Ferroptosis and central nervous system demyelinating diseases
Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iro...
Saved in:
Published in | Journal of neurochemistry Vol. 165; no. 6; pp. 759 - 771 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.
Ferroptosis is the result of multiple biological pathways acting together as a newly discovered cell death program. The major metabolic pathways associated with ferroptosis susceptibility include iron metabolism, lipid metabolism, and amino acid metabolism. Ferroptosis plays a key role in the pathophysiology of central nervous system (CNS) demyelinating diseases. Blocking the process of iron death can reduce myelin damage and alleviate the neurological dysfunction caused by demyelinating diseases such as multiple sclerosis, neuromyelitis optica, and acute disseminated encephalomyelitis. |
---|---|
AbstractList | Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases. Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases. Ferroptosis is the result of multiple biological pathways acting together as a newly discovered cell death program. The major metabolic pathways associated with ferroptosis susceptibility include iron metabolism, lipid metabolism, and amino acid metabolism. Ferroptosis plays a key role in the pathophysiology of central nervous system (CNS) demyelinating diseases. Blocking the process of iron death can reduce myelin damage and alleviate the neurological dysfunction caused by demyelinating diseases such as multiple sclerosis, neuromyelitis optica, and acute disseminated encephalomyelitis. Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases. image Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases.Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid peroxidation. It is different from necrosis, apoptosis, autophagy, and other forms of cell death. Accumulating evidences suggest that brain iron overload is involved in the pathogenesis of demyelinating diseases of the central nervous system (CNS), such as multiple sclerosis (MS), neuromyelitis optica (NMO), and acute disseminated encephalomyelitis (ADEM). The study of ferroptosis may provide a new understanding of demyelinating diseases and provide a novel therapeutic target for clinical treatment. Herein, we reviewed recent discoveries on mechanisms of ferroptosis, the effects of metabolic pathways on ferroptosis, and its involvement in CNS demyelinating diseases. |
Author | Guo, Shougang Qin, Danqing Wang, Chunjuan Li, Dong |
Author_xml | – sequence: 1 givenname: Danqing orcidid: 0000-0002-4493-1347 surname: Qin fullname: Qin, Danqing organization: Shandong University – sequence: 2 givenname: Dong surname: Li fullname: Li, Dong organization: Shandong University – sequence: 3 givenname: Chunjuan surname: Wang fullname: Wang, Chunjuan email: jim1022@126.com organization: Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences – sequence: 4 givenname: Shougang surname: Guo fullname: Guo, Shougang email: guoshougang1124@163.com organization: Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Academy of Medical Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37095635$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kD1PwzAURS0EghYY-AMoEgsMoX527DgDA6ooH6pggdlKnRfkKnGKnYL67zG0XSrw8pZzr67PkOy7ziEhZ0CvIb7R3JlrEIrDHhlAlkOagSj2yYBSxlJOM3ZEhiHMKQWZSTgkRzynhZBcDMjNBL3vFn0XbEhKVyUGXe_LJnHoP7tlSMIq9NgmFbYrbKwre-vek8oGLAOGE3JQl03A0809Jm-Tu9fxQzp9uX8c305Tw5WC1KgqrqtlzYpaUZbNgGXSFCiAoyl4CVIYYHQmOdRVzphCmRmRiYJzw0WV82Nyue5d-O5jiaHXrQ0Gm6Z0GEdqpqikOUjGInqxg867pXdxXaSYEpIVXEXqfEMtZy1WeuFtW_qV3oqJwGgNGN-F4LHWxvbx892PHdtooPpHvY7q9a_6mLjaSWxL_2I37V-2wdX_oH56Hq8T31H2kE4 |
CitedBy_id | crossref_primary_10_1016_j_phrs_2024_107533 crossref_primary_10_1097_MD_0000000000039158 crossref_primary_10_2174_1567202621999240223164624 crossref_primary_10_1016_j_freeradbiomed_2024_10_298 crossref_primary_10_3389_fimmu_2023_1273570 crossref_primary_10_1016_j_brainres_2024_149349 crossref_primary_10_1016_j_expneurol_2024_114961 crossref_primary_10_4103_mgr_MEDGASRES_D_24_00059 crossref_primary_10_4239_wjd_v16_i1_98948 crossref_primary_10_1016_j_autrev_2025_103741 crossref_primary_10_3390_cells12222595 crossref_primary_10_3390_bioengineering10070871 |
Cites_doi | 10.1002/ana.25974 10.1186/1476‐9255‐6‐18 10.1016/j.molcel.2015.06.011 10.1523/JNEUROSCI.1749‐20.2020 10.1038/nchembio.2239 10.1016/j.stem.2019.09.003 10.1182/blood‐2009‐05‐224188 10.3390/ijms222312811 10.1016/j.tem.2013.01.008 10.1016/j.redox.2016.12.010 10.1016/j.cell.2017.09.021 10.1002/glia.24083 10.1007/s00415‐011‐6355‐8 10.1002/(sici)1098‐1136(199804)22:4<371::aid‐glia6=3.0.co;2‐6 10.3389/fnins.2019.00086 10.1016/j.redox.2018.01.008 10.1177/1352458507078916 10.1016/j.neurobiolaging.2014.03.039 10.3390/biology10030184 10.1016/s1535‐6108(03)00050‐3 10.3390/ijms21228765 10.1073/pnas.232392299 10.1371/journal.pone.0188013 10.1016/j.intimp.2021.107844 10.1002/path.5248 10.1194/jlr.M080374 10.1016/j.freeradbiomed.2022.01.012 10.1038/nature13148 10.1016/s1474‐4422(07)70216‐8 10.1177/1759091420962681 10.1080/14728222.2017.1398236 10.3390/ijms20092257 10.1038/nrneurol.2014.141 10.1007/s00018‐021‐03802‐0 10.3389/fnins.2019.00085 10.1186/s12974‐016‐0787‐0 10.4049/jimmunol.1401108 10.1016/j.cmet.2020.10.011 10.1186/s40880‐018‐0288‐x 10.1038/s41419‐021‐03559‐1 10.1016/j.celrep.2020.02.049 10.1038/nchembio.2079 10.1016/s1474‐4422(14)70256‐x 10.1056/NEJMra1401483 10.1016/j.expneurol.2022.114113 10.1016/j.jneuroim.2022.577995 10.1111/cas.13380 10.1016/j.tips.2013.04.005 10.1155/2014/360438 10.1093/brain/awl217 10.1212/WNL.0000000000002825 10.1038/s41589‐018‐0031‐6 10.1038/s41467‐018‐06505‐6 10.1186/s12974‐020‐01964‐5 10.1038/cdd.2015.158 10.1038/ni1507 10.1016/s0165‐5728(97)00256‐7 10.1016/j.mam.2008.08.006 10.1016/j.redox.2021.101947 10.3390/ijms21051603 10.1016/j.taap.2020.115241 10.1016/s1474‐4422(17)30299‐5 10.1523/JNEUROSCI.1281‐20.2020 10.1111/jnc.14604 10.1038/s41419‐021‐04306‐2 10.1016/j.neuro.2016.08.014 10.1096/fj.10‐177212 10.1007/s11910‐022‐01217‐3 10.1038/nrneurol.2014.118 10.1038/s41423‐022‐00883‐0 10.1038/nchembio.2238 10.1016/j.jpeds.2018.06.006 10.3389/fnins.2020.00267 10.4103/1673‐5374.293157 10.1016/j.biomaterials.2021.121110 10.1016/j.ceb.2004.09.011 10.1042/AN20130037 10.1016/j.cell.2012.03.042 10.1177/1352458511411758 10.1186/1742‐2094‐8‐63 10.3389/fphar.2018.01371 10.7150/thno.55482 10.1016/j.ccell.2019.04.002 10.1038/ncb3064 10.1038/s41419‐022‐04712‐0 10.1038/nature14344 10.1016/s0008‐6363(99)00384‐3 10.1016/j.cell.2013.12.010 10.1177/1352458507085550 10.1038/s41598‐022‐24152‐2 10.1038/s41418‐020‐00728‐1 10.1093/brain/awq177 10.1038/s41556‐021‐00818‐3 10.1038/s41419‐019‐2064‐5 10.7150/ijbs.69714 10.1038/s41586‐020‐2494‐3 10.1038/s41467‐020‐15109‐y 10.1073/pnas.1603244113 10.1038/s41598‐019‐48087‐3 10.1182/blood‐2007‐12‐127480 10.3390/cells8111424 10.1038/nature05859 10.1016/j.chembiol.2020.03.014 10.1038/s41572‐020‐0214‐9 10.1016/j.cmet.2019.12.007 10.1038/s41419‐020‐2298‐2 10.1016/s1474‐4422(14)70117‐6 10.1016/j.freeradbiomed.2018.05.074 10.1038/cdd.2015.93 10.1002/jmri.22590 10.1038/s41467‐020‐14324‐x 10.1038/s41374‐022‐00826‐3 |
ContentType | Journal Article |
Copyright | 2023 International Society for Neurochemistry. Copyright © 2023 International Society for Neurochemistry |
Copyright_xml | – notice: 2023 International Society for Neurochemistry. – notice: Copyright © 2023 International Society for Neurochemistry |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 |
DOI | 10.1111/jnc.15831 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 771 |
ExternalDocumentID | 37095635 10_1111_jnc_15831 JNC15831 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QR 7TK 7U7 7U9 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c3881-c8d583f6f29f8024b1246c9e513ec93a165c120b631fd7228e64c545933c35d73 |
IEDL.DBID | DR2 |
ISSN | 0022-3042 1471-4159 |
IngestDate | Fri Jul 11 01:51:44 EDT 2025 Fri Jul 25 10:46:57 EDT 2025 Wed Feb 19 02:08:58 EST 2025 Tue Jul 01 04:39:42 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Wed Jan 22 16:22:09 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | iron overload cell death demyelinating diseases iron balance disorder multiple sclerosis oxidative stress |
Language | English |
License | 2023 International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3881-c8d583f6f29f8024b1246c9e513ec93a165c120b631fd7228e64c545933c35d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4493-1347 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jnc.15831 |
PMID | 37095635 |
PQID | 2828562938 |
PQPubID | 31528 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2806071622 proquest_journals_2828562938 pubmed_primary_37095635 crossref_citationtrail_10_1111_jnc_15831 crossref_primary_10_1111_jnc_15831 wiley_primary_10_1111_jnc_15831_JNC15831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 20230601 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2021; 69 2019; 10 2019; 13 2018; 203 2002; 99 2020; 17 2022; 24 2020; 14 2020; 12 2020; 11 2022; 22 1998; 84 2009; 114 2018; 9 2010; 25 2021; 78 2019; 20 2021; 277 2019; 25 2014; 16 2007; 8 2007; 6 2014; 13 2020; 89 2008; 112 2012; 259 2018; 38 2014; 10 2019; 8 2022; 354 2015; 59 2019; 9 2007; 447 2020; 40 2015; 520 2019; 35 2014; 2014 2020; 32 2007; 13 2011; 8 2016; 12 2014; 156 2015; 195 2022; 180 2020; 31 2020; 30 2022; 12 2020; 27 2022; 13 2014; 35 2020; 21 2018; 15 2018; 14 2016; 23 2022; 18 2022; 102 2016; 22 2022; 19 2022; 373 2021; 22 2013; 24 2000; 45 1865; 86 2021; 28 2019; 247 2011; 17 2020; 407 2020; 6 2018; 378 2016; 87 2016; 113 2003; 3 2021; 41 2006; 129 2014; 6 2015; 14 2017; 21 2008; 14 2019; 148 2017; 171 2020; 585 2011; 34 2012; 149 2016; 57 1998; 22 2017; 108 2021; 16 2009; 30 2021; 10 2021; 98 2021; 12 2021; 11 2017; 14 2004; 16 2014; 509 2017; 16 2013; 34 2017; 11 2017; 13 2017; 12 2010; 133 2009; 6 2019; 133 2018; 59 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 JA L. C. (e_1_2_10_33_1) 1865; 86 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 Larabee C. M. (e_1_2_10_46_1) 2016; 22 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 57 start-page: 1 year: 2016 end-page: 12 article-title: Chronic iron overload induces gender‐dependent changes in iron homeostasis, lipid peroxidation and clinical course of experimental autoimmune encephalomyelitis publication-title: Neurotoxicology – volume: 8 start-page: 1424 issue: 11 year: 2019 article-title: Oligodendrocytes in development, myelin generation and beyond publication-title: Cell – volume: 10 start-page: 184 issue: 3 year: 2021 article-title: Lipid metabolism and ferroptosis publication-title: Biology (Basel) – volume: 45 start-page: 528 issue: 3 year: 2000 end-page: 537 article-title: Morphologic and biochemical hallmarks of apoptosis publication-title: Cardiovascular Research – volume: 59 start-page: 312 issue: 2 year: 2018 end-page: 329 article-title: Acid sphingomyelinase promotes mitochondrial dysfunction due to glutamate‐induced regulated necrosis publication-title: Journal of Lipid Research – volume: 14 start-page: 267 year: 2020 article-title: Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases publication-title: Frontiers in Neuroscience – volume: 520 start-page: 57 issue: 7545 year: 2015 end-page: 62 article-title: Ferroptosis as a p53‐mediated activity during tumour suppression publication-title: Nature – volume: 21 start-page: 8765 issue: 22 year: 2020 article-title: Ferroptosis mechanisms involved in neurodegenerative diseases publication-title: International Journal of Molecular Sciences – volume: 13 start-page: 86 year: 2019 article-title: Oxidative stress related to iron metabolism in relapsing remitting multiple sclerosis patients with low disability publication-title: Frontiers in Neuroscience – volume: 87 start-page: S38 issue: 9 Suppl 2 year: 2016 end-page: S45 article-title: Acute disseminated encephalomyelitis: Updates on an inflammatory CNS syndrome publication-title: Neurology – volume: 22 start-page: 1503 year: 2016 end-page: 1513 article-title: Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis publication-title: Molecular Vision – volume: 27 start-page: 387 issue: 4 year: 2020 end-page: 408 article-title: Achieving life through death: Redox biology of lipid peroxidation in ferroptosis publication-title: Cell Chemical Biology – volume: 156 start-page: 317 issue: 1–2 year: 2014 end-page: 331 article-title: Regulation of Ferroptotic cancer cell death by GPX4 publication-title: Cell – volume: 114 start-page: 4546 issue: 20 year: 2009 end-page: 4551 article-title: Specific iron chelators determine the route of ferritin degradation publication-title: Blood – volume: 6 start-page: 18 year: 2009 article-title: TNF‐alpha and IL‐10 downregulation and marked oxidative stress in Neuromyelitis Optica publication-title: Journal of Inflammation (Lond) – volume: 98 year: 2021 article-title: Dimethyl fumarate improves cognitive deficits in chronic cerebral hypoperfusion rats by alleviating inflammation, oxidative stress, and ferroptosis via NRF2/ARE/NF‐kappaB signal pathway publication-title: International Immunopharmacology – volume: 30 start-page: 1 issue: 1–2 year: 2009 end-page: 12 article-title: Glutathione: Overview of its protective roles, measurement, and biosynthesis publication-title: Molecular Aspects of Medicine – volume: 133 start-page: 162 year: 2019 end-page: 168 article-title: The tumor suppressor protein p53 and the ferroptosis network publication-title: Free Radical Biology & Medicine – volume: 13 start-page: 1045 issue: 10 year: 2014 end-page: 1060 article-title: The role of iron in brain ageing and neurodegenerative disorders publication-title: The Lancet Neurology – volume: 16 start-page: 561 issue: 3 year: 2021 end-page: 566 article-title: Liproxstatin‐1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4 publication-title: Neural Regeneration Research – volume: 25 start-page: 531 issue: 4 year: 2019 end-page: 541 e536 article-title: Oligodendrocyte death in Pelizaeus‐Merzbacher disease is rescued by iron chelation publication-title: Cell Stem Cell – volume: 354 year: 2022 article-title: Myelinated axons are the primary target of hemin‐mediated oxidative damage in a model of the central nervous system publication-title: Experimental Neurology – volume: 133 start-page: 2578 issue: 9 year: 2010 end-page: 2591 article-title: Oligodendrocytes are damaged by neuromyelitis optica immunoglobulin G via astrocyte injury publication-title: Brain – volume: 86 start-page: 113 year: 1865 end-page: 114 article-title: On a case of paralysis publication-title: Lancet – volume: 16 start-page: 1180 issue: 12 year: 2014 end-page: 1191 article-title: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice publication-title: Nature Cell Biology – volume: 11 start-page: 1251 issue: 1 year: 2020 article-title: DJ‐1 suppresses ferroptosis through preserving the activity of S‐adenosyl homocysteine hydrolase publication-title: Nature Communications – volume: 195 start-page: 450 issue: 2 year: 2015 end-page: 463 article-title: Inhibition of system xc(−) transporter attenuates autoimmune inflammatory demyelination publication-title: Journal of Immunology – volume: 19 start-page: 913 issue: 8 year: 2022 end-page: 924 article-title: Ferroptosis promotes T‐cell activation‐induced neurodegeneration in multiple sclerosis publication-title: Cellular & Molecular Immunology – volume: 10 start-page: 822 issue: 11 year: 2019 article-title: ROS‐mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation publication-title: Cell Death & Disease – volume: 129 start-page: 3165 issue: Pt 12 year: 2006 end-page: 3172 article-title: Remyelination is extensive in a subset of multiple sclerosis patients publication-title: Brain – volume: 99 start-page: 16922 issue: 26 year: 2002 end-page: 16927 article-title: Genetic analysis of iron citrate toxicity in yeast: Implications for mammalian iron homeostasis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 23 start-page: 270 issue: 2 year: 2016 end-page: 278 article-title: Loss of cysteinyl‐tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation publication-title: Cell Death and Differentiation – volume: 259 start-page: 1354 issue: 7 year: 2012 end-page: 1357 article-title: The case of the Marquis de Causan (1804): An early account of visual loss associated with spinal cord inflammation publication-title: Journal of Neurology – volume: 41 year: 2021 article-title: NOX4 promotes ferroptosis of astrocytes by oxidative stress‐induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases publication-title: Redox Biology – volume: 373 year: 2022 article-title: Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis publication-title: Journal of Neuroimmunology – volume: 10 start-page: 493 issue: 9 year: 2014 end-page: 506 article-title: Treatment of neuromyelitis optica: State‐of‐the‐art and emerging therapies publication-title: Nature Reviews. Neurology – volume: 247 start-page: 697 issue: 5 year: 2019 end-page: 707 article-title: The pathological features of regulated necrosis publication-title: The Journal of Pathology – volume: 16 start-page: 877 issue: 11 year: 2017 end-page: 897 article-title: Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the global burden of disease study 2015 publication-title: The Lancet Neurology – volume: 11 start-page: 433 issue: 1 year: 2020 article-title: Nedd4 ubiquitylates VDAC2/3 to suppress erastin‐induced ferroptosis in melanoma publication-title: Nature Communications – volume: 585 start-page: 397 issue: 7825 year: 2020 end-page: 403 article-title: Suppression of proteolipid protein rescues Pelizaeus–Merzbacher disease publication-title: Nature – volume: 22 start-page: 12811 issue: 23 year: 2021 article-title: Differential role of p53 in oligodendrocyte survival in response to various stresses: Experimental autoimmune encephalomyelitis, cuprizone intoxication or white matter stroke publication-title: International Journal of Molecular Sciences – volume: 35 start-page: 830 issue: 6 year: 2019 end-page: 849 article-title: Targeting ferroptosis to iron out cancer publication-title: Cancer Cell – volume: 35 start-page: S51 issue: Suppl 2 year: 2014 end-page: S58 article-title: Iron and multiple sclerosis publication-title: Neurobiology of Aging – volume: 17 start-page: 1384 issue: 11 year: 2011 end-page: 1386 article-title: An early case of neuromyelitis optica: On a forgotten report by Jacob Lockhart Clarke, FRS publication-title: Multiple Sclerosis Journal – volume: 277 year: 2021 article-title: Application of glutathione depletion in cancer therapy: Enhanced ROS‐based therapy, ferroptosis, and chemotherapy publication-title: Biomaterials – volume: 17 start-page: 297 issue: 1 year: 2020 article-title: Oligodendrocyte‐specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis publication-title: Journal of Neuroinflammation – volume: 31 start-page: 13 issue: 1 year: 2020 end-page: 15 article-title: The antioxidant role of non‐mitochondrial CoQ10: Mystery solved! publication-title: Cell Metabolism – volume: 13 start-page: 259 issue: 3 year: 2022 article-title: Ferroptosis in oligodendrocyte progenitor cells mediates white matter injury after hemorrhagic stroke publication-title: Cell Death & Disease – volume: 102 start-page: 1323 issue: 12 year: 2022 end-page: 1334 article-title: CircRNA‐ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin‐induced ferroptosis by regulating the HSPB1/P38 axis publication-title: Laboratory Investigation – volume: 13 start-page: 81 issue: 1 year: 2017 end-page: 90 article-title: Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis publication-title: Nature Chemical Biology – volume: 89 start-page: 498 issue: 3 year: 2020 end-page: 510 article-title: Iron heterogeneity in early active multiple sclerosis lesions publication-title: Annals of Neurology – volume: 13 start-page: 85 year: 2019 article-title: Deciphering the iron side of stroke: Neurodegeneration at the crossroads between iron Dyshomeostasis, excitotoxicity, and ferroptosis publication-title: Frontiers in Neuroscience – volume: 24 start-page: 88 issue: 1 year: 2022 end-page: 98 article-title: PKCbetaII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis publication-title: Nature Cell Biology – volume: 13 start-page: 91 issue: 1 year: 2017 end-page: 98 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nature Chemical Biology – volume: 22 start-page: 545 issue: 8 year: 2022 end-page: 549 article-title: The history of diagnosis and treatment of MS: A brief overview publication-title: Current Neurology and Neuroscience Reports – volume: 84 start-page: 188 issue: 2 year: 1998 end-page: 197 article-title: Desferrioxamine suppresses experimental allergic encephalomyelitis induced by MBP in SJL mice publication-title: Journal of Neuroimmunology – volume: 30 start-page: 3411 issue: 10 year: 2020 end-page: 3423.e3417 article-title: Transferrin receptor is a specific ferroptosis marker publication-title: Cell Reports – volume: 69 start-page: 2981 issue: 12 year: 2021 end-page: 2998 article-title: H‐ferritin expression in astrocytes is necessary for proper oligodendrocyte development and myelination publication-title: Glia – volume: 6 start-page: 85 issue: 1 year: 2020 article-title: Neuromyelitis optica publication-title: Nature Reviews. Disease Primers – volume: 9 start-page: 1371 year: 2018 article-title: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer publication-title: Frontiers in Pharmacology – volume: 11 start-page: 5650 issue: 12 year: 2021 end-page: 5674 article-title: Endogenous glutamate determines ferroptosis sensitivity via ADCY10‐dependent YAP suppression in lung adenocarcinoma publication-title: Theranostics – volume: 16 start-page: 663 issue: 6 year: 2004 end-page: 669 article-title: Death by design: Apoptosis, necrosis and autophagy publication-title: Current Opinion in Cell Biology – volume: 14 start-page: 507 issue: 5 year: 2018 end-page: 515 article-title: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation publication-title: Nature Chemical Biology – volume: 14 start-page: 183 issue: 2 year: 2015 end-page: 193 article-title: Pathological mechanisms in progressive multiple sclerosis publication-title: The Lancet Neurology – volume: 11 start-page: 88 issue: 2 year: 2020 article-title: Ferroptosis: Past, present and future publication-title: Cell Death & Disease – volume: 10 start-page: 459 issue: 8 year: 2014 end-page: 468 article-title: Iron in multiple sclerosis: Roles in neurodegeneration and repair publication-title: Nature Reviews. Neurology – volume: 38 start-page: 12 issue: 1 year: 2018 article-title: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer publication-title: Cancer Communications – volume: 148 start-page: 426 issue: 3 year: 2019 end-page: 439 article-title: Reduced expression of the ferroptosis inhibitor glutathione peroxidase‐4 in multiple sclerosis and experimental autoimmune encephalomyelitis publication-title: Journal of Neurochemistry – volume: 112 start-page: 2071 issue: 5 year: 2008 end-page: 2080 article-title: Hematopoietic‐specific Stat5‐null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression publication-title: Blood – volume: 40 start-page: 7609 issue: 40 year: 2020 end-page: 7624 article-title: Impaired postnatal myelination in a conditional knockout mouse for the ferritin heavy chain in Oligodendroglial cells publication-title: The Journal of Neuroscience – volume: 12 start-page: 289 issue: 4 year: 2021 article-title: The emerging role of ferroptosis in intestinal disease publication-title: Cell Death & Disease – volume: 14 start-page: 602 issue: 5 year: 2008 end-page: 608 article-title: The role of iron dysregulation in the pathogenesis of multiple sclerosis: An Egyptian study publication-title: Multiple Sclerosis – volume: 171 start-page: 273 issue: 2 year: 2017 end-page: 285 article-title: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease publication-title: Cell – volume: 509 start-page: 105 issue: 7498 year: 2014 end-page: 109 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature – volume: 23 start-page: 369 issue: 3 year: 2016 end-page: 379 article-title: Ferroptosis: Process and function publication-title: Cell Death and Differentiation – volume: 407 year: 2020 article-title: Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron‐like cells to ferroptosis publication-title: Toxicology and Applied Pharmacology – volume: 12 year: 2020 article-title: Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination publication-title: ASN Neuro – volume: 34 start-page: 340 issue: 6 year: 2013 end-page: 346 article-title: Toward clinical application of the Keap1‐Nrf2 pathway publication-title: Trends in Pharmacological Sciences – volume: 108 start-page: 2187 issue: 11 year: 2017 end-page: 2194 article-title: Lipoxygenase‐mediated generation of lipid peroxides enhances ferroptosis induced by erastin and RSL3 publication-title: Cancer Science – volume: 14 start-page: 9 issue: 1 year: 2017 article-title: Absence of system xc(−) on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis publication-title: Journal of Neuroinflammation – volume: 25 start-page: 1359 issue: 4 year: 2010 end-page: 1369 article-title: Dopaminergic neurons of system xc–‐deficient mice are highly protected against 6‐hydroxydopamine‐induced toxicity publication-title: The FASEB Journal – volume: 12 issue: 11 year: 2017 article-title: Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey publication-title: PLoS ONE – volume: 8 start-page: 63 issue: 1 year: 2011 article-title: Increased expression of cystine/glutamate antiporter in multiple sclerosis publication-title: Journal of Neuroinflammation – volume: 40 start-page: 9327 issue: 48 year: 2020 end-page: 9341 article-title: Ferroptosis mediates cuprizone‐induced loss of oligodendrocytes and demyelination publication-title: The Journal of Neuroscience – volume: 8 start-page: 913 issue: 9 year: 2007 end-page: 919 article-title: Multiple sclerosis: A complicated picture of autoimmunity publication-title: Nature Immunology – volume: 12 issue: 1 year: 2022 article-title: Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve publication-title: Scientific Reports – volume: 378 start-page: 169 issue: 2 year: 2018 end-page: 180 article-title: Multiple Sclerosis publication-title: The New England Journal of Medicine – volume: 113 start-page: E4966 issue: 34 year: 2016 end-page: E4975 article-title: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 issue: 1 year: 2019 article-title: Dexras1 deletion and iron chelation promote neuroprotection in experimental optic neuritis publication-title: Scientific Reports – volume: 2014 year: 2014 article-title: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4‐hydroxy‐2‐nonenal publication-title: Oxidative Medicine and Cellular Longevity – volume: 78 start-page: 4615 issue: 10 year: 2021 end-page: 4637 article-title: Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders publication-title: Cellular and Molecular Life Sciences – volume: 13 start-page: 1118 year: 2007 end-page: 1126 article-title: Deferiprone, an orally deliverable iron chelator, ameliorates experimental autoimmune encephalomyelitis publication-title: Multiple Sclerosis – volume: 11 start-page: 254 year: 2017 end-page: 262 article-title: Nrf2 inhibition reverses the resistance of cisplatin‐resistant head and neck cancer cells to artesunate‐induced ferroptosis publication-title: Redox Biology – volume: 15 start-page: 490 year: 2018 end-page: 503 article-title: 13 reasons why the brain is susceptible to oxidative stress publication-title: Redox Biology – volume: 21 start-page: 1161 issue: 12 year: 2017 end-page: 1170 article-title: The aquaporin‐4 water channel as a potential drug target in neurological disorders publication-title: Expert Opinion on Therapeutic Targets – volume: 6 start-page: 805 issue: 9 year: 2007 end-page: 815 article-title: The spectrum of neuromyelitis optica publication-title: The Lancet Neurology – volume: 447 start-page: 865 issue: 7146 year: 2007 end-page: 869 article-title: RAS–RAF–MEK‐dependent oxidative cell death involving voltage‐dependent anion channels publication-title: Nature – volume: 20 start-page: 2257 issue: 9 year: 2019 article-title: Relationship of iron metabolism and short‐term cuprizone treatment of C57BL/6 mice publication-title: International Journal of Molecular Sciences – volume: 12 start-page: 1028 issue: 11 year: 2021 article-title: Fin56‐induced ferroptosis is supported by autophagy‐mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells publication-title: Cell Death & Disease – volume: 34 start-page: 13 issue: 1 year: 2011 end-page: 21 article-title: MRI assessment of iron deposition in multiple sclerosis publication-title: Journal of Magnetic Resonance Imaging – volume: 59 start-page: 298 issue: 2 year: 2015 end-page: 308 article-title: Glutaminolysis and transferrin regulate ferroptosis publication-title: Molecular Cell – volume: 12 start-page: 497 issue: 7 year: 2016 end-page: 503 article-title: Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis publication-title: Nature Chemical Biology – volume: 22 start-page: 371 issue: 4 year: 1998 end-page: 378 article-title: Peroxide‐scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress publication-title: Glia – volume: 24 start-page: 209 issue: 4 year: 2013 end-page: 217 article-title: Autophagy: A targetable linchpin of cancer cell metabolism publication-title: Trends in Endocrinology & Metabolism – volume: 6 issue: 1 year: 2014 article-title: Iron chelation and multiple sclerosis publication-title: ASN Neuro – volume: 32 start-page: 920 issue: 6 year: 2020 end-page: 937 article-title: The metabolic underpinnings of ferroptosis publication-title: Cell Metabolism – volume: 203 start-page: 266 year: 2018 end-page: 272.e2 article-title: Effects of delayed cord clamping on 4‐month ferritin levels, brain myelin content, and neurodevelopment: A randomized controlled trial publication-title: The Journal of Pediatrics – volume: 28 start-page: 1135 issue: 4 year: 2021 end-page: 1148 article-title: Cellular degradation systems in ferroptosis publication-title: Cell Death and Differentiation – volume: 21 start-page: 1603 issue: 5 year: 2020 article-title: Regulation of AQP4 in the central nervous system publication-title: International Journal of Molecular Sciences – volume: 3 start-page: 285 issue: 3 year: 2003 end-page: 296 article-title: Identification of genotype‐selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells publication-title: Cancer Cell – volume: 18 start-page: 2075 issue: 5 year: 2022 end-page: 2090 article-title: Forsythoside A mitigates Alzheimer's‐like pathology by inhibiting ferroptosis‐mediated neuroinflammation via Nrf2/GPX4 Axis activation publication-title: International Journal of Biological Sciences – volume: 149 start-page: 1060 issue: 5 year: 2012 end-page: 1072 article-title: Ferroptosis: An iron‐dependent form of nonapoptotic cell death publication-title: Cell – volume: 447 start-page: 864 issue: 7146 year: 2007 end-page: 868 article-title: RAS‐RAF‐MEK‐dependent oxidative cell death involving voltage‐dependent anion channels publication-title: Nature – volume: 180 start-page: 95 year: 2022 end-page: 107 article-title: Mitochondrial oxidative stress mediated Fe‐induced ferroptosis via the NRF2‐ARE pathway publication-title: Free Radical Biology & Medicine – volume: 9 start-page: 4126 issue: 1 year: 2018 article-title: Modulation of proteoglycan receptor PTPsigma enhances MMP‐2 activity to promote recovery from multiple sclerosis publication-title: Nature Communications – ident: e_1_2_10_95_1 doi: 10.1002/ana.25974 – ident: e_1_2_10_74_1 doi: 10.1186/1476‐9255‐6‐18 – ident: e_1_2_10_28_1 doi: 10.1016/j.molcel.2015.06.011 – ident: e_1_2_10_37_1 doi: 10.1523/JNEUROSCI.1749‐20.2020 – ident: e_1_2_10_17_1 doi: 10.1038/nchembio.2239 – ident: e_1_2_10_65_1 doi: 10.1016/j.stem.2019.09.003 – ident: e_1_2_10_14_1 doi: 10.1182/blood‐2009‐05‐224188 – ident: e_1_2_10_53_1 doi: 10.3390/ijms222312811 – ident: e_1_2_10_48_1 doi: 10.1016/j.tem.2013.01.008 – ident: e_1_2_10_79_1 doi: 10.1016/j.redox.2016.12.010 – ident: e_1_2_10_91_1 doi: 10.1016/j.cell.2017.09.021 – ident: e_1_2_10_8_1 doi: 10.1002/glia.24083 – ident: e_1_2_10_36_1 doi: 10.1007/s00415‐011‐6355‐8 – ident: e_1_2_10_39_1 doi: 10.1002/(sici)1098‐1136(199804)22:4<371::aid‐glia6=3.0.co;2‐6 – ident: e_1_2_10_86_1 doi: 10.3389/fnins.2019.00086 – ident: e_1_2_10_12_1 doi: 10.1016/j.redox.2018.01.008 – ident: e_1_2_10_43_1 doi: 10.1177/1352458507078916 – ident: e_1_2_10_89_1 doi: 10.1016/j.neurobiolaging.2014.03.039 – ident: e_1_2_10_47_1 doi: 10.3390/biology10030184 – ident: e_1_2_10_18_1 doi: 10.1016/s1535‐6108(03)00050‐3 – ident: e_1_2_10_78_1 doi: 10.3390/ijms21228765 – ident: e_1_2_10_10_1 doi: 10.1073/pnas.232392299 – ident: e_1_2_10_19_1 doi: 10.1371/journal.pone.0188013 – ident: e_1_2_10_109_1 doi: 10.1016/j.intimp.2021.107844 – ident: e_1_2_10_96_1 doi: 10.1002/path.5248 – ident: e_1_2_10_66_1 doi: 10.1194/jlr.M080374 – ident: e_1_2_10_9_1 doi: 10.1016/j.freeradbiomed.2022.01.012 – ident: e_1_2_10_57_1 doi: 10.1038/nature13148 – ident: e_1_2_10_104_1 doi: 10.1016/s1474‐4422(07)70216‐8 – ident: e_1_2_10_7_1 doi: 10.1177/1759091420962681 – ident: e_1_2_10_98_1 doi: 10.1080/14728222.2017.1398236 – volume: 22 start-page: 1503 year: 2016 ident: e_1_2_10_46_1 article-title: Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis publication-title: Molecular Vision – ident: e_1_2_10_68_1 doi: 10.3390/ijms20092257 – ident: e_1_2_10_69_1 doi: 10.1038/nrneurol.2014.141 – ident: e_1_2_10_88_1 doi: 10.1007/s00018‐021‐03802‐0 – ident: e_1_2_10_15_1 doi: 10.3389/fnins.2019.00085 – ident: e_1_2_10_62_1 doi: 10.1186/s12974‐016‐0787‐0 – ident: e_1_2_10_22_1 doi: 10.4049/jimmunol.1401108 – ident: e_1_2_10_115_1 doi: 10.1016/j.cmet.2020.10.011 – ident: e_1_2_10_44_1 doi: 10.1186/s40880‐018‐0288‐x – ident: e_1_2_10_106_1 doi: 10.1038/s41419‐021‐03559‐1 – ident: e_1_2_10_24_1 doi: 10.1016/j.celrep.2020.02.049 – ident: e_1_2_10_84_1 doi: 10.1038/nchembio.2079 – ident: e_1_2_10_56_1 doi: 10.1016/s1474‐4422(14)70256‐x – ident: e_1_2_10_77_1 doi: 10.1056/NEJMra1401483 – ident: e_1_2_10_4_1 doi: 10.1016/j.expneurol.2022.114113 – ident: e_1_2_10_50_1 doi: 10.1016/j.jneuroim.2022.577995 – ident: e_1_2_10_85_1 doi: 10.1111/cas.13380 – ident: e_1_2_10_94_1 doi: 10.1016/j.tips.2013.04.005 – ident: e_1_2_10_3_1 doi: 10.1155/2014/360438 – ident: e_1_2_10_72_1 doi: 10.1093/brain/awl217 – ident: e_1_2_10_75_1 doi: 10.1212/WNL.0000000000002825 – ident: e_1_2_10_29_1 doi: 10.1038/s41589‐018‐0031‐6 – ident: e_1_2_10_52_1 doi: 10.1038/s41467‐018‐06505‐6 – ident: e_1_2_10_55_1 doi: 10.1186/s12974‐020‐01964‐5 – ident: e_1_2_10_105_1 doi: 10.1038/cdd.2015.158 – ident: e_1_2_10_60_1 doi: 10.1038/ni1507 – volume: 86 start-page: 113 year: 1865 ident: e_1_2_10_33_1 article-title: On a case of paralysis publication-title: Lancet – ident: e_1_2_10_73_1 doi: 10.1016/s0165‐5728(97)00256‐7 – ident: e_1_2_10_26_1 doi: 10.1016/j.mam.2008.08.006 – ident: e_1_2_10_71_1 doi: 10.1016/j.redox.2021.101947 – ident: e_1_2_10_97_1 doi: 10.3390/ijms21051603 – ident: e_1_2_10_51_1 doi: 10.1016/j.taap.2020.115241 – ident: e_1_2_10_23_1 doi: 10.1016/s1474‐4422(17)30299‐5 – ident: e_1_2_10_99_1 doi: 10.1523/JNEUROSCI.1281‐20.2020 – ident: e_1_2_10_32_1 doi: 10.1111/jnc.14604 – ident: e_1_2_10_93_1 doi: 10.1038/s41419‐021‐04306‐2 – ident: e_1_2_10_13_1 doi: 10.1016/j.neuro.2016.08.014 – ident: e_1_2_10_59_1 doi: 10.1096/fj.10‐177212 – ident: e_1_2_10_63_1 doi: 10.1007/s11910‐022‐01217‐3 – ident: e_1_2_10_90_1 doi: 10.1038/nrneurol.2014.118 – ident: e_1_2_10_54_1 doi: 10.1038/s41423‐022‐00883‐0 – ident: e_1_2_10_40_1 doi: 10.1038/nchembio.2238 – ident: e_1_2_10_61_1 doi: 10.1016/j.jpeds.2018.06.006 – ident: e_1_2_10_87_1 doi: 10.3389/fnins.2020.00267 – ident: e_1_2_10_25_1 doi: 10.4103/1673‐5374.293157 – ident: e_1_2_10_64_1 doi: 10.1016/j.biomaterials.2021.121110 – ident: e_1_2_10_20_1 doi: 10.1016/j.ceb.2004.09.011 – ident: e_1_2_10_103_1 doi: 10.1042/AN20130037 – ident: e_1_2_10_16_1 doi: 10.1016/j.cell.2012.03.042 – ident: e_1_2_10_35_1 doi: 10.1177/1352458511411758 – ident: e_1_2_10_67_1 doi: 10.1186/1742‐2094‐8‐63 – ident: e_1_2_10_92_1 doi: 10.3389/fphar.2018.01371 – ident: e_1_2_10_114_1 doi: 10.7150/thno.55482 – ident: e_1_2_10_30_1 doi: 10.1016/j.ccell.2019.04.002 – ident: e_1_2_10_27_1 doi: 10.1038/ncb3064 – ident: e_1_2_10_83_1 doi: 10.1038/s41419‐022‐04712‐0 – ident: e_1_2_10_38_1 doi: 10.1038/nature14344 – ident: e_1_2_10_82_1 doi: 10.1016/s0008‐6363(99)00384‐3 – ident: e_1_2_10_112_1 doi: 10.1016/j.cell.2013.12.010 – ident: e_1_2_10_2_1 doi: 10.1177/1352458507085550 – ident: e_1_2_10_76_1 doi: 10.1038/s41598‐022‐24152‐2 – ident: e_1_2_10_11_1 doi: 10.1038/s41418‐020‐00728‐1 – ident: e_1_2_10_58_1 doi: 10.1093/brain/awq177 – ident: e_1_2_10_113_1 doi: 10.1038/s41556‐021‐00818‐3 – ident: e_1_2_10_70_1 doi: 10.1038/s41419‐019‐2064‐5 – ident: e_1_2_10_100_1 doi: 10.7150/ijbs.69714 – ident: e_1_2_10_21_1 doi: 10.1038/s41586‐020‐2494‐3 – ident: e_1_2_10_6_1 doi: 10.1038/s41467‐020‐15109‐y – ident: e_1_2_10_110_1 doi: 10.1073/pnas.1603244113 – ident: e_1_2_10_42_1 doi: 10.1038/s41598‐019‐48087‐3 – ident: e_1_2_10_116_1 doi: 10.1182/blood‐2007‐12‐127480 – ident: e_1_2_10_45_1 doi: 10.3390/cells8111424 – ident: e_1_2_10_108_1 doi: 10.1038/nature05859 – ident: e_1_2_10_5_1 doi: 10.1016/j.chembiol.2020.03.014 – ident: e_1_2_10_34_1 doi: 10.1038/s41572‐020‐0214‐9 – ident: e_1_2_10_81_1 doi: 10.1016/j.cmet.2019.12.007 – ident: e_1_2_10_49_1 doi: 10.1038/s41419‐020‐2298‐2 – ident: e_1_2_10_102_1 doi: 10.1016/s1474‐4422(14)70117‐6 – ident: e_1_2_10_107_1 doi: 10.1038/nature05859 – ident: e_1_2_10_41_1 doi: 10.1016/j.freeradbiomed.2018.05.074 – ident: e_1_2_10_31_1 doi: 10.1038/cdd.2015.93 – ident: e_1_2_10_80_1 doi: 10.1002/jmri.22590 – ident: e_1_2_10_111_1 doi: 10.1038/s41467‐020‐14324‐x – ident: e_1_2_10_101_1 doi: 10.1038/s41374‐022‐00826‐3 |
SSID | ssj0016461 |
Score | 2.4994874 |
SecondaryResourceType | review_article |
Snippet | Ferroptosis is a newly discovered programmed cell death caused by intracellular iron excess and glutathione (GSH) system imbalance, resulting in fatal lipid... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 759 |
SubjectTerms | Apoptosis Autophagy Cell death Central Nervous System Central Nervous System Diseases Demyelinating diseases Demyelination Encephalomyelitis Ferroptosis Glutathione Humans Iron iron balance disorder Iron Overload Lipid peroxidation Lipids Metabolic pathways Multiple Sclerosis Necrosis Neuromyelitis Neuromyelitis Optica Oxidative stress Pathogenesis Peroxidation Therapeutic targets |
Title | Ferroptosis and central nervous system demyelinating diseases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjnc.15831 https://www.ncbi.nlm.nih.gov/pubmed/37095635 https://www.proquest.com/docview/2828562938 https://www.proquest.com/docview/2806071622 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7Ei158rK_6IoqIl8o22bYpnmRx0QX3IAp7EEqTpiBqd9nuHvTXO5M-cH2AeCmFpuQxM8mXZOYbgJMIQbvSqe8mOlQuRVK5KhCem8oobMvUqMDGVt0OguuHTn_oDxfgoo6FKfkhmgM3sgw7X5OBJ6r4bORoP54vbQw1-WoRILprqKOINstrmMJRMytWIevFU_85vxZ9A5jzeNUuOL1VeKybWvqZPJ_Ppupcv39hcfxnX9ZgpQKi7LLUnHVYMHkLNi5z3IS_vrFTZl1D7Zl7C5a6dVq4DaCT58loPB0VTwVL8pRV7p0sx1lnNCtYyQ3NKE6FYt0T8qtm1T1QsQkPvav77rVb5WBwtZDSc7VMsV1ZkPEok7ieK8QDgY6M7wmjI5F4ga893ib5ZmnIuTRBRyMqi4TQwk9DsQWL-Sg3O8AQ-BB3TYKYh3dMxyQm4zw0qdQ84lmgHDirpRHriqCc8mS8xM1GJdexHSYHjpui45KV46dC-7VI48owi5h2mAj5IiEdOGo-4xDSPUmSGxynmC6b28SsxR3YLlWhqUWExNwofGysFejv1cf9Qde-7P696B4sUzr70hVtHxank5k5QNAzVYdWu_HZu-l_AG1F-54 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KPejFR31Vq64i4iXS7DbJBryUotSqPYiFXiQkmw2ImoppD_rrndk88AniLZANu5nd2f1mduYbgEMfQXukYscKlRdZlEllRa6wrVj6XlvGOnJNbtX10O2POoOxM67BaZkLk_NDVA430gyzX5OCk0P6o5ajAtmOpCTqOarobQyqm4o8ioiz7IorHNdmwStk4njKTz-fRt8g5mfEao6c8yW4KwebR5o8nMym0Yl6-8Lj-N-_WYbFAouybr54VqCm0wasdlO0w59e2REz0aHG7d6A-V5ZGW4VyPn8MnmeTrL7jIVpzIoIT5bixjOZZSynh2aUqkLp7iGFVrPiKihbg9H52W2vbxVlGCwlpLQtJWMcV-Im3E8kHukRQgJX-RolrpUvQtt1lM3bNMVJ7HEutdtRCMx8IZRwYk-sQz2dpHoTGGIfoq8JEfbwju7oUCecezqWivs8caMmHJfTEaiCo5xKZTwGla2SqsCIqQkHVdPnnJjjp0atck6DQjezgIxMRH2-kE3Yr16jCOmqJEw1yimg--Y2kWvxJmzka6HqRXhE3igcHKyZ0d-7DwbDnnnY-nvTPZjv315fBVcXw8ttWKDq9nlkWgvq05eZ3kEMNI12zVJ_BzTj_r8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5EQb34fqyuGkXES2WbtGmKp2V18bmIKHgQSpukIGp3sbsH_fVm0gc-QbwVmpI0M5N8mcx8A7AbGtCeSOU7sQwSBzOpnIQz11EiDFpC6YTb3KrLHj-59c7u_LsxOKxyYQp-iNrhhpZh12s08IFKPxq5sR_XF5hDPeHxlkCVPrquuaOQN8utqcKNapa0QjaMp_r082b0DWF-Bqx2x-nOwn011iLQ5PFgNEwO5NsXGsd__swczJRIlLQL1ZmHMZ0twGI7M6fw51eyR2xsqHW6L8BUp6oLtwjoen7pD4b9_CEncaZIGd9JMrPs9Ec5KcihCSaqYLJ7jIHVpLwIypfgtnt80zlxyiIMjmRCuI4Uyowr5SkNU2E29MQAAi5D7btMy5DFLvelS1so4FQFlArNPWlgWciYZL4K2DKMZ_1MrwIxyAfJa2IDeqinPR3rlNJAKyFpSFOeNGC_kkYkS4ZyLJTxFNUnlUxGdpoasFM3HRS0HD81alYijUrLzCM8YhrMFzLRgO36tZlCvCiJM23mKcLb5hZSa9EGrBSqUPfCAqRuZL4ZrBXo791HZ72OfVj7e9MtmLw66kYXp73zdZjG0vZFWFoTxocvI71hANAw2bSK_g5TLf13 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ferroptosis+and+central+nervous+system+demyelinating+diseases&rft.jtitle=Journal+of+neurochemistry&rft.au=Qin%2C+Danqing&rft.au=Li%2C+Dong&rft.au=Wang%2C+Chunjuan&rft.au=Guo%2C+Shougang&rft.date=2023-06-01&rft.eissn=1471-4159&rft.volume=165&rft.issue=6&rft.spage=759&rft_id=info:doi/10.1111%2Fjnc.15831&rft_id=info%3Apmid%2F37095635&rft.externalDocID=37095635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |