Information theory characteristics improve the prediction of lithium response in bipolar disorder patients using a support vector machine classifier

Aim Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use feat...

Full description

Saved in:
Bibliographic Details
Published inBipolar disorders Vol. 25; no. 2; pp. 110 - 127
Main Authors Tripathi, Utkarsh, Mizrahi, Liron, Alda, Martin, Falkovich, Gregory, Stern, Shani
Format Journal Article
LanguageEnglish
Published Denmark Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. Methods We have performed electrophysiological recordings in patient‐derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. Results Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). Conclusion The addition of Information theory‐derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
AbstractList Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). The addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder.AIMBipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder.We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features.METHODSWe have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features.Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy).RESULTSInformation theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy).The addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.CONCLUSIONThe addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
AimBipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder.MethodsWe have performed electrophysiological recordings in patient‐derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features.ResultsInformation theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy).ConclusionThe addition of Information theory‐derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Aim Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. Methods We have performed electrophysiological recordings in patient‐derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. Results Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). Conclusion The addition of Information theory‐derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.
Author Tripathi, Utkarsh
Alda, Martin
Falkovich, Gregory
Stern, Shani
Mizrahi, Liron
Author_xml – sequence: 1
  givenname: Utkarsh
  orcidid: 0000-0001-9503-3793
  surname: Tripathi
  fullname: Tripathi, Utkarsh
  organization: University of Haifa
– sequence: 2
  givenname: Liron
  surname: Mizrahi
  fullname: Mizrahi, Liron
  organization: University of Haifa
– sequence: 3
  givenname: Martin
  orcidid: 0000-0001-9544-3944
  surname: Alda
  fullname: Alda, Martin
  organization: Dalhousie University
– sequence: 4
  givenname: Gregory
  orcidid: 0000-0002-0570-7895
  surname: Falkovich
  fullname: Falkovich, Gregory
  organization: Weizmann Institute of Science
– sequence: 5
  givenname: Shani
  orcidid: 0000-0002-2644-7068
  surname: Stern
  fullname: Stern, Shani
  email: sstern@univ.haifa.ac.il
  organization: University of Haifa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36479788$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS3Uiv7AghdAltjA4rZxnB9nSQuUK1Xqpqwjx5lwp0rsMOMU3ffggXHvbVlUot54dPzN0YzPiTjwwYMQ71R2ptI573o8Uzo3-StxrHTTrMpKmYNdbVJd1EfihPkuy1SVZ-VrcaST1tTGHIs_az8EmmzE4GXcQKCtdBtL1kUg5IiOJU4zhXt4eJYzQY9uR4dBjhg3uEySgOfgGSR62eEcRkuyRw7UA8k5mYOPLBdG_1Naycs8B4ryHlwMJCfrNuhButEy44BAb8ThYEeGt4_3qfjx7evt5ffV9c3V-vLz9cppY_JVDTbLugqUNQ3krrB935tmAOPANZ2pTJeZolCltdpVRQfQ2bzOVRJNCaoCfSo-7n3Tfr8W4NhOyA7G0XoIC7d5XWqdKVOqhH54ht6FhXyaLlGmbIyuqjJR7x-ppZugb2fCydK2ffrvBHzaA44CM8HwD1FZ-5Blm7Jsd1km9vwZ6zDugopkcXyp4zeOsP2_dXvxZb3v-AuAiLNo
CitedBy_id crossref_primary_10_1371_journal_pone_0302537
crossref_primary_10_1038_s41380_023_02183_z
crossref_primary_10_1002_brb3_70209
Cites_doi 10.1016/S0278-5846(02)00203-8
10.1111/bdi.13241
10.1016/j.biopsych.2020.01.020
10.1038/417292a
10.1007/BF03256238
10.1007/s10827-010-0271-2
10.1192/bjp.2022.28
10.1002/047174882X
10.1038/nmeth.1591
10.1046/j.1471-4159.1999.720879.x
10.1371/journal.pone.0065636
10.1017/S1461145703003778
10.1002/j.1538-7305.1948.tb00917.x
10.1001/jama.1994.03510360044034
10.1111/bdi.12544
10.2165/00023210-200317070-00003
10.1007/s10827-010-0262-3
10.1192/bjp.170.3.205
10.1038/s41398-021-01702-2
10.1001/archpsyc.1974.01760080077013
10.1038/mp.2016.260
10.1016/j.stemcr.2014.01.009
10.1176/appi.ajp.162.7.1281
10.1038/tp.2014.12
10.1038/s41380-020-00981-3
10.1016/S0140-6736(20)31544-0
10.1515/znc-1981-9-1040
10.1176/appi.ajp.157.9.1509
10.1038/nrn2578
10.1016/S1388-2457(01)00513-2
10.1172/JCI22466
10.2174/1570159X13666150630171954
10.1007/BF00228395
10.1371/journal.pone.0115764
10.1177/2040622311399173
10.1016/j.biopsych.2019.09.018
10.1001/archpsyc.1978.01770300115013
10.1002/ajmg.b.30617
10.1111/acps.13122
10.1111/acps.13062
10.3390/ijms22179315
10.1001/archpsyc.59.6.530
10.1038/14731
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd.
2022 The Authors. Bipolar Disorders published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd.
– notice: 2022 The Authors. Bipolar Disorders published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/bdi.13282
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-5618
EndPage 127
ExternalDocumentID 36479788
10_1111_bdi_13282
BDI13282
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Simons foundation
  funderid: 662962
– fundername: EU Horizon 2020
  funderid: 83937; 873028
– fundername: BSF
  funderid: 2018033; 2020765
– fundername: Zuckerman STEM Leadership Program
– fundername: Israel Science Foundation
  funderid: 1994/21; 3252/21
– fundername: Israel Science Foundation
  grantid: 1994/21
– fundername: EU Horizon 2020
  grantid: 83937
– fundername: EU Horizon 2020
  grantid: 873028
– fundername: Simons foundation
  grantid: 662962
– fundername: Israel Science Foundation
  grantid: 3252/21
– fundername: BSF
  grantid: 2018033
– fundername: BSF
  grantid: 2020765
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23N
24P
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7X8
ID FETCH-LOGICAL-c3882-7ea00b6e1a89e2c4addd89fe8cec9b868b084415aa3c64beeba272108485e16e3
IEDL.DBID DR2
ISSN 1398-5647
1399-5618
IngestDate Thu Jul 10 23:24:11 EDT 2025
Fri Jul 25 21:07:56 EDT 2025
Wed Feb 19 02:24:46 EST 2025
Tue Jul 01 04:32:31 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Wed Jan 22 16:22:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lithium responders and non-responders
entropy
iPSC
lithium response prediction
bipolar disorders
information theory
mutual information
valproic acid
machine learning
SVM classifier
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Bipolar Disorders published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3882-7ea00b6e1a89e2c4addd89fe8cec9b868b084415aa3c64beeba272108485e16e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2644-7068
0000-0001-9544-3944
0000-0002-0570-7895
0000-0001-9503-3793
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbdi.13282
PMID 36479788
PQID 2785983665
PQPubID 2045186
PageCount 18
ParticipantIDs proquest_miscellaneous_2753301851
proquest_journals_2785983665
pubmed_primary_36479788
crossref_primary_10_1111_bdi_13282
crossref_citationtrail_10_1111_bdi_13282
wiley_primary_10_1111_bdi_13282_BDI13282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Denmark
PublicationPlace_xml – name: Denmark
– name: Hoboken
PublicationTitle Bipolar disorders
PublicationTitleAlternate Bipolar Disord
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 13
2002; 59
2021; 26
2011; 2
2021; 22
2000; 157
1974; 30
2020; 141
1995; 56
1994; 271
2019; 17
2022; 24
2011; 30
2008; 147B
2003; 17
2005
1999; 2
2002; 417
1978; 35
2019; 140
2018; 23
2006; 116
2013; 8
2007; 11
2015; 8
2011; 8
2022; 220
2002; 26
2001; 112
2005; 162
2014; 4
2009; 10
2021; 11
2014; 2
2020; 396
1993; 93
2003; 6
1981; 36
2017; 19
2020; 88
1997; 170
1999; 72
2014; 9
1948; 27
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Bowden CL (e_1_2_9_30_1) 1995; 56
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Wang L (e_1_2_9_34_1) 2015; 8
Stern S (e_1_2_9_13_1) 2019; 17
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 8
  year: 2013
  article-title: Assessment of response to lithium maintenance treatment in bipolar disorder: a consortium on lithium genetics (ConLiGen) report
  publication-title: PloS One
– volume: 24
  start-page: 739
  issue: 7
  year: 2022
  end-page: 748
  article-title: Lithium replacement dose recommendations using Monte Carlo simulations
  publication-title: Bipolar Disord
– volume: 93
  start-page: 279
  year: 1993
  end-page: 287
  article-title: Valproate and sodium currents in cultured hippocampal neurons
  publication-title: Exp Brain Res
– volume: 88
  start-page: 139
  year: 2020
  end-page: 149
  article-title: Mechanisms underlying the Hyperexcitability of CA3 and dentate gyrus hippocampal neurons derived from patients with bipolar disorder
  publication-title: Biol Psychiatry
– volume: 23
  start-page: 1453
  year: 2018
  end-page: 1465
  article-title: Neurons derived from patients with bipolar disorder divide into intrinsically different sub‐populations of neurons, predicting the patients' responsiveness to lithium
  publication-title: Mol Psychiatry
– volume: 19
  start-page: 587
  year: 2017
  end-page: 594
  article-title: Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder
  publication-title: Bipolar Disord
– volume: 17
  start-page: 491
  year: 2003
  end-page: 511
  article-title: Suicidal behaviour in bipolar disorder: risk and prevention
  publication-title: CNS Drugs
– volume: 271
  start-page: 918
  year: 1994
  end-page: 924
  article-title: Efficacy of divalproex vs lithium and placebo in the treatment of mania
  publication-title: JAMA
– volume: 9
  year: 2014
  article-title: Multiplex networks of cortical and hippocampal neurons revealed at different timescales
  publication-title: PloS One
– volume: 2
  start-page: 295
  year: 2014
  end-page: 310
  article-title: Modeling hippocampal neurogenesis using human pluripotent stem cells
  publication-title: Stem Cell Rep
– year: 2005
– volume: 30
  start-page: 45
  year: 2011
  end-page: 67
  article-title: Transfer entropy—a model‐free measure of effective connectivity for the neurosciences
  publication-title: J Comput Neurosci
– volume: 11
  start-page: 161
  year: 2007
  end-page: 170
  article-title: The pharmacogenetics of lithium response depends upon clinical co‐morbidity
  publication-title: Mol Diagn Ther
– volume: 17
  start-page: 294
  year: 2019
  end-page: 307
  article-title: Prediction of response to drug therapy in psychiatric disorders
  publication-title: Open Biol
– volume: 4
  start-page: e375
  year: 2014
  article-title: Transcripts involved in calcium signaling and telencephalic neuronal fate are altered in induced pluripotent stem cells from bipolar disorder patients
  publication-title: Transl Psychiatry
– volume: 26
  start-page: 903
  year: 2002
  end-page: 907
  article-title: Possible relationship between electroencephalogram finding and lithium response in bipolar disorder
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 36
  start-page: 910
  year: 1981
  end-page: 912
  article-title: A simple coding procedure enhances a neuron's information capacity
  publication-title: Z Naturforsch C
– volume: 88
  start-page: 150
  year: 2020
  end-page: 158
  article-title: A physiological instability displayed in hippocampal neurons derived from lithium‐nonresponsive bipolar disorder patients
  publication-title: Biol Psychiatry
– volume: 35
  start-page: 773
  year: 1978
  end-page: 782
  article-title: Research diagnostic criteria: rationale and reliability
  publication-title: Arch Gen Psychiatry
– volume: 396
  start-page: 1841
  year: 2020
  end-page: 1856
  article-title: Bipolar disorders
  publication-title: Lancet
– volume: 59
  start-page: 530
  year: 2002
  end-page: 537
  article-title: The long‐term natural history of the weekly symptomatic status of bipolar I disorder
  publication-title: Arch Gen Psychiatry
– volume: 26
  start-page: 2440
  year: 2021
  end-page: 2456
  article-title: Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients
  publication-title: Mol Psychiatry
– volume: 157
  start-page: 1509
  year: 2000
  end-page: 1511
  article-title: Sex differences in response to lithium treatment
  publication-title: Am J Psychiatry
– volume: 10
  start-page: 173
  year: 2009
  end-page: 185
  article-title: Extracting information from neuronal populations: information theory and decoding approaches
  publication-title: Nat Rev Neurosci
– volume: 220
  start-page: 219
  year: 2022
  end-page: 228
  article-title: Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach
  publication-title: Br J Psychiatry
– volume: 72
  start-page: 879
  year: 1999
  end-page: 882
  article-title: The mood‐stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl‐2 in the CNS
  publication-title: J Neurochem
– volume: 8
  start-page: 578
  year: 2015
  end-page: 585
  article-title: Wnt signaling pathway participates in valproic acid‐induced neuronal differentiation of neural stem cells
  publication-title: Int J Clin Exp Pathol
– volume: 417
  start-page: 292
  year: 2002
  end-page: 295
  article-title: A common mechanism of action for three mood‐stabilizing drugs
  publication-title: Nature
– volume: 2
  start-page: 947
  year: 1999
  end-page: 957
  article-title: Information theory and neural coding
  publication-title: Nat Neurosci
– volume: 30
  start-page: 85
  year: 2011
  end-page: 107
  article-title: Multivariate information‐theoretic measures reveal directed information structure and task relevant changes in fMRI connectivity
  publication-title: J Comput Neurosci
– volume: 140
  start-page: 94
  year: 2019
  end-page: 115
  article-title: A systematic review and meta‐analysis of clinical predictors of lithium response in bipolar disorder
  publication-title: Acta Psychiatr Scand
– volume: 30
  start-page: 229
  year: 1974
  end-page: 233
  article-title: Clinical factors in lithium carbonate prophylaxis failure
  publication-title: Arch Gen Psychiatry
– volume: 141
  start-page: 131
  year: 2020
  end-page: 141
  article-title: Prediction of lithium response using clinical data
  publication-title: Acta Psychiatr Scand
– volume: 162
  start-page: 1281
  year: 2005
  end-page: 1290
  article-title: Olanzapine versus lithium in the maintenance treatment of bipolar disorder: a 12‐month, randomized, double‐blind, controlled clinical trial
  publication-title: Am J Psychiatry
– volume: 8
  start-page: 409
  year: 2011
  end-page: 412
  article-title: A more efficient method to generate integration‐free human iPS cells
  publication-title: Nat Methods
– volume: 170
  start-page: 205
  year: 1997
  end-page: 228
  article-title: Suicide as an outcome for mental disorders. A Meta‐Analysis
  publication-title: Br J Psychiatry
– volume: 56
  start-page: 3
  year: 1995
  end-page: 5
  article-title: History of the development of valproate for treatment of bipolar disorder
  publication-title: J Clin Psychiatry
– volume: 116
  start-page: 1668
  year: 2006
  end-page: 1674
  article-title: Neuronal calcium sensor‐1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium
  publication-title: J Clin Invest
– volume: 147B
  start-page: 500
  year: 2008
  end-page: 504
  article-title: Lithium response and genetic variation in the CREB family of genes
  publication-title: Am J Med Genet Part B Neuropsychiatr Genet
– volume: 11
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients
  publication-title: Transl Psychiatry
– volume: 13
  start-page: 592
  year: 2015
  end-page: 604
  article-title: Pharmacological approaches for treatment‐resistant bipolar disorder
  publication-title: Curr Neuropharmacol
– volume: 2
  start-page: 209
  year: 2011
  end-page: 226
  article-title: Predictors of lithium response in bipolar disorder
  publication-title: Ther Adv Chronic Dis
– volume: 22
  issue: 17
  year: 2021
  article-title: Mood stabilizers in psychiatric disorders and mechanisms learnt from In vitro model systems
  publication-title: Int J Mol Sci
– volume: 27
  start-page: 623
  year: 1948
  end-page: 656
  article-title: A mathematical theory of communication
  publication-title: Bell Syst Tech J
– volume: 112
  start-page: 827
  year: 2001
  end-page: 835
  article-title: Mutual information analysis of the EEG in patients with Alzheimer's disease
  publication-title: Clin Neurophysiol
– volume: 6
  start-page: 421
  year: 2003
  end-page: 424
  article-title: Possible relationship between mitochondrial DNA polymorphisms and lithium response in bipolar disorder
  publication-title: Int J Neuropsychopharmacol
– ident: e_1_2_9_25_1
  doi: 10.1016/S0278-5846(02)00203-8
– ident: e_1_2_9_29_1
  doi: 10.1111/bdi.13241
– ident: e_1_2_9_20_1
  doi: 10.1016/j.biopsych.2020.01.020
– ident: e_1_2_9_32_1
  doi: 10.1038/417292a
– ident: e_1_2_9_27_1
  doi: 10.1007/BF03256238
– ident: e_1_2_9_41_1
  doi: 10.1007/s10827-010-0271-2
– ident: e_1_2_9_17_1
  doi: 10.1192/bjp.2022.28
– ident: e_1_2_9_47_1
  doi: 10.1002/047174882X
– ident: e_1_2_9_44_1
  doi: 10.1038/nmeth.1591
– volume: 17
  start-page: 294
  year: 2019
  ident: e_1_2_9_13_1
  article-title: Prediction of response to drug therapy in psychiatric disorders
  publication-title: Open Biol
– ident: e_1_2_9_23_1
  doi: 10.1046/j.1471-4159.1999.720879.x
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pone.0065636
– ident: e_1_2_9_26_1
  doi: 10.1017/S1461145703003778
– ident: e_1_2_9_46_1
  doi: 10.1002/j.1538-7305.1948.tb00917.x
– ident: e_1_2_9_31_1
  doi: 10.1001/jama.1994.03510360044034
– ident: e_1_2_9_28_1
  doi: 10.1111/bdi.12544
– volume: 56
  start-page: 3
  year: 1995
  ident: e_1_2_9_30_1
  article-title: History of the development of valproate for treatment of bipolar disorder
  publication-title: J Clin Psychiatry
– volume: 8
  start-page: 578
  year: 2015
  ident: e_1_2_9_34_1
  article-title: Wnt signaling pathway participates in valproic acid‐induced neuronal differentiation of neural stem cells
  publication-title: Int J Clin Exp Pathol
– ident: e_1_2_9_4_1
  doi: 10.2165/00023210-200317070-00003
– ident: e_1_2_9_39_1
  doi: 10.1007/s10827-010-0262-3
– ident: e_1_2_9_5_1
  doi: 10.1192/bjp.170.3.205
– ident: e_1_2_9_16_1
  doi: 10.1038/s41398-021-01702-2
– ident: e_1_2_9_10_1
  doi: 10.1001/archpsyc.1974.01760080077013
– ident: e_1_2_9_18_1
  doi: 10.1038/mp.2016.260
– ident: e_1_2_9_45_1
  doi: 10.1016/j.stemcr.2014.01.009
– ident: e_1_2_9_8_1
  doi: 10.1176/appi.ajp.162.7.1281
– ident: e_1_2_9_24_1
  doi: 10.1038/tp.2014.12
– ident: e_1_2_9_21_1
  doi: 10.1038/s41380-020-00981-3
– ident: e_1_2_9_2_1
  doi: 10.1016/S0140-6736(20)31544-0
– ident: e_1_2_9_37_1
  doi: 10.1515/znc-1981-9-1040
– ident: e_1_2_9_7_1
  doi: 10.1176/appi.ajp.157.9.1509
– ident: e_1_2_9_36_1
  doi: 10.1038/nrn2578
– ident: e_1_2_9_40_1
  doi: 10.1016/S1388-2457(01)00513-2
– ident: e_1_2_9_22_1
  doi: 10.1172/JCI22466
– ident: e_1_2_9_6_1
  doi: 10.2174/1570159X13666150630171954
– ident: e_1_2_9_33_1
  doi: 10.1007/BF00228395
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0115764
– ident: e_1_2_9_12_1
  doi: 10.1177/2040622311399173
– ident: e_1_2_9_19_1
  doi: 10.1016/j.biopsych.2019.09.018
– ident: e_1_2_9_43_1
  doi: 10.1001/archpsyc.1978.01770300115013
– ident: e_1_2_9_42_1
  doi: 10.1002/ajmg.b.30617
– ident: e_1_2_9_15_1
  doi: 10.1111/acps.13122
– ident: e_1_2_9_14_1
  doi: 10.1111/acps.13062
– ident: e_1_2_9_9_1
  doi: 10.3390/ijms22179315
– ident: e_1_2_9_3_1
  doi: 10.1001/archpsyc.59.6.530
– ident: e_1_2_9_35_1
  doi: 10.1038/14731
SSID ssj0016205
Score 2.407728
Snippet Aim Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line...
Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line...
AimBipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first‐line...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms Bipolar disorder
Bipolar Disorder - diagnosis
bipolar disorders
Dentate gyrus
entropy
Granule cells
Humans
Information Theory
iPSC
Lithium
Lithium - therapeutic use
Lithium Compounds - therapeutic use
lithium responders and non‐responders
lithium response prediction
machine learning
Mood
Morbidity
mutual information
Patients
Support Vector Machine
Support vector machines
SVM classifier
valproic acid
Title Information theory characteristics improve the prediction of lithium response in bipolar disorder patients using a support vector machine classifier
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbdi.13282
https://www.ncbi.nlm.nih.gov/pubmed/36479788
https://www.proquest.com/docview/2785983665
https://www.proquest.com/docview/2753301851
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD6sK4gv3i-ju0MUH3zp0KZpmuLTjrvDKqyIuLAPQkkyp2vR7QwzU8H9HfuDzUnT4ngB8a2QE5ImOcl3ki9fAF4oZWyihYribM4jkUsbaSzSKMuNqmIjkfvHJk7eyeNT8fYsO9uBV_1dmE4fYthwI8_w8zU5uDbrn5zczOuJC6UUzb_E1SJA9GGQjkok9_RFB3BUlEmRB1UhYvEMObfXot8A5jZe9QvO7DZ86qva8Uy-TNqNmdjLX1Qc__Nf7sCtAETZQTdy7sIONvfgxkk4ar8PV-GiEnUc89cdvzO7re7Mar8jgZTMlivK6q0XFXPg_nPdXrBVR8FFVjfM1EuKo9k8CH6yoOm6ZkS-P2eardslhQPsmz9KYBee6InMEsKvK7eAP4DT2dHH18dReMIhsqnH7qhj6vFEqwK5FW42nauiQmXRFkZJZWJFEZ3WqZXCIBrNXUxKIv8ZJhLTh7DbLBp8DExVPEdDenaxFUbZQhc5KkTuQI0rS4zgZd-ZpQ365vTMxteyj3NcK5e-lUfwfDBddqIefzLa60dEGfx6XfJcZYVKpcxG8GxIdh5Jxyy6wUVLNsTYdTgoGcGjbiQNpZBav4vblausHw9_L76cHr7xH0_-3fQp3OQOg3UUuT3Y3axa3HeYaWPGcI2L92O4fjA9nM7G3lV-ALcmF2E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuvCkLBQbEgUtWiZM4jtQLr2oL3R5QK_WCIts7gQiaXe1ukNrfwQ-ux3mI5SEhbpE8lh17xv7GHn8D8EIpYyOdqCBMZyJIMmkDTXkcpJlRZWgkCZ9sYnokJyfJ-9P0dAv2-rcwLT_EcODGluHXazZwPpD-ycrNrBo7X0q5BfgKZ_T2DtXHgTwqksIHMDqIo4JUJlnHK8RxPEPVzd3oN4i5iVj9lrN_Ez71nW0jTb6Om7UZ24tfeBz_929uwY0Oi-KrVnluwxbVd-DqtLttvws_urdKPHfoXzyeo90keMbKH0oQF-NiyVW99LxEh--_VM0ZLtsoXMKqRlMt2JXGWcf5iR2t6wo5_v4zalw1C_YI8Lu_TcAzH-tJaBnkV6Xbw-_Byf674zeToMviENjYw3fSIU96pFVOwiZuQZ2pvCRlyeZGSWVCxU6d1rGViSEyWji3lHn-U4okxfdhu57X9ABQlSIjw5R2oU2MsrnOM1JEwuEa11Yygpf9bBa2ozjnTBvfit7VcaNc-FEewfNBdNHyevxJaLdXiaIz7VUhMpXmKpYyHcGzodgZJd-06JrmDctw0K6DQtEIdlpVGlphwn7nuivXWa8Qf2--eP32wH88_HfRp3Btcjw9LA4Pjj48guvCQbI2Ym4XttfLhh47CLU2T7ylXAKzRxkz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlVceEMXChjEgUtWeTjORJwKy6oFWiFEpR6QItuZQATNRrsbpPZ38IPrcZyI5SEhbpEylhN7xv7G_vyZsWcA2kRKQBCmZRyITJpAYZ4EaaahCrXE2F02cXQsD07Em9P0dIu9GM7C9PoQ44IbRYYbrynA27L6Kch1WU9tKgV2_L0iZAjk0rMPo3ZUJGPHX7QIB4JUiszLChGNZyy6ORn9hjA3AaubcebX2afhW3uiyddpt9ZTc_GLjON__swNds0jUb7fu85NtoXNLbZz5Pfab7Mf_qQS9Rx35x3PudmUd-a1W5JAes3bJRV11ouKW3T_pe7O-LLn4CKvG67rlhJpXnrFT-5FXVec2PefueKrrqV8gH93ewn8zDE9kRuC-HVlZ_A77GT--uOrg8Df4RCYxIF3VCF1eaQgx9gIO5yWkFcIBk2uQYIOgVI6pRIjhUbUKrZJKan8pxhJTO6y7WbR4C7jUMUZahK0C43QYHKVZwiIsUU1ti4xYc-HziyMFzineza-FUOiY1u5cK08YU9H07ZX9fiT0d7gEYUP7FURZ5DmkEiZTtiT8bUNSdpnUQ0uOrIhyq4FQtGE3es9aayF5Ppt4g72Y50__L364uXs0D3c_3fTx2zn_WxevDs8fvuAXY0tHuvpcntse73s8KHFT2v9yMXJJX0VF-s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Information+theory+characteristics+improve+the+prediction+of+lithium+response+in+bipolar+disorder+patients+using+a+support+vector+machine+classifier&rft.jtitle=Bipolar+disorders&rft.au=Tripathi%2C+Utkarsh&rft.au=Mizrahi%2C+Liron&rft.au=Alda%2C+Martin&rft.au=Falkovich%2C+Gregory&rft.date=2023-03-01&rft.issn=1398-5647&rft.eissn=1399-5618&rft.volume=25&rft.issue=2&rft.spage=110&rft.epage=127&rft_id=info:doi/10.1111%2Fbdi.13282&rft.externalDBID=10.1111%252Fbdi.13282&rft.externalDocID=BDI13282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1398-5647&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1398-5647&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1398-5647&client=summon