Feeding cycle alters the biophysics and molecular expression of voltage‐gated Na+ currents in rat hippocampal CA1 neurones
The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na+) currents of acutely isolated Wistar rat hippocampal CA1 neurones....
Saved in:
Published in | The European journal of neuroscience Vol. 49; no. 11; pp. 1418 - 1435 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na+) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside‐out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed “fed neurones” and “fasted neurones”, respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher “window current” amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane‐enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.
Impact of feeding and fasting on the biophysical properties and molecular expression of Na+ currents of rat hippocampal CA1 neurones. In fed neurones, the higher single channel Na+ conductance and increased Na+ channel density at the plasma membrane will determine a larger inward flux of Na+ ions, and, consequently, significant differences in the whole‐cell Na+ current density. Na+ channels are presented as key modulators in the regulation of food intake and energy balance by the hippocampus. |
---|---|
AbstractList | The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na+) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside‐out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed “fed neurones” and “fasted neurones”, respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher “window current” amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane‐enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na + ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside‐out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na + currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na + channel population of the rat hippocampus. Na + currents were recorded in neurones obtained from fed and fasted animals (here termed “fed neurones” and “fasted neurones”, respectively). Whole cell Na + currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher “window current” amplitude. We demonstrate that these results are supported by an increased single channel Na + conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane‐enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na + currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na channel population of the rat hippocampus. Na currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na+) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside‐out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed “fed neurones” and “fasted neurones”, respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher “window current” amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane‐enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. Impact of feeding and fasting on the biophysical properties and molecular expression of Na+ currents of rat hippocampal CA1 neurones. In fed neurones, the higher single channel Na+ conductance and increased Na+ channel density at the plasma membrane will determine a larger inward flux of Na+ ions, and, consequently, significant differences in the whole‐cell Na+ current density. Na+ channels are presented as key modulators in the regulation of food intake and energy balance by the hippocampus. |
Author | Bastos, André E. P. Lima, Pedro A. Costa, Pedro F. Varderidou‐Minasian, Suzy Altelaar, Maarten |
Author_xml | – sequence: 1 givenname: André E. P. orcidid: 0000-0002-0005-6640 surname: Bastos fullname: Bastos, André E. P. organization: Faculty of Sciences University of Lisbon – sequence: 2 givenname: Pedro F. surname: Costa fullname: Costa, Pedro F. – sequence: 3 givenname: Suzy surname: Varderidou‐Minasian fullname: Varderidou‐Minasian, Suzy organization: Utrecht University – sequence: 4 givenname: Maarten surname: Altelaar fullname: Altelaar, Maarten organization: Utrecht University – sequence: 5 givenname: Pedro A. surname: Lima fullname: Lima, Pedro A. email: pedro.lima@nms.unl.pt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30588669$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URKeFBS-ALLGhQmntcezYy2rU8qOqbEBiZznOzYxHjh1sBxipCx6BZ-RJCMx0U8Hd3M13ju495wQdhRgAoeeUnNN5LmAbzmnNGH2EFrQWpFJcyCO0IIqzSlLx-Rid5LwlhEhR8yfomBEupRBqge6uAToX1tjurAdsfIGUcdkAbl0cN7vsbMYmdHiIHuzkTcLwfUyQs4sBxx5_jb6YNfz68XNtCnT41rzGdkoJQsnYBZxMwRs3jtGaYTQery4pDjCl-YP8FD3ujc_w7LBP0afrq4-rt9XNhzfvVpc3lWVS0qoDSUmrWsU6rgwxtm76tm0ZCNs2kjesV6wxtLWG9bXikivScWiJMMaKZUfYKXq19x1T_DJBLnpw2YL3JkCcsl5SQYnglDUz-vIBuo1TCvN1ejkH3ChOCJupFwdqagfo9JjcYNJO3-c6Axd7wKaYc4JeW1dMmTMryTivKdF_mtNzc_pvc7Pi7IHi3vRf7MH9m_Ow-z-or97f7hW_Ac5wqV8 |
CitedBy_id | crossref_primary_10_1038_s41563_024_02060_2 |
Cites_doi | 10.1085/jgp.200509373 10.1152/ajpregu.00496.2013 10.1038/nn1656 10.1073/pnas.84.23.8682 10.1016/j.physbeh.2016.03.036 10.1152/physrev.00002.2008 10.1002/hipo.20499 10.1016/j.neulet.2010.08.079 10.1016/0165-0270(86)90040-3 10.1038/nprot.2009.21 10.1177/0963721416665103 10.1677/joe.0.1690205 10.1016/j.physbeh.2016.03.039 10.1016/S0166-4328(01)00364-3 10.1085/jgp.111.1.83 10.1016/j.brainres.2010.06.009 10.1016/0163-1047(93)90925-8 10.1016/j.physbeh.2010.12.003 10.1136/jnnp.20.1.11 10.1111/j.1460-9568.2008.06150.x 10.7554/eLife.11190 10.1016/0165-0270(94)90031-0 10.1007/978-1-4615-7858-1 10.1002/hipo.22532 10.1016/0165-3806(94)00140-5 10.1016/j.physbeh.2005.09.004 10.1085/jgp.91.3.373 10.1085/jgp.70.5.549 10.1016/j.coph.2007.10.008 10.1016/S0006-3495(92)81901-X 10.1113/jphysiol.1952.sp004719 10.1111/j.1365-2826.2012.02341.x 10.1002/hipo.22692 10.1186/s12916-015-0461-x 10.1016/0197-0186(88)90150-7 10.1152/ajpheart.00539.2010 10.1016/S0306-4522(01)00176-2 10.1016/0165-3806(95)00159-X 10.1085/jgp.95.6.1139 10.1016/0896-6273(89)90238-9 10.1007/BF00656997 10.1017/S0029665117000805 10.1038/ncomms10188 10.1055/s-2007-1019258 10.1016/j.neurobiolaging.2014.07.021 10.1523/JNEUROSCI.5005-06.2007 10.1002/hipo.22062 10.1016/j.biopsych.2015.09.011 10.1038/nmeth.1322 10.1038/nprot.2009.36 10.1152/jn.01083.2002 10.1016/S0306-4522(98)00041-4 10.1111/nure.12045 10.1038/nn.2359 10.1006/appe.2002.0500 10.1016/S0165-3806(01)00312-1 10.1007/s12263-009-0134-5 10.1016/j.tem.2017.02.006 10.1037/0735-7044.99.6.1031 |
ContentType | Journal Article |
Copyright | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2019 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | AAYXX CITATION NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.14331 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Chemoreception Abstracts CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 1435 |
ExternalDocumentID | 30588669 10_1111_ejn_14331 EJN14331 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Prime XS funderid: PRIME‐XS‐000226 – fundername: Sea4Us, Biotechnology and Marine Resources, Ltd. – fundername: Fundação para a Ciência e a Tecnologia funderid: SFRH/BD/88199/2012 – fundername: Fundação para a Ciência e a Tecnologia grantid: SFRH/BD/88199/2012 – fundername: Prime XS grantid: PRIME-XS-000226 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7QP 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3881-de810b9b93d59a0ac47fbbb3e6cb78573f937a1bca3f4958590d5eb06aac62d03 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Fri Jul 11 08:06:44 EDT 2025 Fri Jul 25 22:04:23 EDT 2025 Wed Feb 19 02:30:59 EST 2025 Thu Apr 24 23:05:58 EDT 2025 Tue Jul 01 03:02:19 EDT 2025 Wed Jan 22 16:39:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | CA1 neurones feeding cycle ion channels rat hippocampus voltage-gated sodium currents |
Language | English |
License | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3881-de810b9b93d59a0ac47fbbb3e6cb78573f937a1bca3f4958590d5eb06aac62d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0005-6640 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejn.14331 |
PMID | 30588669 |
PQID | 2331795003 |
PQPubID | 34057 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2161065137 proquest_journals_2331795003 pubmed_primary_30588669 crossref_citationtrail_10_1111_ejn_14331 crossref_primary_10_1111_ejn_14331 wiley_primary_10_1111_ejn_14331_EJN14331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1990; 95 2015; 36 2017; 81 2013; 23 1952; 116 2013; 71 1998; 111 2016a; 25 1998; 86 2001; 105 1981; 391 2009; 12 2001; 132 1987; 84 2016b; 162 2017; 76 2008; 27 2007; 7 1985; 99 2006; 127 2012; 24 2009; 19 2007; 27 1977; 70 2003; 89 2015; 13 1989; 3 2002; 39 2015; 6 2015; 4 2012 2017; 28 2017; 27 2006; 9 2010; 486 1986; 16 2005; 86 1988; 12 1995 1994 1996; 91 1988; 91 1994; 83 2001; 169 2016; 162 2001; 127 1993; 59 2014; 306 2011; 103 1957; 20 2011; 300 2010; 1350 1981; 13 2008; 88 2009; 6 2009; 4 2016; 26 1994; 51 1992; 61 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 Ogden D. (e_1_2_10_42_1) 1994 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 83 start-page: 216 year: 1994 end-page: 223 article-title: Potassium currents in acutely isolated maturing rat hippocampal CA1 neurones publication-title: Developmental Brain Research – volume: 24 start-page: 1346 year: 2012 end-page: 1355 article-title: Postprandial insulin resistance in Zucker diabetic fatty rats is associated with parasympathetic‐nitric oxide axis deficiencies publication-title: Journal of Neuroendocrinology – volume: 103 start-page: 59 year: 2011 end-page: 68 article-title: Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity publication-title: Physiology & Behavior – volume: 4 start-page: 484 year: 2009 end-page: 494 article-title: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics publication-title: Nature Protocols – volume: 95 start-page: 1139 year: 1990 end-page: 1157 article-title: A voltage‐dependent persistent sodium current in mammalian hippocampal neurons publication-title: Journal of General Physiology – volume: 39 start-page: 159 year: 2002 end-page: 166 article-title: Memory for recent eating and its influence on subsequent food intake publication-title: Appetite – volume: 28 start-page: 437 year: 2017 end-page: 448 article-title: Neural circuit mechanisms underlying emotional regulation of homeostatic feeding publication-title: Trends in Endocrinology and Metabolism – volume: 91 start-page: 29 year: 1996 end-page: 40 article-title: The kinetic parameters of sodium currents in maturing acutely isolated rat hippocampal CA1 neurones publication-title: Brain Research. Developmental Brain Research – volume: 76 start-page: 455 year: 2017 end-page: 465 article-title: Adverse effects of consuming high fat–sugar diets on cognition: Implications for understanding obesity publication-title: Proceedings of the Nutrition Society – volume: 4 start-page: 271 year: 2009 end-page: 282 article-title: Impact of diet on adult hippocampal neurogenesis publication-title: Genes & Nutrition – volume: 86 start-page: 99 year: 1998 end-page: 107 article-title: Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis publication-title: Neuroscience – volume: 25 start-page: 461 year: 2016a end-page: 466 article-title: Dorsal hippocampal‐dependent episodic memory inhibits eating publication-title: Current Directions in Psychological Science – volume: 23 start-page: 100 year: 2013 end-page: 107 article-title: Hippocampal neurons inhibit meal onset publication-title: Hippocampus – volume: 71 start-page: 541 year: 2013 end-page: 561 article-title: Ghrelin, neuropeptide Y, and other feeding‐regulatory peptides active in the Hippocampus: Role in learning and memory publication-title: Nutrition Reviews – volume: 300 start-page: H288 year: 2011 end-page: H299 article-title: Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 26 start-page: 405 year: 2016 end-page: 413 article-title: Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an Experience‐dependent manner publication-title: Hippocampus – year: 1994 – volume: 99 start-page: 1031 year: 1985 end-page: 1039 article-title: Diminished ability to interpret and report internal states after bilateral medial temporal resection: Case H.M publication-title: Behavioral Neuroscience – volume: 132 start-page: 159 year: 2001 end-page: 174 article-title: Sodium channel currents in maturing acutely isolated rat hippocampal CA1 neurones publication-title: Brain Research. Developmental Brain Research – volume: 391 start-page: 85 year: 1981 end-page: 100 article-title: Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches publication-title: Pflügers Archiv – European Journal of Physiology – volume: 162 start-page: 112 year: 2016b end-page: 119 article-title: Cognitive control of meal onset and meal size: Role of dorsal hippocampal‐dependent episodic memory publication-title: Physiology & Behavior – volume: 6 start-page: 359 year: 2009 end-page: 362 article-title: Universal sample preparation method for proteome analysis publication-title: Nature Methods – volume: 6 start-page: 10188 year: 2015 article-title: An excitatory ventral hippocampus to lateral septum circuit that suppresses feeding publication-title: Nature Communications – volume: 19 start-page: 235 year: 2009 end-page: 252 article-title: Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation publication-title: Hippocampus – volume: 486 start-page: 92 year: 2010 end-page: 100 article-title: Voltage‐gated sodium channel organization in neurons: Protein interactions and trafficking pathways publication-title: Neuroscience Letters – volume: 127 start-page: 13 year: 2001 end-page: 23 article-title: The hippocampus and motivation revisited: Appetite and activity publication-title: Behavioral Brain Research – volume: 51 start-page: 107 year: 1994 end-page: 116 article-title: JPCalc, a software package for calculating liquid junction potential corrections in patch‐clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements publication-title: Journal of Neuroscience Methods – volume: 306 start-page: R701 year: 2014 end-page: R713 article-title: Remembering to eat: Hippocampal regulation of meal onset publication-title: American Journal of Physiology: Regulatory, Integrative and Comparative Physiology – volume: 86 start-page: 731 year: 2005 end-page: 746 article-title: Memory inhibition and energy regulation publication-title: Physiology & Behavior – volume: 27 start-page: 274 year: 2017 end-page: 284 article-title: Ventral hippocampal neurons inhibit postprandial energy intake publication-title: Hippocampus – volume: 27 start-page: 2019 year: 2008 end-page: 2032 article-title: Insulin increases excitability via a dose‐dependent dual inhibition of voltage‐activated K+ currents in differentiated N1E‐115 neuroblastoma cells publication-title: European Journal of Neuroscience – volume: 88 start-page: 1407 year: 2008 end-page: 1447 article-title: Localization and targeting of voltage‐dependent ion channels in mammalian central neurons publication-title: Physiological Reviews – volume: 13 start-page: 215 year: 2015 article-title: Western diet is associated with a smaller hippocampus: A longitudinal investigation publication-title: BMC Medicine – volume: 36 start-page: 344 year: 2015 end-page: 351 article-title: A specific multi‐nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats publication-title: Neurobiology of Aging – volume: 84 start-page: 8682 year: 1987 end-page: 8686 article-title: Tissue‐specific expression of the RI and RII sodium channel subtypes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 91 start-page: 373 year: 1988 end-page: 398 article-title: The sodium current underlying action potentials in guinea pig hippocampal CAI neurons publication-title: Journal of General Physiology – volume: 59 start-page: 167 year: 1993 end-page: 171 article-title: A role for hippocampus in the utilization of hunger signals publication-title: Behavioral and Neural Biology – volume: 105 start-page: 109 year: 2001 end-page: 120 article-title: Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post‐status epilepticus model of epilepsy publication-title: Neuroscience – volume: 111 start-page: 83 year: 1998 end-page: 93 article-title: Slow inactivation does not affect movement of the fast inactivation gate in voltage‐gated Na+ channels publication-title: Journal of General Physiology – volume: 13 start-page: 326 year: 1981 end-page: 330 article-title: Metabolic effects of short term food deprivation in the rat publication-title: Hormone and Metabolic Research – volume: 116 start-page: 497 year: 1952 end-page: 506 article-title: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo publication-title: Journal of Physiology – volume: 89 start-page: 2489 year: 2003 end-page: 2498 article-title: Relation between bicarbonate concentration and voltage dependence of sodium currents in freshly isolated CA1 neurons of the rat publication-title: Journal of Neurophysiology – volume: 61 start-page: 941 year: 1992 end-page: 955 article-title: Steady‐state availability of sodium channels. Interactions between activation and slow inactivation publication-title: Biophysical Journal – volume: 1350 start-page: 71 year: 2010 end-page: 76 article-title: Learned and cognitive controls of food intake publication-title: Brain Research – volume: 4 start-page: 698 year: 2009 end-page: 705 article-title: A practical guide to the maxquant computational platform for silac‐based quantitative proteomics publication-title: Nature Protocols – volume: 7 start-page: 613 year: 2007 end-page: 616 article-title: A potential role for the hippocampus in energy intake and body weight regulation publication-title: Current Opinion in Pharmacology – volume: 81 start-page: 748 year: 2017 end-page: 756 article-title: Hippocampus contributions to food intake control: Mnemonic, neuroanatomical, and endocrine mechanisms publication-title: Biological Psychiatry – year: 2012 – volume: 3 start-page: 695 year: 1989 end-page: 704 article-title: Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons publication-title: Neuron – volume: 20 start-page: 11 year: 1957 end-page: 21 article-title: Loss of recent memory after bilateral hippocampal lesions publication-title: Journal of Neurology, Neurosurgery and Psychiatry – volume: 16 start-page: 227 year: 1986 end-page: 238 article-title: Isolation of neurons suitable for patch‐clamping from adult mammalian central nervous systems publication-title: Journal of Neuroscience Methods – volume: 162 start-page: 1418 year: 2016 end-page: 8 article-title: Ghrelin: A link between memory and ingestive behavior publication-title: Physiology & Behavior – volume: 12 start-page: 69 year: 1988 end-page: 77 article-title: Marker enzymes, phospholipids and acyl group composition of a somal plasma membrane fraction isolated from rat cerebral cortex: A comparison with microsomes and synaptic plasma membranes publication-title: Neurochemistry International – volume: 9 start-page: 381 year: 2006 end-page: 388 article-title: Ghrelin controls hippocampal spine synapse density and memory performance publication-title: Nature Neuroscience – volume: 127 start-page: 1418 year: 2006 end-page: 14 article-title: Single‐channel properties of human Na V 1.1 and mechanism of channel dysfunction in SCN1A ‐associated epilepsy publication-title: The Journal of General Physiology – volume: 27 start-page: 11533 year: 2007 end-page: 11542 article-title: Regulation of Na(v)1.2 channels by brain‐derived neurotrophic factor, TrkB, and associated Fyn kinase publication-title: Journal of Neuroscience – volume: 169 start-page: 205 year: 2001 end-page: 231 article-title: Hormones and the hippocampus publication-title: Journal of Endocrinology – year: 1995 – volume: 4 start-page: 1418 year: 2015 end-page: 20 article-title: Hippocampus ghrelin signaling mediates appetite through lateral hypothalamic orexin pathways publication-title: ELife – volume: 70 start-page: 549 year: 1977 end-page: 566 article-title: Inactivation of the sodium channel. I. Sodium current experiments publication-title: The Journal of General Physiology – volume: 12 start-page: 996 year: 2009 end-page: 1002 article-title: Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation publication-title: Nature Neuroscience – ident: e_1_2_10_57_1 doi: 10.1085/jgp.200509373 – ident: e_1_2_10_46_1 doi: 10.1152/ajpregu.00496.2013 – ident: e_1_2_10_18_1 doi: 10.1038/nn1656 – ident: e_1_2_10_21_1 doi: 10.1073/pnas.84.23.8682 – ident: e_1_2_10_45_1 doi: 10.1016/j.physbeh.2016.03.036 – ident: e_1_2_10_56_1 doi: 10.1152/physrev.00002.2008 – ident: e_1_2_10_14_1 doi: 10.1002/hipo.20499 – ident: e_1_2_10_39_1 doi: 10.1016/j.neulet.2010.08.079 – ident: e_1_2_10_36_1 doi: 10.1016/0165-0270(86)90040-3 – ident: e_1_2_10_8_1 doi: 10.1038/nprot.2009.21 – ident: e_1_2_10_44_1 doi: 10.1177/0963721416665103 – ident: e_1_2_10_38_1 doi: 10.1677/joe.0.1690205 – ident: e_1_2_10_30_1 doi: 10.1016/j.physbeh.2016.03.039 – ident: e_1_2_10_55_1 doi: 10.1016/S0166-4328(01)00364-3 – ident: e_1_2_10_58_1 doi: 10.1085/jgp.111.1.83 – ident: e_1_2_10_6_1 doi: 10.1016/j.brainres.2010.06.009 – ident: e_1_2_10_15_1 doi: 10.1016/0163-1047(93)90925-8 – ident: e_1_2_10_34_1 doi: 10.1016/j.physbeh.2010.12.003 – ident: e_1_2_10_50_1 doi: 10.1136/jnnp.20.1.11 – ident: e_1_2_10_41_1 doi: 10.1111/j.1460-9568.2008.06150.x – ident: e_1_2_10_29_1 doi: 10.7554/eLife.11190 – ident: e_1_2_10_4_1 doi: 10.1016/0165-0270(94)90031-0 – ident: e_1_2_10_49_1 doi: 10.1007/978-1-4615-7858-1 – ident: e_1_2_10_25_1 doi: 10.1002/hipo.22532 – ident: e_1_2_10_12_1 doi: 10.1016/0165-3806(94)00140-5 – ident: e_1_2_10_17_1 doi: 10.1016/j.physbeh.2005.09.004 – ident: e_1_2_10_48_1 doi: 10.1085/jgp.91.3.373 – ident: e_1_2_10_7_1 doi: 10.1085/jgp.70.5.549 – ident: e_1_2_10_16_1 doi: 10.1016/j.coph.2007.10.008 – ident: e_1_2_10_47_1 doi: 10.1016/S0006-3495(92)81901-X – ident: e_1_2_10_28_1 doi: 10.1113/jphysiol.1952.sp004719 – ident: e_1_2_10_2_1 doi: 10.1111/j.1365-2826.2012.02341.x – ident: e_1_2_10_23_1 doi: 10.1002/hipo.22692 – ident: e_1_2_10_33_1 doi: 10.1186/s12916-015-0461-x – ident: e_1_2_10_52_1 doi: 10.1016/0197-0186(88)90150-7 – ident: e_1_2_10_32_1 doi: 10.1152/ajpheart.00539.2010 – ident: e_1_2_10_37_1 doi: 10.1016/S0306-4522(01)00176-2 – ident: e_1_2_10_11_1 doi: 10.1016/0165-3806(95)00159-X – ident: e_1_2_10_20_1 doi: 10.1085/jgp.95.6.1139 – ident: e_1_2_10_60_1 doi: 10.1016/0896-6273(89)90238-9 – volume-title: Microelectrode techniques: The Plymouth workshop handbook year: 1994 ident: e_1_2_10_42_1 – ident: e_1_2_10_22_1 doi: 10.1007/BF00656997 – ident: e_1_2_10_62_1 doi: 10.1017/S0029665117000805 – ident: e_1_2_10_40_1 – ident: e_1_2_10_53_1 doi: 10.1038/ncomms10188 – ident: e_1_2_10_43_1 doi: 10.1055/s-2007-1019258 – ident: e_1_2_10_10_1 doi: 10.1016/j.neurobiolaging.2014.07.021 – ident: e_1_2_10_3_1 doi: 10.1523/JNEUROSCI.5005-06.2007 – ident: e_1_2_10_26_1 doi: 10.1002/hipo.22062 – ident: e_1_2_10_35_1 doi: 10.1016/j.biopsych.2015.09.011 – ident: e_1_2_10_61_1 doi: 10.1038/nmeth.1322 – ident: e_1_2_10_13_1 doi: 10.1038/nprot.2009.36 – ident: e_1_2_10_9_1 doi: 10.1152/jn.01083.2002 – ident: e_1_2_10_59_1 doi: 10.1016/S0306-4522(98)00041-4 – ident: e_1_2_10_5_1 doi: 10.1111/nure.12045 – ident: e_1_2_10_31_1 doi: 10.1038/nn.2359 – ident: e_1_2_10_27_1 doi: 10.1006/appe.2002.0500 – ident: e_1_2_10_19_1 doi: 10.1016/S0165-3806(01)00312-1 – ident: e_1_2_10_51_1 doi: 10.1007/s12263-009-0134-5 – ident: e_1_2_10_54_1 doi: 10.1016/j.tem.2017.02.006 – ident: e_1_2_10_24_1 doi: 10.1037/0735-7044.99.6.1031 |
SSID | ssj0008645 |
Score | 2.2919126 |
Snippet | The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1418 |
SubjectTerms | Biophysics CA1 neurones Energy balance Excitability Feeding feeding cycle Hippocampus Information processing ion channels Mass spectroscopy rat hippocampus Satiety Sodium Sodium channels (voltage-gated) Sodium conductance voltage‐gated sodium currents Western blotting |
Title | Feeding cycle alters the biophysics and molecular expression of voltage‐gated Na+ currents in rat hippocampal CA1 neurones |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.14331 https://www.ncbi.nlm.nih.gov/pubmed/30588669 https://www.proquest.com/docview/2331795003 https://www.proquest.com/docview/2161065137 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CemgvfSR9bJuEaSmlUBzsyJZlctpss4RA91Aa2EPBaGSZbJt4l3oXmpBDf0J_Y39JR_KjTR9QejAYJNl6zIw-SaNvAJ4rRYWSiQh0IYogNhQHxGITGKIyLPmJS3fB-c1EHp3Ex9Nkugb73V2Yhh-i33BzmuHttVNwTfVPSm4_VKzmwt-hdr5aDhC9_UEdpaQPUOzo1AIVyWnLKuS8ePqS1-ei3wDmdbzqJ5zxHXjfVbXxM_m4u1rSrrn8hcXxP9tyF263QBSHjeTcgzVbbcDmsOJF-PkFvkDvGur33Dfg5qgLC7cJV-NmvkNzweXQn7bXyDASaTZv9klq1FWB513gXbSfW2_bCuclsj1cshH79uWr28ErcKJfoWlYomqcVcgiiaezxYInWTZVZzgaRuhZN9ko34eT8eG70VHQhnAIjFAqCgqropAyykSRZDrUJk5LIhJWGkpVkoqS4ZGOyGhR8lJNJVlYJJZCqbWRe0UoHsB6xd9_BJjqlOGTYcSYiTgWpDWvDa2MLcXc7swO4GU3mLlp-c1dmI2zvFvncC_nvpcH8KzPumhIPf6UaauTiLzV6zrf44Q0S9gUDuBpn8wj4I5ZdGXnK87DIJqBXSTSATxsJKn_C1tXpaTMuLJeHv7--_zweOJfHv971idwi_Fc1niybcH68tPKbjNmWtIO3BgevD4Y73gl-Q4CQRZT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5VAuPFoeWwoMCCEklCqpHceRuKxWXS2l3QNqpb2gyHYcdaHNrrq7EkUc-An8Rn4JYzsJlIeEOESKFCdx7JnxN5PxNwDPpNSlFCmLVMnKiBvNI01iExmtq7iig1dug_PRWIxO-MEknazBq3YvTOCH6AJuTjO8vXYK7gLSP2m5fV-TnjO3ifqaq-jtHaq3P8ijpPAlih2hWiQTMWl4hVweT3fr1dXoN4h5FbH6JWd4E961nQ2ZJh92V0u9az79wuP4v19zC240WBT7QXhuw5qtN2GrX5Mffn6Jz9Fnh_qw-yZsDNrKcFvweRiWPDSXdB_6H-4LJCSJejoLoZIFqrrE87b2LtqPTcJtjbMKySQuyY59-_LVBfFKHKuXaAJR1AKnNZJU4ul0Pqd1lqzVGQ76CXriTbLLd-BkuH88GEVNFYfIMCmTqLQyiXWuc1amuYqV4VmltWZWGJ3JNGMVISSVaKNYRd6aTPO4TK2OhVJG7JUxuwvrNT3_PmCmMkJQhkBjzjhnWilyD63gVnP67tz24EU7m4VpKM5dpY2zonV1aJQLP8o9eNo1nQdejz812mlFomhUe1Hs0YUsT8ka9uBJd5lmwP1pUbWdragN4ejYiWTWg3tBlLq3kIGVUoicOusF4u-vL_YPxv5k-9-bPoaN0fHRYXH4evzmAVwneJeHxLYdWF9erOxDglBL_chryneHohj8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UCuqL1VbrtlWPIiLIlJkmk8ng07LtUqsuIhb2QRhyG1xtZxd3F2zxwZ_gb_SXeJK5aL2A-DAwkGQml3NOviQn3wF4KKW2UqQsUpbZiBvNI01iExmty7ikh5f-gvPLkTg85kfjdLwCT9u7MDU_RLfh5jUj2Guv4DNb_qTk7n1Fas78HepLXMTSi_T-6x_cUVKECMWeTy2SiRg3tELejacrenEy-g1hXgSsYcYZrsHbtq61o8mH3eVC75rzX2gc_7Mx1-Fag0SxX4vODVhx1Tps9CtahZ-e4SMMvqFh030drgzauHAb8HlYT3hozqgchuP2ORKORD2Z1hslc1SVxdM28i66T427bYXTEskgLsiKffvy1W_hWRypJ2hqmqg5TiokmcR3k9mMZlmyVSc46CcYaDfJKt-E4-HBm8Fh1MRwiAyTMomsk0msc50zm-YqVoZnpdaaOWF0JtOMlYSPVKKNYiWt1WSaxzZ1OhZKGbFnY3YLViv6_m3ATGWEnwxBxpxxzrRStDh0gjvNqd2568HjdjAL0xCc-zgbJ0W70KFeLkIv9-BBl3VWs3r8KdNOKxFFo9jzYo8SsjwlW9iD-10yjYA_Z1GVmy4pD6FoQnYJy3qwWUtS9xcyr1IKkVNlgzz8_ffFwdEovGz9e9Z7cPnV_rB48Wz0fBuuErbLa6-2HVhdfFy6O4SfFvpu0JPvT0EXtA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feeding+cycle+alters+the+biophysics+and+molecular+expression+of+voltage%E2%80%90gated+Na%2B+currents+in+rat+hippocampal+CA1+neurones&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Bastos%2C+Andr%C3%A9+E+P&rft.au=Costa%2C+Pedro+F&rft.au=Suzy+Varderidou%E2%80%90Minasian&rft.au=Altelaar%2C+Maarten&rft.date=2019-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=49&rft.issue=11&rft.spage=1418&rft.epage=1435&rft_id=info:doi/10.1111%2Fejn.14331&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |