Tripathi, U., Mizrahi, L., Alda, M., Falkovich, G., & Stern, S. (2023). Information theory characteristics improve the prediction of lithium response in bipolar disorder patients using a support vector machine classifier. Bipolar disorders, 25(2), 110-127. https://doi.org/10.1111/bdi.13282
Chicago Style (17th ed.) CitationTripathi, Utkarsh, Liron Mizrahi, Martin Alda, Gregory Falkovich, and Shani Stern. "Information Theory Characteristics Improve the Prediction of Lithium Response in Bipolar Disorder Patients Using a Support Vector Machine Classifier." Bipolar Disorders 25, no. 2 (2023): 110-127. https://doi.org/10.1111/bdi.13282.
MLA (9th ed.) CitationTripathi, Utkarsh, et al. "Information Theory Characteristics Improve the Prediction of Lithium Response in Bipolar Disorder Patients Using a Support Vector Machine Classifier." Bipolar Disorders, vol. 25, no. 2, 2023, pp. 110-127, https://doi.org/10.1111/bdi.13282.