Genetic capitalism and stabilizing selection of antimicrobial resistance genotypes in Escherichia coli

Antimicrobial resistance (AMR) in pathogenic strains of bacteria, such as Escherichia coli (E. coli), adversely impacts personal and public health. In this study, we examine competing hypotheses for the evolution of AMR including (i) ‘genetic capitalism’ in which genotypes that confer antibiotic res...

Full description

Saved in:
Bibliographic Details
Published inCladistics Vol. 36; no. 4; pp. 348 - 357
Main Authors Ford, Colby T., Zenarosa, Gabriel Lopez, Smith, Kevin B., Brown, David C., Williams, John, Janies, Daniel
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Antimicrobial resistance (AMR) in pathogenic strains of bacteria, such as Escherichia coli (E. coli), adversely impacts personal and public health. In this study, we examine competing hypotheses for the evolution of AMR including (i) ‘genetic capitalism’ in which genotypes that confer antibiotic resistance are gained and not often lost in lineages, and (ii) ‘stabilizing selection’ in which genotypes that confer antibiotic resistance are gained and lost often. To test these hypotheses, we assembled a dataset that includes annotations for 409 AMR genotypes and a phylogenetic tree based on genome‐wide single nucleotide polymorphisms from 29 255 isolates of E. coli collected over the past 134 years. We used phylogenetic methods to count the times each AMR genotype was gained and lost across the tree and used model‐based clustering of the genotypes with respect to their gain and loss rates. We demonstrate that many genotypes cluster to support the hypothesis for genetic capitalism while a few genotypes cluster to support the hypothesis for stabilizing selection. Comparing the sets of genotypes that fall under each of the hypotheses, we found a statistically significant difference in the breakdown of resistance mechanisms through which the AMR genotypes function. The result that many AMR genotypes cluster under genetic capitalism reflects that strong positive selective forces, primarily induced by human industrialization of antibiotics, outweigh the potential fitness costs to the bacterial lineages for carrying the AMR genotypes. We expect genetic capitalism to further drive bacterial lineages to resist antibiotics. We find that antibiotics that function via replacement and efflux tend to behave under stabilizing selection and thus may be valuable in an antibiotic cycling strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0748-3007
1096-0031
DOI:10.1111/cla.12421