Effects of short‐term exposure to red or near‐infrared light on axial length in young human subjects

Purpose To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Methods Incoherent narrow‐band red (620 ± 10 nm) or near‐infrared (NIR, 875 ± 30 nm) light was generated by an array of light‐emitting diodes (LEDs) and projected monocularly in...

Full description

Saved in:
Bibliographic Details
Published inOphthalmic & physiological optics Vol. 44; no. 5; pp. 954 - 962
Main Authors Swiatczak, Barbara, Schaeffel, Frank
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Methods Incoherent narrow‐band red (620 ± 10 nm) or near‐infrared (NIR, 875 ± 30 nm) light was generated by an array of light‐emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non‐myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low‐coherence interferometry. Results Non‐myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (−13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = −0.52, p = 0.03) and induced changes in AL after exposure to red light in non‐myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. Conclusions Incoherent narrow‐band red light at 620 nm induced axial shortening in 77% of non‐myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
AbstractList To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light.PURPOSETo determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light.Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry.METHODSIncoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry.Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error.RESULTSNon-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error.Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.CONCLUSIONSIncoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry. Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
Purpose To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Methods Incoherent narrow‐band red (620 ± 10 nm) or near‐infrared (NIR, 875 ± 30 nm) light was generated by an array of light‐emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non‐myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low‐coherence interferometry. Results Non‐myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (−13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = −0.52, p = 0.03) and induced changes in AL after exposure to red light in non‐myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. Conclusions Incoherent narrow‐band red light at 620 nm induced axial shortening in 77% of non‐myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
PurposeTo determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light.MethodsIncoherent narrow‐band red (620 ± 10 nm) or near‐infrared (NIR, 875 ± 30 nm) light was generated by an array of light‐emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non‐myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low‐coherence interferometry.ResultsNon‐myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (−13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = −0.52, p = 0.03) and induced changes in AL after exposure to red light in non‐myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error.ConclusionsIncoherent narrow‐band red light at 620 nm induced axial shortening in 77% of non‐myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
Author Swiatczak, Barbara
Schaeffel, Frank
Author_xml – sequence: 1
  givenname: Barbara
  orcidid: 0000-0002-6939-690X
  surname: Swiatczak
  fullname: Swiatczak, Barbara
  email: barbara.swiatczak@iob.ch
  organization: Institute of Molecular and Clinical Ophthalmology Basel (IOB)
– sequence: 2
  givenname: Frank
  orcidid: 0000-0002-3685-0811
  surname: Schaeffel
  fullname: Schaeffel, Frank
  organization: University of Tuebingen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38557968$$D View this record in MEDLINE/PubMed
BookMark eNp90cFu1DAQAFALFdFt4cAPIEtc4LCtvd7EkyOqCkWqtBzaczRJxhuvEnuxHbV74xP4Rr4Eb7f0UKn4Yst-M2PNnLAj5x0x9l6KM5nXud_6M6mUlK_YTC51MZdKqiM2E4t8LpYCjtlJjBshhNYa3rBjBUWhqxJmrL80htoUuTc89j6kP79-Jwojp_utj1MgnjwP1HEfuCMM-dk6E3B_Ndh1n7h3HO8tDnwgt049t47v_OTWvJ9GdDxOzWZf4C17bXCI9O5xP2W3Xy9vLq7m16tv3y--XM9bBSDnHRhREZULhagaiQ1qKEqtm7KsoAUwncYldLpEAZVUWMmuUF0LS1MIrcRCnbJPh7zb4H9OFFM92tjSMKAjP8VaidwnpRXITD8-oxs_BZd_l1VZgKwqDVl9eFRTM1JXb4MdMezqfz3M4PMBtMHHGMg8ESnq_XzqPJ_6YT7Znj-zrU2YrHcpoB3-F3FnB9q9nLpe_VgdIv4CWmuiQQ
CitedBy_id crossref_primary_10_1167_iovs_66_1_30
crossref_primary_10_1111_opo_13390
crossref_primary_10_1055_a_2322_9892
crossref_primary_10_3390_cosmetics12010004
Cites_doi 10.1111/opo.13272
10.1007/s00417-022-05794-4
10.1007/s40123-023-00671-7
10.1016/j.ophtha.2022.08.024
10.1111/opo.12939
10.1016/j.exer.2023.109593
10.1167/iovs.10-5457
10.1039/c8pp00176f
10.1097/OPX.0000000000001283
10.1007/s00417-022-05842-z
10.1016/j.visres.2017.07.011
10.1007/s00417‐022‐05842‐z
10.1016/j.yjmcc.2008.09.707
10.1097/00004032-198905000-00015
10.1016/j.ophtha.2021.11.023
10.1016/j.optom.2020.04.003
10.1097/OPX.0000000000002083
10.1007/s40123-022-00585-w
10.1167/iovs.62.3.14
10.1073/pnas.0534746100
10.7150/ijms.52980
10.1155/2021/8915867
10.1167/tvst.11.10.33
10.1167/iovs.62.10.1
10.1167/iovs.15-17025
10.1111/opo.12218
10.1159/000527787
10.1038/s41598‐022‐26323‐7
10.3390/ijms21072370
10.1016/S0042-6989(02)00262-6
10.1111/opo.12609
10.1364/JOSAA.24.001250
10.1016/j.jphotobiol.2018.04.010
10.1016/j.ophtha.2022.10.002
10.1167/iovs.62.15.22
10.1038/s41598‐023‐38192‐9
10.1111/ceo.14149
10.1167/jov.21.5.11
10.1016/j.exer.2018.07.004
10.1111/opo.12853
10.1016/0042-6989(93)90026-S
10.1016/j.ophtha.2023.08.020
10.1111/opo.13201
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists.
2024 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists.
– notice: 2024 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TK
H94
7X8
DOI 10.1111/opo.13311
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1475-1313
EndPage 962
ExternalDocumentID 38557968
10_1111_opo_13311
OPO13311
Genre researchArticle
Journal Article
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
123
1B1
1OB
1OC
1~5
24P
29N
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHQN
AAIPD
AALRI
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABMAC
ABPVW
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACVFH
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADCNI
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFPUW
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SSZ
SUPJJ
SV3
TEORI
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TK
H94
7X8
ID FETCH-LOGICAL-c3881-d8f09ee623aa3b1aba785677b6698c88fd7a48d76a08913a91d53dc84f5073023
IEDL.DBID DR2
ISSN 0275-5408
1475-1313
IngestDate Fri Jul 11 02:01:37 EDT 2025
Wed Aug 13 04:53:07 EDT 2025
Mon May 05 07:05:41 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Tue Jul 01 02:19:01 EDT 2025
Sun Jul 06 04:45:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords myopia
red laser light therapy
infrared light
axial length
repeated low‐level red light
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-d8f09ee623aa3b1aba785677b6698c88fd7a48d76a08913a91d53dc84f5073023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3685-0811
0000-0002-6939-690X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.13311
PMID 38557968
PQID 3065819978
PQPubID 2045120
PageCount 9
ParticipantIDs proquest_miscellaneous_3031137381
proquest_journals_3065819978
pubmed_primary_38557968
crossref_primary_10_1111_opo_13311
crossref_citationtrail_10_1111_opo_13311
wiley_primary_10_1111_opo_13311_OPO13311
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-Jul
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Ophthalmic & physiological optics
PublicationTitleAlternate Ophthalmic Physiol Opt
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
2015; 56
2009; 46
2021; 21
2023; 13
2023; 12
2018; 183
2022; 192
2023; 261
2022; 50
2023; 100
2019; 39
2022; 42
2022; 66
2021; 14
2023; 43
2018; 17
2018; 176
1989; 56
2023; 131
2023; 130
2002; 42
2021; 18
2023; 234
1993; 33
2022; 12
2017; 140
2024; 44
2018; 95
2020; 21
2022; 11
2021; 41
2022; 129
2021; 62
2003; 100
2007; 24
2016; 9
2010; 51
2021; 2021
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
Geneva II (e_1_2_9_8_1) 2016; 9
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 13
  year: 2023
  article-title: Impact of text contrast polarity on the retinal activity in myopes and emmetropes using modified pattern ERG
  publication-title: Sci Rep
– volume: 41
  start-page: 1076
  year: 2021
  end-page: 1086
  article-title: Amber light treatment produces hyperopia in tree shrews
  publication-title: Ophthalmic Physiol Opt
– volume: 18
  start-page: 109
  year: 2021
  end-page: 119
  article-title: Near infrared (NIR) light therapy of eye diseases: a review
  publication-title: Int J Med Sci
– volume: 66
  start-page: 312
  year: 2022
  end-page: 318
  article-title: Immediate effect in retina and choroid after 650 nm low‐level red light therapy in children
  publication-title: Ophthalmic Res
– volume: 100
  start-page: 812
  year: 2023
  end-page: 822
  article-title: Repeated low‐level red‐light therapy: the next wave in myopia management?
  publication-title: Optom Vis Sci
– volume: 234
  year: 2023
  article-title: The effects of ambient narrowband long‐wavelength light on lens‐induced myopia and form‐deprivation myopia in tree shrews
  publication-title: Exp Eye Res
– volume: 46
  start-page: 4
  year: 2009
  end-page: 14
  article-title: Near infrared light protects cardiomyocytes from hypoxia and reoxygenation injury by a nitric oxide dependent mechanism
  publication-title: J Mol Cell Cardiol
– volume: 131
  start-page: 48
  year: 2023
  end-page: 57
  article-title: Efficacy of different powers of low‐level red light in children for myopia control
  publication-title: Ophthalmology
– volume: 51
  start-page: 6262
  year: 2010
  end-page: 6269
  article-title: Human optical axial length and defocus
  publication-title: Invest Ophthalmol Vis Sci
– volume: 11
  start-page: 2259
  year: 2022
  end-page: 2270
  article-title: Investigation of the efficacy and safety of 650 nm low‐level red light for myopia control in children: a randomized controlled trial
  publication-title: Ophthalmol Therapy
– volume: 42
  start-page: 2409
  year: 2002
  end-page: 2417
  article-title: Effects of longitudinal chromatic aberration on accommodation and emmetropization
  publication-title: Vision Res
– volume: 183
  start-page: 22
  year: 2018
  end-page: 29
  article-title: Photobiomodulation mechanisms in the kinetics of the wound healing process in rats
  publication-title: J Photochem Photobiol B
– volume: 21
  year: 2021
  article-title: How chromatic cues can guide human eye growth to achieve good focus
  publication-title: J Vis
– volume: 261
  start-page: 115
  year: 2023
  end-page: 125
  article-title: Imposed positive defocus changes choroidal blood flow in young human subjects
  publication-title: Graefes Arch Clin Exp Ophthalmol
– volume: 56
  start-page: 691
  year: 1989
  end-page: 704
  article-title: Photobiology of low‐power laser effects
  publication-title: Health Phys
– volume: 42
  start-page: 335
  year: 2022
  end-page: 344
  article-title: Low‐intensity, long‐wavelength red light slows the progression of myopia in children: an eastern China‐based cohort
  publication-title: Ophthalmic Physiol Opt
– volume: 130
  start-page: 198
  year: 2023
  end-page: 204
  article-title: Myopia control effect of repeated low‐level red‐light therapy in Chinese children: a randomized, double‐blind, controlled clinical trial
  publication-title: Ophthalmology
– volume: 24
  start-page: 1250
  year: 2007
  end-page: 1265
  article-title: Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices
  publication-title: J Opt Soc Am A
– volume: 192
  year: 2022
  article-title: Emmetropic, but not myopic human eyes distinguish positive defocus from calculated defocus in monochromatic red light
  publication-title: Vision Res
– volume: 43
  start-page: 1419
  year: 2023
  end-page: 1426
  article-title: The effects of intensity, spectral purity and duty cycle on red light‐induced hyperopia in tree shrews
  publication-title: Ophthalmic Physiol Opt
– volume: 44
  start-page: 241
  year: 2024
  end-page: 248
  article-title: Red light instruments for myopia exceed safety limits
  publication-title: Ophthalmic Physiol Opt
– volume: 11
  year: 2022
  article-title: Efficacy comparison of repeated low‐level red light and low‐dose atropine for myopia control: a randomized controlled trial
  publication-title: Transl Vis Sci Technol
– volume: 130
  start-page: 286
  year: 2023
  end-page: 296
  article-title: Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low‐level red‐light therapy
  publication-title: Ophthalmology
– volume: 95
  start-page: 911
  year: 2018
  end-page: 920
  article-title: Juvenile tree shrews do not maintain emmetropia in narrow‐band blue light
  publication-title: Optom Vis Sci
– volume: 17
  start-page: 1003
  year: 2018
  end-page: 1017
  article-title: Photobiomodulation: lasers vs. light emitting diodes?
  publication-title: Photochem Photobiol Sci
– volume: 100
  start-page: 3439
  year: 2003
  end-page: 3444
  article-title: Therapeutic photobiomodulation for methanol‐induced retinal toxicity
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 11
  year: 2021
  end-page: 19
  article-title: Under‐correction or full correction of myopia? A meta‐analysis
  publication-title: J Optom
– volume: 62
  year: 2021
  article-title: Emmetropic, but not myopic human eyes distinguish positive defocus from calculated blur
  publication-title: Invest Ophthalmol Vis Sci
– volume: 176
  start-page: 147
  year: 2018
  end-page: 160
  article-title: Narrow‐band, long‐wavelength lighting promotes hyperopia and retards vision‐induced myopia in infant rhesus monkeys
  publication-title: Exp Eye Res
– volume: 56
  start-page: 6490
  year: 2015
  end-page: 6500
  article-title: Effects of long‐wavelength lighting on refractive development in infant rhesus monkeys
  publication-title: Invest Ophthalmol Vis Sci
– volume: 21
  year: 2020
  article-title: Photobiomodulation mediates neuroprotection against blue light induced retinal photoreceptor degeneration
  publication-title: Int J Mol Sci
– volume: 35
  start-page: 405
  year: 2015
  end-page: 413
  article-title: Effect of retinal image defocus on the thickness of the human choroid
  publication-title: Ophthalmic Physiol Opt
– volume: 50
  start-page: 1013
  year: 2022
  end-page: 1024
  article-title: Sustained and rebound effect of repeated low‐level red‐light therapy on myopia control: a 2‐year post‐trial follow‐up study
  publication-title: Clin Exp Ophthalmol
– volume: 140
  start-page: 55
  year: 2017
  end-page: 65
  article-title: Long‐wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews
  publication-title: Vision Res
– volume: 39
  start-page: 172
  year: 2019
  end-page: 182
  article-title: Regional alterations in human choroidal thickness in response to short‐term monocular hemifield myopic defocus
  publication-title: Ophthalmic Physiol Opt
– volume: 12
  year: 2022
  article-title: Myopia: why the retina stops inhibiting eye growth
  publication-title: Sci Rep
– volume: 129
  start-page: 509
  year: 2022
  end-page: 519
  article-title: Effect of repeated low‐level red‐light therapy for myopia control in children: a multicenter randomized controlled trial
  publication-title: Ophthalmology
– volume: 62
  year: 2021
  article-title: Retinal responses to simulated optical blur using a novel dead leaves ERG stimulus
  publication-title: Invest Ophthalmol Vis Sci
– volume: 33
  start-page: 1593
  year: 1993
  end-page: 1603
  article-title: Chromatic aberration and accommodation: their role in emmetropization in the chick
  publication-title: Vision Res
– volume: 261
  start-page: 575
  year: 2023
  end-page: 584
  article-title: Low‐intensity red‐light therapy in slowing myopic progression and the rebound effect after its cessation in Chinese children: a randomized controlled trial
  publication-title: Graefes Arch Clin Exp Ophthalmol
– volume: 2021
  year: 2021
  article-title: Orthokeratology and low‐intensity laser therapy for slowing the progression of myopia in children
  publication-title: Biomed Res Int
– volume: 12
  start-page: 1223
  year: 2023
  end-page: 1237
  article-title: Axial shortening in myopic children after repeated low‐level red‐light therapy: post hoc analysis of a randomized trial
  publication-title: Ophthalmol Therapy
– volume: 9
  start-page: 145
  year: 2016
  end-page: 152
  article-title: Photobiomodulation for the treatment of retinal diseases: a review
  publication-title: Int J Ophthalmol
– volume: 62
  year: 2021
  article-title: Short‐term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_9_19_1
  doi: 10.1111/opo.13272
– ident: e_1_2_9_27_1
  doi: 10.1007/s00417-022-05794-4
– ident: e_1_2_9_2_1
  doi: 10.1007/s40123-023-00671-7
– ident: e_1_2_9_4_1
  doi: 10.1016/j.ophtha.2022.08.024
– ident: e_1_2_9_28_1
  doi: 10.1111/opo.12939
– ident: e_1_2_9_24_1
  doi: 10.1016/j.exer.2023.109593
– ident: e_1_2_9_17_1
  doi: 10.1167/iovs.10-5457
– ident: e_1_2_9_18_1
  doi: 10.1039/c8pp00176f
– ident: e_1_2_9_25_1
  doi: 10.1097/OPX.0000000000001283
– ident: e_1_2_9_20_1
  doi: 10.1007/s00417-022-05842-z
– ident: e_1_2_9_23_1
  doi: 10.1016/j.visres.2017.07.011
– ident: e_1_2_9_45_1
  doi: 10.1007/s00417‐022‐05842‐z
– ident: e_1_2_9_10_1
  doi: 10.1016/j.yjmcc.2008.09.707
– ident: e_1_2_9_7_1
  doi: 10.1097/00004032-198905000-00015
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ophtha.2021.11.023
– ident: e_1_2_9_44_1
  doi: 10.1016/j.optom.2020.04.003
– ident: e_1_2_9_5_1
  doi: 10.1097/OPX.0000000000002083
– ident: e_1_2_9_29_1
  doi: 10.1007/s40123-022-00585-w
– volume: 9
  start-page: 145
  year: 2016
  ident: e_1_2_9_8_1
  article-title: Photobiomodulation for the treatment of retinal diseases: a review
  publication-title: Int J Ophthalmol
– ident: e_1_2_9_43_1
  doi: 10.1167/iovs.62.3.14
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.0534746100
– ident: e_1_2_9_14_1
  doi: 10.7150/ijms.52980
– ident: e_1_2_9_34_1
  doi: 10.1155/2021/8915867
– ident: e_1_2_9_30_1
  doi: 10.1167/tvst.11.10.33
– ident: e_1_2_9_40_1
  doi: 10.1167/iovs.62.10.1
– ident: e_1_2_9_21_1
  doi: 10.1167/iovs.15-17025
– ident: e_1_2_9_15_1
  doi: 10.1111/opo.12218
– ident: e_1_2_9_12_1
  doi: 10.1159/000527787
– ident: e_1_2_9_39_1
  doi: 10.1038/s41598‐022‐26323‐7
– ident: e_1_2_9_6_1
  doi: 10.3390/ijms21072370
– ident: e_1_2_9_38_1
  doi: 10.1016/S0042-6989(02)00262-6
– ident: e_1_2_9_42_1
  doi: 10.1111/opo.12609
– ident: e_1_2_9_16_1
  doi: 10.1364/JOSAA.24.001250
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jphotobiol.2018.04.010
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ophtha.2022.10.002
– ident: e_1_2_9_26_1
  doi: 10.1167/iovs.62.15.22
– ident: e_1_2_9_41_1
  doi: 10.1038/s41598‐023‐38192‐9
– ident: e_1_2_9_31_1
  doi: 10.1111/ceo.14149
– ident: e_1_2_9_36_1
  doi: 10.1167/jov.21.5.11
– ident: e_1_2_9_22_1
  doi: 10.1016/j.exer.2018.07.004
– ident: e_1_2_9_32_1
  doi: 10.1111/opo.12853
– ident: e_1_2_9_37_1
  doi: 10.1016/0042-6989(93)90026-S
– ident: e_1_2_9_33_1
  doi: 10.1016/j.ophtha.2023.08.020
– ident: e_1_2_9_35_1
  doi: 10.1111/opo.13201
SSID ssj0007778
Score 2.4131918
Snippet Purpose To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Methods Incoherent narrow‐band red...
To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. Incoherent narrow-band red (620 ± 10 nm) or...
PurposeTo determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light.MethodsIncoherent narrow‐band red (620...
To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light.PURPOSETo determine whether visible light is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 954
SubjectTerms Adolescent
Adult
axial length
Axial Length, Eye - diagnostic imaging
Elongation
Female
Humans
infrared light
Infrared Rays - adverse effects
Interferometry - methods
Light - adverse effects
Male
Myopia
Myopia - physiopathology
Phototherapy
red laser light therapy
Refraction, Ocular - physiology
repeated low‐level red light
Young Adult
Title Effects of short‐term exposure to red or near‐infrared light on axial length in young human subjects
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.13311
https://www.ncbi.nlm.nih.gov/pubmed/38557968
https://www.proquest.com/docview/3065819978
https://www.proquest.com/docview/3031137381
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIhAXoIXCQlkZxKGXrJqHY0ec-lpVlfoQolIPSJHj2FpEFa82Walw4ifwG_klzDgP2gIS4hbJdpzYM-PPnvE3AG-NtNKGOgm4iMqAXI4BLcNBZDOrNM9CWdLd4eOT9PA8ObrgFyvwrr8L0_JDDAdupBneXpOCq6K-puRu7ia4wfL3eilWiwDR-1_UUUK0VjgSnJz_smMVoiieoeXNteg3gHkTr_oFZ_oIPvaf2saZfJ4sm2Kiv95icfzPf3kMDzsgynZayVmDFVOtw_3jztW-Dvd8bKiun8CsZTiumbOsniFc__HtOxl0Zq7mjg4YWePYwpTMLViFioPFKLYLimxnl7T3Z65i6goFnVHalmbGPlXsC1kZ5jMEsnpZ0GlQ_RTOpwcf9g6DLkFDoGMpw6CUdjszBhGUUnERqkIJyVMhijTNpJbSlkIlshSp2iZvqMrCksellonlZFmieANWK1eZ58BUIZVJrOIWtVbFuN8PM8U5cQ0hwtFmBFv9VOW6Yy-nJBqXeb-LwTHM_RiO4M1Qdd5Sdvyp0mY_33mntXUeEx6jyBs5gtdDMeobOVFUZdyS6mBrooPCVzxr5WToJZacrvZi6y0_23_vPj89O_UPL_696kt4ECGiamOFN2G1WSzNK0RETTGGO1FyNoa7O7v7u9OxV4SfKwIKLQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQUutJTX0hYGxKGXrJqHY0fighDVFrotQq3UC4ocx9Yiqni1yUqFEz-B38gvweM8aAtIiFsk23Fie8bfeMbfALzQwggTqiRgPCoDcjkGtA0HkcmMVCwLRUl3h6dH6eQ0eXvGzlbgZX8XpuWHGA7cSDK8viYBpwPpS1Ju53bsLCy62HuDMnp7g-rDL_Iozls9HHFG7n_R8QpRHM_Q9Opu9BvEvIpY_Zazvw4f-49tI00-j5dNMVZfr_E4_u_fbMCdDoviq3bx3IUVXW3CzWnnbd-ENR8equp7MGtJjmu0BuuZQ-w_vn0nnY76Ym7pjBEbiwtdol1g5WTHFbuVu6Dgdjwn8x9thfLCrXWkzC3NDD9V-IUUDfokgVgvCzoQqu_D6f6bk9eToMvREKhYiDAohdnLtHYgSsq4CGUhuWAp50WaZkIJYUouE1HyVO6RQ1RmYcniUonEMFIuUfwAVitb6UeAshBSJ0Yy4wRXxs7kDzPJGNENOZCj9Ah2-7nKVUdgTnk0zvPekHFjmPsxHMHzoeq8Ze34U6XtfsLzTnDrPCZIRsE3YgTPhmIncuRHkZW2S6rjWhMjlHvFw3ahDL3EgtHtXtd610_337vPj98f-4fH_171KdyanEwP88ODo3dbcDtyAKsNHd6G1Wax1DsOIDXFEy8HPwEZSAv_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5Vrai4tFCg3VLAIA69ZLV5OHbECVFW5dGHEJV6QIocP7SIKl5tslLLiZ_Ab-SXMJMXlIeEuEWyHSf2zPgbz_gzwFMrnXShTgIuIhNQyDGgZTiIXOaU5lkoDZ0dPjpOD8-S1-f8fAWe9WdhWn6IYcONNKOx16Tgc-N-UnI_92N0sOhc71qSTiSJ9MG7H9xRQrRmOBKcov-yoxWiNJ6h6fXF6DeEeR2wNivOdBM-9N_aJpp8Gi_rYqw__0Lj-J8_cws2OiTKnreicxtWbLkF60ddrH0LbjTJobq6A7OW4rhi3rFqhnj925evZNGZvZx72mFktWcLa5hfsBI1B4tRbheU2s4uyPlnvmTqEiWd0b0t9Yx9LNkVmRnWXBHIqmVB20HVXTibvnz_4jDobmgIdCxlGBjpJpm1CKGUiotQFUpIngpRpGkmtZTOCJVII1I1oXCoykLDY6Nl4jiZlii-B6ulL-0OMFVIZROnuEO1VTE6_GGmOCeyIYQ42o5gv5-qXHf05XSLxkXeuzE4hnkzhiN4MlSdt5wdf6q018933qltlccEyCj1Ro7g8VCMCkdRFFVav6Q62Jr4oPAV262cDL3EktPZXmy938z237vPT05Pmofdf6_6CNZPD6b521fHb-7DzQjRVZs3vAer9WJpHyA6qouHjRZ8Bw9UCrc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+short%E2%80%90term+exposure+to+red+or+near%E2%80%90infrared+light+on+axial+length+in+young+human+subjects&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=Swiatczak%2C+Barbara&rft.au=Schaeffel%2C+Frank&rft.date=2024-07-01&rft.issn=0275-5408&rft.eissn=1475-1313&rft.volume=44&rft.issue=5&rft.spage=954&rft.epage=962&rft_id=info:doi/10.1111%2Fopo.13311&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_opo_13311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon