Multi‐echo MR thermometry in the upper leg at 7 T using near‐harmonic 2D reconstruction for initialization

Purpose The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 89; no. 6; pp. 2347 - 2360
Main Authors Kikken, Mathijs W. I., Steensma, Bart R., Berg, Cornelis A. T., Raaijmakers, Alexander J. E.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature‐based safety guidelines. Methods The harmonic initialized model‐based multi‐echo approach is proposed. The method combines a previously published model‐based multi‐echo water/fat separated approach with an also previously published near‐harmonic 2D reconstruction method. The method is tested on the human thigh with a multi‐transmit array at 7 T, in three volunteers, and for several RF shims. Results Precision and accuracy are improved considerably compared to a previous fat‐referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject‐specific simulated counterparts show good relative agreement for multiple RF shim settings. Conclusion The high precision shows promising potential for validation purposes and other RF safety applications.
AbstractList Purpose The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature‐based safety guidelines. Methods The harmonic initialized model‐based multi‐echo approach is proposed. The method combines a previously published model‐based multi‐echo water/fat separated approach with an also previously published near‐harmonic 2D reconstruction method. The method is tested on the human thigh with a multi‐transmit array at 7 T, in three volunteers, and for several RF shims. Results Precision and accuracy are improved considerably compared to a previous fat‐referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject‐specific simulated counterparts show good relative agreement for multiple RF shim settings. Conclusion The high precision shows promising potential for validation purposes and other RF safety applications.
The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. The high precision shows promising potential for validation purposes and other RF safety applications.
PurposeThe aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature‐based safety guidelines.MethodsThe harmonic initialized model‐based multi‐echo approach is proposed. The method combines a previously published model‐based multi‐echo water/fat separated approach with an also previously published near‐harmonic 2D reconstruction method. The method is tested on the human thigh with a multi‐transmit array at 7 T, in three volunteers, and for several RF shims.ResultsPrecision and accuracy are improved considerably compared to a previous fat‐referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject‐specific simulated counterparts show good relative agreement for multiple RF shim settings.ConclusionThe high precision shows promising potential for validation purposes and other RF safety applications.
The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines.PURPOSEThe aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines.The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims.METHODSThe harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims.Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings.RESULTSPrecision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings.The high precision shows promising potential for validation purposes and other RF safety applications.CONCLUSIONThe high precision shows promising potential for validation purposes and other RF safety applications.
Click here for author‐reader discussions
Author Kikken, Mathijs W. I.
Berg, Cornelis A. T.
Raaijmakers, Alexander J. E.
Steensma, Bart R.
Author_xml – sequence: 1
  givenname: Mathijs W. I.
  orcidid: 0000-0002-3491-4631
  surname: Kikken
  fullname: Kikken, Mathijs W. I.
  email: m.w.i.kikken@umcutrecht.nl
  organization: University Medical Center Utrecht
– sequence: 2
  givenname: Bart R.
  orcidid: 0000-0002-4254-9937
  surname: Steensma
  fullname: Steensma, Bart R.
  organization: University Medical Center Utrecht
– sequence: 3
  givenname: Cornelis A. T.
  surname: Berg
  fullname: Berg, Cornelis A. T.
  organization: University Medical Center Utrecht
– sequence: 4
  givenname: Alexander J. E.
  surname: Raaijmakers
  fullname: Raaijmakers, Alexander J. E.
  organization: Eindhoven University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36688273$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1OHDEUhK0IFAaSRS4QWWITFg3-abfbS0TCj8QoEiJry-22GaNue7DdiiarHCFHyFlylJwEDzNsEKysZ31Veq9qH-z44A0AnzA6xgiRkzGOx0Qwgd-BGWaEVISJegfMEK9RRbGo98B-SvcIISF4_R7s0aZpW8LpDIT5NGT3__cfoxcBzm9gXpg4htHkuILOr0c4LZcmwsHcQZUh__f3Fk7J-TvojYpFuVBF4J2G5CuMRgefcpx0dsFDG2Ixcdmpwf1S668PYNeqIZmP2_cA_Dj_dnt2WV1_v7g6O72uNG1bXHWUNpbQntUNr3EjOsNbZAVWmDHVdQ0Vthac97puhaC0bVprhO07RXSPembpAfiy8V3G8DCZlOXokjbDoLwJU5KElwQwZZwU9PAFeh-m6Mt2hRK4ZNYwVKjPW2rqRtPLZXSjiiv5HGUBTjaAjiGlaKzULj_dnKNyg8RIrsuSpSz5VFZRHL1QPJu-xm7df7rBrN4G5fxmvlE8Am86pcM
CitedBy_id crossref_primary_10_1002_mrm_30477
Cites_doi 10.1002/mrm.22531
10.1016/0098-3004(84)90020-7
10.1002/mrm.1156
10.1002/mrm.21120
10.1016/j.diii.2018.03.001
10.1002/mrm.24820
10.1093/comjnl/4.3.265
10.1007/s10334-010-0225-8
10.1002/bem.21919
10.1088/0031-9155/56/23/008
10.1016/j.pnmrs.2019.01.003
10.1002/mrm.22177
10.1002/jmri.21265
10.1002/mrm.26261
10.1152/japplphysiol.00745.2009
10.1007/s10334-017-0665-5
10.1002/mrm.1910400316
10.1002/mrm.28501
10.1136/bmjopen-2018-027020
10.1007/s004840050035
10.1007/s00330-013-2825-y
10.3109/02656736.2015.1108462
10.1002/mrm.25710
10.1002/mrm.26244
10.1002/mrm.21016
10.1088/0031-9155/55/2/N01
10.1007/s00421-012-2329-5
10.1002/cmr.b.20085
10.1002/mrm.25207
10.1063/1.1726676
10.1002/mrm.21476
10.1002/mrm.21603
10.1002/mrm.27567
10.1017/S0317167100005734
10.1002/mrm.29058
10.1002/mrm.24671
10.1002/jmri.21699
10.1002/mrm.24369
10.1002/mrm.27055
10.1109/TMI.2011.2168421
10.1155/2019/9618680
10.1002/mrm.25770
10.1002/mrm.20708
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29591
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Biochemistry Abstracts 1
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2360
ExternalDocumentID 36688273
10_1002_mrm_29591
MRM29591
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Dutch Research Council
  funderid: 15739
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3881-b336f23d54674169be780f91a155abb639f4977dc489933868fe9fdba2cd0d5f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 11:31:48 EDT 2025
Fri Jul 25 12:12:14 EDT 2025
Wed Feb 19 02:24:07 EST 2025
Thu Apr 24 23:00:38 EDT 2025
Tue Jul 01 04:27:05 EDT 2025
Wed Jan 22 16:21:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords MR thermometry
electromagnetic simulations
thermal simulations
7 T
RF safety
water/fat separation
Language English
License Attribution-NonCommercial
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-b336f23d54674169be780f91a155abb639f4977dc489933868fe9fdba2cd0d5f3
Notes Funding information
Dutch Research Council, 15739
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3491-4631
0000-0002-4254-9937
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29591
PMID 36688273
PQID 2791099650
PQPubID 1016391
PageCount 14
ParticipantIDs proquest_miscellaneous_2768813572
proquest_journals_2791099650
pubmed_primary_36688273
crossref_citationtrail_10_1002_mrm_29591
crossref_primary_10_1002_mrm_29591
wiley_primary_10_1002_mrm_29591_MRM29591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 55
2015; 36
2019; 2019
2019; 9
1997; 40
2006; 56
2010; 108
2015; 73
2013; 23
2016; 32
2016; 75
2018; 80
2008; 59
2011; 56
2022; 87
2007; 31
1998; 40
2001; 46
2007; 34
2010; 63
2007; 57
2012; 31
2009; 29
2010; 23
2010; 64
2019; 81
2012; 112
2001
1961; 4
2022
1984; 10
2017; 77
2008; 27
2018
2005; 54
2015
2018; 99
2012; 68
2021; 85
2014; 71
1966; 44
2008; 60
2018; 31
2019; 110
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
Schaefer DJ (e_1_2_7_2_1) 2001
e_1_2_7_26_1
e_1_2_7_27_1
Hasgall PA (e_1_2_7_39_1) 2018
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Kikken MWI (e_1_2_7_48_1) 2022
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 64
  start-page: 1360
  year: 2010
  end-page: 1372
  article-title: Temperature‐induced tissue susceptibility changes lead to significant temperature errors in PRFS‐based MR thermometry during thermal interventions
  publication-title: Magn Reson Med
– volume: 55
  start-page: N23
  year: 2010
  end-page: N38
  article-title: The virtual family ‐ development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– volume: 32
  start-page: 63
  year: 2016
  end-page: 75
  article-title: Magnetic resonance thermometry: methodology, pitfalls and practical solutions
  publication-title: Int J Hyperthermia
– volume: 9
  year: 2019
  article-title: Determining a reliably visible and inexpensive surface fiducial marker for use in MRI: a research study in a busy Australian radiology department
  publication-title: BMJ Open
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  article-title: FCM: The fuzzy c‐means clustering algorithm
  publication-title: Comput Geosci
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Thermal effects associated with RF exposures in diagnostic MRI: overview of existing and emerging concepts of protection
  publication-title: Concepts Magn Reson Part B
– volume: 80
  start-page: 833
  year: 2018
  end-page: 839
  article-title: An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner
  publication-title: Magn Reson Med
– volume: 108
  start-page: 378
  year: 2010
  end-page: 386
  article-title: Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity
  publication-title: J Appl Physiol
– volume: 87
  start-page: 1390
  year: 2022
  end-page: 1400
  article-title: Measuring radiofrequency field‐induced temperature variations in brain MRI exams with motion compensated MR thermometry and field monitoring
  publication-title: Magn Reson Med
– volume: 63
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm
  publication-title: Magn Reson Med
– volume: 23
  start-page: 263
  year: 2010
  end-page: 273
  article-title: Combining prospective motion correction and distortion correction for EPI: towards a comprehensive correction of motion and susceptibility‐induced artifacts
  publication-title: MAGMA
– volume: 46
  start-page: 24
  year: 2001
  end-page: 30
  article-title: 7 T vs. 4 T: RF power, homogeneity, and signal‐to‐noise comparison in head images
  publication-title: Magn Reson Med
– volume: 60
  start-page: 187
  year: 2008
  end-page: 197
  article-title: Spatiotemporal magnetic field monitoring for MR
  publication-title: Magn Reson Med
– volume: 31
  start-page: 7
  year: 2018
  end-page: 18
  article-title: An 8‐channel Tx/Rx dipole array combined with 16 Rx loops for high‐resolution functional cardiac imaging at 7 T
  publication-title: MAGMA
– volume: 23
  start-page: 2215
  year: 2013
  end-page: 2227
  article-title: CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?
  publication-title: Eur Radiol
– volume: 112
  start-page: 3503
  year: 2012
  end-page: 3509
  article-title: The effect of acute exercise with increasing workloads on inactive muscle blood flow and its heterogeneity in humans
  publication-title: Eur J Appl Physiol
– volume: 29
  start-page: 677
  year: 2009
  end-page: 684
  article-title: Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh
  publication-title: J Magn Reson Imaging
– year: 2018
– volume: 73
  start-page: 1184
  year: 2015
  end-page: 1189
  article-title: Compensating for magnetic field inhomogeneity in multigradient‐echo‐based MR thermometry
  publication-title: Magn Reson Med
– volume: 44
  start-page: 4582
  year: 1966
  end-page: 4592
  article-title: Proton resonance shift of water in the gas and liquid states
  publication-title: J Chem Phys
– volume: 75
  start-page: 1743
  year: 2016
  end-page: 1751
  article-title: Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods
  publication-title: Magn Reson Med
– volume: 56
  start-page: 835
  year: 2006
  end-page: 843
  article-title: Optimization of self‐reference thermometry using complex field estimation
  publication-title: Magn Reson Med
– volume: 36
  start-page: 398
  year: 2015
  end-page: 407
  article-title: Rapid method for thermal dose‐based safety supervision during MR scans
  publication-title: Bioelectromagnetics
– volume: 99
  start-page: 349
  year: 2018
  end-page: 359
  article-title: High intensity focused ultrasound: the fundamentals, clinical applications and research trends
  publication-title: Diagn Interv Imaging
– volume: 40
  start-page: 454
  year: 1998
  end-page: 459
  article-title: Ex tissue‐type independence in proton‐resonance frequency shift MR thermometry
  publication-title: Magn Reson Med
– volume: 56
  start-page: 7449
  year: 2011
  end-page: 7471
  article-title: Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure
  publication-title: Phys Med Biol
– volume: 110
  start-page: 34
  year: 2019
  end-page: 61
  article-title: Magnetic resonance thermometry and its biological applications – physical principles and practical considerations
  publication-title: Prog Nucl Magn Reson Spectrosc
– volume: 85
  start-page: 1282
  year: 2021
  end-page: 1293
  article-title: RF heating measurement using MR thermometry and field monitoring: methodological considerations and first in vivo results
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1923
  year: 2014
  end-page: 1931
  article-title: Measurement of SAR‐induced temperature increase in a phantom and in vivo with comparison to numerical simulation
  publication-title: Magn Reson Med
– volume: 81
  start-page: 2385
  year: 2019
  end-page: 2398
  article-title: Multi‐echo MR thermometry using iterative separation of baseline water and fat images
  publication-title: Magn Reson Med
– volume: 4
  start-page: 265
  year: 1961
  end-page: 271
  article-title: unitary analogue to the LR transformation—Part 1
  publication-title: Comput J
– volume: 77
  start-page: 2040
  year: 2017
  end-page: 2047
  article-title: Improving peak local SAR prediction in parallel transmit using in situ S‐matrix measurements
  publication-title: Magn Reson Med
– volume: 27
  start-page: 376
  year: 2008
  end-page: 390
  article-title: MR thermometry
  publication-title: J Magn Reson Imaging
– volume: 75
  start-page: 1831
  year: 2016
  end-page: 1840
  article-title: A field camera for MR sequence monitoring and system analysis
  publication-title: Magn Reson Med
– volume: 31
  start-page: 287
  year: 2012
  end-page: 301
  article-title: Reference‐free PRFS MR‐thermometry using near‐harmonic 2‐D reconstruction of the background phase
  publication-title: IEEE Trans Med Imaging
– volume: 77
  start-page: 1691
  year: 2017
  end-page: 1700
  article-title: Validating subject‐specific RF and thermal simulations in the calf muscle using MR‐based temperature measurements
  publication-title: Magn Reson Med
– year: 2022
– volume: 57
  start-page: 192
  year: 2007
  end-page: 200
  article-title: Actual flip‐angle imaging in the pulsed steady state: a method for rapid three‐dimensional mapping of the transmitted radiofrequency field
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1503
  year: 2005
  end-page: 1518
  article-title: B destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil
  publication-title: Magn Reson Med
– volume: 68
  start-page: 378
  year: 2012
  end-page: 388
  article-title: ISMRM workshop on fat‐water separation: insights, applications and progress in MRI
  publication-title: Magn Reson Med
– start-page: 55
  year: 2001
  end-page: 74
– volume: 71
  start-page: 421
  year: 2014
  end-page: 431
  article-title: Thermal tissue damage model analyzed for different whole‐body SAR and scan durations for standard MR body coils
  publication-title: Magn Reson Med
– volume: 34
  start-page: 11
  year: 2007
  end-page: 17
  article-title: A comprehensive analysis of MRI research risks: In support of full disclosure
  publication-title: Can J Neurol Sci
– volume: 40
  start-page: 141
  year: 1997
  end-page: 156
  article-title: Convective and radiative heat transfer coefficients
  publication-title: Int J Biometeorol
– volume: 31
  start-page: 127
  year: 2007
  end-page: 131
  article-title: Calculation of SAR for transmit coil arrays
  publication-title: Concepts Magn Reson Part B Magn Reson Eng
– volume: 59
  start-page: 396
  year: 2008
  end-page: 409
  article-title: Local shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements
  publication-title: Magn Reson Med
– year: 2015
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.22531
– ident: e_1_2_7_37_1
  doi: 10.1016/0098-3004(84)90020-7
– volume-title: IT'IS Database for Thermal and Electromagnetic Parameters of Biological Tissues
  year: 2018
  ident: e_1_2_7_39_1
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.1156
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.21120
– ident: e_1_2_7_10_1
  doi: 10.1016/j.diii.2018.03.001
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.24820
– ident: e_1_2_7_28_1
  doi: 10.1093/comjnl/4.3.265
– ident: e_1_2_7_46_1
  doi: 10.1007/s10334-010-0225-8
– ident: e_1_2_7_7_1
  doi: 10.1002/bem.21919
– ident: e_1_2_7_42_1
  doi: 10.1088/0031-9155/56/23/008
– ident: e_1_2_7_22_1
  doi: 10.1016/j.pnmrs.2019.01.003
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.22177
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.21265
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.26261
– ident: e_1_2_7_43_1
  doi: 10.1152/japplphysiol.00745.2009
– ident: e_1_2_7_4_1
– ident: e_1_2_7_29_1
  doi: 10.1007/s10334-017-0665-5
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.1910400316
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.28501
– ident: e_1_2_7_33_1
  doi: 10.1136/bmjopen-2018-027020
– ident: e_1_2_7_41_1
  doi: 10.1007/s004840050035
– ident: e_1_2_7_6_1
  doi: 10.1007/s00330-013-2825-y
– ident: e_1_2_7_9_1
  doi: 10.3109/02656736.2015.1108462
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25710
– ident: e_1_2_7_45_1
  doi: 10.1002/mrm.26244
– start-page: 55
  volume-title: Magnetic Resonance Procedures: Health Effects and Safety
  year: 2001
  ident: e_1_2_7_2_1
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.21016
– ident: e_1_2_7_38_1
  doi: 10.1088/0031-9155/55/2/N01
– ident: e_1_2_7_44_1
  doi: 10.1007/s00421-012-2329-5
– ident: e_1_2_7_47_1
  doi: 10.1002/cmr.b.20085
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.25207
– ident: e_1_2_7_11_1
  doi: 10.1063/1.1726676
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.21476
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.21603
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.27567
– ident: e_1_2_7_3_1
  doi: 10.1017/S0317167100005734
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.29058
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.24671
– ident: e_1_2_7_36_1
  doi: 10.1002/jmri.21699
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.24369
– ident: e_1_2_7_35_1
– ident: e_1_2_7_16_1
  doi: 10.1002/mrm.27055
– ident: e_1_2_7_20_1
  doi: 10.1109/TMI.2011.2168421
– ident: e_1_2_7_8_1
  doi: 10.1155/2019/9618680
– volume-title: MR thermometry in the brain at 7T using a multi‐echo water‐fat separation model: motion‐induced field disturbance
  year: 2022
  ident: e_1_2_7_48_1
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.25770
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.20708
SSID ssj0009974
Score 2.4231164
Snippet Purpose The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for...
Click here for author‐reader discussions
The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for...
PurposeThe aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2347
SubjectTerms 7 T
Absorption
Accuracy
electromagnetic simulations
Humans
Image reconstruction
In vivo methods and tests
Leg
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
MR thermometry
Phantoms, Imaging
Radio frequency
Radio Waves
RF safety
Safety
Temperature
Thermal simulation
thermal simulations
Thermometry
Thermometry - methods
Thigh
Thresholds
water/fat separation
Title Multi‐echo MR thermometry in the upper leg at 7 T using near‐harmonic 2D reconstruction for initialization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29591
https://www.ncbi.nlm.nih.gov/pubmed/36688273
https://www.proquest.com/docview/2791099650
https://www.proquest.com/docview/2768813572
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxEC2FSCAuCYQlAyEyiAOXnvSU3YvFCQFRhNQIjRIpB6SW7bajiJme0SyH5MQn5BP4Fj6FL6HsXqKwSIhbt2y31yo_t6teAbyMrXO5cyqyLrORMAlGOuM80qPY0Q5vMUXv4Fx8TI9OxIfT5HQDXne-MA0_RP_DzUtG0NdewJVeHlyThk4X0yHKJHiue1stD4jG19RRUjYMzJnwekaKjlUoxoO-5M296DeAeROvhg3ncBs-d01t7Ey-DNcrPTSXv7A4_mdf7sFWC0TZm2bl3IcNW-_AnaK9at-B28E21CwfwCw46f74emVJVbJizDxmnM6mdrW4YOe1f2Xr-dwu2MSeMbVi2fdvx8wb1J-xmgSJSnp-bM_By_AdC0fwnraWEWimj5yTopm0LqEP4eTw_fHbo6iN0xAZnuejSHOeOuRV4iOXjFKpbZbHTo4UYRWlNWEgJwhmVkbQ4Y6OxGnurHSVVmiquEocfwSb9ay2u8AwTowUiDq3SkiupNAq4VKjRe60yQfwqpux0rQk5j6WxqRs6JexpKEsw1AO4EWfdd4wd_wp01437WUrvMsSM-nvCwm7DuB5n0xi5-9SVG1na58npa7zJMMBPG6WS18LTymNYCE1Nkz636svi3ERHp78e9ancNeHvG_M1fZgk-bLPiNgtNL7cAvFp_0gBz8BsmUM_g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbhMxEB5VRYVeaCmUpj9gEAcum25s748lLohSBej2EKVSL2hle-2qItlEaXKAUx-hj9Bn6aP0SRh7f6ryIyFuu7K9a3s8429sz2eAN6GxNrVWBsYmJuA6ooFKGAtUL7Q4wxsaUxfgnB3H_RP--TQ6XYJ3TSxMxQ_RLrg5zfD22im4W5Dev2MNHc_GXSoiF7r-wN3o7R2qwR15lBAVB3PCnaURvOEVCul-W_T-bPQbxLyPWP2Uc7gGX5vKVidNvnUXc9XVP37hcfzf1qzD4xqLkvfV4HkCS6bcgIdZvdu-ASv-eKi-eAoTH6d7e3ll0FqSbEAcbBxPxmY--07OS_dKFtOpmZGROSNyTpKb6yFxZ-rPSIm6hCUdRbaj4SX0gHgvvGWuJYib8SPnaGtGdVToMzg5_Dj80A_qqxoCzdK0FyjGYktZEbnLS3qxUCZJQyt6EuGKVAphkOWINAvN0b9DrzhOrRG2UJLqIiwiyzZhuZyUZgsIDSMtOKUqNZILJgVXMmJCUUOZVTrtwNtGZLmueczddRqjvGJgpjl2Ze67sgOv26zTirzjT5l2G7nntf5e5DQRbssQ4WsHXrXJqHluO0WWZrJweWJsOosS2oHn1Xhp_8JiTENkiJX1Uv_77_NskPmH7X_P-hIe9YfZUX706fjLDqxSxF3V6bVdWEbZmT3ESXP1wqvDTxErEEI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JThwxEC0hIlAubFkYQogT5ZBLDz22e7E4RZmMyNIoGoHEIVLLdtsIZaZnNMwcklM-IZ_At_ApfAll94IIiRTl1i2X22uVn9tVzwCvQ2Ntaq0MjE1MwHVEA5UwFqheaHGFNzSmLsA5O4oPT_jH0-h0CQ6aWJiKH6L94eY0w9trp-DTwu7fkoaOZ-MuFZGLXH_A4zB1U7o_vOWOEqKiYE64MzSCN7RCId1vs95djO4hzLuA1a84g3X42tS1cjT51l3MVVf_-I3G8T8bswFrNRIlb6upswlLptyC1aw-a9-CFe8cqi8ewcRH6V7__GXQVpJsSBxoHE_GZj77Ts5L90oW06mZkZE5I3JOkqvLY-I86s9IiZqEOR1BtiPhJbRP_B685a0liJrxI-doaUZ1TOhjOBm8P353GNQXNQSapWkvUIzFlrIicleX9GKhTJKGVvQkghWpFIIgyxFnFprj7g73xHFqjbCFklQXYRFZ9gSWy0lptoHQMNKCU6pSI7lgUnAlIyYUNZRZpdMOvGlGLNc1i7m7TGOUV_zLNMeuzH1XduBVKzqtqDv-JLTbDHtea-9FThPhDgwRvHbgZZuMeucOU2RpJgsnE2PTWZTQDjytpktbCosxDXEhVtYP-t-Lz7Nh5h92_l30Bax-6Q_yzx-OPj2DhxRBV-W6tgvLOHTmOYKkudrzynAD-u4O-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90echo+MR+thermometry+in+the+upper+leg+at+7%C2%A0T+using+near%E2%80%90harmonic+2D+reconstruction+for+initialization&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Kikken%2C+Mathijs+W.+I.&rft.au=Steensma%2C+Bart+R.&rft.au=Berg%2C+Cornelis+A.+T.&rft.au=Raaijmakers%2C+Alexander+J.+E.&rft.date=2023-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=89&rft.issue=6&rft.spage=2347&rft.epage=2360&rft_id=info:doi/10.1002%2Fmrm.29591&rft.externalDBID=10.1002%252Fmrm.29591&rft.externalDocID=MRM29591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon