Antioxidant, antiglycation, and anti-inflammatory activities of Caesalpinia mimosoides

Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible pla...

Full description

Saved in:
Bibliographic Details
Published inDrug Discoveries & Therapeutics Vol. 17; no. 2; pp. 114 - 123
Main Authors Rodwattanagul, Soraya, Nimlamool, Wutigri, Okonogi, Siriporn
Format Journal Article
LanguageEnglish
Published Japan International Research and Cooperation Association for Bio & Socio-Sciences Advancement 30.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible plants that are commonly used as Thai folk medicine were compared. Among these extracts, Caesalpinia mimosoides extract (CME) showed the highest antioxidant potential with Trolox equivalent antioxidant activity (TEAC) of 5.9 ± 0.1 mM/mg followed closely by Zingiber officinale extract (ZOE) with a TEAC value of 5.4 ± 0.2 mM/mg. However, CME showed no cytotoxicity, whereas ZOE greater than 60 μg/mL showed cytotoxicity to normal human cells. Antiglycation assay using bovine serum albumin-ribose showed comparable potency between CME and Spondias dulcis extract (SDE). However, CME exhibited a high anti-inflammatory activity, significantly higher than SDE and activity depending on the dose. At a concentration of 60 μg/mL, approximately 85% of the interleukin-6 pro-inflammatory cytokine produced from human monocytes, induced by lipopolysaccharides, was completely inhibited by CME whereas SDE showed no inhibition. In summary, CME is the most potential extract with simultaneously activity of these three reactions. CME has the highest total phenolic content expressed as gallic acid equivalent to 301 ± 8 mg/g. Identification using high-performance liquid chromatography revealed the presence of at least four phenolic compounds, gallic acid, syringic acid, p-coumaric acid, and ellagic acid are existed in CME. Our finding suggests that CME is a promising natural source for inhibition of oxidative stress, glycation, and inflammation.
AbstractList Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible plants that are commonly used as Thai folk medicine were compared. Among these extracts, Caesalpinia mimosoides extract (CME) showed the highest antioxidant potential with Trolox equivalent antioxidant activity (TEAC) of 5.9 ± 0.1 mM/mg followed closely by Zingiber officinale extract (ZOE) with a TEAC value of 5.4 ± 0.2 mM/mg. However, CME showed no cytotoxicity, whereas ZOE greater than 60 μg/mL showed cytotoxicity to normal human cells. Antiglycation assay using bovine serum albumin-ribose showed comparable potency between CME and Spondias dulcis extract (SDE). However, CME exhibited a high anti-inflammatory activity, significantly higher than SDE and activity depending on the dose. At a concentration of 60 μg/mL, approximately 85% of the interleukin-6 pro-inflammatory cytokine produced from human monocytes, induced by lipopolysaccharides, was completely inhibited by CME whereas SDE showed no inhibition. In summary, CME is the most potential extract with simultaneously activity of these three reactions. CME has the highest total phenolic content expressed as gallic acid equivalent to 301 ± 8 mg/g. Identification using high-performance liquid chromatography revealed the presence of at least four phenolic compounds, gallic acid, syringic acid, p-coumaric acid, and ellagic acid are existed in CME. Our finding suggests that CME is a promising natural source for inhibition of oxidative stress, glycation, and inflammation.
ArticleNumber 2023.01002
Author Rodwattanagul, Soraya
Okonogi, Siriporn
Nimlamool, Wutigri
Author_xml – sequence: 1
  fullname: Rodwattanagul, Soraya
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
– sequence: 2
  fullname: Nimlamool, Wutigri
  organization: Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
– sequence: 3
  fullname: Okonogi, Siriporn
  organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37081689$$D View this record in MEDLINE/PubMed
BookMark eNp1kMlOwzAQhi1UREvplSPKA5DgJa6dY1VWqRIXQNwsx0txlaWyDaJvT5rSHJCYw8x4_H8jzX8ORk3bGAAuEcwo5fhG65hhiEkGEYT4BEwQ5yhlPH8fDT1BYzALYQO7oDlHnJ6BMWGQozkvJuBt0UTXfjstm3iddMmtq52S3azZP3U_Sl1jK1nXMrZ-l0gV3ZeLzoSktclSmiCrrWucTGpXt6F12oQLcGplFczst07B6_3dy_IxXT0_PC0Xq1QRznGKmCVFMZ8XttTMalkUimjGSsILUxYlw0hTRSGf59RSWzKKYY6J0gZShqiRZAquDnu3n2VttNh6V0u_E8cDO0F-ECjfhuCNFcrF_rzopasEgmJvpeisFHsrRW9lh2V_sOPmf4HbA7AJUa7NIJc-OlWZXo6YwH0asOFbfUgvTEN-ALiKjko
CitedBy_id crossref_primary_10_1039_D4FO03567D
crossref_primary_10_5582_ddt_2024_01018
crossref_primary_10_3390_molecules28196797
Cites_doi 10.1108/00070701111174550
10.1080/10937404.2010.499736
10.7314/APJCP.2016.17.3.1341
10.1016/j.cardiores.2004.05.001
10.1016/j.phytochem.2010.06.016
10.1016/S2221-1691(13)60139-2
10.1016/j.fct.2007.09.085
10.1097/00075197-200209000-00016
10.1016/j.matbio.2016.09.001
10.1016/j.jep.2016.10.009
10.1007/s11894-005-0024-y
10.1016/j.foodchem.2010.12.026
10.1248/jhs.48.520
10.1016/j.jfda.2016.10.017
10.1016/j.heliyon.2022.e10740
10.1078/0944-7113-00271
10.4161/derm.22028
10.1177/1934578X1501000819
10.1021/jf203146e
10.3390/molecules21060739
10.5582/ddt.2017.01013
10.1080/10942912.2011.584257
10.1021/jf950190a
10.1111/j.1541-4337.2004.tb00063.x
10.1016/j.foodchem.2005.11.008
10.5582/ddt.2011.v5.3.144
10.1152/physrev.00024.2005
10.13005/ojc/340270
10.1080/09064710.2019.1606930
10.1016/j.foodchem.2004.07.035
10.1002/cbf.3667
10.1002/(SICI)1099-1573(200002)14:1<60::AID-PTR597>3.0.CO;2-B
10.1016/S1995-7645(13)60097-8
ContentType Journal Article
Copyright 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Copyright_xml – notice: 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.5582/ddt.2023.01002
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1881-784X
EndPage 123
ExternalDocumentID 37081689
10_5582_ddt_2023_01002
article_ddt_17_2_17_2023_01002_article_char_en
Genre Journal Article
GroupedDBID ---
53G
ABDBF
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
DIK
EBD
EMOBN
ESX
F5P
JSF
JSH
KQ8
MK0
OK1
P2P
RJT
RZJ
SV3
TUS
7.U
AAYXX
ACUHS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c3882-17f399669fbd7fda99c3d77b389eb9b721d5c508645f5fb7520423cde05715ea3
ISSN 1881-7831
IngestDate Thu Jan 02 22:51:54 EST 2025
Thu Apr 24 22:54:44 EDT 2025
Tue Jul 01 01:15:39 EDT 2025
Sun Jul 28 05:37:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords plant extract
anti-inflammation
Antioxidant
antiglycation
chemical composition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3882-17f399669fbd7fda99c3d77b389eb9b721d5c508645f5fb7520423cde05715ea3
OpenAccessLink https://www.jstage.jst.go.jp/article/ddt/17/2/17_2023.01002/_article/-char/en
PMID 37081689
PageCount 10
ParticipantIDs pubmed_primary_37081689
crossref_citationtrail_10_5582_ddt_2023_01002
crossref_primary_10_5582_ddt_2023_01002
jstage_primary_article_ddt_17_2_17_2023_01002_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023/04/30
PublicationDateYYYYMMDD 2023-04-30
PublicationDate_xml – month: 04
  year: 2023
  text: 2023/04/30
  day: 30
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Drug Discoveries & Therapeutics
PublicationTitleAlternate DD&T
PublicationYear 2023
Publisher International Research and Cooperation Association for Bio & Socio-Sciences Advancement
Publisher_xml – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement
References 6. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med. 2013; 6:561-569.
29. Penna SC, Medeiros MV, Aimbire FS, Faria-Neto HC, Sertié JA, Lopes-Martins RA. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine. 2003; 10:381-385.
31. Phanthong P, Phumal N, Chancharunee S, Mangmool S, Anantachoke N, Bunyapraphatsara N. Biological activity of Dolichandrone serrulata flowers and their active components. Nat Prod Commun. 2015; 10:1387-1390.
2. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006; 86:515-581.
27. Dedvisitsakul P, Watla-lad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon. 2022; 8:e10740.
39. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008; 46:409-420.
12. Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct. 2021; 39:926-944.
5. Aiyelaagbe OO, Adesogan EK, Ekundayo O, Adeniyi BA. The antimicrobial activity of roots of Jatropha podagrica (Hook). Phyther Res. 2000; 14:60-62.
15. Khalighi-Sigaroodi F, Ahvazi M, Yazdani D, Kashefi M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J Med Plants. 2012; 11:41-53.
19, Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J, Ubukata M. Screening system for the Maillard reaction inhibitor from natural product extracts. J Health Sci. 2002; 48:520-526.
17. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem. 1996; 44:37-41.
35. Dalimunthe A, Hasibuan PA, Silalahi J, Sinaga SF, Satria D. Antioxidant activity of alkaloid compounds from Litsea cubeba Lour. Orient J Chem. 2018; 34:1149-1152.
23. Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS. Evaluation of wound healing property of Caesalpinia mimosoides Lam. J Ethnopharmacol. 2016; 193:712-724.
14. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011; 126:1821-1835.
20. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. Biological activities and antibacterial biomarker of Sesbania grandiflora bark extract. Drug Discov Ther. 2017; 11:70-77.
28. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci. 2019; 69:546-556.
16. Devappa RK, Makkar HP, Becker K. Jatropha toxicity – A review. J Toxicol Environ Heal B Crit Rev. 2010; 13:476-507.
13. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017; 25:84-92.
1. Basta G, Schmidt AM, de Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63:582-592.
38. Oliveira CS, Maciel LF, Miranda MS, Bispo ES. Phenolic compounds, flavonoids and antioxidant activity in different cocoa samples from organic and conventional cultivation. Br Food J. 2011; 113:1094-1102.
36. Bellik Y, Benabdesselam FM, Ayad A, Dahmani Z, Boukraâ L, Nemmar A, Iguerouada M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int J Food Prop. 2013; 16:1304-1313.
11. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011; 59:12361-12367.
26. Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory effects of gallic acid isolated from Caesalpinia mimosoides lamk on cholangiocarcinoma cell lines and foodborne pathogenic bacteria. Asian Pac J Cancer Prev. 2016; 17:1341-1345.
7. Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol. 2017; 59:95-108.
34. Rahman MM, Khan FE, Das R, Hossain MA. Antioxidant activity and total phenolic content of some indigenous fruits of Bangladesh. Int Food Res J. 2016; 23:2399-2404.
3. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002; 5:561-568.
25. Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010; 71:1756-1764.
8. Chen Y, Roan H, Lii C, Huang Y, Wang T. Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J Med Plants Res. 2011; 5:2322-2331.
37. Grzegorczyk-Karolak I, Gołab K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules. 2016; 21:739.
30. Islam SM, Ahmed KT, Manik MK, Wahid MA, Kamal CS. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pac J Trop Biomed. 2013; 3:682-691.
32. El-Sayed MM, El-Hashash MA, El-Wakil E, Ghareeb MA. Total phenolic contents and antioxdant activities of Ficus sycomorus and Azadirachta indica. Pharmacologyonline. 2009; 3:590-602.
21. Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007; 100:1044-1048.
9. Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4:259-270.
22. Gilani SMU, Ahmed S, Baig SG, Hasan MM. Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. J Pharm Phytochem. 2019; 8:2222-2229.
10. Huang MT, Ghai G, Ho CT. Inflammatory process and molecular targets for anti inflammatory nutraceuticals. Compr Rev Food Sci Food Saf. 2004; 3:127-139.
18. Saeio K, Chaiyana W, Okonogi S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov Ther. 2011; 5:144-149.
24. Manasa M, Vivek MN, Kambar Y, Kumar RKA, Kekuda PTR. Mineral content, antimicrobial and radical scavenging potential of Caesalpinia mimosoides Lamk. (Caesalpiniaceae). World J Pharm Res. 2014; 3:1047-1063.
33. Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005; 92:491-497.
4. Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep. 2005; 7:308-316.
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: 28. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci. 2019; 69:546-556.
– reference: 32. El-Sayed MM, El-Hashash MA, El-Wakil E, Ghareeb MA. Total phenolic contents and antioxdant activities of Ficus sycomorus and Azadirachta indica. Pharmacologyonline. 2009; 3:590-602.
– reference: 2. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006; 86:515-581.
– reference: 24. Manasa M, Vivek MN, Kambar Y, Kumar RKA, Kekuda PTR. Mineral content, antimicrobial and radical scavenging potential of Caesalpinia mimosoides Lamk. (Caesalpiniaceae). World J Pharm Res. 2014; 3:1047-1063.
– reference: 38. Oliveira CS, Maciel LF, Miranda MS, Bispo ES. Phenolic compounds, flavonoids and antioxidant activity in different cocoa samples from organic and conventional cultivation. Br Food J. 2011; 113:1094-1102.
– reference: 16. Devappa RK, Makkar HP, Becker K. Jatropha toxicity – A review. J Toxicol Environ Heal B Crit Rev. 2010; 13:476-507.
– reference: 34. Rahman MM, Khan FE, Das R, Hossain MA. Antioxidant activity and total phenolic content of some indigenous fruits of Bangladesh. Int Food Res J. 2016; 23:2399-2404.
– reference: 35. Dalimunthe A, Hasibuan PA, Silalahi J, Sinaga SF, Satria D. Antioxidant activity of alkaloid compounds from Litsea cubeba Lour. Orient J Chem. 2018; 34:1149-1152.
– reference: 29. Penna SC, Medeiros MV, Aimbire FS, Faria-Neto HC, Sertié JA, Lopes-Martins RA. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine. 2003; 10:381-385.
– reference: 1. Basta G, Schmidt AM, de Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63:582-592.
– reference: 10. Huang MT, Ghai G, Ho CT. Inflammatory process and molecular targets for anti inflammatory nutraceuticals. Compr Rev Food Sci Food Saf. 2004; 3:127-139.
– reference: 9. Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4:259-270.
– reference: 33. Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005; 92:491-497.
– reference: 37. Grzegorczyk-Karolak I, Gołab K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules. 2016; 21:739.
– reference: 25. Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010; 71:1756-1764.
– reference: 31. Phanthong P, Phumal N, Chancharunee S, Mangmool S, Anantachoke N, Bunyapraphatsara N. Biological activity of Dolichandrone serrulata flowers and their active components. Nat Prod Commun. 2015; 10:1387-1390.
– reference: 13. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017; 25:84-92.
– reference: 22. Gilani SMU, Ahmed S, Baig SG, Hasan MM. Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. J Pharm Phytochem. 2019; 8:2222-2229.
– reference: 36. Bellik Y, Benabdesselam FM, Ayad A, Dahmani Z, Boukraâ L, Nemmar A, Iguerouada M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int J Food Prop. 2013; 16:1304-1313.
– reference: 11. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011; 59:12361-12367.
– reference: 12. Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct. 2021; 39:926-944.
– reference: 18. Saeio K, Chaiyana W, Okonogi S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov Ther. 2011; 5:144-149.
– reference: 30. Islam SM, Ahmed KT, Manik MK, Wahid MA, Kamal CS. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pac J Trop Biomed. 2013; 3:682-691.
– reference: 3. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002; 5:561-568.
– reference: 39. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008; 46:409-420.
– reference: 14. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011; 126:1821-1835.
– reference: 27. Dedvisitsakul P, Watla-lad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon. 2022; 8:e10740.
– reference: 17. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem. 1996; 44:37-41.
– reference: 8. Chen Y, Roan H, Lii C, Huang Y, Wang T. Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J Med Plants Res. 2011; 5:2322-2331.
– reference: 7. Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol. 2017; 59:95-108.
– reference: 20. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. Biological activities and antibacterial biomarker of Sesbania grandiflora bark extract. Drug Discov Ther. 2017; 11:70-77.
– reference: 5. Aiyelaagbe OO, Adesogan EK, Ekundayo O, Adeniyi BA. The antimicrobial activity of roots of Jatropha podagrica (Hook). Phyther Res. 2000; 14:60-62.
– reference: 6. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med. 2013; 6:561-569.
– reference: 23. Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS. Evaluation of wound healing property of Caesalpinia mimosoides Lam. J Ethnopharmacol. 2016; 193:712-724.
– reference: 19, Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J, Ubukata M. Screening system for the Maillard reaction inhibitor from natural product extracts. J Health Sci. 2002; 48:520-526.
– reference: 4. Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep. 2005; 7:308-316.
– reference: 15. Khalighi-Sigaroodi F, Ahvazi M, Yazdani D, Kashefi M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J Med Plants. 2012; 11:41-53.
– reference: 26. Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory effects of gallic acid isolated from Caesalpinia mimosoides lamk on cholangiocarcinoma cell lines and foodborne pathogenic bacteria. Asian Pac J Cancer Prev. 2016; 17:1341-1345.
– reference: 21. Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007; 100:1044-1048.
– ident: 38
  doi: 10.1108/00070701111174550
– ident: 16
  doi: 10.1080/10937404.2010.499736
– ident: 26
  doi: 10.7314/APJCP.2016.17.3.1341
– ident: 1
  doi: 10.1016/j.cardiores.2004.05.001
– ident: 25
  doi: 10.1016/j.phytochem.2010.06.016
– ident: 30
  doi: 10.1016/S2221-1691(13)60139-2
– ident: 39
  doi: 10.1016/j.fct.2007.09.085
– ident: 3
  doi: 10.1097/00075197-200209000-00016
– ident: 7
  doi: 10.1016/j.matbio.2016.09.001
– ident: 23
  doi: 10.1016/j.jep.2016.10.009
– ident: 4
  doi: 10.1007/s11894-005-0024-y
– ident: 14
  doi: 10.1016/j.foodchem.2010.12.026
– ident: 19
  doi: 10.1248/jhs.48.520
– ident: 24
– ident: 13
  doi: 10.1016/j.jfda.2016.10.017
– ident: 27
  doi: 10.1016/j.heliyon.2022.e10740
– ident: 29
  doi: 10.1078/0944-7113-00271
– ident: 22
– ident: 9
  doi: 10.4161/derm.22028
– ident: 31
  doi: 10.1177/1934578X1501000819
– ident: 11
  doi: 10.1021/jf203146e
– ident: 37
  doi: 10.3390/molecules21060739
– ident: 20
  doi: 10.5582/ddt.2017.01013
– ident: 36
  doi: 10.1080/10942912.2011.584257
– ident: 17
  doi: 10.1021/jf950190a
– ident: 10
  doi: 10.1111/j.1541-4337.2004.tb00063.x
– ident: 21
  doi: 10.1016/j.foodchem.2005.11.008
– ident: 34
– ident: 15
– ident: 32
– ident: 18
  doi: 10.5582/ddt.2011.v5.3.144
– ident: 2
  doi: 10.1152/physrev.00024.2005
– ident: 35
  doi: 10.13005/ojc/340270
– ident: 28
  doi: 10.1080/09064710.2019.1606930
– ident: 33
  doi: 10.1016/j.foodchem.2004.07.035
– ident: 12
  doi: 10.1002/cbf.3667
– ident: 5
  doi: 10.1002/(SICI)1099-1573(200002)14:1<60::AID-PTR597>3.0.CO;2-B
– ident: 6
  doi: 10.1016/S1995-7645(13)60097-8
– ident: 8
SSID ssj0000548185
Score 2.2496915
Snippet Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit...
SourceID pubmed
crossref
jstage
SourceType Index Database
Enrichment Source
Publisher
StartPage 114
SubjectTerms anti-inflammation
Anti-Inflammatory Agents - pharmacology
antiglycation
Antioxidant
Antioxidants - pharmacology
Caesalpinia
chemical composition
Gallic Acid
Humans
Inflammation
Phenols - pharmacology
plant extract
Plant Extracts - pharmacology
Title Antioxidant, antiglycation, and anti-inflammatory activities of Caesalpinia mimosoides
URI https://www.jstage.jst.go.jp/article/ddt/17/2/17_2023.01002/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/37081689
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Drug Discoveries & Therapeutics, 2023/04/30, Vol.17(2), pp.114-123
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6jQMXND5XBpMPaBxoRvPhOjlw6BjThLSqEh3sFsWxUwW1zdS1QPkD-Lt5L3YddwxpcEkb13bd_l6e37N_75mQVxErOCtCBcIbKS_Kk8JLwMz2QPNx3hXdSGQYKHw-6J1dRB8v2WWr9cthLS0X4ij_eWtcyf-gCmWAK0bJ_gOytlMogPeAL1wBYbjeCeM-UhV_lDLTyQPgpRxPVoawYWiZWOjBlwHyU72jjqEM3-pEqjo4S11nk6sSo7OmANx1VUrDKzQ268l8OcaNnBzZnmW9TNt748RtNWz5Sn7PFgsk1CzrleVPIF8rq_cH5RQGYY70-gItx_PSrvGCnQpKuG5Ugh6r5jN3PSIIna0VrULj2Pd4bHS7css0F9PqXe7IV-AoUV-HlZr52NfxyDdVPWMxpo6VEgmxQXjUxVyyzaS23si_MddZBiL4PthDCu1TbJ_W7bfITgDuBujLnf7xyfGpXa0DwxYtG_Te1z9PZwDFTt5uDmLDwrn3FYx8zN6w4bTUxstolzwwXgftaxF6SFpq9ogcDnXa8lWHjhw0O_SQDpuE5qvH5LMjZx26IWV4K-kfMkYbGaNVQR0Zo42MPSEXpx9G7888cx6Hl4foiPm8CNE9TgoheSGzJMlDybkAm1eJRPDAlywHg78HCoAVgrMASVe5VOAT-Exl4VOyPatmao9QmGh86LNgXPWimHEh_ZxniWAi6YKHy9rEW_-HaW6S1eOZKZP0duDa5LWtf6XTtPy15jsNia1nHt-6ns_ToL7Y-vZjjIIEpdMmzzSStn3I68Nrkud3HsM-ud88OS_I9mK-VC_Btl2IAyN4B2RrMDz_DdIRpw4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant%2C+antiglycation%2C+and+anti-inflammatory+activities+of+Caesalpinia+mimosoides&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Rodwattanagul%2C+Soraya&rft.au=Nimlamool%2C+Wutigri&rft.au=Okonogi%2C+Siriporn&rft.date=2023-04-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=17&rft.issue=2&rft.spage=114&rft.epage=123&rft_id=info:doi/10.5582%2Fddt.2023.01002&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2023_01002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon