Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms
This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species...
Saved in:
Published in | Photochemistry and photobiology Vol. 97; no. 6; pp. 1266 - 1277 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH‐aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH‐aPDI.
There is interest in photodynamic inactivation (aPDI), but it requires the diffusion of sensitizer into the biofilm. Several factors can affect the diffusion, including biofilm complexity, zeta potential, formal charge, and particle size. Superhydrophobic antimicrobial photodynamic inactivation (SH‐aPDI) is a promising method to inactivate biofilms due to its ability to deliver airborne singlet oxygen (1O2). Airborne 1O2 delivery via SH‐aPDI obviates the need for sensitizer penetration into the biofilm as opposed to aPDI which depends on topically applied sensitizer. |
---|---|
AbstractList | This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI. This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI. This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH‐aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH‐aPDI. There is interest in photodynamic inactivation (aPDI), but it requires the diffusion of sensitizer into the biofilm. Several factors can affect the diffusion, including biofilm complexity, zeta potential, formal charge, and particle size. Superhydrophobic antimicrobial photodynamic inactivation (SH‐aPDI) is a promising method to inactivate biofilms due to its ability to deliver airborne singlet oxygen (1O2). Airborne 1O2 delivery via SH‐aPDI obviates the need for sensitizer penetration into the biofilm as opposed to aPDI which depends on topically applied sensitizer. |
Author | Greer, Alexander Ashraf, Shoaib Alburquerque, José Quílez Souza Rastelli, Alessandra Nara Tonon, Caroline Coradi Hasan, Tayyaba Lyons, Alan M. |
Author_xml | – sequence: 1 givenname: Caroline Coradi orcidid: 0000-0003-0058-9970 surname: Tonon fullname: Tonon, Caroline Coradi organization: Massachusetts General Hospital and Harvard Medical School – sequence: 2 givenname: Shoaib orcidid: 0000-0002-1218-4877 surname: Ashraf fullname: Ashraf, Shoaib organization: Massachusetts General Hospital and Harvard Medical School – sequence: 3 givenname: José Quílez orcidid: 0000-0002-1149-7433 surname: Alburquerque fullname: Alburquerque, José Quílez organization: Complutense University of Madrid (UCM) – sequence: 4 givenname: Alessandra Nara orcidid: 0000-0002-6768-2670 surname: Souza Rastelli fullname: Souza Rastelli, Alessandra Nara organization: São Paulo State University‐UNESP – sequence: 5 givenname: Tayyaba orcidid: 0000-0003-0871-6057 surname: Hasan fullname: Hasan, Tayyaba organization: Harvard University and Massachusetts Institute of Technology – sequence: 6 givenname: Alan M. orcidid: 0000-0003-4410-9756 surname: Lyons fullname: Lyons, Alan M. email: alan.lyons@csi.cuny.edu organization: SingletO2 Therapeutics LLC – sequence: 7 givenname: Alexander orcidid: 0000-0003-4444-9099 surname: Greer fullname: Greer, Alexander email: agreer@brooklyn.cuny.edu organization: City University of New York |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34097752$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9v1DAQxS3Uim4LB74AssQFDmk9cRJ7uS3lTytVYqVuz5bjTIirxA52Alo-Ap8ab3d7qcpcRhr93tPovVNy5LxDQt4AO4c0F2M3ngMvKnhBFiBKyIAtxRFZMMYhk1VZnpDTGO8Zg2Ip4CU54UUCRJkvyN-Vm-xgTfC11T1dd37yzdbpdKLXTpvJ_tKT9Y7eRet-0I0frUmcdg29nUcM3bYJfuyS2tBbdNFO9g8GukHTOftzxviRrugaQxxx54W0DX6gn23bznFnax39ZH1r-yG-Iset7iO-Puwzcvf1y-byKrv5_u36cnWTGS4lZAYlLwttmlIaXYgcuTQVz2sGkBvWahRYyZrJmjelqAyvioTWApZYAuOC8zPyfu87Br_7cFKDjQb7Xjv0c1R5yZc5MJAsoe-eoPd-Di59p_IKmIBKFDJRbw_UXA_YqDHYQYetekw5ARd7IMUcY8BWGTs9xDoFbXsFTO16VKlH9dBjUnx4ong0fY49uP-2PW7_D6r11Xqv-AeYq63I |
CitedBy_id | crossref_primary_10_1016_j_pdpdt_2022_103150 crossref_primary_10_1111_php_14021 crossref_primary_10_1016_j_jphotochem_2022_114349 crossref_primary_10_1016_j_jphotobiol_2022_112563 crossref_primary_10_1021_acsabm_4c00733 crossref_primary_10_1007_s10570_023_05578_x crossref_primary_10_3390_photonics9050340 crossref_primary_10_1021_jacs_3c10034 crossref_primary_10_1016_j_jphotobiol_2022_112458 crossref_primary_10_1021_acsami_3c12820 crossref_primary_10_1039_D1CC03155D crossref_primary_10_1111_php_13774 crossref_primary_10_1093_lambio_ovac074 crossref_primary_10_1021_acs_langmuir_2c00279 crossref_primary_10_1016_j_jcis_2023_05_051 |
Cites_doi | 10.1021/ja807484b 10.1016/j.ab.2013.04.033 10.1016/j.pdpdt.2018.10.005 10.1016/j.pdpdt.2015.11.007 10.1562/2006-04-02-RA-865 10.1039/B9PP00154A 10.1038/nrmicro1838 10.1021/ar050191g 10.1016/j.nantod.2020.100898 10.1021/ja00351a001 10.1562/2006-04-14-IR-874 10.1039/C5NR08691D 10.1126/science.284.5418.1318 10.1128/AEM.60.4.1166-1173.1994 10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F 10.2147/IJN.S212807 10.1071/EN12106 10.1039/C4CP02439G 10.1515/ntrev-2015-0027 10.1016/j.watres.2017.06.027 10.1128/AEM.02279-08 10.1128/AAC.01329-10 10.1111/php.12716 10.1016/1011-1344(90)85104-5 10.1021/acsami.8b09439 10.1016/j.pdpdt.2006.11.002 10.1186/s40824-018-0140-z 10.1016/j.pdpdt.2018.01.003 10.1016/S0196-9781(96)00170-2 10.1021/la204583v 10.1098/rstb.1995.0168 10.3389/fmicb.2015.00591 10.1021/jp503149x 10.1039/C7RA06073D 10.1128/AEM.02218-07 10.1111/j.1751-1097.1991.tb03669.x 10.1021/ja504279r 10.1080/1040841X.2018.1467876 10.1002/(SICI)1097-0290(19981120)60:4<462::AID-BIT8>3.0.CO;2-K 10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9 10.1128/AEM.00754-10 10.1128/AEM.02090-09 10.1128/AEM.69.3.1702-1709.2003 10.1002/alr.20089 10.3390/cancers9020019 10.2217/nnm.15.67 10.1016/j.joen.2016.05.021 10.1021/acs.chemrev.5b00726 10.1166/rnn.2014.1050 10.1007/s10103-013-1397-z 10.1099/mic.0.27463-0 10.1007/s00253-014-5821-5 10.3390/molecules23102424 10.1016/j.tim.2019.07.004 10.1073/pnas.0611328104 10.1016/j.drup.2017.07.003 10.1016/j.pdpdt.2013.07.001 10.1515/nanoph-2016-0189 10.1021/acs.est.0c07922 10.1021/jacs.6b01555 10.1021/acs.chemrev.8b00211 10.1039/c0pp00360c 10.1159/000057866 10.1007/s10103-010-0852-3 10.1562/0031-8655(2002)0750570HODIMB2.0.CO2 10.1142/S1088424620300098 10.1111/j.1365-2958.2005.05008.x 10.1016/0043-1354(94)90042-6 10.1186/s13756-019-0533-3 10.1016/j.mbs.2007.04.008 10.1021/ja410529q 10.1002/cptc.201900020 10.1016/j.freeradbiomed.2008.02.011 10.1021/nn505015e 10.1016/j.colsurfb.2018.09.018 10.1038/s41522-019-0107-4 10.1080/08927010400010494 10.1128/AAC.49.2.728-732.2005 10.1111/j.1751-1097.2010.00855.x 10.1016/j.tim.2004.11.007 10.1088/0034-4885/78/3/036601 10.3390/microorganisms9010145 10.1371/journal.ppat.1002623 10.1021/acsinfecdis.9b00379 10.1088/1361-6560/62/5/R1 10.1038/nrmicro2415 10.1007/s11242-018-1218-8 10.1016/j.pdpdt.2017.01.005 10.1126/stke.2212004pe7 10.1016/S1473-3099(16)30268-7 10.3390/molecules25225239 10.1111/j.1751-1097.2008.00359.x 10.1016/j.jphotobiol.2020.111903 10.1042/BJ20150942 10.1016/j.mimet.2016.03.002 10.1021/cr010371d 10.1016/j.pdpdt.2018.01.016 10.1021/am200741f 10.1021/es303645n 10.1128/AEM.03022-05 10.1016/j.scitotenv.2020.141186 10.1128/JB.185.5.1485-1491.2003 |
ContentType | Journal Article |
Copyright | 2021 American Society for Photobiology 2021 American Society for Photobiology. Copyright © 2021 American Society for Photobiology |
Copyright_xml | – notice: 2021 American Society for Photobiology – notice: 2021 American Society for Photobiology. – notice: Copyright © 2021 American Society for Photobiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 |
DOI | 10.1111/php.13461 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Nursing & Allied Health Premium |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1751-1097 |
EndPage | 1277 |
ExternalDocumentID | 34097752 10_1111_php_13461 PHP13461 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: National Institute of Dental and Craniofacial Research funderid: 2R44DE026083‐03 – fundername: NIDCR NIH HHS grantid: R44 DE026083 |
GroupedDBID | --- -JH -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 3O- 3SF 3V. 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 7RV 7X2 7X7 8-0 8-1 8-3 8-4 8-5 88A 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AAPSS AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUQT AEUYN AEUYR AFBPY AFFIJ AFFPM AFGKR AFKRA AFNWH AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BKEYQ BLYAC BMNLL BNHUX BPHCQ BROTX BRXPI BVXVI BY8 C1A CAG CCPQU COF CS3 D-E D-F DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO E3Z EBS ECGQY EJD ESX EX3 F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA H.T H.X H13 HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ H~9 IH2 IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0K M0L M1P M2P M2Q M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NAPCQ NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQ0 PQQKQ PROAC PSQYO Q.N Q11 Q2X Q5J QB0 R.K RBO RIG RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJN SUPJJ TAE UB1 UKHRP W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WOW WQJ WRC WSB WXSBR WYISQ XG1 XOL YNT ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PKN 4T- 7TM 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3881-ce8354acd58ca472e38c632b0112c0fae7e68b08b3d576c364cd5b719e5103733 |
IEDL.DBID | DR2 |
ISSN | 0031-8655 1751-1097 |
IngestDate | Fri Jul 11 08:26:41 EDT 2025 Wed Aug 13 09:43:10 EDT 2025 Wed Feb 19 02:22:53 EST 2025 Tue Jul 01 02:14:39 EDT 2025 Thu Apr 24 22:53:09 EDT 2025 Wed Jan 22 16:26:42 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2021 American Society for Photobiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3881-ce8354acd58ca472e38c632b0112c0fae7e68b08b3d576c364cd5b719e5103733 |
Notes | These authors contributed equally to this work. This article is part of a Special Issue celebrating the career of Dr. Edward Clennan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4410-9756 0000-0003-4444-9099 0000-0002-1218-4877 0000-0003-0058-9970 0000-0003-0871-6057 0000-0002-1149-7433 0000-0002-6768-2670 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/php.13461 |
PMID | 34097752 |
PQID | 2610716748 |
PQPubID | 30729 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2539210180 proquest_journals_2610716748 pubmed_primary_34097752 crossref_citationtrail_10_1111_php_13461 crossref_primary_10_1111_php_13461 wiley_primary_10_1111_php_13461_PHP13461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November/December 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November/December 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Lawrence |
PublicationTitle | Photochemistry and photobiology |
PublicationTitleAlternate | Photochem Photobiol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2007; 104 2015; 78 2017; 6 2017; 7 2004; 20 2006; 72 2006; 39 2015; 30 1991; 53 2019; 14 2019; 127 2011; 55 1999; 284 2011; 10 2008; 6 2004; 2 2008; 74 2013; 440 1994; 28 2018; 44 1994; 60 2017; 9 2014; 136 2020; 209 1983; 105 1998; 59 2017; 31 2020; 6 2014; 3 2013; 10 2007; 210 2014; 16 2016; 42 2019; 27 2016; 473 2007; 4 2012; 28 2016; 116 2011; 26 2017; 123 2010; 8 2019; 8 2014; 118 2017; 62 2021; 9 2010; 76 2002; 36 2015; 6 2019; 3 1996; 17 2005; 151 2015; 4 2011; 1 2019; 5 2002; 75 2015; 99 2015; 10 2020; 34 2009; 131 1998; 60 2018; 23 2011; 3 2015; 9 2018; 22 2005; 49 2018; 21 1995; 350 2017; 138 2016; 13 2020; 746 2018; 24 2006; 82 2017; 93 2009; 75 2021; 55 2017; 17 2018; 119 2003; 69 2020; 25 2013; 135 2011; 87 2020; 24 2017; 18 2016; 138 2008; 44 2004; 2004 2019; 173 2012; 46 2008; 84 2003; 103 2018; 10 2016; 8 1990; 6 2005; 13 2012; 8 2003; 185 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Wilson C. (e_1_2_8_75_1) 2017; 6 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 10 start-page: 25819 year: 2018 end-page: 25829 article-title: Superhydrophobic photosensitizers: Airborne O killing of an oral biofilm at the plastron interface publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 31 year: 2017 end-page: 42 article-title: Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? publication-title: Drug Resist. Updat. – volume: 209 start-page: 111903 year: 2020 article-title: Antimicrobial photodynamic therapy against metronidazole‐resistant dental plaque bacteria publication-title: J. Photochem. Photobiol. B – volume: 82 start-page: 1178 year: 2006 end-page: 1186 article-title: Spatially resolved cellular responses to singlet oxygen publication-title: Photochem. Photobiol. – volume: 131 start-page: 332 year: 2009 end-page: 340 article-title: Singlet oxygen in a cell: Spatially dependent lifetimes and quenching rate constants publication-title: J. Am. Chem. Soc. – volume: 2004 start-page: pe7 year: 2004 article-title: Singlet oxygen signaling: From intimate to global publication-title: Sci STKE – volume: 1 start-page: 329 year: 2011 end-page: 334 article-title: Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms publication-title: Int. Forum Allergy Rhinol. – volume: 136 start-page: 11707 year: 2014 end-page: 11715 article-title: Far‐red fluorescence probe for monitoring singlet oxygen during photodynamic therapy publication-title: J. Am. Chem. Soc. – volume: 746 year: 2020 article-title: A simple, inexpensive method for gas‐phase singlet oxygen generation from sensitizer‐impregnated filters: Potential application to bacteria/virus inactivation and pollutant degradation publication-title: Sci. Total Environ. – volume: 24 start-page: 1320 year: 2020 end-page: 1360 article-title: Photodynamic therapy, priming and optical imaging: Potential co‐conspirators in treatment design and optimization — A Thomas Dougherty award for excellence in PDT paper publication-title: J. Porphyr. Phthalocyanines – volume: 8 start-page: 623 year: 2010 end-page: 633 article-title: The biofilm matrix publication-title: Nat. Rev. Microbiol. – volume: 9 start-page: 145 year: 2021 article-title: Antimicrobial photoinactivation of oral biofilms by visible light plus water‐filtered infrared A and tetrahydroporphyrin‐tetratosylate (THPTS) publication-title: Microorganisms – volume: 151 start-page: 373 year: 2005 end-page: 383 article-title: tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum‐sensing dependent publication-title: Microbiology (Reading) – volume: 69 start-page: 1702 year: 2003 end-page: 1709 article-title: Mass transport of macromolecules within an model of supragingival plaque publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 2255 year: 2015 end-page: 2289 article-title: Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits publication-title: ACS Nano – volume: 3 start-page: 107 year: 2014 end-page: 132 article-title: Combination of photodynamic therapy and nanotechnology: Non‐invasive weapon against cancer publication-title: Rev. Nanosci. Nantechnol. – volume: 20 start-page: 189 year: 2004 end-page: 201 article-title: Solute size effects on the diffusion in biofilms of publication-title: Biofouling – volume: 55 start-page: 1075 year: 2011 end-page: 1081 article-title: Quantifying diffusion in a biofilm of publication-title: Antimicrob. Agents. Chemother. – volume: 21 start-page: 409 year: 2018 end-page: 415 article-title: Curcumin‐mediated photodynamic therapy for the treatment of oral infections: A review publication-title: Photodiagnosis Photodyn. Ther. – volume: 60 start-page: 1166 year: 1994 end-page: 1173 article-title: Determination of diffusion coefficients in biofilms by confocal laser microscopy publication-title: Appl. Environ. Microbiol. – volume: 6 start-page: 199 year: 2008 end-page: 210 article-title: Physiological heterogeneity in biofilms publication-title: Nat. Rev. Microbiol. – volume: 36 start-page: 93 year: 2002 end-page: 100 article-title: An oral biofilm model for comparing the efficacy of antimicrobial mouthrinses publication-title: Caries Res. – volume: 39 start-page: 797 year: 2006 end-page: 804 article-title: Christopher Foote's discovery of the role of singlet oxygen [ O ( Δ )] in photosensitized oxidation reactions publication-title: Acc. Chem. Res. – volume: 62 start-page: R1 year: 2017 end-page: R48 article-title: On the photochemical rate parameters for PDT reactive oxygen species modeling publication-title: Phys. Med. Biol. – volume: 473 start-page: 347 year: 2016 end-page: 364 article-title: New photosensitizers for photodynamic therapy publication-title: Biochem. J. – volume: 10 start-page: 712 year: 2011 end-page: 720 article-title: Nanoparticles: Their potential use in antibacterial photodynamic therapy publication-title: Photochem. Photobiol. Sci. – volume: 28 start-page: 2267 year: 1994 end-page: 2277 article-title: Density, porosity, and pore structure of biofilms publication-title: Water Res. – volume: 440 start-page: 40 year: 2013 end-page: 48 article-title: Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G‐protein‐coupled receptors publication-title: Anal. Biochem. – volume: 25 start-page: 5239 year: 2020 article-title: Design of photosensitizing agents for targeted antimicrobial photodynamic therapy publication-title: Molecules – volume: 185 start-page: 1485 year: 2003 end-page: 1491 article-title: Diffusion in biofilms publication-title: J. Bacteriol. – volume: 99 start-page: 55 year: 2015 end-page: 66 article-title: Biofilm dynamics characterization using a novel DO‐MEA sensor: Mass transport and biokinetics publication-title: Appl. Microbiol. Biotechnol. – volume: 55 start-page: 3559 year: 2021 end-page: 3567 article-title: Interparticle delivery and detection of volatile singlet oxygen at air/solid interfaces publication-title: Environ. Sci. Technol. – volume: 6 start-page: 591 year: 2015 article-title: When nanoparticles meet biofilms—Interactions guiding the environmental fate and accumulation of nanoparticles publication-title: Front. Microbiol. – volume: 116 start-page: 9994 year: 2016 end-page: 10034 article-title: Using singlet oxygen to synthesize natural products and drugs publication-title: Chem. Rev. – volume: 13 start-page: 27 year: 2005 end-page: 33 article-title: Sociomicrobiology: The connections between quorum sensing and biofilms publication-title: Trends Microbiol. – volume: 138 start-page: 50 year: 2017 end-page: 59 article-title: Confocal microscopy imaging of the biofilm matrix publication-title: J. Microbiol. Methods – volume: 6 start-page: 343 year: 1990 end-page: 344 article-title: On the diffusion length of singlet oxygen in cells and tissues publication-title: J. Photochem. Photobiol. B – volume: 4 start-page: 3 year: 2007 end-page: 11 article-title: The history of PDT in Norway part one: Identification of basic mechanisms of general PDT publication-title: Photodiagnosis Photodyn. Ther. – volume: 6 start-page: 853 year: 2017 end-page: 879 article-title: Advances in antimicrobial photodynamic inactivation at the nanoscale publication-title: Nanophotonics – volume: 22 start-page: 25 year: 2018 article-title: Clinical development of photodynamic agents and therapeutic applications publication-title: Biomater. Res. – volume: 4 start-page: 359 year: 2015 end-page: 372 article-title: Nanotechnology for photodynamic therapy: A perspective from the laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School publication-title: Nanotechnol. Rev. – volume: 173 start-page: 392 year: 2019 end-page: 399 article-title: Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions publication-title: Colloids Surf. B Biointerfaces – volume: 44 start-page: 1926 year: 2008 end-page: 1934 article-title: Kinetics of singlet oxygen photosensitization in human skin fibroblasts publication-title: Free Radic. Biol. Med. – volume: 75 start-page: 570 year: 2002 end-page: 578 article-title: Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two‐photon excitation publication-title: Photochem. Photobiol. – volume: 5 start-page: 35 year: 2019 article-title: Single microcolony diffusion analysis in biofilms publication-title: NPJ Biofilms Microbiomes – volume: 60 start-page: 462 year: 1998 end-page: 473 article-title: Local macromolecule diffusion coefficients in structurally non‐uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP) publication-title: Biotechnol. Bioeng. – volume: 78 year: 2015 article-title: Material properties of biofilms‐A review of methods for understanding permeability and mechanics publication-title: Rep. Prog. Phys. – volume: 8 start-page: 12471 year: 2016 end-page: 12503 article-title: Photonanomedicine: A convergence of photodynamic therapy and nanotechnology publication-title: Nanoscale – volume: 138 start-page: 7024 year: 2016 end-page: 7029 article-title: Role of distance in singlet oxygen applications: A model system publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 3508 year: 2011 end-page: 3514 article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 388 year: 2017 end-page: 400 article-title: Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses publication-title: Water Res. – volume: 10 start-page: 34 year: 2013 end-page: 41 article-title: The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO , nAu) in a biofilm publication-title: Environ. Chem. – volume: 49 start-page: 728 year: 2005 end-page: 732 article-title: Rapid diffusion of fluorescent tracers into biofilms visualized by time lapse microscopy publication-title: Antimicrob. Agents. Chemother. – volume: 23 start-page: 2424 year: 2018 article-title: Revisiting current photoactive materials for antimicrobial photodynamic therapy publication-title: Molecules – volume: 7 start-page: 40734 year: 2017 end-page: 40744 article-title: Photodynamic antimicrobial chemotherapy with cationic phthalocyanines against Escherichia coli planktonic and biofilm cultures publication-title: RSC Adv. – volume: 3 start-page: 251 year: 2019 end-page: 260 article-title: Photoinactivation of planktonic and biofilm forms of through the action of cationic zinc(II) phthalocyanines publication-title: ChemPhotoChem. – volume: 17 start-page: 1213 year: 1996 end-page: 1217 article-title: Receptor inactivation by dye‐neuropeptide conjugates: 2. Characterization of the quantum yield of singlet oxygen generated by irradiation of dye‐neuropeptie conjugates publication-title: Peptides – volume: 13 start-page: 22 year: 2016 end-page: 28 article-title: Antimicrobial photodynamic therapy (aPDT) induction of biofilm matrix architectural and bioadhesive modifications publication-title: Photodiagnosis Photodyn. Ther. – volume: 105 start-page: 4129 year: 1983 end-page: 4135 article-title: Singlet oxygen generation for solution kinetics: Clean and simple publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 19 year: 2017 article-title: Oncologic photodynamic therapy: Basic principles, current clinical status and future directions publication-title: Cancers (Basel) – volume: 26 start-page: 341 year: 2011 end-page: 348 article-title: Susceptibility of , and biofilms to photodynamic inactivation: An study publication-title: Lasers Med. Sci. – volume: 18 start-page: 54 year: 2017 end-page: 62 article-title: Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—A systematic review publication-title: Photodiagnosis Photodyn. Ther. – volume: 10 start-page: 2379 year: 2015 end-page: 2404 article-title: Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs publication-title: Nanomedicine (Lond) – volume: 87 start-page: 14 year: 2011 end-page: 17 article-title: Measurement of singlet‐oxygeen in vivo: progress and pitfalls publication-title: Photochem. Photobiol. – volume: 127 start-page: 643 year: 2019 end-page: 660 article-title: A pore‐scale model for permeable biofilm: Numerical simulations and laboratory experiments publication-title: Transp. Porous Media – volume: 30 start-page: 685 year: 2015 end-page: 694 article-title: Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine® publication-title: Lasers Med. Sci. – volume: 118 start-page: 10364 year: 2014 end-page: 10371 article-title: Singlet oxygen generation on porous superhydrophobic surfaces: Effect of gas flow and sensitizer wetting on trapping efficiency publication-title: J. Phys. Chem. A – volume: 6 year: 2017 article-title: Quantitative and qualitative assessment methods for biofilm growth: A mini‐review publication-title: Res. Rev. J. Eng. Technol. – volume: 135 start-page: 18990 year: 2013 end-page: 18998 article-title: Superhydrophobic photosensitizers. Mechanistic studies of O generation in the plastron and solid/liquid droplet interface publication-title: J. Am. Chem. Soc. – volume: 76 start-page: 2326 year: 2010 end-page: 2334 article-title: Real‐time microsensor measurement of local metabolic activities in dental biofilms exposed to sucrose and treated with chlorhexidine publication-title: Appl. Environ. Microbiol. – volume: 84 start-page: 1284 year: 2008 end-page: 1290 article-title: Time‐resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: Effects of oxygen diffusion and oxygen concentration publication-title: Photochem. Photobiol. – volume: 119 start-page: 797 year: 2018 end-page: 828 article-title: Transition metal complexes and photodynamic therapy from a tumor‐centered approach: Challenges, opportunities, and highlights from the development of TLD1433 publication-title: Chem. Rev. – volume: 74 start-page: 1869 year: 2008 end-page: 1875 article-title: Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms publication-title: Appl. Environ. Microbiol. – volume: 14 start-page: 6937 year: 2019 article-title: Novel nanomaterial‐based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases publication-title: Int. J. Nanomedicine – volume: 10 start-page: 615 year: 2013 end-page: 625 article-title: Photodynamic inactivation of and methicillin‐resistant with Ru(II)‐based type I/type II photosensitizers publication-title: Photodiagnosis Photodyn. Ther. – volume: 82 start-page: 1319 year: 2006 end-page: 1325 article-title: In vitro and in vivo photosensitization by protoporphryins possessing different lipophilicities and vertical localization in the membrane publication-title: Photochem. Photobiol. – volume: 59 start-page: 261 year: 1998 end-page: 272 article-title: A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms publication-title: Biotechnol. Bioeng. – volume: 350 start-page: 325 year: 1995 end-page: 343 article-title: Diffusion and binding measurements within oral biofilms using fluorescence photobleaching recovery methods publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci. – volume: 44 start-page: 571 year: 2018 end-page: 589 article-title: Antimicrobial photodynamic therapy—What we know and what we don't publication-title: Crit. Rev. Microbiol. – volume: 10 start-page: 91 year: 2011 end-page: 102 article-title: Non‐aggregated Ga(III)‐phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms publication-title: Photochem. Photobiol. Sci – volume: 75 start-page: 1750 year: 2009 end-page: 1753 article-title: Diffusion of macromolecules in model oral biofilms publication-title: Appl. Environ. Microbiol. – volume: 93 start-page: 912 year: 2017 end-page: 919 article-title: Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways publication-title: Photochem. Photobiol. – volume: 6 start-page: 1517 year: 2020 end-page: 1526 article-title: Antibacterial photodynamic inactivation of antibiotic‐resistant bacteria and biofilms with nanomolar photosensitizer concentrations publication-title: ACS Infect. Dis. – volume: 34 start-page: 100898 year: 2020 article-title: Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins publication-title: Nano Today – volume: 76 start-page: 5860 year: 2010 end-page: 5869 article-title: Diffusion measurements inside biofilms by image‐based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope publication-title: Appl. Environ. Microbiol. – volume: 42 start-page: 1417 year: 2016 end-page: 1426 article-title: Antibacterial nanoparticles in endodontics: A review publication-title: J. End. – volume: 210 start-page: 177 year: 2007 end-page: 237 article-title: A multiscale theoretical model for diffusive mass transfer in cellular biological media publication-title: Math. Biosci. – volume: 2 start-page: 95 year: 2004 end-page: 108 article-title: Bacterial biofilms: From the natural environment to infectious diseases publication-title: Nat. Rev. Microbiol. – volume: 284 start-page: 1318 year: 1999 end-page: 1322 article-title: Bacterial biofilms: A common cause of persistent infections publication-title: Science – volume: 28 start-page: 3053 year: 2012 end-page: 3060 article-title: Generating singlet oxygen bubbles: A new mechanism for gas‐liquid oxidations in water publication-title: Langmuir – volume: 8 year: 2012 article-title: The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed‐species oral biofilm publication-title: PLoS Pathog. – volume: 27 start-page: 915 year: 2019 end-page: 926 article-title: Nanoparticle‐biofilm interactions: The role of the EPS matrix publication-title: Trends Microbiol. – volume: 17 start-page: e49 year: 2017 end-page: e55 article-title: Photoantimicrobials—Are we afraid of the light? publication-title: Lancet Infect. Dis. – volume: 103 start-page: 1685 year: 2003 end-page: 1758 article-title: Physical mechanisms of generation and deactivation of singlet oxygen publication-title: Chem. Rev. – volume: 21 start-page: 316 year: 2018 end-page: 326 article-title: Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of publication-title: Photodiagn. Photodyn. Ther. – volume: 72 start-page: 3916 year: 2006 end-page: 3923 article-title: Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms publication-title: Appl. Environ. Microbiol. – volume: 46 start-page: 12098 year: 2012 end-page: 12104 article-title: Bacterial inactivation by a singlet oxygen bubbler: Identifying factors controlling the toxicity of O bubbles publication-title: Environ. Sci. Technol. – volume: 8 start-page: 1 year: 2019 end-page: 10 article-title: Antibiotics versus biofilm: An emerging battleground in microbial communities publication-title: Antimicrob. Resist. Infect. Control – volume: 16 start-page: 20598 year: 2014 end-page: 20607 article-title: Singlet oxygen generation in porphyrin‐doped polymeric surface coating enables antimicrobial effects on publication-title: Phys. Chem. Chem. Phys. – volume: 59 start-page: 302 year: 1998 end-page: 309 article-title: Microelectrode measurements of local mass transport rates in heterogeneous biofilms publication-title: Biotechnol. Bioeng. – volume: 53 start-page: 549 year: 1991 end-page: 553 article-title: The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen publication-title: Photochem. Photobiol. – volume: 24 start-page: 212 year: 2018 end-page: 219 article-title: Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm publication-title: Photodiagnosis Photodyn. Ther. – volume: 104 start-page: 7223 year: 2007 end-page: 7228 article-title: The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria publication-title: Proc. Natl. Acad. Sci. U S A – ident: e_1_2_8_62_1 doi: 10.1021/ja807484b – ident: e_1_2_8_99_1 doi: 10.1016/j.ab.2013.04.033 – ident: e_1_2_8_47_1 doi: 10.1016/j.pdpdt.2018.10.005 – ident: e_1_2_8_51_1 doi: 10.1016/j.pdpdt.2015.11.007 – ident: e_1_2_8_66_1 doi: 10.1562/2006-04-02-RA-865 – ident: e_1_2_8_36_1 doi: 10.1039/B9PP00154A – ident: e_1_2_8_72_1 doi: 10.1038/nrmicro1838 – ident: e_1_2_8_16_1 doi: 10.1021/ar050191g – ident: e_1_2_8_92_1 doi: 10.1016/j.nantod.2020.100898 – volume: 6 year: 2017 ident: e_1_2_8_75_1 article-title: Quantitative and qualitative assessment methods for biofilm growth: A mini‐review publication-title: Res. Rev. J. Eng. Technol. – ident: e_1_2_8_14_1 doi: 10.1021/ja00351a001 – ident: e_1_2_8_67_1 doi: 10.1562/2006-04-14-IR-874 – ident: e_1_2_8_24_1 doi: 10.1039/C5NR08691D – ident: e_1_2_8_8_1 doi: 10.1126/science.284.5418.1318 – ident: e_1_2_8_86_1 doi: 10.1128/AEM.60.4.1166-1173.1994 – ident: e_1_2_8_55_1 doi: 10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F – ident: e_1_2_8_39_1 doi: 10.2147/IJN.S212807 – ident: e_1_2_8_88_1 doi: 10.1071/EN12106 – ident: e_1_2_8_3_1 doi: 10.1039/C4CP02439G – ident: e_1_2_8_41_1 doi: 10.1515/ntrev-2015-0027 – ident: e_1_2_8_93_1 doi: 10.1016/j.watres.2017.06.027 – ident: e_1_2_8_80_1 doi: 10.1128/AEM.02279-08 – ident: e_1_2_8_87_1 doi: 10.1128/AAC.01329-10 – ident: e_1_2_8_15_1 doi: 10.1111/php.12716 – ident: e_1_2_8_71_1 doi: 10.1016/1011-1344(90)85104-5 – ident: e_1_2_8_53_1 doi: 10.1021/acsami.8b09439 – ident: e_1_2_8_65_1 doi: 10.1016/j.pdpdt.2006.11.002 – ident: e_1_2_8_33_1 doi: 10.1186/s40824-018-0140-z – ident: e_1_2_8_44_1 doi: 10.1016/j.pdpdt.2018.01.003 – ident: e_1_2_8_69_1 doi: 10.1016/S0196-9781(96)00170-2 – ident: e_1_2_8_54_1 doi: 10.1021/la204583v – ident: e_1_2_8_85_1 doi: 10.1098/rstb.1995.0168 – ident: e_1_2_8_21_1 doi: 10.3389/fmicb.2015.00591 – ident: e_1_2_8_13_1 doi: 10.1021/jp503149x – ident: e_1_2_8_38_1 doi: 10.1039/C7RA06073D – ident: e_1_2_8_97_1 doi: 10.1128/AEM.02218-07 – ident: e_1_2_8_70_1 doi: 10.1111/j.1751-1097.1991.tb03669.x – ident: e_1_2_8_60_1 doi: 10.1021/ja504279r – ident: e_1_2_8_4_1 doi: 10.1080/1040841X.2018.1467876 – ident: e_1_2_8_81_1 doi: 10.1002/(SICI)1097-0290(19981120)60:4<462::AID-BIT8>3.0.CO;2-K – ident: e_1_2_8_17_1 doi: 10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9 – ident: e_1_2_8_84_1 doi: 10.1128/AEM.00754-10 – ident: e_1_2_8_56_1 doi: 10.1128/AEM.02090-09 – ident: e_1_2_8_79_1 doi: 10.1128/AEM.69.3.1702-1709.2003 – ident: e_1_2_8_50_1 doi: 10.1002/alr.20089 – ident: e_1_2_8_34_1 doi: 10.3390/cancers9020019 – ident: e_1_2_8_26_1 doi: 10.2217/nnm.15.67 – ident: e_1_2_8_43_1 doi: 10.1016/j.joen.2016.05.021 – ident: e_1_2_8_102_1 doi: 10.1021/acs.chemrev.5b00726 – ident: e_1_2_8_59_1 doi: 10.1166/rnn.2014.1050 – ident: e_1_2_8_49_1 doi: 10.1007/s10103-013-1397-z – ident: e_1_2_8_78_1 doi: 10.1099/mic.0.27463-0 – ident: e_1_2_8_27_1 doi: 10.1007/s00253-014-5821-5 – ident: e_1_2_8_40_1 doi: 10.3390/molecules23102424 – ident: e_1_2_8_94_1 doi: 10.1016/j.tim.2019.07.004 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.0611328104 – ident: e_1_2_8_10_1 doi: 10.1016/j.drup.2017.07.003 – ident: e_1_2_8_31_1 doi: 10.1016/j.pdpdt.2013.07.001 – ident: e_1_2_8_91_1 doi: 10.1515/nanoph-2016-0189 – ident: e_1_2_8_103_1 doi: 10.1021/acs.est.0c07922 – ident: e_1_2_8_58_1 doi: 10.1021/jacs.6b01555 – ident: e_1_2_8_29_1 doi: 10.1021/acs.chemrev.8b00211 – ident: e_1_2_8_42_1 doi: 10.1039/c0pp00360c – ident: e_1_2_8_89_1 doi: 10.1159/000057866 – ident: e_1_2_8_48_1 doi: 10.1007/s10103-010-0852-3 – ident: e_1_2_8_83_1 doi: 10.1562/0031-8655(2002)0750570HODIMB2.0.CO2 – ident: e_1_2_8_25_1 doi: 10.1142/S1088424620300098 – ident: e_1_2_8_46_1 doi: 10.1111/j.1365-2958.2005.05008.x – ident: e_1_2_8_74_1 doi: 10.1016/0043-1354(94)90042-6 – ident: e_1_2_8_9_1 doi: 10.1186/s13756-019-0533-3 – ident: e_1_2_8_19_1 doi: 10.1016/j.mbs.2007.04.008 – ident: e_1_2_8_11_1 doi: 10.1021/ja410529q – ident: e_1_2_8_37_1 doi: 10.1002/cptc.201900020 – ident: e_1_2_8_64_1 doi: 10.1016/j.freeradbiomed.2008.02.011 – ident: e_1_2_8_23_1 doi: 10.1021/nn505015e – ident: e_1_2_8_95_1 doi: 10.1016/j.colsurfb.2018.09.018 – ident: e_1_2_8_82_1 doi: 10.1038/s41522-019-0107-4 – ident: e_1_2_8_100_1 doi: 10.1080/08927010400010494 – ident: e_1_2_8_98_1 doi: 10.1128/AAC.49.2.728-732.2005 – ident: e_1_2_8_61_1 doi: 10.1111/j.1751-1097.2010.00855.x – ident: e_1_2_8_77_1 doi: 10.1016/j.tim.2004.11.007 – ident: e_1_2_8_20_1 doi: 10.1088/0034-4885/78/3/036601 – ident: e_1_2_8_45_1 doi: 10.3390/microorganisms9010145 – ident: e_1_2_8_96_1 doi: 10.1371/journal.ppat.1002623 – ident: e_1_2_8_35_1 doi: 10.1021/acsinfecdis.9b00379 – ident: e_1_2_8_30_1 doi: 10.1088/1361-6560/62/5/R1 – ident: e_1_2_8_90_1 doi: 10.1038/nrmicro2415 – ident: e_1_2_8_73_1 doi: 10.1007/s11242-018-1218-8 – ident: e_1_2_8_5_1 doi: 10.1016/j.pdpdt.2017.01.005 – ident: e_1_2_8_68_1 doi: 10.1126/stke.2212004pe7 – ident: e_1_2_8_7_1 doi: 10.1016/S1473-3099(16)30268-7 – ident: e_1_2_8_6_1 doi: 10.3390/molecules25225239 – ident: e_1_2_8_63_1 doi: 10.1111/j.1751-1097.2008.00359.x – ident: e_1_2_8_52_1 doi: 10.1016/j.jphotobiol.2020.111903 – ident: e_1_2_8_32_1 doi: 10.1042/BJ20150942 – ident: e_1_2_8_22_1 doi: 10.1016/j.mimet.2016.03.002 – ident: e_1_2_8_101_1 doi: 10.1021/cr010371d – ident: e_1_2_8_28_1 doi: 10.1016/j.pdpdt.2018.01.016 – ident: e_1_2_8_12_1 doi: 10.1021/am200741f – ident: e_1_2_8_57_1 doi: 10.1021/es303645n – ident: e_1_2_8_76_1 doi: 10.1128/AEM.03022-05 – ident: e_1_2_8_104_1 doi: 10.1016/j.scitotenv.2020.141186 – ident: e_1_2_8_18_1 doi: 10.1128/JB.185.5.1485-1491.2003 |
SSID | ssj0014971 |
Score | 2.4414337 |
SecondaryResourceType | review_article |
Snippet | This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1266 |
SubjectTerms | Anti-Bacterial Agents - therapeutic use Anti-Infective Agents - pharmacology Antiinfectives and antibacterials Antimicrobial agents Biofilms Deactivation Diffusion Hydrophobic and Hydrophilic Interactions Hydrophobic surfaces Hydrophobicity Inactivation Molecular diffusion Nanoparticles Photoactivation Photochemotherapy Photosensitizing Agents - pharmacology Photosensitizing Agents - therapeutic use Reactive Oxygen Species |
Title | Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13461 https://www.ncbi.nlm.nih.gov/pubmed/34097752 https://www.proquest.com/docview/2610716748 https://www.proquest.com/docview/2539210180 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlQpcaFmgLLTIIA5cskrixM7S06qlWpCKVnQr9YAUxY6jjWiTaDc5tD-BX82M84DykBC3SBnLjj0Tf2PPfAPwxsNVTU3mOdIY5aC_wZ1ER9rR0ywKdepzbsmezz6J-UXw8TK83IKjPhem5YcYDtzIMuz_mgw8UZufjLxaVROPB9b1oVgtAkSfB-ooBP6yrZbHPYeSLztWIYriGVre3Yt-A5h38ardcE534Us_1DbO5OukqdVE3_7C4vif37IHDzsgymat5jyCLVOMYKctTXkzgvvHfSW4Edw76y7gH8O3WVHn17llb8LWi1VZl2lb1J59KChJoj3iZTYUgS3LipSAJUXKzpvKrFc36bqsVthas3OKna_zW7Nmy55JdvOOzdjiRwIoo_QXdpJnWUPHeiwvGA4xy6-uN0_g4vT98njudOUcHM2jyHO0oUOmRKdhpJNA-oZHWnBf4R_G126WGGlEpNxI8RSdIM1FgKJKelNDrH-S86ewXZSFeQbM5alQ_lROXW6C0BUqVFq40s-EUBx3nzG87Rc21h3XOZXcuIp7nwdnPLYzPobXg2jVEnz8Seig1464s_FNjL4n4jMq1jKGV8NrXBq6ckkKUzYoEyL-tCRpY9hvtWrohRPVmAx9HKzVjb93Hy_mC_vw_N9FX8ADn8JvbNrkAWzX68YcIn6q1UtrKN8BpKsW_w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB5Fidrk0sf2tWnaulUPvbACDDZb9bJKGm3abLRqNlIuFcLGaFESQLtwSH5Cf3U9NtCmD6nqDYmxMHgGz4xnvg_gradXNVWZ53ClhKPjDeokMpKOHGdRKFOfUgP2PDth07Pg03l4vgEful4Yiw_RJ9zQMsz_Gg0cE9I_WXm1rEYeDTD22UJGb0TOP_jSg0dp159bvjzqOdh-2eIKYR1PP_T2bvSbi3nbYzVbzuF9-NpN1laaXIyaWozkzS84jv_7Ng_gXuuLkolVnoewoYoB3LHslNcD2N7vyOAGcHfWnsE_gm-Tos6vcgPgpEfPl2VdppbXnhwV2Cdhs7zEVCOQRVmhHpCkSMlpU6nV8jpdldVSj5bkFMvn6_xGrciiA5NdvycTMv_RA0qwA4Yc5FnWYGaP5AXRU8zyy6v1Yzg7_LjYnzoto4MjaRR5jlSYZ0pkGkYyCbivaCQZ9YX-yfjSzRLFFYuEGwma6jhIUhZoUcG9sULgP07pE9gsykI9A-LSlAl_zMcuVUHoMhEKyVzuZ4wJqjegIbzrVjaWLdw5sm5cxl3Yo794bL74EN70opXF-PiT0F6nHnFr5utYh5_aRUO-liG87m_rpcFTl6RQZaNlQu2CGpy0ITy1atU_hSLaGA99PVmjHH9_fDyfzs3F7r-LvoLt6WJ2HB8fnXx-Djs-VuOYLso92KxXjXqh3alavDRW8x0A9Rsb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrShcCiwUFgoYxIFLVkmc2AmcVl1WW6BVRLdSD0hR_Ig2ok2i3eTQ_gR-NX4kgfKQELdIGcuOPRPP2DPfB_DaU6sqZO45VErmqHgDOxmPuMPjPAq58DE2YM_HJ2RxFnw4D8-34F1fC2PxIYYDN20Z5n-tDbwW-U9GXq_qiYcDHfrsBMSNNW_D7POAHaU8f2rp8rDn6OrLDlZIp_EMTW9uRr95mDcdVrPjzO_Cl36sNtHk66Rt2IRf_wLj-J8fcw_2Ok8UTa3q3IctWY7gluWmvBrB7cOeCm4Eu8fdDfwD-DYtm-KyMPBNqnWyqppKWFZ7dFTqKgl7xotMLgJaVrXWApSVAp22tVyvrsS6qleqNUenOnm-Ka7lGi17KNnNWzRFyY8KUKTrX9CsyPNWn-uhokRqiHlxcbl5CGfz98vDhdPxOTgcR5HncKlPmTIuwohnAfUljjjBPlO_GJ-7eSapJBFzI4aFioI4JoESZdSLpYb9oxjvw3ZZlfIxIBcLwvyYxi6WQegSFjJOXOrnhDCstp8xvOkXNuUd2Lnm3LhI-6BHzXhqZnwMrwbR2iJ8_EnooNeOtDPyTaqCT-WgabaWMbwcXqul0XcuWSmrVsmEygE1KGljeGS1augFa6wxGvpqsEY3_t59miwS8_Dk30VfwG4ym6efjk4-PoU7vk7FMSWUB7DdrFv5TPlSDXtubOY7n6EZyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+Photodynamic+Inactivation+Using+Topical+and+Superhydrophobic+Sensitizer+Techniques%3A+A+Perspective+from+Diffusion+in+Biofilms&rft.jtitle=Photochemistry+and+photobiology&rft.au=Tonon%2C+Caroline+Coradi&rft.au=Ashraf%2C+Shoaib&rft.au=Alburquerque%2C+Jos%C3%A9+Qu%C3%ADlez&rft.au=de+Souza+Rastelli%2C+Alessandra+Nara&rft.date=2021-11-01&rft.eissn=1751-1097&rft.volume=97&rft.issue=6&rft.spage=1266&rft_id=info:doi/10.1111%2Fphp.13461&rft_id=info%3Apmid%2F34097752&rft.externalDocID=34097752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon |