Antioxidant, antiglycation, and anti-inflammatory activities of Caesalpinia mimosoides
Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible pla...
Saved in:
Published in | Drug Discoveries & Therapeutics Vol. 17; no. 2; pp. 114 - 123 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
International Research and Cooperation Association for Bio & Socio-Sciences Advancement
30.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible plants that are commonly used as Thai folk medicine were compared. Among these extracts, Caesalpinia mimosoides extract (CME) showed the highest antioxidant potential with Trolox equivalent antioxidant activity (TEAC) of 5.9 ± 0.1 mM/mg followed closely by Zingiber officinale extract (ZOE) with a TEAC value of 5.4 ± 0.2 mM/mg. However, CME showed no cytotoxicity, whereas ZOE greater than 60 μg/mL showed cytotoxicity to normal human cells. Antiglycation assay using bovine serum albumin-ribose showed comparable potency between CME and Spondias dulcis extract (SDE). However, CME exhibited a high anti-inflammatory activity, significantly higher than SDE and activity depending on the dose. At a concentration of 60 μg/mL, approximately 85% of the interleukin-6 pro-inflammatory cytokine produced from human monocytes, induced by lipopolysaccharides, was completely inhibited by CME whereas SDE showed no inhibition. In summary, CME is the most potential extract with simultaneously activity of these three reactions. CME has the highest total phenolic content expressed as gallic acid equivalent to 301 ± 8 mg/g. Identification using high-performance liquid chromatography revealed the presence of at least four phenolic compounds, gallic acid, syringic acid, p-coumaric acid, and ellagic acid are existed in CME. Our finding suggests that CME is a promising natural source for inhibition of oxidative stress, glycation, and inflammation. |
---|---|
AbstractList | Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit these three reactions. In this study, the antioxidant, antiglycation and anti-inflammatory activities of ethanol extracts from four edible plants that are commonly used as Thai folk medicine were compared. Among these extracts, Caesalpinia mimosoides extract (CME) showed the highest antioxidant potential with Trolox equivalent antioxidant activity (TEAC) of 5.9 ± 0.1 mM/mg followed closely by Zingiber officinale extract (ZOE) with a TEAC value of 5.4 ± 0.2 mM/mg. However, CME showed no cytotoxicity, whereas ZOE greater than 60 μg/mL showed cytotoxicity to normal human cells. Antiglycation assay using bovine serum albumin-ribose showed comparable potency between CME and Spondias dulcis extract (SDE). However, CME exhibited a high anti-inflammatory activity, significantly higher than SDE and activity depending on the dose. At a concentration of 60 μg/mL, approximately 85% of the interleukin-6 pro-inflammatory cytokine produced from human monocytes, induced by lipopolysaccharides, was completely inhibited by CME whereas SDE showed no inhibition. In summary, CME is the most potential extract with simultaneously activity of these three reactions. CME has the highest total phenolic content expressed as gallic acid equivalent to 301 ± 8 mg/g. Identification using high-performance liquid chromatography revealed the presence of at least four phenolic compounds, gallic acid, syringic acid, p-coumaric acid, and ellagic acid are existed in CME. Our finding suggests that CME is a promising natural source for inhibition of oxidative stress, glycation, and inflammation. |
ArticleNumber | 2023.01002 |
Author | Rodwattanagul, Soraya Okonogi, Siriporn Nimlamool, Wutigri |
Author_xml | – sequence: 1 fullname: Rodwattanagul, Soraya organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand – sequence: 2 fullname: Nimlamool, Wutigri organization: Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand – sequence: 3 fullname: Okonogi, Siriporn organization: Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37081689$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMlOwzAQhi1UREvplSPKA5DgJa6dY1VWqRIXQNwsx0txlaWyDaJvT5rSHJCYw8x4_H8jzX8ORk3bGAAuEcwo5fhG65hhiEkGEYT4BEwQ5yhlPH8fDT1BYzALYQO7oDlHnJ6BMWGQozkvJuBt0UTXfjstm3iddMmtq52S3azZP3U_Sl1jK1nXMrZ-l0gV3ZeLzoSktclSmiCrrWucTGpXt6F12oQLcGplFczst07B6_3dy_IxXT0_PC0Xq1QRznGKmCVFMZ8XttTMalkUimjGSsILUxYlw0hTRSGf59RSWzKKYY6J0gZShqiRZAquDnu3n2VttNh6V0u_E8cDO0F-ECjfhuCNFcrF_rzopasEgmJvpeisFHsrRW9lh2V_sOPmf4HbA7AJUa7NIJc-OlWZXo6YwH0asOFbfUgvTEN-ALiKjko |
CitedBy_id | crossref_primary_10_1039_D4FO03567D crossref_primary_10_5582_ddt_2024_01018 crossref_primary_10_3390_molecules28196797 |
Cites_doi | 10.1108/00070701111174550 10.1080/10937404.2010.499736 10.7314/APJCP.2016.17.3.1341 10.1016/j.cardiores.2004.05.001 10.1016/j.phytochem.2010.06.016 10.1016/S2221-1691(13)60139-2 10.1016/j.fct.2007.09.085 10.1097/00075197-200209000-00016 10.1016/j.matbio.2016.09.001 10.1016/j.jep.2016.10.009 10.1007/s11894-005-0024-y 10.1016/j.foodchem.2010.12.026 10.1248/jhs.48.520 10.1016/j.jfda.2016.10.017 10.1016/j.heliyon.2022.e10740 10.1078/0944-7113-00271 10.4161/derm.22028 10.1177/1934578X1501000819 10.1021/jf203146e 10.3390/molecules21060739 10.5582/ddt.2017.01013 10.1080/10942912.2011.584257 10.1021/jf950190a 10.1111/j.1541-4337.2004.tb00063.x 10.1016/j.foodchem.2005.11.008 10.5582/ddt.2011.v5.3.144 10.1152/physrev.00024.2005 10.13005/ojc/340270 10.1080/09064710.2019.1606930 10.1016/j.foodchem.2004.07.035 10.1002/cbf.3667 10.1002/(SICI)1099-1573(200002)14:1<60::AID-PTR597>3.0.CO;2-B 10.1016/S1995-7645(13)60097-8 |
ContentType | Journal Article |
Copyright | 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Copyright_xml | – notice: 2023 International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.5582/ddt.2023.01002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1881-784X |
EndPage | 123 |
ExternalDocumentID | 37081689 10_5582_ddt_2023_01002 article_ddt_17_2_17_2023_01002_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 53G ABDBF ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK EBD EMOBN ESX F5P JSF JSH KQ8 MK0 OK1 P2P RJT RZJ SV3 TUS 7.U AAYXX ACUHS CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c3882-17f399669fbd7fda99c3d77b389eb9b721d5c508645f5fb7520423cde05715ea3 |
ISSN | 1881-7831 |
IngestDate | Thu Jan 02 22:51:54 EST 2025 Thu Apr 24 22:54:44 EDT 2025 Tue Jul 01 01:15:39 EDT 2025 Sun Jul 28 05:37:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | plant extract anti-inflammation Antioxidant antiglycation chemical composition |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3882-17f399669fbd7fda99c3d77b389eb9b721d5c508645f5fb7520423cde05715ea3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ddt/17/2/17_2023.01002/_article/-char/en |
PMID | 37081689 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_37081689 crossref_citationtrail_10_5582_ddt_2023_01002 crossref_primary_10_5582_ddt_2023_01002 jstage_primary_article_ddt_17_2_17_2023_01002_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023/04/30 |
PublicationDateYYYYMMDD | 2023-04-30 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023/04/30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Drug Discoveries & Therapeutics |
PublicationTitleAlternate | DD&T |
PublicationYear | 2023 |
Publisher | International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Publisher_xml | – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
References | 6. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med. 2013; 6:561-569. 29. Penna SC, Medeiros MV, Aimbire FS, Faria-Neto HC, Sertié JA, Lopes-Martins RA. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine. 2003; 10:381-385. 31. Phanthong P, Phumal N, Chancharunee S, Mangmool S, Anantachoke N, Bunyapraphatsara N. Biological activity of Dolichandrone serrulata flowers and their active components. Nat Prod Commun. 2015; 10:1387-1390. 2. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006; 86:515-581. 27. Dedvisitsakul P, Watla-lad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon. 2022; 8:e10740. 39. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008; 46:409-420. 12. Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct. 2021; 39:926-944. 5. Aiyelaagbe OO, Adesogan EK, Ekundayo O, Adeniyi BA. The antimicrobial activity of roots of Jatropha podagrica (Hook). Phyther Res. 2000; 14:60-62. 15. Khalighi-Sigaroodi F, Ahvazi M, Yazdani D, Kashefi M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J Med Plants. 2012; 11:41-53. 19, Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J, Ubukata M. Screening system for the Maillard reaction inhibitor from natural product extracts. J Health Sci. 2002; 48:520-526. 17. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem. 1996; 44:37-41. 35. Dalimunthe A, Hasibuan PA, Silalahi J, Sinaga SF, Satria D. Antioxidant activity of alkaloid compounds from Litsea cubeba Lour. Orient J Chem. 2018; 34:1149-1152. 23. Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS. Evaluation of wound healing property of Caesalpinia mimosoides Lam. J Ethnopharmacol. 2016; 193:712-724. 14. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011; 126:1821-1835. 20. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. Biological activities and antibacterial biomarker of Sesbania grandiflora bark extract. Drug Discov Ther. 2017; 11:70-77. 28. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci. 2019; 69:546-556. 16. Devappa RK, Makkar HP, Becker K. Jatropha toxicity – A review. J Toxicol Environ Heal B Crit Rev. 2010; 13:476-507. 13. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017; 25:84-92. 1. Basta G, Schmidt AM, de Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63:582-592. 38. Oliveira CS, Maciel LF, Miranda MS, Bispo ES. Phenolic compounds, flavonoids and antioxidant activity in different cocoa samples from organic and conventional cultivation. Br Food J. 2011; 113:1094-1102. 36. Bellik Y, Benabdesselam FM, Ayad A, Dahmani Z, Boukraâ L, Nemmar A, Iguerouada M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int J Food Prop. 2013; 16:1304-1313. 11. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011; 59:12361-12367. 26. Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory effects of gallic acid isolated from Caesalpinia mimosoides lamk on cholangiocarcinoma cell lines and foodborne pathogenic bacteria. Asian Pac J Cancer Prev. 2016; 17:1341-1345. 7. Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol. 2017; 59:95-108. 34. Rahman MM, Khan FE, Das R, Hossain MA. Antioxidant activity and total phenolic content of some indigenous fruits of Bangladesh. Int Food Res J. 2016; 23:2399-2404. 3. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002; 5:561-568. 25. Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010; 71:1756-1764. 8. Chen Y, Roan H, Lii C, Huang Y, Wang T. Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J Med Plants Res. 2011; 5:2322-2331. 37. Grzegorczyk-Karolak I, Gołab K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules. 2016; 21:739. 30. Islam SM, Ahmed KT, Manik MK, Wahid MA, Kamal CS. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pac J Trop Biomed. 2013; 3:682-691. 32. El-Sayed MM, El-Hashash MA, El-Wakil E, Ghareeb MA. Total phenolic contents and antioxdant activities of Ficus sycomorus and Azadirachta indica. Pharmacologyonline. 2009; 3:590-602. 21. Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007; 100:1044-1048. 9. Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4:259-270. 22. Gilani SMU, Ahmed S, Baig SG, Hasan MM. Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. J Pharm Phytochem. 2019; 8:2222-2229. 10. Huang MT, Ghai G, Ho CT. Inflammatory process and molecular targets for anti inflammatory nutraceuticals. Compr Rev Food Sci Food Saf. 2004; 3:127-139. 18. Saeio K, Chaiyana W, Okonogi S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov Ther. 2011; 5:144-149. 24. Manasa M, Vivek MN, Kambar Y, Kumar RKA, Kekuda PTR. Mineral content, antimicrobial and radical scavenging potential of Caesalpinia mimosoides Lamk. (Caesalpiniaceae). World J Pharm Res. 2014; 3:1047-1063. 33. Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005; 92:491-497. 4. Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep. 2005; 7:308-316. 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: 28. Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci. 2019; 69:546-556. – reference: 32. El-Sayed MM, El-Hashash MA, El-Wakil E, Ghareeb MA. Total phenolic contents and antioxdant activities of Ficus sycomorus and Azadirachta indica. Pharmacologyonline. 2009; 3:590-602. – reference: 2. Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006; 86:515-581. – reference: 24. Manasa M, Vivek MN, Kambar Y, Kumar RKA, Kekuda PTR. Mineral content, antimicrobial and radical scavenging potential of Caesalpinia mimosoides Lamk. (Caesalpiniaceae). World J Pharm Res. 2014; 3:1047-1063. – reference: 38. Oliveira CS, Maciel LF, Miranda MS, Bispo ES. Phenolic compounds, flavonoids and antioxidant activity in different cocoa samples from organic and conventional cultivation. Br Food J. 2011; 113:1094-1102. – reference: 16. Devappa RK, Makkar HP, Becker K. Jatropha toxicity – A review. J Toxicol Environ Heal B Crit Rev. 2010; 13:476-507. – reference: 34. Rahman MM, Khan FE, Das R, Hossain MA. Antioxidant activity and total phenolic content of some indigenous fruits of Bangladesh. Int Food Res J. 2016; 23:2399-2404. – reference: 35. Dalimunthe A, Hasibuan PA, Silalahi J, Sinaga SF, Satria D. Antioxidant activity of alkaloid compounds from Litsea cubeba Lour. Orient J Chem. 2018; 34:1149-1152. – reference: 29. Penna SC, Medeiros MV, Aimbire FS, Faria-Neto HC, Sertié JA, Lopes-Martins RA. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine. 2003; 10:381-385. – reference: 1. Basta G, Schmidt AM, de Caterina R. Advanced glycation end products and vascular inflammation: Implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63:582-592. – reference: 10. Huang MT, Ghai G, Ho CT. Inflammatory process and molecular targets for anti inflammatory nutraceuticals. Compr Rev Food Sci Food Saf. 2004; 3:127-139. – reference: 9. Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? Dermatoendocrinol. 2012; 4:259-270. – reference: 33. Chanwitheesuk A, Teerawutgulrag A, Rakariyatham N. Screening of antioxidant activity and antioxidant compounds of some edible plants of Thailand. Food Chem. 2005; 92:491-497. – reference: 37. Grzegorczyk-Karolak I, Gołab K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules. 2016; 21:739. – reference: 25. Yodsaoue O, Karalai C, Ponglimanont C, Tewtrakul S, Chantrapromma S. Potential anti-inflammatory diterpenoids from the roots of Caesalpinia mimosoides Lamk. Phytochemistry. 2010; 71:1756-1764. – reference: 31. Phanthong P, Phumal N, Chancharunee S, Mangmool S, Anantachoke N, Bunyapraphatsara N. Biological activity of Dolichandrone serrulata flowers and their active components. Nat Prod Commun. 2015; 10:1387-1390. – reference: 13. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J Food Drug Anal. 2017; 25:84-92. – reference: 22. Gilani SMU, Ahmed S, Baig SG, Hasan MM. Ethnopharmacognosy, phytochemistry and pharmacology of genus Caesalpinia: A review. J Pharm Phytochem. 2019; 8:2222-2229. – reference: 36. Bellik Y, Benabdesselam FM, Ayad A, Dahmani Z, Boukraâ L, Nemmar A, Iguerouada M. Antioxidant activity of the essential oil and oleoresin of Zingiber officinale Roscoe as affected by chemical environment. Int J Food Prop. 2013; 16:1304-1313. – reference: 11. Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, Münch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J Agric Food Chem. 2011; 59:12361-12367. – reference: 12. Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct. 2021; 39:926-944. – reference: 18. Saeio K, Chaiyana W, Okonogi S. Antityrosinase and antioxidant activities of essential oils of edible Thai plants. Drug Discov Ther. 2011; 5:144-149. – reference: 30. Islam SM, Ahmed KT, Manik MK, Wahid MA, Kamal CS. A comparative study of the antioxidant, antimicrobial, cytotoxic and thrombolytic potential of the fruits and leaves of Spondias dulcis. Asian Pac J Trop Biomed. 2013; 3:682-691. – reference: 3. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002; 5:561-568. – reference: 39. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol. 2008; 46:409-420. – reference: 14. Ignat I, Volf I, Popa VI. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011; 126:1821-1835. – reference: 27. Dedvisitsakul P, Watla-lad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon. 2022; 8:e10740. – reference: 17. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem. 1996; 44:37-41. – reference: 8. Chen Y, Roan H, Lii C, Huang Y, Wang T. Relationship between antioxidant and antiglycation ability of saponins, polyphenols, and polysaccharides in Chinese herbal medicines used to treat diabetes. J Med Plants Res. 2011; 5:2322-2331. – reference: 7. Gautieri A, Passini FS, Silván U, Guizar-Sicairos M, Carimati G, Volpi P, Moretti M, Schoenhuber H, Redaelli A, Berli M, Snedeker JG. Advanced glycation end-products: Mechanics of aged collagen from molecule to tissue. Matrix Biol. 2017; 59:95-108. – reference: 20. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. Biological activities and antibacterial biomarker of Sesbania grandiflora bark extract. Drug Discov Ther. 2017; 11:70-77. – reference: 5. Aiyelaagbe OO, Adesogan EK, Ekundayo O, Adeniyi BA. The antimicrobial activity of roots of Jatropha podagrica (Hook). Phyther Res. 2000; 14:60-62. – reference: 6. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med. 2013; 6:561-569. – reference: 23. Bhat PB, Hegde S, Upadhya V, Hegde GR, Habbu PV, Mulgund GS. Evaluation of wound healing property of Caesalpinia mimosoides Lam. J Ethnopharmacol. 2016; 193:712-724. – reference: 19, Matsuura N, Aradate T, Sasaki C, Kojima H, Ohara M, Hasegawa J, Ubukata M. Screening system for the Maillard reaction inhibitor from natural product extracts. J Health Sci. 2002; 48:520-526. – reference: 4. Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep. 2005; 7:308-316. – reference: 15. Khalighi-Sigaroodi F, Ahvazi M, Yazdani D, Kashefi M. Cytotoxicity and antioxidant activity of five plant species of Solanaceae family from Iran. J Med Plants. 2012; 11:41-53. – reference: 26. Rattanata N, Klaynongsruang S, Daduang S, Tavichakorntrakool R, Limpaiboon T, Lekphrom R, Boonsiri P, Daduang J. Inhibitory effects of gallic acid isolated from Caesalpinia mimosoides lamk on cholangiocarcinoma cell lines and foodborne pathogenic bacteria. Asian Pac J Cancer Prev. 2016; 17:1341-1345. – reference: 21. Chanwitheesuk A, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Antimicrobial gallic acid from Caesalpinia mimosoides Lamk. Food Chem. 2007; 100:1044-1048. – ident: 38 doi: 10.1108/00070701111174550 – ident: 16 doi: 10.1080/10937404.2010.499736 – ident: 26 doi: 10.7314/APJCP.2016.17.3.1341 – ident: 1 doi: 10.1016/j.cardiores.2004.05.001 – ident: 25 doi: 10.1016/j.phytochem.2010.06.016 – ident: 30 doi: 10.1016/S2221-1691(13)60139-2 – ident: 39 doi: 10.1016/j.fct.2007.09.085 – ident: 3 doi: 10.1097/00075197-200209000-00016 – ident: 7 doi: 10.1016/j.matbio.2016.09.001 – ident: 23 doi: 10.1016/j.jep.2016.10.009 – ident: 4 doi: 10.1007/s11894-005-0024-y – ident: 14 doi: 10.1016/j.foodchem.2010.12.026 – ident: 19 doi: 10.1248/jhs.48.520 – ident: 24 – ident: 13 doi: 10.1016/j.jfda.2016.10.017 – ident: 27 doi: 10.1016/j.heliyon.2022.e10740 – ident: 29 doi: 10.1078/0944-7113-00271 – ident: 22 – ident: 9 doi: 10.4161/derm.22028 – ident: 31 doi: 10.1177/1934578X1501000819 – ident: 11 doi: 10.1021/jf203146e – ident: 37 doi: 10.3390/molecules21060739 – ident: 20 doi: 10.5582/ddt.2017.01013 – ident: 36 doi: 10.1080/10942912.2011.584257 – ident: 17 doi: 10.1021/jf950190a – ident: 10 doi: 10.1111/j.1541-4337.2004.tb00063.x – ident: 21 doi: 10.1016/j.foodchem.2005.11.008 – ident: 34 – ident: 15 – ident: 32 – ident: 18 doi: 10.5582/ddt.2011.v5.3.144 – ident: 2 doi: 10.1152/physrev.00024.2005 – ident: 35 doi: 10.13005/ojc/340270 – ident: 28 doi: 10.1080/09064710.2019.1606930 – ident: 33 doi: 10.1016/j.foodchem.2004.07.035 – ident: 12 doi: 10.1002/cbf.3667 – ident: 5 doi: 10.1002/(SICI)1099-1573(200002)14:1<60::AID-PTR597>3.0.CO;2-B – ident: 6 doi: 10.1016/S1995-7645(13)60097-8 – ident: 8 |
SSID | ssj0000548185 |
Score | 2.2496915 |
Snippet | Oxidative stress, glycation and inflammation are the main causes of many severe diseases. To date, no single extract has been shown to simultaneously inhibit... |
SourceID | pubmed crossref jstage |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 114 |
SubjectTerms | anti-inflammation Anti-Inflammatory Agents - pharmacology antiglycation Antioxidant Antioxidants - pharmacology Caesalpinia chemical composition Gallic Acid Humans Inflammation Phenols - pharmacology plant extract Plant Extracts - pharmacology |
Title | Antioxidant, antiglycation, and anti-inflammatory activities of Caesalpinia mimosoides |
URI | https://www.jstage.jst.go.jp/article/ddt/17/2/17_2023.01002/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37081689 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Discoveries & Therapeutics, 2023/04/30, Vol.17(2), pp.114-123 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6jQMXND5XBpMPaBxoRvPhOjlw6BjThLSqEh3sFsWxUwW1zdS1QPkD-Lt5L3YddwxpcEkb13bd_l6e37N_75mQVxErOCtCBcIbKS_Kk8JLwMz2QPNx3hXdSGQYKHw-6J1dRB8v2WWr9cthLS0X4ij_eWtcyf-gCmWAK0bJ_gOytlMogPeAL1wBYbjeCeM-UhV_lDLTyQPgpRxPVoawYWiZWOjBlwHyU72jjqEM3-pEqjo4S11nk6sSo7OmANx1VUrDKzQ268l8OcaNnBzZnmW9TNt748RtNWz5Sn7PFgsk1CzrleVPIF8rq_cH5RQGYY70-gItx_PSrvGCnQpKuG5Ugh6r5jN3PSIIna0VrULj2Pd4bHS7css0F9PqXe7IV-AoUV-HlZr52NfxyDdVPWMxpo6VEgmxQXjUxVyyzaS23si_MddZBiL4PthDCu1TbJ_W7bfITgDuBujLnf7xyfGpXa0DwxYtG_Te1z9PZwDFTt5uDmLDwrn3FYx8zN6w4bTUxstolzwwXgftaxF6SFpq9ogcDnXa8lWHjhw0O_SQDpuE5qvH5LMjZx26IWV4K-kfMkYbGaNVQR0Zo42MPSEXpx9G7888cx6Hl4foiPm8CNE9TgoheSGzJMlDybkAm1eJRPDAlywHg78HCoAVgrMASVe5VOAT-Exl4VOyPatmao9QmGh86LNgXPWimHEh_ZxniWAi6YKHy9rEW_-HaW6S1eOZKZP0duDa5LWtf6XTtPy15jsNia1nHt-6ns_ToL7Y-vZjjIIEpdMmzzSStn3I68Nrkud3HsM-ud88OS_I9mK-VC_Btl2IAyN4B2RrMDz_DdIRpw4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antioxidant%2C+antiglycation%2C+and+anti-inflammatory+activities+of+Caesalpinia+mimosoides&rft.jtitle=Drug+discoveries+%26+therapeutics&rft.au=Rodwattanagul%2C+Soraya&rft.au=Nimlamool%2C+Wutigri&rft.au=Okonogi%2C+Siriporn&rft.date=2023-04-30&rft.issn=1881-7831&rft.eissn=1881-784X&rft.volume=17&rft.issue=2&rft.spage=114&rft.epage=123&rft_id=info:doi/10.5582%2Fddt.2023.01002&rft.externalDBID=n%2Fa&rft.externalDocID=10_5582_ddt_2023_01002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-7831&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-7831&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-7831&client=summon |