episodic memory, facilitated by the temporal coupling of slow oscillations and sleep spindles. Prior work in humans has shown these associations for neutral information in non‐stressed participants. Whether coupling interacts with stress to facilitate emotional memory formation is unknown. Here, we addressed this question by reanalyzing an existing dataset of 64 individuals. Participants underwent a psychosocial stressor (32) or comparable control (32) prior to the encoding of 150‐line drawings of neutral, positive, and negative images. All participants slept overnight with polysomnography, before being given a surprise memory test the following day. In the stress group, time spent in SWS was positively correlated with memory for images of all valences. Results were driven by those who showed a high cortisol response to the stressor, compared to low responders. The amount of slow oscillation‐spindle coupling during SWS was negatively associated with neutral and emotional memory in the stress group only. The association with emotional memory was significantly stronger than for neutral memory within the stress group. These results suggest that stress around the time of initial memory formation impacts the relationship between slow wave sleep and memory.
Author Kim, Sara Y.
Daley, Ryan T.
Denis, Dan
Kark, Sarah M.
Kensinger, Elizabeth A.
Payne, Jessica D.
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0003-3740-7587
  surname: Denis
  fullname: Denis, Dan
  email: ddenis@nd.edu
  organization: University of Notre Dame
– sequence: 2
  givenname: Sara Y.
  orcidid: 0000-0003-0105-3772
  surname: Kim
  fullname: Kim, Sara Y.
  organization: University of Notre Dame
– sequence: 3
  givenname: Sarah M.
  surname: Kark
  fullname: Kark, Sarah M.
  organization: University of California, Irvine
– sequence: 4
  givenname: Ryan T.
  surname: Daley
  fullname: Daley, Ryan T.
  organization: Boston College
– sequence: 5
  givenname: Elizabeth A.
  surname: Kensinger
  fullname: Kensinger, Elizabeth A.
  organization: Boston College
– sequence: 6
  givenname: Jessica D.
  surname: Payne
  fullname: Payne, Jessica D.
  organization: University of Notre Dame
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33511691$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9OJCEQh4nR6Oh68AUMyV700ApDQ8NxY_yzG7Medjfx1qGhWpnQzQjdTubmI_iMPskyjnowkUtVwscXqn67aLMPPSB0QMkJzecUZv0J5ZRNN9CEloIUigu5iSZEcVZIKm530G5KM0KIFCXfRjuMcUqFohPU_fFhgUMyzns9uNC_PD2nueutB2zCOPeuv8Mu4R7u8vUj-CXWKQXj9AAWL9xwj6ELq4fa4y63cYnbELtXV-581q8UaYiQ0je01WqfYP-t7qF_F-d_z66K65vLn2c_rgvDpJwWYPLP24Zz0xBOmBK6ZaYiVjDBVCWJstZqQyxhjWkqK7lUTOqy4qIFClSxPXS09s5jeBghDXXnkoE8Yg9hTPW0lExSRdU0o98_obMwxjxNpkRFCJWMl5k6XlMmhpQitPU8uk7HZU1JvcqgzhnUrxlk9vDNODYd2A_yfekZOF0DC-dh-bWpPv_1e638D_TKlQU
CitedBy_id crossref_primary_10_1111_ejn_15980
crossref_primary_10_1007_s40675_024_00291_y
crossref_primary_10_1111_ejn_15718
crossref_primary_10_1093_cercor_bhae183
crossref_primary_10_1080_02699931_2023_2221843
crossref_primary_10_1101_lm_053685_122
crossref_primary_10_3758_s13415_023_01113_4
crossref_primary_10_2147_NSS_S286701
crossref_primary_10_1016_j_ynstr_2023_100516
Cites_doi 10.1016/j.neuron.2017.11.020
10.1016/j.neuropsychologia.2010.07.030
10.3389/fnhum.2013.00313
10.18637/jss.v031.i10
10.1093/cercor/bht349
10.1016/j.psyneuen.2019.04.001
10.1016/j.neuroimage.2011.05.074
10.1038/nature04286
10.1101/lm.132106
10.1016/j.sleep.2014.12.022
10.3934/Neuroscience.2014.1.39
10.3389/fpsyg.2019.01014
10.1523/JNEUROSCI.4991-13.2014
10.1016/j.smrv.2020.101313
10.1038/nn0311‐272
10.1016/j.nlm.2012.10.006
10.1016/j.neurobiolaging.2018.03.030
10.1080/15402000701557383
10.1101/2020.01.07.897413
10.1101/lm.051383.120
10.1007/s00221‐013‐3779‐7
10.1152/physrev.00032.2012
10.3389/fnint.2012.00108
10.1371/journal.pone.0121945
10.1037/0033‐2909.111.1.172
10.1162/jocn.1997.9.4.534
10.1101/2020.05.28.122168
10.1016/j.neuropsychologia.2019.107277
10.1016/j.neuron.2017.06.025
10.1101/lm.026252.112
10.1016/j.nlm.2014.08.013
10.1093/sleep/zsy175
10.1093/cercor/bhn155
10.1037/bul0000100
10.1101/lm.36801
10.1371/journal.pone.0144720
10.1016/j.cobeha.2017.09.006
10.1162/jocn_a_00433
10.1371/journal.pone.0033079
10.1016/j.smrv.2008.08.002
10.3389/fpsyg.2019.00020
10.1016/j.psyneuen.2011.12.001
10.1007/s11910‐013‐0430‐8
10.1002/hipo.23138
10.1371/journal.pone.0089849
10.1016/j.smrv.2020.101305
10.1016/j.cobeha.2019.12.009
10.1038/s41593-019-0467-3
10.1038/nn.4119
10.1016/j.neuropsychologia.2015.10.014
10.1073/pnas.0409848102
10.1523/JNEUROSCI.2834-18.2019
10.1038/nn.3303
10.1038/nrn2762
10.1016/j.nlm.2015.01.008
10.1016/j.neuropsychologia.2018.05.015
10.1038/s41598‐018‐36557‐z
10.1111/psyp.13523
10.1177/0963721410383978
10.1038/nrn1683
10.1111/jsr.12835
10.1038/ncomms15930
10.1523/JNEUROSCI.0638-13.2013
10.1523/JNEUROSCI.2532‐11.2012
10.1096/fj.08-122853
10.1111/j.1467‐9280.2008.02157.x
10.1097/01.PSY.0000021940.35402.51
10.1111/jsr.12968
10.1037/a0016570
10.1016/j.nlm.2016.06.015
10.1016/B978-012370509-9.00181-9
10.1093/sleep/zsaa084
10.1016/j.neuropsychologia.2014.09.016
10.5665/sleep.3750
10.1016/j.sleep.2010.10.010
10.3389/fpsyg.2015.01439
10.1016/j.biopsych.2011.08.008
10.1111/ejn.13478
10.1037/a0038683
10.1038/s41386-020-00833-2
10.1101/lm.047498.118
10.1038/s41386‐019‐0490‐9
10.1016/j.smrv.2020.101280
10.1101/lm.771608
10.1073/pnas.0507774103
10.1101/lm.743507
10.1093/cercor/bht255
10.3758/s13415‐017‐0542‐8
10.1097/WNR.0000000000001274
ContentType Journal Article
Copyright 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1111/ejn.15132
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Chemoreception Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2650
ExternalDocumentID 10_1111_ejn_15132
33511691
EJN15132
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: BCS 1539361; NSF‐GRFP DGE1258923
– fundername: National Institutes of Health
  funderid: S10OD020039
– fundername: Sigmi Xi
– fundername: NRSE
  funderid: 5F31MH113304‐02
– fundername: NIMH NIH HHS
  grantid: R01 MH124004
– fundername: NIMH NIH HHS
  grantid: F31 MH113304
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3882-ec095fb55cb050396af3c70d636397809dddac0d03bcb7d858938a4756fe1e193
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Sat Oct 26 04:18:45 EDT 2024
Thu Oct 10 17:25:35 EDT 2024
Fri Aug 23 01:49:36 EDT 2024
Sat Nov 02 12:30:35 EDT 2024
Sat Aug 24 01:08:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords sleep
cortisol
slow waves
polysomnography
Language English
License 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3882-ec095fb55cb050396af3c70d636397809dddac0d03bcb7d858938a4756fe1e193
Notes Funding information
Edited by: Oliver Robinson
Data were collected at institution 3. All data were analyzed at institution 1.
This work was supported by NSF grant BCS 1539361 awarded to E.A.K and J.D.P, NIH shared instrumentation grant S10OD020039 (Harvard Center for Brain Science, CBS), and NSF‐GRFP DGE1258923 to S.M.K, pre‐doctoral NRSE fellowship 5F31MH113304‐02 to S.M.K, Sigmi Xi Grant‐in‐Aid of Research to S.M.K.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3740-7587
0000-0003-0105-3772
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/ejn.15132
PMID 33511691
PQID 2670018354
PQPubID 34057
PageCount 19
ParticipantIDs proquest_miscellaneous_2483819192
proquest_journals_2670018354
crossref_primary_10_1111_ejn_15132
pubmed_primary_33511691
wiley_primary_10_1111_ejn_15132_EJN15132
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2015; 78
2017; 8
2013; 25
2010; 19
2019; 10
2017; 45
2012; 19
2018; 41
2020; 57
2011; 57
2011; 12
2011; 14
2014; 63
2013; 7
1997; 9
2014a; 1
2012; 71
2009; 13
2013; 16
2013; 99
2020; 52
2019; 22
2020; 51
2005; 102
1992; 111
2019; 28
2014; 14
2016; 40
2019; 29
2020; 45
2007; 5
2020; 136
2020; 43
2014; 9
2009; 19
2014b; 232
2009; 23
2015; 15
2019; 9
2015; 6
2015; 16
2015; 18
2006; 13
2019; 30
2015; 122
2008; 19
2015; 10
2005; 437
2008
2008; 15
2013; 93
2009; 135
2020; 33
2019; 106
2012; 37
2012; 32
2007; 14
2018; 25
2018; 68
2017; 95
2018; 19
2015; 25
2010; 48
2009; 31
2018; 117
2013; 33
2002; 64
2021
2017; 17
2020
2001; 8
2020; 27
2014; 37
2016; 133
2005; 6
2019b; 30
2017; 143
2012; 6
2012; 7
2018; 97
2019a; 39
1925
2014; 34
2006; 103
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_66_1
e_1_2_12_87_1
Fisher R. A. (e_1_2_12_29_1) 1925
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_64_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Mylonas D. (e_1_2_12_58_1) 2019; 29
e_1_2_12_68_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_81_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_77_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_75_1
Demanuele C. (e_1_2_12_20_1) 2016; 40
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_73_1
e_1_2_12_94_1
e_1_2_12_50_1
e_1_2_12_71_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_27_1
Denis D. (e_1_2_12_21_1) 2021
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_9_1
References_xml – volume: 111
  start-page: 172
  year: 1992
  end-page: 175
  article-title: Comparing correlated correlation coefficients
  publication-title: Psychological Bulletin
– volume: 16
  start-page: 564
  year: 2015
  end-page: 569
  article-title: Impairment of sleep‐related memory consolidation in schizophrenia: Relevance of sleep spindles?
  publication-title: Sleep Medicine
– volume: 10
  year: 2019
  article-title: Preferential consolidation of emotional memory during sleep: A meta‐analysis
  publication-title: Frontiers in Psychology
– year: 2021
– volume: 22
  start-page: 1598
  year: 2019
  end-page: 1610
  article-title: Mechanisms of systems memory consolidation during sleep
  publication-title: Nature Neuroscience
– volume: 45
  start-page: 2189
  year: 2020
  end-page: 2197
  article-title: The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: A randomized clinical trial
  publication-title: Neuropsychopharmacology
– volume: 16
  start-page: 139
  year: 2013
  end-page: 145
  article-title: Sleep‐dependent memory triage: Evolving generalization through selective processing
  publication-title: Nature Neuroscience
– volume: 71
  start-page: 154
  year: 2012
  end-page: 161
  article-title: Reduced sleep spindles and spindle coherence in schizophrenia: Mechanisms of impaired memory consolidation?
  publication-title: Biological Psychiatry
– volume: 122
  start-page: 122
  year: 2015
  end-page: 130
  article-title: Dissociating the contributions of slow‐wave sleep and rapid eye movement sleep to emotional item and source memory
  publication-title: Neurobiology of Learning and Memory
– volume: 11
  start-page: 114
  year: 2010
  end-page: 126
  article-title: The memory function of sleep
  publication-title: Nature Reviews Neuroscience
– volume: 117
  start-page: 84
  year: 2018
  end-page: 91
  article-title: Sleep divergently affects cognitive and automatic emotional response in children
  publication-title: Neuropsychologia
– volume: 31
  year: 2009
  article-title: CircStat: A Matlab toolbox for circular statistics
  publication-title: Journal of Statistical Software
– volume: 57
  start-page: 1534
  year: 2011
  end-page: 1541
  article-title: Beyond acute social stress: Increased functional connectivity between amygdala and cortical midline structures
  publication-title: NeuroImage
– volume: 133
  start-page: 136
  year: 2016
  end-page: 144
  article-title: Sleep before and after learning promotes the consolidation of both neutral and emotional information regardless of REM presence
  publication-title: Neurobiology of Learning and Memory
– volume: 10
  year: 2015
  article-title: cocor: A comprehensive solution for the statistical comparison of correlations
  publication-title: PLoS One
– volume: 13
  start-page: 259
  year: 2006
  end-page: 262
  article-title: Sleep after learning aids memory recall
  publication-title: Learning & Memory
– volume: 28
  year: 2019
  article-title: Phase‐amplitude coupling of sleep slow oscillatory and spindle activity correlates with overnight memory consolidation
  publication-title: Journal of Sleep Research
– volume: 9
  year: 2014
  article-title: Selective REM‐sleep deprivation does not diminish emotional memory consolidation in young healthy subjects
  publication-title: PLoS One
– volume: 7
  year: 2012
  article-title: Memory for semantically related and unrelated declarative information: The benefit of sleep, the cost of wake
  publication-title: PLoS One
– volume: 232
  start-page: 1415
  year: 2014b
  end-page: 1427
  article-title: Laugh yourself to sleep: Memory consolidation for humorous information
  publication-title: Experimental Brain Research
– volume: 45
  start-page: 31
  year: 2020
  end-page: 44
  article-title: Neurochemical mechanisms for memory processing during sleep: Basic findings in humans and neuropsychiatric implications
  publication-title: Neuropsychopharmacology
– volume: 48
  start-page: 3459
  year: 2010
  end-page: 3469
  article-title: fMRI studies of successful emotional memory encoding: A quantitative meta‐analysis
  publication-title: Neuropsychologia
– volume: 12
  start-page: 672
  year: 2011
  end-page: 679
  article-title: Reduced sleep‐associated consolidation of declarative memory in attention‐deficit/hyperactivity disorder
  publication-title: Sleep Medicine
– volume: 19
  start-page: 1158
  year: 2009
  end-page: 1166
  article-title: REM sleep, prefrontal theta, and the consolidation of human emotional memory
  publication-title: Cerebral Cortex
– volume: 14
  start-page: 861
  year: 2007
  end-page: 868
  article-title: Stress administered prior to encoding impairs neutral but enhances emotional long‐term episodic memories
  publication-title: Learning & Memory
– volume: 52
  year: 2020
  article-title: Reinventing polysomnography in the age of precision medicine
  publication-title: Sleep Medicine Reviews
– volume: 37
  start-page: 1029
  year: 2014
  end-page: 1030
  article-title: Seeing the forest through the trees
  publication-title: Sleep
– volume: 7
  year: 2013
  article-title: Neural traces of stress: Cortisol related sustained enhancement of amygdala‐hippocampal functional connectivity
  publication-title: Frontiers in Human Neuroscience
– volume: 43
  year: 2020
  article-title: The effect of zolpidem on memory consolidation over a night of sleep
  publication-title: Sleep
– volume: 78
  start-page: 221
  year: 2015
  end-page: 230
  article-title: Effect of emotional valence on retrieval‐related recapitulation of encoding activity in the ventral visual stream
  publication-title: Neuropsychologia
– volume: 9
  start-page: 534
  year: 1997
  end-page: 547
  article-title: Effects of early and late nocturnal sleep on declarative and procedural memory
  publication-title: Journal of Cognitive Neuroscience
– volume: 33
  start-page: 7234
  year: 2013
  end-page: 7244
  article-title: Functional connectivity from the amygdala to the hippocampus grows stronger after stress
  publication-title: Journal of Neuroscience
– volume: 45
  start-page: 478
  year: 2017
  end-page: 489
  article-title: Memory under stress: From single systems to network changes
  publication-title: European Journal of Neuroscience
– volume: 15
  start-page: 233
  year: 2008
  end-page: 237
  article-title: Sleep directly following learning benefits consolidation of spatial associative memory
  publication-title: Learning & Memory
– volume: 41
  year: 2018
  article-title: Large‐scale structure and individual fingerprints of locally coupled sleep oscillations
  publication-title: Sleep
– volume: 30
  start-page: 800
  year: 2019b
  end-page: 804
  article-title: Physiological arousal and visuocortical connectivity predict subsequent vividness of negative memories
  publication-title: NeuroReport
– volume: 51
  year: 2020
  article-title: Sleep's impact on emotional recognition memory: A meta‐analysis of whole‐night, nap, and REM sleep effects
  publication-title: Sleep Medicine Reviews
– volume: 103
  start-page: 756
  year: 2006
  end-page: 761
  article-title: Declarative memory consolidation in humans: A prospective functional magnetic resonance imaging study
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 663
  year: 2008
  end-page: 685
– volume: 143
  start-page: 636
  year: 2017
  end-page: 675
  article-title: The effects of acute stress on episodic memory: A meta‐analysis and integrative review
  publication-title: Psychological Bulletin
– volume: 25
  start-page: 1565
  year: 2015
  end-page: 1575
  article-title: Complementary roles of slow‐wave sleep and rapid eye movement sleep in emotional memory consolidation
  publication-title: Cerebral Cortex
– volume: 8
  start-page: 112
  year: 2001
  end-page: 119
  article-title: Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep
  publication-title: Learning & Memory
– volume: 33
  start-page: 57
  year: 2020
  end-page: 64
  article-title: Neural correlates of sleep, stress, and selective memory consolidation
  publication-title: Current Opinion in Behavioral Sciences
– volume: 52
  year: 2020
  article-title: The microstructure of REM sleep: Why phasic and tonic?
  publication-title: Sleep Medicine Reviews
– volume: 68
  start-page: 34
  year: 2018
  end-page: 47
  article-title: Preferential consolidation of emotionally salient information during a nap is preserved in middle age
  publication-title: Neurobiology of Aging
– volume: 19
  start-page: 781
  year: 2008
  end-page: 788
  article-title: Sleep preferentially enhances memory for emotional components of scenes
  publication-title: Psychological Science
– volume: 95
  start-page: 424
  year: 2017
  end-page: 435
  article-title: Thalamic spindles promote memory formation during sleep through triple phase‐locking of cortical, thalamic, and hippocampal rhythms
  publication-title: Neuron
– volume: 13
  start-page: 309
  year: 2009
  end-page: 321
  article-title: The whats and whens of sleep‐dependent memory consolidation
  publication-title: Sleep Medicine Reviews
– volume: 19
  start-page: 290
  year: 2010
  end-page: 295
  article-title: Sleep's role in the consolidation of emotional episodic memories
  publication-title: Current Directions in Psychological Science
– volume: 23
  start-page: 3629
  year: 2009
  end-page: 3636
  article-title: Enhancing influence of intranasal interleukin‐6 on slow‐wave activity and memory consolidation during sleep
  publication-title: The FASEB Journal
– volume: 106
  start-page: 138
  year: 2019
  end-page: 146
  article-title: Stress and the medial temporal lobe at rest: Functional connectivity is associated with both memory and cortisol
  publication-title: Psychoneuroendocrinology
– volume: 136
  year: 2020
  article-title: Forgotten but not gone: FMRI evidence of implicit memory for negative stimuli 24 hours after the initial study episode
  publication-title: Neuropsychologia
– volume: 63
  start-page: 285
  year: 2014
  end-page: 292
  article-title: Sleep spindles provide indirect support to the consolidation of emotional encoding contexts
  publication-title: Neuropsychologia
– volume: 17
  start-page: 1186
  year: 2017
  end-page: 1209
  article-title: Remembering specific features of emotional events across time: The role of REM sleep and prefrontal theta oscillations
  publication-title: Cognitive, Affective, & Behavioural Neuroscience
– volume: 32
  start-page: 1035
  year: 2012
  end-page: 1042
  article-title: Processing of emotional reactivity and emotional memory over sleep
  publication-title: Journal of Neuroscience
– volume: 25
  start-page: 646
  year: 2015
  end-page: 657
  article-title: Sleep and cortisol interact to support memory consolidation
  publication-title: Cerebral Cortex
– volume: 19
  start-page: 36
  year: 2018
  end-page: 43
  article-title: Stress, sleep, and the selective consolidation of emotional memories
  publication-title: Current Opinion in Behavioral Sciences, Emotion‐cognition Interactions
– volume: 437
  start-page: 1272
  year: 2005
  end-page: 1278
  article-title: Sleep‐dependent memory consolidation
  publication-title: Nature
– year: 1925
– volume: 99
  start-page: 1
  year: 2013
  end-page: 9
  article-title: The role of REM sleep in the processing of emotional memories: Evidence from behavior and event‐related potentials
  publication-title: Neurobiology of Learning and Memory
– volume: 10
  year: 2015
  article-title: Coupling of thalamocortical sleep oscillations are important for memory consolidation in humans
  publication-title: PLoS One
– volume: 9
  year: 2019
  article-title: Precise slow oscillation‐spindle coupling promotes memory consolidation in younger and older adults
  publication-title: Scientific Reports
– volume: 30
  start-page: 829
  issue: 8
  year: 2019
  end-page: 841
  article-title: Interactive effects of stress reactivity and rapid eye movement sleep theta activity on emotional memory formation
  publication-title: Hippocampus
– volume: 93
  start-page: 681
  year: 2013
  end-page: 766
  article-title: About sleep's role in memory
  publication-title: Physiological Reviews
– volume: 102
  start-page: 2626
  year: 2005
  end-page: 2631
  article-title: Remembering one year later: Role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1
  start-page: 39
  year: 2014a
  end-page: 51
  article-title: The influence of sleep on the consolidation of positive emotional memories: Preliminary evidence
  publication-title: AIMS Neuroscience
– volume: 19
  start-page: 264
  year: 2012
  end-page: 267
  article-title: Involvement of spindles in memory consolidation is slow wave sleep‐specific
  publication-title: Learning & Memory
– volume: 6
  start-page: 463
  year: 2005
  end-page: 475
  article-title: Stress and the brain: From adaptation to disease
  publication-title: Nature Reviews Neuroscience
– volume: 122
  start-page: 110
  year: 2015
  end-page: 121
  article-title: The role of rapid eye movement sleep for amygdala‐related memory processing
  publication-title: Neurobiology of Learning and Memory
– volume: 5
  start-page: 256
  year: 2007
  end-page: 278
  article-title: The effect of psychosocial stress on sleep: A review of polysomnographic evidence
  publication-title: Behavioral Sleep Medicine
– volume: 25
  start-page: 611
  year: 2018
  end-page: 619
  article-title: Post‐encoding stress enhances mnemonic discrimination of negative stimuli
  publication-title: Learning & Memory
– volume: 6
  year: 2015
  article-title: The role of REM sleep theta activity in emotional memory
  publication-title: Frontiers in Psychology
– volume: 29
  year: 2019
  article-title: Naps reliably estimate nocturnal sleep spindle density in health and schizophrenia
  publication-title: Journal of Sleep Research
– volume: 39
  start-page: 3130
  year: 2019a
  end-page: 3143
  article-title: Post‐encoding amygdala‐visuosensory coupling is associated with negative memory bias in healthy young adults
  publication-title: Journal of Neuroscience
– volume: 15
  start-page: 176
  year: 2015
  end-page: 186
  article-title: Napping and the selective consolidation of negative aspects of scenes
  publication-title: Emotion
– volume: 135
  start-page: 731
  year: 2009
  end-page: 748
  article-title: Overnight therapy? The role of sleep in emotional brain processing
  publication-title: Psychological Bulletin
– volume: 57
  year: 2020
  article-title: Understanding the interplay of sleep and aging: Methodological challenges
  publication-title: Psychophysiology
– volume: 14
  start-page: 272
  year: 2011
  end-page: 274
  article-title: Sleep on it!: Stabilizing and transforming memories during sleep
  publication-title: Nature Neuroscience
– volume: 6
  year: 2012
  article-title: Sleep promotes lasting changes in selective memory for emotional scenes
  publication-title: Frontiers in Integrative Neuroscience
– volume: 64
  start-page: 627
  year: 2002
  end-page: 634
  article-title: Changes in emotional responses to aversive pictures across periods rich in slow‐wave sleep versus rapid eye movement sleep
  publication-title: Psychosomatic Medicine
– year: 2020
– volume: 25
  start-page: 1597
  year: 2013
  end-page: 1610
  article-title: Pharmacologically increasing sleep spindles enhances recognition for negative and high‐arousal memories
  publication-title: Journal of Cognitive Neuroscience
– volume: 14
  year: 2014
  article-title: Differential effects of non‐REM and REM sleep on memory consolidation?
  publication-title: Current Neurology and Neuroscience Reports
– volume: 40
  year: 2016
  article-title: Coordination of slow waves with sleep spindles predicts sleep‐dependent memory consolidation in schizophrenia
  publication-title: Sleep
– volume: 10
  year: 2019
  article-title: Psychosocial stress before a nap increases sleep latency and decreases early slow‐wave activity
  publication-title: Frontiers in Psychology
– volume: 27
  start-page: 451
  year: 2020
  end-page: 456
  article-title: The roles of item exposure and visualization success in the consolidation of memories across wake and sleep
  publication-title: Learning & Memory
– volume: 8
  start-page: 15930
  year: 2017
  article-title: Characterizing sleep spindles in 11,630 individuals from the National Sleep Research Resource
  publication-title: Nature Communications.
– volume: 37
  start-page: 1039
  year: 2012
  end-page: 1047
  article-title: Endogenous cortisol is associated with functional connectivity between the amygdala and medial prefrontal cortex
  publication-title: Psychoneuroendocrinology
– volume: 18
  start-page: 1679
  year: 2015
  end-page: 1686
  article-title: Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep
  publication-title: Nature Neuroscience
– volume: 97
  start-page: 221
  year: 2018
  end-page: 230
  article-title: Old brains come uncoupled in sleep: Slow wave‐spindle synchrony, brain atrophy, and forgetting
  publication-title: Neuron
– volume: 34
  start-page: 11096
  year: 2014
  end-page: 11105
  article-title: Post‐error slowing as a consequence of disturbed low‐frequency oscillatory phase entrainment
  publication-title: Journal of Neuroscience
– ident: e_1_2_12_36_1
  doi: 10.1016/j.neuron.2017.11.020
– ident: e_1_2_12_56_1
  doi: 10.1016/j.neuropsychologia.2010.07.030
– ident: e_1_2_12_86_1
  doi: 10.3389/fnhum.2013.00313
– ident: e_1_2_12_8_1
  doi: 10.18637/jss.v031.i10
– ident: e_1_2_12_11_1
  doi: 10.1093/cercor/bht349
– ident: e_1_2_12_77_1
  doi: 10.1016/j.psyneuen.2019.04.001
– ident: e_1_2_12_89_1
  doi: 10.1016/j.neuroimage.2011.05.074
– ident: e_1_2_12_82_1
  doi: 10.1038/nature04286
– ident: e_1_2_12_30_1
  doi: 10.1101/lm.132106
– ident: e_1_2_12_33_1
  doi: 10.1016/j.sleep.2014.12.022
– ident: e_1_2_12_13_1
  doi: 10.3934/Neuroscience.2014.1.39
– ident: e_1_2_12_49_1
  doi: 10.3389/fpsyg.2019.01014
– ident: e_1_2_12_88_1
  doi: 10.1523/JNEUROSCI.4991-13.2014
– ident: e_1_2_12_48_1
  doi: 10.1016/j.smrv.2020.101313
– ident: e_1_2_12_61_1
  doi: 10.1038/nn0311‐272
– ident: e_1_2_12_34_1
  doi: 10.1016/j.nlm.2012.10.006
– ident: e_1_2_12_4_1
  doi: 10.1016/j.neurobiolaging.2018.03.030
– ident: e_1_2_12_43_1
  doi: 10.1080/15402000701557383
– volume-title: Statistical methods for research workers
  year: 1925
  ident: e_1_2_12_29_1
  contributor:
    fullname: Fisher R. A.
– ident: e_1_2_12_17_1
  doi: 10.1101/2020.01.07.897413
– ident: e_1_2_12_23_1
  doi: 10.1101/lm.051383.120
– ident: e_1_2_12_14_1
  doi: 10.1007/s00221‐013‐3779‐7
– volume: 40
  start-page: zsw013
  year: 2016
  ident: e_1_2_12_20_1
  article-title: Coordination of slow waves with sleep spindles predicts sleep‐dependent memory consolidation in schizophrenia
  publication-title: Sleep
  contributor:
    fullname: Demanuele C.
– ident: e_1_2_12_74_1
  doi: 10.1152/physrev.00032.2012
– ident: e_1_2_12_63_1
  doi: 10.3389/fnint.2012.00108
– ident: e_1_2_12_24_1
  doi: 10.1371/journal.pone.0121945
– ident: e_1_2_12_51_1
  doi: 10.1037/0033‐2909.111.1.172
– ident: e_1_2_12_71_1
  doi: 10.1162/jocn.1997.9.4.534
– ident: e_1_2_12_50_1
  doi: 10.1101/2020.05.28.122168
– ident: e_1_2_12_42_1
  doi: 10.1016/j.neuropsychologia.2019.107277
– ident: e_1_2_12_47_1
  doi: 10.1016/j.neuron.2017.06.025
– ident: e_1_2_12_15_1
  doi: 10.1101/lm.026252.112
– ident: e_1_2_12_35_1
  doi: 10.1016/j.nlm.2014.08.013
– ident: e_1_2_12_16_1
  doi: 10.1093/sleep/zsy175
– ident: e_1_2_12_60_1
  doi: 10.1093/cercor/bhn155
– ident: e_1_2_12_78_1
  doi: 10.1037/bul0000100
– ident: e_1_2_12_92_1
  doi: 10.1101/lm.36801
– ident: e_1_2_12_59_1
  doi: 10.1371/journal.pone.0144720
– ident: e_1_2_12_67_1
  doi: 10.1016/j.cobeha.2017.09.006
– ident: e_1_2_12_38_1
  doi: 10.1162/jocn_a_00433
– ident: e_1_2_12_70_1
  doi: 10.1371/journal.pone.0033079
– ident: e_1_2_12_26_1
  doi: 10.1016/j.smrv.2008.08.002
– ident: e_1_2_12_2_1
  doi: 10.3389/fpsyg.2019.00020
– ident: e_1_2_12_90_1
  doi: 10.1016/j.psyneuen.2011.12.001
– ident: e_1_2_12_3_1
  doi: 10.1007/s11910‐013‐0430‐8
– ident: e_1_2_12_44_1
  doi: 10.1002/hipo.23138
– ident: e_1_2_12_53_1
  doi: 10.1371/journal.pone.0089849
– ident: e_1_2_12_79_1
  doi: 10.1016/j.smrv.2020.101305
– ident: e_1_2_12_45_1
  doi: 10.1016/j.cobeha.2019.12.009
– ident: e_1_2_12_46_1
  doi: 10.1038/s41593-019-0467-3
– ident: e_1_2_12_81_1
  doi: 10.1038/nn.4119
– ident: e_1_2_12_39_1
  doi: 10.1016/j.neuropsychologia.2015.10.014
– ident: e_1_2_12_27_1
  doi: 10.1073/pnas.0409848102
– ident: e_1_2_12_40_1
  doi: 10.1523/JNEUROSCI.2834-18.2019
– ident: e_1_2_12_83_1
  doi: 10.1038/nn.3303
– ident: e_1_2_12_25_1
  doi: 10.1038/nrn2762
– ident: e_1_2_12_31_1
  doi: 10.1016/j.nlm.2015.01.008
– ident: e_1_2_12_9_1
  doi: 10.1016/j.neuropsychologia.2018.05.015
– volume-title: sleepLDF: SO‐spindle coupling
  year: 2021
  ident: e_1_2_12_21_1
  contributor:
    fullname: Denis D.
– ident: e_1_2_12_54_1
  doi: 10.1038/s41598‐018‐36557‐z
– ident: e_1_2_12_55_1
  doi: 10.1111/psyp.13523
– ident: e_1_2_12_66_1
  doi: 10.1177/0963721410383978
– ident: e_1_2_12_19_1
  doi: 10.1038/nrn1683
– ident: e_1_2_12_52_1
  doi: 10.1111/jsr.12835
– ident: e_1_2_12_73_1
  doi: 10.1038/ncomms15930
– ident: e_1_2_12_32_1
  doi: 10.1523/JNEUROSCI.0638-13.2013
– ident: e_1_2_12_5_1
  doi: 10.1523/JNEUROSCI.2532‐11.2012
– ident: e_1_2_12_6_1
  doi: 10.1096/fj.08-122853
– ident: e_1_2_12_69_1
  doi: 10.1111/j.1467‐9280.2008.02157.x
– ident: e_1_2_12_91_1
  doi: 10.1097/01.PSY.0000021940.35402.51
– volume: 29
  start-page: e12968
  year: 2019
  ident: e_1_2_12_58_1
  article-title: Naps reliably estimate nocturnal sleep spindle density in health and schizophrenia
  publication-title: Journal of Sleep Research
  doi: 10.1111/jsr.12968
  contributor:
    fullname: Mylonas D.
– ident: e_1_2_12_93_1
  doi: 10.1037/a0016570
– ident: e_1_2_12_12_1
  doi: 10.1016/j.nlm.2016.06.015
– ident: e_1_2_12_64_1
  doi: 10.1016/B978-012370509-9.00181-9
– ident: e_1_2_12_87_1
– ident: e_1_2_12_95_1
  doi: 10.1093/sleep/zsaa084
– ident: e_1_2_12_10_1
  doi: 10.1016/j.neuropsychologia.2014.09.016
– ident: e_1_2_12_62_1
  doi: 10.5665/sleep.3750
– ident: e_1_2_12_72_1
  doi: 10.1016/j.sleep.2010.10.010
– ident: e_1_2_12_37_1
  doi: 10.3389/fpsyg.2015.01439
– ident: e_1_2_12_94_1
  doi: 10.1016/j.biopsych.2011.08.008
– ident: e_1_2_12_76_1
  doi: 10.1111/ejn.13478
– ident: e_1_2_12_68_1
  doi: 10.1037/a0038683
– ident: e_1_2_12_57_1
  doi: 10.1038/s41386-020-00833-2
– ident: e_1_2_12_18_1
  doi: 10.1101/lm.047498.118
– ident: e_1_2_12_22_1
– ident: e_1_2_12_28_1
  doi: 10.1038/s41386‐019‐0490‐9
– ident: e_1_2_12_75_1
  doi: 10.1016/j.smrv.2020.101280
– ident: e_1_2_12_85_1
  doi: 10.1101/lm.771608
– ident: e_1_2_12_84_1
  doi: 10.1073/pnas.0507774103
– ident: e_1_2_12_65_1
  doi: 10.1101/lm.743507
– ident: e_1_2_12_7_1
  doi: 10.1093/cercor/bht255
– ident: e_1_2_12_80_1
  doi: 10.3758/s13415‐017‐0542‐8
– ident: e_1_2_12_41_1
  doi: 10.1097/WNR.0000000000001274
SSID ssj0008645
Score 2.4796298
Snippet Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs shortly...
Abstract Both stress and sleep enhance emotional memory. They also interact, with the largest effect of sleep on emotional memory being seen when stress occurs...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2632
SubjectTerms Activity patterns
Cortisol
Electroencephalography
Emotions
Emotions - physiology
Humans
Oscillations
Polysomnography
Sleep
Sleep - physiology
Sleep, Slow-Wave
slow waves
Title Slow oscillation‐spindle coupling is negatively associated with emotional memory formation following stress
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.15132
https://www.ncbi.nlm.nih.gov/pubmed/33511691
https://www.proquest.com/docview/2670018354
https://www.proquest.com/docview/2483819192
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5VvcAF2C6PwC4yCCEuqZLmYUecqtKqWokegEo9IEWxY1fdbdMVbYXKaX8Cv5FfsjPOY7e7QkLkZCmOnYxnMuPxzDcA72SGV2Q8l_sycFFDa1cYaVzUbUIlGZdCUzby50k8noZns2jWgo91LkyJD9E43Egy7P-aBDyTm1tCrs-LLqqrgP6_fsApnOvTlxvoKBHbAsUEp-YKP55VqEIUxdM8eaiL7hmYh_aqVTijx_C9ftUyzuSiu9vKrvp1B8XxP7_lCTyqDFHWLznnCFq66MBxv8BN-GrP3jMbGmp97h14MKjLwh3D6uty_ZMRBOayDKP7c_V7c7kgrAam1jtK8J2zxYYVem4xxZd7llUsoHNGbl-my9JBOPuK4nz3rMmgxNYSh6chyiSWpzAdDb8Nxm5Vs8FVARnrWiHFjYwiJQlpJokzEyju5XFAJ4jCS_I8z5SXe4FUkuciQntJZCGPYqN9jdbkM2gX60K_ACZCn5N1lKieCU3IRcR1jopWy8QziS8ceFuvXnpZQnOk9ZYGCZpagjpwUq9rWknnJu1RbpJPLi8H3jS3kY50WJIVer3DPqGwm9kEh3he8kMzS0Cnr3HiO_DBrurfp0-HZxPbePnvXV_Bwx7lWNioyhNob3_s9ClaPlv52rL4Nf0GAY4
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB5F9EAvbYG2pARYqqrqxZEd_62lXqIQlALJoQUpl8ryrncRkDgRSVSlJx6BZ-yTMLP-gbSqhPBpJa937dkZz-zszDcAn0SCl69tK3SEa6GGVhbXQluo27iMklBwRdnI_UHQO_eOh_6wBl_LXJgcH6JyuJFkmP81CTg5pB9JubrKmqivXPwBv0Bxd0ksD78_gEfxwJQoJkA1izvBsMAVojie6tFVbfSPiblqsRqVc_QafpYvm0eaXDcXc9GUv__CcXzu17yBV4Utyto582xATWWbsNXOcB8-XrLPzESHGrf7Jqx3yspwWzD-MZr8YoSCOcoj6f7c3s2mlwTXwORkQTm-F-xyxjJ1YWDFR0uWFFygUkaeX6by6kE4-5hCfZesSqLE1giHpyHyPJa3cH7UPev0rKJsgyVdsteVRJJr4ftSENhMFCTalaGdBi4dInI7StM0kXZqu0KKMOU-mkw88UI_0MpRaFC-g7VskqltYNxzQjKQItnSnvZC7ocqRV2rRGTryOF1-FguXzzN0TnicleDBI0NQevQKBc2LgR0FrcoPckhr1cdDqrbSEc6L0kyNVlgH4-b_WyEQ7zPGaKaxaUD2CBy6vDFLOv_p4-7xwPT-PD0rvuw3jvrn8an3wYnO_CyRSkXJsiyAWvzm4XaRUNoLvYMv98D_L0Fpw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hkNpeCoVCw6NdKlT14siOX2txQpSI8oiqUqQckCzvCwGJE5FEKJz4CfxGfgkz60dLKyRUn1byetfenfF8uzvzDcCWyPAKjevEnvAdtNDa4UYYB20bl0kWC64pGvm4E-2fBgfdsDsD21UsTMEPUW-4kWbY_zUp-FCZP5RcX-ZNNFc-_n_ngghFlRDRz9_cUTyyGYqJT83hXtQtaYXIjad-9Kkx-gdhPgWs1uK05-GsetfC0eSqORmLprz9i8bxPz9mAd6WSJTtFKLzDmZ0vghLOzmuwvtT9oVZ31C76b4Ir3ervHBL0D_pDW4YcWD2Cj-6h7v70fCCyBqYHEwowvecXYxYrs8tqXhvyrJSBrRitO_LdJE7CHvvk6PvlNUhlFjqYfPURBHF8h5O23u_dvedMmmDI31C61riiBsRhlIQ1UwSZcaXsasin44QuZsopTLpKtcXUsSKhwiYeBbEYWS0pxFOLsNsPsj1B2A88GKCR4lsmcAEMQ9jrdDSapG4JvF4Az5Xs5cOC26OtFrT4ICmdkAbsF7Na1qq5yhtUXCSR3teDdisb-M40mlJluvBBOsE3K5mE2xipZCHuhefjl-jxGvAVzurz3ef7h10bGH15VU_wasf39rp0ffO4Rq8aVG8hfWwXIfZ8fVEbyAKGouPVtofAfLLBFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slow+oscillation-spindle+coupling+is+negatively+associated+with+emotional+memory+formation+following+stress&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Denis%2C+Dan&rft.au=Kim%2C+Sara+Y&rft.au=Kark%2C+Sarah+M&rft.au=Daley%2C+Ryan+T&rft.date=2022-05-01&rft.eissn=1460-9568&rft.volume=55&rft.issue=9-10&rft.spage=2632&rft_id=info:doi/10.1111%2Fejn.15132&rft_id=info%3Apmid%2F33511691&rft.externalDocID=33511691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon