Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms

This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 97; no. 6; pp. 1266 - 1277
Main Authors Tonon, Caroline Coradi, Ashraf, Shoaib, Alburquerque, José Quílez, Souza Rastelli, Alessandra Nara, Hasan, Tayyaba, Lyons, Alan M., Greer, Alexander
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH‐aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH‐aPDI. There is interest in photodynamic inactivation (aPDI), but it requires the diffusion of sensitizer into the biofilm. Several factors can affect the diffusion, including biofilm complexity, zeta potential, formal charge, and particle size. Superhydrophobic antimicrobial photodynamic inactivation (SH‐aPDI) is a promising method to inactivate biofilms due to its ability to deliver airborne singlet oxygen (1O2). Airborne 1O2 delivery via SH‐aPDI obviates the need for sensitizer penetration into the biofilm as opposed to aPDI which depends on topically applied sensitizer.
AbstractList This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.
This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.
This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH‐aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH‐aPDI. There is interest in photodynamic inactivation (aPDI), but it requires the diffusion of sensitizer into the biofilm. Several factors can affect the diffusion, including biofilm complexity, zeta potential, formal charge, and particle size. Superhydrophobic antimicrobial photodynamic inactivation (SH‐aPDI) is a promising method to inactivate biofilms due to its ability to deliver airborne singlet oxygen (1O2). Airborne 1O2 delivery via SH‐aPDI obviates the need for sensitizer penetration into the biofilm as opposed to aPDI which depends on topically applied sensitizer.
Author Greer, Alexander
Ashraf, Shoaib
Alburquerque, José Quílez
Souza Rastelli, Alessandra Nara
Tonon, Caroline Coradi
Hasan, Tayyaba
Lyons, Alan M.
Author_xml – sequence: 1
  givenname: Caroline Coradi
  orcidid: 0000-0003-0058-9970
  surname: Tonon
  fullname: Tonon, Caroline Coradi
  organization: Massachusetts General Hospital and Harvard Medical School
– sequence: 2
  givenname: Shoaib
  orcidid: 0000-0002-1218-4877
  surname: Ashraf
  fullname: Ashraf, Shoaib
  organization: Massachusetts General Hospital and Harvard Medical School
– sequence: 3
  givenname: José Quílez
  orcidid: 0000-0002-1149-7433
  surname: Alburquerque
  fullname: Alburquerque, José Quílez
  organization: Complutense University of Madrid (UCM)
– sequence: 4
  givenname: Alessandra Nara
  orcidid: 0000-0002-6768-2670
  surname: Souza Rastelli
  fullname: Souza Rastelli, Alessandra Nara
  organization: São Paulo State University‐UNESP
– sequence: 5
  givenname: Tayyaba
  orcidid: 0000-0003-0871-6057
  surname: Hasan
  fullname: Hasan, Tayyaba
  organization: Harvard University and Massachusetts Institute of Technology
– sequence: 6
  givenname: Alan M.
  orcidid: 0000-0003-4410-9756
  surname: Lyons
  fullname: Lyons, Alan M.
  email: alan.lyons@csi.cuny.edu
  organization: SingletO2 Therapeutics LLC
– sequence: 7
  givenname: Alexander
  orcidid: 0000-0003-4444-9099
  surname: Greer
  fullname: Greer, Alexander
  email: agreer@brooklyn.cuny.edu
  organization: City University of New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34097752$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS3Uim4LB74AssQFDmk9cRJ7uS3lTytVYqVuz5bjTIirxA52Alo-Ap8ab3d7qcpcRhr93tPovVNy5LxDQt4AO4c0F2M3ngMvKnhBFiBKyIAtxRFZMMYhk1VZnpDTGO8Zg2Ip4CU54UUCRJkvyN-Vm-xgTfC11T1dd37yzdbpdKLXTpvJ_tKT9Y7eRet-0I0frUmcdg29nUcM3bYJfuyS2tBbdNFO9g8GukHTOftzxviRrugaQxxx54W0DX6gn23bznFnax39ZH1r-yG-Iset7iO-Puwzcvf1y-byKrv5_u36cnWTGS4lZAYlLwttmlIaXYgcuTQVz2sGkBvWahRYyZrJmjelqAyvioTWApZYAuOC8zPyfu87Br_7cFKDjQb7Xjv0c1R5yZc5MJAsoe-eoPd-Di59p_IKmIBKFDJRbw_UXA_YqDHYQYetekw5ARd7IMUcY8BWGTs9xDoFbXsFTO16VKlH9dBjUnx4ong0fY49uP-2PW7_D6r11Xqv-AeYq63I
CitedBy_id crossref_primary_10_1016_j_pdpdt_2022_103150
crossref_primary_10_1111_php_14021
crossref_primary_10_1016_j_jphotochem_2022_114349
crossref_primary_10_1016_j_jphotobiol_2022_112563
crossref_primary_10_1021_acsabm_4c00733
crossref_primary_10_1007_s10570_023_05578_x
crossref_primary_10_3390_photonics9050340
crossref_primary_10_1021_jacs_3c10034
crossref_primary_10_1016_j_jphotobiol_2022_112458
crossref_primary_10_1021_acsami_3c12820
crossref_primary_10_1039_D1CC03155D
crossref_primary_10_1111_php_13774
crossref_primary_10_1093_lambio_ovac074
crossref_primary_10_1021_acs_langmuir_2c00279
crossref_primary_10_1016_j_jcis_2023_05_051
Cites_doi 10.1021/ja807484b
10.1016/j.ab.2013.04.033
10.1016/j.pdpdt.2018.10.005
10.1016/j.pdpdt.2015.11.007
10.1562/2006-04-02-RA-865
10.1039/B9PP00154A
10.1038/nrmicro1838
10.1021/ar050191g
10.1016/j.nantod.2020.100898
10.1021/ja00351a001
10.1562/2006-04-14-IR-874
10.1039/C5NR08691D
10.1126/science.284.5418.1318
10.1128/AEM.60.4.1166-1173.1994
10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F
10.2147/IJN.S212807
10.1071/EN12106
10.1039/C4CP02439G
10.1515/ntrev-2015-0027
10.1016/j.watres.2017.06.027
10.1128/AEM.02279-08
10.1128/AAC.01329-10
10.1111/php.12716
10.1016/1011-1344(90)85104-5
10.1021/acsami.8b09439
10.1016/j.pdpdt.2006.11.002
10.1186/s40824-018-0140-z
10.1016/j.pdpdt.2018.01.003
10.1016/S0196-9781(96)00170-2
10.1021/la204583v
10.1098/rstb.1995.0168
10.3389/fmicb.2015.00591
10.1021/jp503149x
10.1039/C7RA06073D
10.1128/AEM.02218-07
10.1111/j.1751-1097.1991.tb03669.x
10.1021/ja504279r
10.1080/1040841X.2018.1467876
10.1002/(SICI)1097-0290(19981120)60:4<462::AID-BIT8>3.0.CO;2-K
10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9
10.1128/AEM.00754-10
10.1128/AEM.02090-09
10.1128/AEM.69.3.1702-1709.2003
10.1002/alr.20089
10.3390/cancers9020019
10.2217/nnm.15.67
10.1016/j.joen.2016.05.021
10.1021/acs.chemrev.5b00726
10.1166/rnn.2014.1050
10.1007/s10103-013-1397-z
10.1099/mic.0.27463-0
10.1007/s00253-014-5821-5
10.3390/molecules23102424
10.1016/j.tim.2019.07.004
10.1073/pnas.0611328104
10.1016/j.drup.2017.07.003
10.1016/j.pdpdt.2013.07.001
10.1515/nanoph-2016-0189
10.1021/acs.est.0c07922
10.1021/jacs.6b01555
10.1021/acs.chemrev.8b00211
10.1039/c0pp00360c
10.1159/000057866
10.1007/s10103-010-0852-3
10.1562/0031-8655(2002)0750570HODIMB2.0.CO2
10.1142/S1088424620300098
10.1111/j.1365-2958.2005.05008.x
10.1016/0043-1354(94)90042-6
10.1186/s13756-019-0533-3
10.1016/j.mbs.2007.04.008
10.1021/ja410529q
10.1002/cptc.201900020
10.1016/j.freeradbiomed.2008.02.011
10.1021/nn505015e
10.1016/j.colsurfb.2018.09.018
10.1038/s41522-019-0107-4
10.1080/08927010400010494
10.1128/AAC.49.2.728-732.2005
10.1111/j.1751-1097.2010.00855.x
10.1016/j.tim.2004.11.007
10.1088/0034-4885/78/3/036601
10.3390/microorganisms9010145
10.1371/journal.ppat.1002623
10.1021/acsinfecdis.9b00379
10.1088/1361-6560/62/5/R1
10.1038/nrmicro2415
10.1007/s11242-018-1218-8
10.1016/j.pdpdt.2017.01.005
10.1126/stke.2212004pe7
10.1016/S1473-3099(16)30268-7
10.3390/molecules25225239
10.1111/j.1751-1097.2008.00359.x
10.1016/j.jphotobiol.2020.111903
10.1042/BJ20150942
10.1016/j.mimet.2016.03.002
10.1021/cr010371d
10.1016/j.pdpdt.2018.01.016
10.1021/am200741f
10.1021/es303645n
10.1128/AEM.03022-05
10.1016/j.scitotenv.2020.141186
10.1128/JB.185.5.1485-1491.2003
ContentType Journal Article
Copyright 2021 American Society for Photobiology
2021 American Society for Photobiology.
Copyright © 2021 American Society for Photobiology
Copyright_xml – notice: 2021 American Society for Photobiology
– notice: 2021 American Society for Photobiology.
– notice: Copyright © 2021 American Society for Photobiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1111/php.13461
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
EndPage 1277
ExternalDocumentID 34097752
10_1111_php_13461
PHP13461
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Institute of Dental and Craniofacial Research
  funderid: 2R44DE026083‐03
– fundername: NIDCR NIH HHS
  grantid: R44 DE026083
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ESX
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M0L
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIG
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PKN
4T-
7TM
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3881-ce8354acd58ca472e38c632b0112c0fae7e68b08b3d576c364cd5b719e5103733
IEDL.DBID DR2
ISSN 0031-8655
1751-1097
IngestDate Fri Jul 11 08:26:41 EDT 2025
Wed Aug 13 09:43:10 EDT 2025
Wed Feb 19 02:22:53 EST 2025
Tue Jul 01 02:14:39 EDT 2025
Thu Apr 24 22:53:09 EDT 2025
Wed Jan 22 16:26:42 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2021 American Society for Photobiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-ce8354acd58ca472e38c632b0112c0fae7e68b08b3d576c364cd5b719e5103733
Notes These authors contributed equally to this work.
This article is part of a Special Issue celebrating the career of Dr. Edward Clennan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4410-9756
0000-0003-4444-9099
0000-0002-1218-4877
0000-0003-0058-9970
0000-0003-0871-6057
0000-0002-1149-7433
0000-0002-6768-2670
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/php.13461
PMID 34097752
PQID 2610716748
PQPubID 30729
PageCount 12
ParticipantIDs proquest_miscellaneous_2539210180
proquest_journals_2610716748
pubmed_primary_34097752
crossref_citationtrail_10_1111_php_13461
crossref_primary_10_1111_php_13461
wiley_primary_10_1111_php_13461_PHP13461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November/December 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2007; 104
2015; 78
2017; 6
2017; 7
2004; 20
2006; 72
2006; 39
2015; 30
1991; 53
2019; 14
2019; 127
2011; 55
1999; 284
2011; 10
2008; 6
2004; 2
2008; 74
2013; 440
1994; 28
2018; 44
1994; 60
2017; 9
2014; 136
2020; 209
1983; 105
1998; 59
2017; 31
2020; 6
2014; 3
2013; 10
2007; 210
2014; 16
2016; 42
2019; 27
2016; 473
2007; 4
2012; 28
2016; 116
2011; 26
2017; 123
2010; 8
2019; 8
2014; 118
2017; 62
2021; 9
2010; 76
2002; 36
2015; 6
2019; 3
1996; 17
2005; 151
2015; 4
2011; 1
2019; 5
2002; 75
2015; 99
2015; 10
2020; 34
2009; 131
1998; 60
2018; 23
2011; 3
2015; 9
2018; 22
2005; 49
2018; 21
1995; 350
2017; 138
2016; 13
2020; 746
2018; 24
2006; 82
2017; 93
2009; 75
2021; 55
2017; 17
2018; 119
2003; 69
2020; 25
2013; 135
2011; 87
2020; 24
2017; 18
2016; 138
2008; 44
2004; 2004
2019; 173
2012; 46
2008; 84
2003; 103
2018; 10
2016; 8
1990; 6
2005; 13
2012; 8
2003; 185
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Wilson C. (e_1_2_8_75_1) 2017; 6
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 10
  start-page: 25819
  year: 2018
  end-page: 25829
  article-title: Superhydrophobic photosensitizers: Airborne O killing of an oral biofilm at the plastron interface
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 31
  year: 2017
  end-page: 42
  article-title: Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?
  publication-title: Drug Resist. Updat.
– volume: 209
  start-page: 111903
  year: 2020
  article-title: Antimicrobial photodynamic therapy against metronidazole‐resistant dental plaque bacteria
  publication-title: J. Photochem. Photobiol. B
– volume: 82
  start-page: 1178
  year: 2006
  end-page: 1186
  article-title: Spatially resolved cellular responses to singlet oxygen
  publication-title: Photochem. Photobiol.
– volume: 131
  start-page: 332
  year: 2009
  end-page: 340
  article-title: Singlet oxygen in a cell: Spatially dependent lifetimes and quenching rate constants
  publication-title: J. Am. Chem. Soc.
– volume: 2004
  start-page: pe7
  year: 2004
  article-title: Singlet oxygen signaling: From intimate to global
  publication-title: Sci STKE
– volume: 1
  start-page: 329
  year: 2011
  end-page: 334
  article-title: Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms
  publication-title: Int. Forum Allergy Rhinol.
– volume: 136
  start-page: 11707
  year: 2014
  end-page: 11715
  article-title: Far‐red fluorescence probe for monitoring singlet oxygen during photodynamic therapy
  publication-title: J. Am. Chem. Soc.
– volume: 746
  year: 2020
  article-title: A simple, inexpensive method for gas‐phase singlet oxygen generation from sensitizer‐impregnated filters: Potential application to bacteria/virus inactivation and pollutant degradation
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 1320
  year: 2020
  end-page: 1360
  article-title: Photodynamic therapy, priming and optical imaging: Potential co‐conspirators in treatment design and optimization — A Thomas Dougherty award for excellence in PDT paper
  publication-title: J. Porphyr. Phthalocyanines
– volume: 8
  start-page: 623
  year: 2010
  end-page: 633
  article-title: The biofilm matrix
  publication-title: Nat. Rev. Microbiol.
– volume: 9
  start-page: 145
  year: 2021
  article-title: Antimicrobial photoinactivation of oral biofilms by visible light plus water‐filtered infrared A and tetrahydroporphyrin‐tetratosylate (THPTS)
  publication-title: Microorganisms
– volume: 151
  start-page: 373
  year: 2005
  end-page: 383
  article-title: tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum‐sensing dependent
  publication-title: Microbiology (Reading)
– volume: 69
  start-page: 1702
  year: 2003
  end-page: 1709
  article-title: Mass transport of macromolecules within an model of supragingival plaque
  publication-title: Appl. Environ. Microbiol.
– volume: 9
  start-page: 2255
  year: 2015
  end-page: 2289
  article-title: Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits
  publication-title: ACS Nano
– volume: 3
  start-page: 107
  year: 2014
  end-page: 132
  article-title: Combination of photodynamic therapy and nanotechnology: Non‐invasive weapon against cancer
  publication-title: Rev. Nanosci. Nantechnol.
– volume: 20
  start-page: 189
  year: 2004
  end-page: 201
  article-title: Solute size effects on the diffusion in biofilms of
  publication-title: Biofouling
– volume: 55
  start-page: 1075
  year: 2011
  end-page: 1081
  article-title: Quantifying diffusion in a biofilm of
  publication-title: Antimicrob. Agents. Chemother.
– volume: 21
  start-page: 409
  year: 2018
  end-page: 415
  article-title: Curcumin‐mediated photodynamic therapy for the treatment of oral infections: A review
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 60
  start-page: 1166
  year: 1994
  end-page: 1173
  article-title: Determination of diffusion coefficients in biofilms by confocal laser microscopy
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 199
  year: 2008
  end-page: 210
  article-title: Physiological heterogeneity in biofilms
  publication-title: Nat. Rev. Microbiol.
– volume: 36
  start-page: 93
  year: 2002
  end-page: 100
  article-title: An oral biofilm model for comparing the efficacy of antimicrobial mouthrinses
  publication-title: Caries Res.
– volume: 39
  start-page: 797
  year: 2006
  end-page: 804
  article-title: Christopher Foote's discovery of the role of singlet oxygen [ O ( Δ )] in photosensitized oxidation reactions
  publication-title: Acc. Chem. Res.
– volume: 62
  start-page: R1
  year: 2017
  end-page: R48
  article-title: On the photochemical rate parameters for PDT reactive oxygen species modeling
  publication-title: Phys. Med. Biol.
– volume: 473
  start-page: 347
  year: 2016
  end-page: 364
  article-title: New photosensitizers for photodynamic therapy
  publication-title: Biochem. J.
– volume: 10
  start-page: 712
  year: 2011
  end-page: 720
  article-title: Nanoparticles: Their potential use in antibacterial photodynamic therapy
  publication-title: Photochem. Photobiol. Sci.
– volume: 28
  start-page: 2267
  year: 1994
  end-page: 2277
  article-title: Density, porosity, and pore structure of biofilms
  publication-title: Water Res.
– volume: 440
  start-page: 40
  year: 2013
  end-page: 48
  article-title: Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G‐protein‐coupled receptors
  publication-title: Anal. Biochem.
– volume: 25
  start-page: 5239
  year: 2020
  article-title: Design of photosensitizing agents for targeted antimicrobial photodynamic therapy
  publication-title: Molecules
– volume: 185
  start-page: 1485
  year: 2003
  end-page: 1491
  article-title: Diffusion in biofilms
  publication-title: J. Bacteriol.
– volume: 99
  start-page: 55
  year: 2015
  end-page: 66
  article-title: Biofilm dynamics characterization using a novel DO‐MEA sensor: Mass transport and biokinetics
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 55
  start-page: 3559
  year: 2021
  end-page: 3567
  article-title: Interparticle delivery and detection of volatile singlet oxygen at air/solid interfaces
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 591
  year: 2015
  article-title: When nanoparticles meet biofilms—Interactions guiding the environmental fate and accumulation of nanoparticles
  publication-title: Front. Microbiol.
– volume: 116
  start-page: 9994
  year: 2016
  end-page: 10034
  article-title: Using singlet oxygen to synthesize natural products and drugs
  publication-title: Chem. Rev.
– volume: 13
  start-page: 27
  year: 2005
  end-page: 33
  article-title: Sociomicrobiology: The connections between quorum sensing and biofilms
  publication-title: Trends Microbiol.
– volume: 138
  start-page: 50
  year: 2017
  end-page: 59
  article-title: Confocal microscopy imaging of the biofilm matrix
  publication-title: J. Microbiol. Methods
– volume: 6
  start-page: 343
  year: 1990
  end-page: 344
  article-title: On the diffusion length of singlet oxygen in cells and tissues
  publication-title: J. Photochem. Photobiol. B
– volume: 4
  start-page: 3
  year: 2007
  end-page: 11
  article-title: The history of PDT in Norway part one: Identification of basic mechanisms of general PDT
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 6
  start-page: 853
  year: 2017
  end-page: 879
  article-title: Advances in antimicrobial photodynamic inactivation at the nanoscale
  publication-title: Nanophotonics
– volume: 22
  start-page: 25
  year: 2018
  article-title: Clinical development of photodynamic agents and therapeutic applications
  publication-title: Biomater. Res.
– volume: 4
  start-page: 359
  year: 2015
  end-page: 372
  article-title: Nanotechnology for photodynamic therapy: A perspective from the laboratory of Dr. Michael R. Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School
  publication-title: Nanotechnol. Rev.
– volume: 173
  start-page: 392
  year: 2019
  end-page: 399
  article-title: Diminishing biofilm resistance to antimicrobial nanomaterials through electrolyte screening of electrostatic interactions
  publication-title: Colloids Surf. B Biointerfaces
– volume: 44
  start-page: 1926
  year: 2008
  end-page: 1934
  article-title: Kinetics of singlet oxygen photosensitization in human skin fibroblasts
  publication-title: Free Radic. Biol. Med.
– volume: 75
  start-page: 570
  year: 2002
  end-page: 578
  article-title: Heterogeneity of diffusion inside microbial biofilms determined by fluorescence correlation spectroscopy under two‐photon excitation
  publication-title: Photochem. Photobiol.
– volume: 5
  start-page: 35
  year: 2019
  article-title: Single microcolony diffusion analysis in biofilms
  publication-title: NPJ Biofilms Microbiomes
– volume: 60
  start-page: 462
  year: 1998
  end-page: 473
  article-title: Local macromolecule diffusion coefficients in structurally non‐uniform bacterial biofilms using fluorescence recovery after photobleaching (FRAP)
  publication-title: Biotechnol. Bioeng.
– volume: 78
  year: 2015
  article-title: Material properties of biofilms‐A review of methods for understanding permeability and mechanics
  publication-title: Rep. Prog. Phys.
– volume: 8
  start-page: 12471
  year: 2016
  end-page: 12503
  article-title: Photonanomedicine: A convergence of photodynamic therapy and nanotechnology
  publication-title: Nanoscale
– volume: 138
  start-page: 7024
  year: 2016
  end-page: 7029
  article-title: Role of distance in singlet oxygen applications: A model system
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 3508
  year: 2011
  end-page: 3514
  article-title: Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  start-page: 388
  year: 2017
  end-page: 400
  article-title: Diffusion and sorption of organic micropollutants in biofilms with varying thicknesses
  publication-title: Water Res.
– volume: 10
  start-page: 34
  year: 2013
  end-page: 41
  article-title: The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO , nAu) in a biofilm
  publication-title: Environ. Chem.
– volume: 49
  start-page: 728
  year: 2005
  end-page: 732
  article-title: Rapid diffusion of fluorescent tracers into biofilms visualized by time lapse microscopy
  publication-title: Antimicrob. Agents. Chemother.
– volume: 23
  start-page: 2424
  year: 2018
  article-title: Revisiting current photoactive materials for antimicrobial photodynamic therapy
  publication-title: Molecules
– volume: 7
  start-page: 40734
  year: 2017
  end-page: 40744
  article-title: Photodynamic antimicrobial chemotherapy with cationic phthalocyanines against Escherichia coli planktonic and biofilm cultures
  publication-title: RSC Adv.
– volume: 3
  start-page: 251
  year: 2019
  end-page: 260
  article-title: Photoinactivation of planktonic and biofilm forms of through the action of cationic zinc(II) phthalocyanines
  publication-title: ChemPhotoChem.
– volume: 17
  start-page: 1213
  year: 1996
  end-page: 1217
  article-title: Receptor inactivation by dye‐neuropeptide conjugates: 2. Characterization of the quantum yield of singlet oxygen generated by irradiation of dye‐neuropeptie conjugates
  publication-title: Peptides
– volume: 13
  start-page: 22
  year: 2016
  end-page: 28
  article-title: Antimicrobial photodynamic therapy (aPDT) induction of biofilm matrix architectural and bioadhesive modifications
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 105
  start-page: 4129
  year: 1983
  end-page: 4135
  article-title: Singlet oxygen generation for solution kinetics: Clean and simple
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 19
  year: 2017
  article-title: Oncologic photodynamic therapy: Basic principles, current clinical status and future directions
  publication-title: Cancers (Basel)
– volume: 26
  start-page: 341
  year: 2011
  end-page: 348
  article-title: Susceptibility of , and biofilms to photodynamic inactivation: An study
  publication-title: Lasers Med. Sci.
– volume: 18
  start-page: 54
  year: 2017
  end-page: 62
  article-title: Antimicrobial photodynamic therapy as an adjunct for treatment of deep carious lesions—A systematic review
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 10
  start-page: 2379
  year: 2015
  end-page: 2404
  article-title: Antimicrobial photodynamic inactivation in nanomedicine: Small light strides against bad bugs
  publication-title: Nanomedicine (Lond)
– volume: 87
  start-page: 14
  year: 2011
  end-page: 17
  article-title: Measurement of singlet‐oxygeen in vivo: progress and pitfalls
  publication-title: Photochem. Photobiol.
– volume: 127
  start-page: 643
  year: 2019
  end-page: 660
  article-title: A pore‐scale model for permeable biofilm: Numerical simulations and laboratory experiments
  publication-title: Transp. Porous Media
– volume: 30
  start-page: 685
  year: 2015
  end-page: 694
  article-title: Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine®
  publication-title: Lasers Med. Sci.
– volume: 118
  start-page: 10364
  year: 2014
  end-page: 10371
  article-title: Singlet oxygen generation on porous superhydrophobic surfaces: Effect of gas flow and sensitizer wetting on trapping efficiency
  publication-title: J. Phys. Chem. A
– volume: 6
  year: 2017
  article-title: Quantitative and qualitative assessment methods for biofilm growth: A mini‐review
  publication-title: Res. Rev. J. Eng. Technol.
– volume: 135
  start-page: 18990
  year: 2013
  end-page: 18998
  article-title: Superhydrophobic photosensitizers. Mechanistic studies of O generation in the plastron and solid/liquid droplet interface
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 2326
  year: 2010
  end-page: 2334
  article-title: Real‐time microsensor measurement of local metabolic activities in dental biofilms exposed to sucrose and treated with chlorhexidine
  publication-title: Appl. Environ. Microbiol.
– volume: 84
  start-page: 1284
  year: 2008
  end-page: 1290
  article-title: Time‐resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: Effects of oxygen diffusion and oxygen concentration
  publication-title: Photochem. Photobiol.
– volume: 119
  start-page: 797
  year: 2018
  end-page: 828
  article-title: Transition metal complexes and photodynamic therapy from a tumor‐centered approach: Challenges, opportunities, and highlights from the development of TLD1433
  publication-title: Chem. Rev.
– volume: 74
  start-page: 1869
  year: 2008
  end-page: 1875
  article-title: Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 14
  start-page: 6937
  year: 2019
  article-title: Novel nanomaterial‐based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases
  publication-title: Int. J. Nanomedicine
– volume: 10
  start-page: 615
  year: 2013
  end-page: 625
  article-title: Photodynamic inactivation of and methicillin‐resistant with Ru(II)‐based type I/type II photosensitizers
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 82
  start-page: 1319
  year: 2006
  end-page: 1325
  article-title: In vitro and in vivo photosensitization by protoporphryins possessing different lipophilicities and vertical localization in the membrane
  publication-title: Photochem. Photobiol.
– volume: 59
  start-page: 261
  year: 1998
  end-page: 272
  article-title: A review of experimental measurements of effective diffusive permeabilities and effective diffusion coefficients in biofilms
  publication-title: Biotechnol. Bioeng.
– volume: 350
  start-page: 325
  year: 1995
  end-page: 343
  article-title: Diffusion and binding measurements within oral biofilms using fluorescence photobleaching recovery methods
  publication-title: Philos. Trans. R. Soc. Lond. B. Biol. Sci.
– volume: 44
  start-page: 571
  year: 2018
  end-page: 589
  article-title: Antimicrobial photodynamic therapy—What we know and what we don't
  publication-title: Crit. Rev. Microbiol.
– volume: 10
  start-page: 91
  year: 2011
  end-page: 102
  article-title: Non‐aggregated Ga(III)‐phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms
  publication-title: Photochem. Photobiol. Sci
– volume: 75
  start-page: 1750
  year: 2009
  end-page: 1753
  article-title: Diffusion of macromolecules in model oral biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 93
  start-page: 912
  year: 2017
  end-page: 919
  article-title: Type I and type II photosensitized oxidation reactions: Guidelines and mechanistic pathways
  publication-title: Photochem. Photobiol.
– volume: 6
  start-page: 1517
  year: 2020
  end-page: 1526
  article-title: Antibacterial photodynamic inactivation of antibiotic‐resistant bacteria and biofilms with nanomolar photosensitizer concentrations
  publication-title: ACS Infect. Dis.
– volume: 34
  start-page: 100898
  year: 2020
  article-title: Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins
  publication-title: Nano Today
– volume: 76
  start-page: 5860
  year: 2010
  end-page: 5869
  article-title: Diffusion measurements inside biofilms by image‐based fluorescence recovery after photobleaching (FRAP) analysis with a commercial confocal laser scanning microscope
  publication-title: Appl. Environ. Microbiol.
– volume: 42
  start-page: 1417
  year: 2016
  end-page: 1426
  article-title: Antibacterial nanoparticles in endodontics: A review
  publication-title: J. End.
– volume: 210
  start-page: 177
  year: 2007
  end-page: 237
  article-title: A multiscale theoretical model for diffusive mass transfer in cellular biological media
  publication-title: Math. Biosci.
– volume: 2
  start-page: 95
  year: 2004
  end-page: 108
  article-title: Bacterial biofilms: From the natural environment to infectious diseases
  publication-title: Nat. Rev. Microbiol.
– volume: 284
  start-page: 1318
  year: 1999
  end-page: 1322
  article-title: Bacterial biofilms: A common cause of persistent infections
  publication-title: Science
– volume: 28
  start-page: 3053
  year: 2012
  end-page: 3060
  article-title: Generating singlet oxygen bubbles: A new mechanism for gas‐liquid oxidations in water
  publication-title: Langmuir
– volume: 8
  year: 2012
  article-title: The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed‐species oral biofilm
  publication-title: PLoS Pathog.
– volume: 27
  start-page: 915
  year: 2019
  end-page: 926
  article-title: Nanoparticle‐biofilm interactions: The role of the EPS matrix
  publication-title: Trends Microbiol.
– volume: 17
  start-page: e49
  year: 2017
  end-page: e55
  article-title: Photoantimicrobials—Are we afraid of the light?
  publication-title: Lancet Infect. Dis.
– volume: 103
  start-page: 1685
  year: 2003
  end-page: 1758
  article-title: Physical mechanisms of generation and deactivation of singlet oxygen
  publication-title: Chem. Rev.
– volume: 21
  start-page: 316
  year: 2018
  end-page: 326
  article-title: Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of
  publication-title: Photodiagn. Photodyn. Ther.
– volume: 72
  start-page: 3916
  year: 2006
  end-page: 3923
  article-title: Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms
  publication-title: Appl. Environ. Microbiol.
– volume: 46
  start-page: 12098
  year: 2012
  end-page: 12104
  article-title: Bacterial inactivation by a singlet oxygen bubbler: Identifying factors controlling the toxicity of O bubbles
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Antibiotics versus biofilm: An emerging battleground in microbial communities
  publication-title: Antimicrob. Resist. Infect. Control
– volume: 16
  start-page: 20598
  year: 2014
  end-page: 20607
  article-title: Singlet oxygen generation in porphyrin‐doped polymeric surface coating enables antimicrobial effects on
  publication-title: Phys. Chem. Chem. Phys.
– volume: 59
  start-page: 302
  year: 1998
  end-page: 309
  article-title: Microelectrode measurements of local mass transport rates in heterogeneous biofilms
  publication-title: Biotechnol. Bioeng.
– volume: 53
  start-page: 549
  year: 1991
  end-page: 553
  article-title: The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen
  publication-title: Photochem. Photobiol.
– volume: 24
  start-page: 212
  year: 2018
  end-page: 219
  article-title: Effect of chloroaluminium phthalocyanine in cationic nanoemulsion on photoinactivation of multispecies biofilm
  publication-title: Photodiagnosis Photodyn. Ther.
– volume: 104
  start-page: 7223
  year: 2007
  end-page: 7228
  article-title: The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria
  publication-title: Proc. Natl. Acad. Sci. U S A
– ident: e_1_2_8_62_1
  doi: 10.1021/ja807484b
– ident: e_1_2_8_99_1
  doi: 10.1016/j.ab.2013.04.033
– ident: e_1_2_8_47_1
  doi: 10.1016/j.pdpdt.2018.10.005
– ident: e_1_2_8_51_1
  doi: 10.1016/j.pdpdt.2015.11.007
– ident: e_1_2_8_66_1
  doi: 10.1562/2006-04-02-RA-865
– ident: e_1_2_8_36_1
  doi: 10.1039/B9PP00154A
– ident: e_1_2_8_72_1
  doi: 10.1038/nrmicro1838
– ident: e_1_2_8_16_1
  doi: 10.1021/ar050191g
– ident: e_1_2_8_92_1
  doi: 10.1016/j.nantod.2020.100898
– volume: 6
  year: 2017
  ident: e_1_2_8_75_1
  article-title: Quantitative and qualitative assessment methods for biofilm growth: A mini‐review
  publication-title: Res. Rev. J. Eng. Technol.
– ident: e_1_2_8_14_1
  doi: 10.1021/ja00351a001
– ident: e_1_2_8_67_1
  doi: 10.1562/2006-04-14-IR-874
– ident: e_1_2_8_24_1
  doi: 10.1039/C5NR08691D
– ident: e_1_2_8_8_1
  doi: 10.1126/science.284.5418.1318
– ident: e_1_2_8_86_1
  doi: 10.1128/AEM.60.4.1166-1173.1994
– ident: e_1_2_8_55_1
  doi: 10.1002/(SICI)1097-0290(19980805)59:3<302::AID-BIT6>3.0.CO;2-F
– ident: e_1_2_8_39_1
  doi: 10.2147/IJN.S212807
– ident: e_1_2_8_88_1
  doi: 10.1071/EN12106
– ident: e_1_2_8_3_1
  doi: 10.1039/C4CP02439G
– ident: e_1_2_8_41_1
  doi: 10.1515/ntrev-2015-0027
– ident: e_1_2_8_93_1
  doi: 10.1016/j.watres.2017.06.027
– ident: e_1_2_8_80_1
  doi: 10.1128/AEM.02279-08
– ident: e_1_2_8_87_1
  doi: 10.1128/AAC.01329-10
– ident: e_1_2_8_15_1
  doi: 10.1111/php.12716
– ident: e_1_2_8_71_1
  doi: 10.1016/1011-1344(90)85104-5
– ident: e_1_2_8_53_1
  doi: 10.1021/acsami.8b09439
– ident: e_1_2_8_65_1
  doi: 10.1016/j.pdpdt.2006.11.002
– ident: e_1_2_8_33_1
  doi: 10.1186/s40824-018-0140-z
– ident: e_1_2_8_44_1
  doi: 10.1016/j.pdpdt.2018.01.003
– ident: e_1_2_8_69_1
  doi: 10.1016/S0196-9781(96)00170-2
– ident: e_1_2_8_54_1
  doi: 10.1021/la204583v
– ident: e_1_2_8_85_1
  doi: 10.1098/rstb.1995.0168
– ident: e_1_2_8_21_1
  doi: 10.3389/fmicb.2015.00591
– ident: e_1_2_8_13_1
  doi: 10.1021/jp503149x
– ident: e_1_2_8_38_1
  doi: 10.1039/C7RA06073D
– ident: e_1_2_8_97_1
  doi: 10.1128/AEM.02218-07
– ident: e_1_2_8_70_1
  doi: 10.1111/j.1751-1097.1991.tb03669.x
– ident: e_1_2_8_60_1
  doi: 10.1021/ja504279r
– ident: e_1_2_8_4_1
  doi: 10.1080/1040841X.2018.1467876
– ident: e_1_2_8_81_1
  doi: 10.1002/(SICI)1097-0290(19981120)60:4<462::AID-BIT8>3.0.CO;2-K
– ident: e_1_2_8_17_1
  doi: 10.1002/(SICI)1097-0290(19980805)59:3<261::AID-BIT1>3.0.CO;2-9
– ident: e_1_2_8_84_1
  doi: 10.1128/AEM.00754-10
– ident: e_1_2_8_56_1
  doi: 10.1128/AEM.02090-09
– ident: e_1_2_8_79_1
  doi: 10.1128/AEM.69.3.1702-1709.2003
– ident: e_1_2_8_50_1
  doi: 10.1002/alr.20089
– ident: e_1_2_8_34_1
  doi: 10.3390/cancers9020019
– ident: e_1_2_8_26_1
  doi: 10.2217/nnm.15.67
– ident: e_1_2_8_43_1
  doi: 10.1016/j.joen.2016.05.021
– ident: e_1_2_8_102_1
  doi: 10.1021/acs.chemrev.5b00726
– ident: e_1_2_8_59_1
  doi: 10.1166/rnn.2014.1050
– ident: e_1_2_8_49_1
  doi: 10.1007/s10103-013-1397-z
– ident: e_1_2_8_78_1
  doi: 10.1099/mic.0.27463-0
– ident: e_1_2_8_27_1
  doi: 10.1007/s00253-014-5821-5
– ident: e_1_2_8_40_1
  doi: 10.3390/molecules23102424
– ident: e_1_2_8_94_1
  doi: 10.1016/j.tim.2019.07.004
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.0611328104
– ident: e_1_2_8_10_1
  doi: 10.1016/j.drup.2017.07.003
– ident: e_1_2_8_31_1
  doi: 10.1016/j.pdpdt.2013.07.001
– ident: e_1_2_8_91_1
  doi: 10.1515/nanoph-2016-0189
– ident: e_1_2_8_103_1
  doi: 10.1021/acs.est.0c07922
– ident: e_1_2_8_58_1
  doi: 10.1021/jacs.6b01555
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.chemrev.8b00211
– ident: e_1_2_8_42_1
  doi: 10.1039/c0pp00360c
– ident: e_1_2_8_89_1
  doi: 10.1159/000057866
– ident: e_1_2_8_48_1
  doi: 10.1007/s10103-010-0852-3
– ident: e_1_2_8_83_1
  doi: 10.1562/0031-8655(2002)0750570HODIMB2.0.CO2
– ident: e_1_2_8_25_1
  doi: 10.1142/S1088424620300098
– ident: e_1_2_8_46_1
  doi: 10.1111/j.1365-2958.2005.05008.x
– ident: e_1_2_8_74_1
  doi: 10.1016/0043-1354(94)90042-6
– ident: e_1_2_8_9_1
  doi: 10.1186/s13756-019-0533-3
– ident: e_1_2_8_19_1
  doi: 10.1016/j.mbs.2007.04.008
– ident: e_1_2_8_11_1
  doi: 10.1021/ja410529q
– ident: e_1_2_8_37_1
  doi: 10.1002/cptc.201900020
– ident: e_1_2_8_64_1
  doi: 10.1016/j.freeradbiomed.2008.02.011
– ident: e_1_2_8_23_1
  doi: 10.1021/nn505015e
– ident: e_1_2_8_95_1
  doi: 10.1016/j.colsurfb.2018.09.018
– ident: e_1_2_8_82_1
  doi: 10.1038/s41522-019-0107-4
– ident: e_1_2_8_100_1
  doi: 10.1080/08927010400010494
– ident: e_1_2_8_98_1
  doi: 10.1128/AAC.49.2.728-732.2005
– ident: e_1_2_8_61_1
  doi: 10.1111/j.1751-1097.2010.00855.x
– ident: e_1_2_8_77_1
  doi: 10.1016/j.tim.2004.11.007
– ident: e_1_2_8_20_1
  doi: 10.1088/0034-4885/78/3/036601
– ident: e_1_2_8_45_1
  doi: 10.3390/microorganisms9010145
– ident: e_1_2_8_96_1
  doi: 10.1371/journal.ppat.1002623
– ident: e_1_2_8_35_1
  doi: 10.1021/acsinfecdis.9b00379
– ident: e_1_2_8_30_1
  doi: 10.1088/1361-6560/62/5/R1
– ident: e_1_2_8_90_1
  doi: 10.1038/nrmicro2415
– ident: e_1_2_8_73_1
  doi: 10.1007/s11242-018-1218-8
– ident: e_1_2_8_5_1
  doi: 10.1016/j.pdpdt.2017.01.005
– ident: e_1_2_8_68_1
  doi: 10.1126/stke.2212004pe7
– ident: e_1_2_8_7_1
  doi: 10.1016/S1473-3099(16)30268-7
– ident: e_1_2_8_6_1
  doi: 10.3390/molecules25225239
– ident: e_1_2_8_63_1
  doi: 10.1111/j.1751-1097.2008.00359.x
– ident: e_1_2_8_52_1
  doi: 10.1016/j.jphotobiol.2020.111903
– ident: e_1_2_8_32_1
  doi: 10.1042/BJ20150942
– ident: e_1_2_8_22_1
  doi: 10.1016/j.mimet.2016.03.002
– ident: e_1_2_8_101_1
  doi: 10.1021/cr010371d
– ident: e_1_2_8_28_1
  doi: 10.1016/j.pdpdt.2018.01.016
– ident: e_1_2_8_12_1
  doi: 10.1021/am200741f
– ident: e_1_2_8_57_1
  doi: 10.1021/es303645n
– ident: e_1_2_8_76_1
  doi: 10.1128/AEM.03022-05
– ident: e_1_2_8_104_1
  doi: 10.1016/j.scitotenv.2020.141186
– ident: e_1_2_8_18_1
  doi: 10.1128/JB.185.5.1485-1491.2003
SSID ssj0014971
Score 2.4414337
SecondaryResourceType review_article
Snippet This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1266
SubjectTerms Anti-Bacterial Agents - therapeutic use
Anti-Infective Agents - pharmacology
Antiinfectives and antibacterials
Antimicrobial agents
Biofilms
Deactivation
Diffusion
Hydrophobic and Hydrophilic Interactions
Hydrophobic surfaces
Hydrophobicity
Inactivation
Molecular diffusion
Nanoparticles
Photoactivation
Photochemotherapy
Photosensitizing Agents - pharmacology
Photosensitizing Agents - therapeutic use
Reactive Oxygen Species
Title Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13461
https://www.ncbi.nlm.nih.gov/pubmed/34097752
https://www.proquest.com/docview/2610716748
https://www.proquest.com/docview/2539210180
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlQpcaFmgLLTIIA5cskrixM7S06qlWpCKVnQr9YAUxY6jjWiTaDc5tD-BX82M84DykBC3SBnLjj0Tf2PPfAPwxsNVTU3mOdIY5aC_wZ1ER9rR0ywKdepzbsmezz6J-UXw8TK83IKjPhem5YcYDtzIMuz_mgw8UZufjLxaVROPB9b1oVgtAkSfB-ooBP6yrZbHPYeSLztWIYriGVre3Yt-A5h38ardcE534Us_1DbO5OukqdVE3_7C4vif37IHDzsgymat5jyCLVOMYKctTXkzgvvHfSW4Edw76y7gH8O3WVHn17llb8LWi1VZl2lb1J59KChJoj3iZTYUgS3LipSAJUXKzpvKrFc36bqsVthas3OKna_zW7Nmy55JdvOOzdjiRwIoo_QXdpJnWUPHeiwvGA4xy6-uN0_g4vT98njudOUcHM2jyHO0oUOmRKdhpJNA-oZHWnBf4R_G126WGGlEpNxI8RSdIM1FgKJKelNDrH-S86ewXZSFeQbM5alQ_lROXW6C0BUqVFq40s-EUBx3nzG87Rc21h3XOZXcuIp7nwdnPLYzPobXg2jVEnz8Seig1464s_FNjL4n4jMq1jKGV8NrXBq6ckkKUzYoEyL-tCRpY9hvtWrohRPVmAx9HKzVjb93Hy_mC_vw_N9FX8ADn8JvbNrkAWzX68YcIn6q1UtrKN8BpKsW_w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwEB5Fidrk0sf2tWnaulUPvbACDDZb9bJKGm3abLRqNlIuFcLGaFESQLtwSH5Cf3U9NtCmD6nqDYmxMHgGz4xnvg_gradXNVWZ53ClhKPjDeokMpKOHGdRKFOfUgP2PDth07Pg03l4vgEful4Yiw_RJ9zQMsz_Gg0cE9I_WXm1rEYeDTD22UJGb0TOP_jSg0dp159bvjzqOdh-2eIKYR1PP_T2bvSbi3nbYzVbzuF9-NpN1laaXIyaWozkzS84jv_7Ng_gXuuLkolVnoewoYoB3LHslNcD2N7vyOAGcHfWnsE_gm-Tos6vcgPgpEfPl2VdppbXnhwV2Cdhs7zEVCOQRVmhHpCkSMlpU6nV8jpdldVSj5bkFMvn6_xGrciiA5NdvycTMv_RA0qwA4Yc5FnWYGaP5AXRU8zyy6v1Yzg7_LjYnzoto4MjaRR5jlSYZ0pkGkYyCbivaCQZ9YX-yfjSzRLFFYuEGwma6jhIUhZoUcG9sULgP07pE9gsykI9A-LSlAl_zMcuVUHoMhEKyVzuZ4wJqjegIbzrVjaWLdw5sm5cxl3Yo794bL74EN70opXF-PiT0F6nHnFr5utYh5_aRUO-liG87m_rpcFTl6RQZaNlQu2CGpy0ITy1atU_hSLaGA99PVmjHH9_fDyfzs3F7r-LvoLt6WJ2HB8fnXx-Djs-VuOYLso92KxXjXqh3alavDRW8x0A9Rsb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrShcCiwUFgoYxIFLVkmc2AmcVl1WW6BVRLdSD0hR_Ig2ok2i3eTQ_gR-NX4kgfKQELdIGcuOPRPP2DPfB_DaU6sqZO45VErmqHgDOxmPuMPjPAq58DE2YM_HJ2RxFnw4D8-34F1fC2PxIYYDN20Z5n-tDbwW-U9GXq_qiYcDHfrsBMSNNW_D7POAHaU8f2rp8rDn6OrLDlZIp_EMTW9uRr95mDcdVrPjzO_Cl36sNtHk66Rt2IRf_wLj-J8fcw_2Ok8UTa3q3IctWY7gluWmvBrB7cOeCm4Eu8fdDfwD-DYtm-KyMPBNqnWyqppKWFZ7dFTqKgl7xotMLgJaVrXWApSVAp22tVyvrsS6qleqNUenOnm-Ka7lGi17KNnNWzRFyY8KUKTrX9CsyPNWn-uhokRqiHlxcbl5CGfz98vDhdPxOTgcR5HncKlPmTIuwohnAfUljjjBPlO_GJ-7eSapJBFzI4aFioI4JoESZdSLpYb9oxjvw3ZZlfIxIBcLwvyYxi6WQegSFjJOXOrnhDCstp8xvOkXNuUd2Lnm3LhI-6BHzXhqZnwMrwbR2iJ8_EnooNeOtDPyTaqCT-WgabaWMbwcXqul0XcuWSmrVsmEygE1KGljeGS1augFa6wxGvpqsEY3_t59miwS8_Dk30VfwG4ym6efjk4-PoU7vk7FMSWUB7DdrFv5TPlSDXtubOY7n6EZyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antimicrobial+Photodynamic+Inactivation+Using+Topical+and+Superhydrophobic+Sensitizer+Techniques%3A+A+Perspective+from+Diffusion+in+Biofilms&rft.jtitle=Photochemistry+and+photobiology&rft.au=Tonon%2C+Caroline+Coradi&rft.au=Ashraf%2C+Shoaib&rft.au=Alburquerque%2C+Jos%C3%A9+Qu%C3%ADlez&rft.au=de+Souza+Rastelli%2C+Alessandra+Nara&rft.date=2021-11-01&rft.eissn=1751-1097&rft.volume=97&rft.issue=6&rft.spage=1266&rft_id=info:doi/10.1111%2Fphp.13461&rft_id=info%3Apmid%2F34097752&rft.externalDocID=34097752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon