Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody−Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects
ABSTRACT Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy...
Saved in:
Published in | Cell biochemistry and function Vol. 42; no. 8; pp. e70011 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-6484 1099-0844 1099-0844 |
DOI | 10.1002/cbf.70011 |
Cover
Loading…
Abstract | ABSTRACT
Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD‐1, PD‐L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD‐1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD‐L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody−drug conjugates (ADCs). The development of truly effective therapies for patients with treatment‐resistant cancers can be achieved by optimizing the various components of ADCs.
Summary
As the role of engineered antibodies in the development of various immunotherapeutic agents is now well established in the clinic, our aim is to investigate the potential and limitations of currently developed mAb‐based agents in improving cancer immunotherapy.
With a narrative review of previous studies, it is hoped that these BsAbs, ICIs, and ADCs can be used as an efficient drug to target and treat human cancer while alleviating dangerous side effects in vivo. |
---|---|
AbstractList | Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD‐1, PD‐L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD‐1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD‐L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody−drug conjugates (ADCs). The development of truly effective therapies for patients with treatment‐resistant cancers can be achieved by optimizing the various components of ADCs.
As the role of engineered antibodies in the development of various immunotherapeutic agents is now well established in the clinic, our aim is to investigate the potential and limitations of currently developed mAb‐based agents in improving cancer immunotherapy.
With a narrative review of previous studies, it is hoped that these BsAbs, ICIs, and ADCs can be used as an efficient drug to target and treat human cancer while alleviating dangerous side effects in vivo. Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs. Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs.Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD-1, PD-L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD-1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD-L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody-drug conjugates (ADCs). The development of truly effective therapies for patients with treatment-resistant cancers can be achieved by optimizing the various components of ADCs. Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD‐1, PD‐L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD‐1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD‐L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody−drug conjugates (ADCs). The development of truly effective therapies for patients with treatment‐resistant cancers can be achieved by optimizing the various components of ADCs. ABSTRACT Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the family of antibodies that can specifically target two or more different antigens and are a promising option for tumor immunotherapy. Immune checkpoints are antibodies targeting PD‐1, PD‐L1, and CTLA4 and have demonstrated remarkable therapeutic efficacy in the treatment of hematological and solid tumors, whose combination therapies have been shown to synergistically enhance the antitumor effects of BsAbs. In addition, the clinical efficacy of existing monoclonal antibodies targeting PD‐1 (e.g., ipilimumab, nivolumab, pembrolizumab, and cemiplimab) and PD‐L1 (e.g., atezolizumab, avelumab, and durvalumab) could also be enhanced by conjugation to small drugs as antibody−drug conjugates (ADCs). The development of truly effective therapies for patients with treatment‐resistant cancers can be achieved by optimizing the various components of ADCs. Summary As the role of engineered antibodies in the development of various immunotherapeutic agents is now well established in the clinic, our aim is to investigate the potential and limitations of currently developed mAb‐based agents in improving cancer immunotherapy. With a narrative review of previous studies, it is hoped that these BsAbs, ICIs, and ADCs can be used as an efficient drug to target and treat human cancer while alleviating dangerous side effects in vivo. |
Author | Li, Chen Lu Yi, Ping Ma, Xin Yuan |
Author_xml | – sequence: 1 givenname: Chen Lu orcidid: 0009-0002-3037-1956 surname: Li fullname: Li, Chen Lu organization: Huazhong University of Science and Technology – sequence: 2 givenname: Xin Yuan surname: Ma fullname: Ma, Xin Yuan organization: Huazhong University of Science and Technology – sequence: 3 givenname: Ping surname: Yi fullname: Yi, Ping email: pyi219@163.com organization: Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39463028$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctuEzEUhi1URNPAghdAI7EBibS-ZcbDrp1SiFQJhGBteTzHqcOMPdgeobwB6z4iT4LTJJsKVrbk7_98LmfoxHkHCL0k-JxgTC90a84rjAl5gmYE1_UCC85P0AzTki1KLvgpOotxgzGuS4afoVNW83yhYobur2wcQVtjdXHpkm19ZyG-K1bDMDkomjvQP0ZvXSpW7s62NvmQX5XrjvT2z-_76zCti8a7zbRWCWJxbQPoZN36AUrT4MNR-BXi6F2E-D67Vd-DW-fAzvcl-F0lKT5HT43qI7w4nHP0_ebDt-bT4vbzx1VzebvQTAiS-6JcmWXJGOn0UlChWtBYcSBiyWndGmJYSSsNVHUG6qprM8JqaHPCgFJsjt7svWPwPyeISQ42auh75cBPUTJCCRW4yl_M0etH6MZPweXqMsVrQjCpeKZeHaipHaCTY7CDClt5nHYGLvaAzr3GAEZqm1Sy3qWgbC8Jlrt9yrxP-bDPnHj7KHGU_os92H_ZHrb_B2VzdbNP_AWP37Ep |
CitedBy_id | crossref_primary_10_20517_cdr_2024_180 crossref_primary_10_3390_cancers17020282 |
Cites_doi | 10.1056/NEJMoa1209124 10.1182/blood-2020-136985 10.1158/0008-5472.CAN-20-1818 10.1007/s00262-015-1771-8 10.1016/S0140-6736(21)00889-8 10.3390/antib9020017 10.1186/s12935-021-02407-8 10.1016/j.jconrel.2023.05.032 10.2217/fon-2022-0844 10.1158/1078-0432.CCR-06-2854 10.1038/s41591-023-02726-5 10.1038/s41375-018-0210-1 10.3390/ph14030200 10.1016/j.jtho.2021.01.1161 10.1186/s40425-018-0420-0 10.1200/jco.2013.31.15_suppl.3061 10.1200/JCO.2017.35.15_suppl.2522 10.1186/s12943-024-01963-7 10.1007/s00432-020-03404-6 10.1186/s12935-021-02182-6 10.1038/s41388-018-0581-9 10.1016/S1470-2045(22)00621-0 10.1038/s41392-021-00868-x 10.1080/2162402X.2019.1644109 10.3389/fimmu.2023.1226360 10.3389/fimmu.2023.1227572 10.1007/s40267-022-00939-1 10.1002/cam4.1143 10.1007/s11523-021-00809-2 10.2217/imt-2020-0256 10.1016/S0140-6736(17)31266-7 10.1016/j.clcc.2016.07.009 10.1186/s12964-022-00854-y 10.1016/j.ccell.2020.08.007 10.1158/2326-6066.CIR-21-0515 10.1016/j.ekir.2020.10.002 10.1056/NEJMoa2203478 10.1016/S0140-6736(18)30207-1 10.1200/JCO.2017.76.6212 10.1158/1535-7163.MCT-15-0647 10.3390/vaccines5040038 10.1126/science.aan6733 10.1016/j.phrs.2024.107160 10.1093/neuonc/nop027 10.3390/ijms22115990 10.1080/2162402X.2022.2120676 10.1158/1538-7445.AM2021-1005 10.1159/000514420 10.1038/s41573-023-00709-2 10.1182/blood-2020-141250 10.3390/vaccines9070724 10.1158/0008-5472.CAN-11-1620 10.1182/blood.2019004701 10.1080/2162402X.2019.1657375 10.3389/fimmu.2021.626616 10.1007/s00262-011-1193-1 10.1080/21645515.2019.1631136 10.1093/neuonc/noaa260 10.1016/S1470-2045(21)00139-X 10.1038/s41571-021-00470-8 10.1038/s41557-024-01507-y 10.1053/j.gastro.2017.11.009 10.1016/j.ijrobp.2020.09.041 10.1182/blood-2020-136980 10.1016/S1470-2045(22)00128-0 10.1155/2021/8223263 10.1080/19420862.2024.2315640 10.1016/S0090-8258(22)01293-8 10.1016/j.xphs.2024.04.024 10.1056/NEJMoa1604958 10.2217/imt-2018-0009 10.1080/19420862.2016.1267090 10.3390/ijms25042097 10.1001/jamaoncol.2019.3343 10.1200/JCO.19.03296 10.1016/j.clbc.2024.03.004 10.1038/s41591-021-01233-9 10.1097/MEG.0000000000001956 10.1080/19420862.2024.2310890 10.3389/fimmu.2020.01792 10.1158/1078-0432.CCR-20-3770 10.1038/nrd.2016.268 10.1182/blood-2017-11-764332 10.1016/j.annonc.2020.10.552 10.1038/s41591-019-0382-x 10.1007/s12272-023-01433-6 10.1001/jamanetworkopen.2021.8065 10.3389/fmolb.2021.716735 10.1007/s11060-020-03459-y 10.1182/blood-2021-146868 10.1080/14728222.2021.1937123 10.1016/j.jtho.2020.03.003 10.1158/1535-7163.MCT-17-0657 10.1038/s41467-017-01062-w 10.1080/14712598.2022.2040987 10.1016/j.tibtech.2017.04.007 10.1016/j.intimp.2020.106939 10.1158/0008-5472.CAN-18-0892 10.1002/ajh.26809 10.1016/j.pep.2020.105635 10.1038/s41467-022-31457-3 10.1136/jclinpath-2019-206117 10.1038/s41591-018-0337-7 10.1056/NEJMoa1814213 10.1038/s41598-017-02503-8 10.2217/fon-2017-0646 10.1007/s00262-020-02493-z 10.1056/NEJMoa1509277 10.1016/j.ejmech.2019.111682 10.1016/j.lungcan.2022.03.005 10.1136/jitc-2020-001395 10.1093/annonc/mdt107 10.1056/NEJMoa1709684 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1002/cbf.70011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1099-0844 |
EndPage | n/a |
ExternalDocumentID | 39463028 10_1002_cbf_70011 CBF70011 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: This study was supported by National Natural Science Foundation of China (NO.82174457). |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WXI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3881-6424af56331dc5828abec0a4e185429bf1f3627ce2adfe97db28a39eb633feaa3 |
IEDL.DBID | DR2 |
ISSN | 0263-6484 1099-0844 |
IngestDate | Fri Jul 11 06:07:41 EDT 2025 Fri Jul 25 12:03:26 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 Tue Jul 01 02:49:18 EDT 2025 Thu Apr 24 23:04:38 EDT 2025 Wed Aug 20 07:24:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | antibody−drug conjugates immune checkpoint inhibitors bispecific antibodies monoclonal antibodies tumor heterogeneity |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3881-6424af56331dc5828abec0a4e185429bf1f3627ce2adfe97db28a39eb633feaa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0009-0002-3037-1956 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cbf.70011 |
PMID | 39463028 |
PQID | 3149110174 |
PQPubID | 2029981 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3121280756 proquest_journals_3149110174 pubmed_primary_39463028 crossref_citationtrail_10_1002_cbf_70011 crossref_primary_10_1002_cbf_70011 wiley_primary_10_1002_cbf_70011_CBF70011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Cell biochemistry and function |
PublicationTitleAlternate | Cell Biochem Funct |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2019; 10 2022; 23 2020; 16 2017; 390 2024; 30 2020; 15 2022; 20 2020; 11 2022; 22 2020; 10 2012; 367 2022; 166 2018; 6 2021; 398 2020; 172 2019; 25 2021; 391 2022; 34 2024; 23 2020; 88 2024; 113 2024; 24 2024; 25 2018; 32 2022; 38 2022; 168 2021; 81 2021; 2021 2018; 36 2019; 8 2019; 5 2020; 38 2019; 38 2020; 146 2020; 147 2024; 16 2017; 377 2016; 15 2019; 183 2007; 13 2018; 17 2023; 46 2020; 31 2022; 7 2021; 138 2022; 13 2022; 10 2022; 1 2022; 11 2018; 10 2022; 18 2018; 14 2021; 25 2012; 61 2017; 5 2017; 6 2021; 27 2017; 7 2017; 8 2021; 21 2021; 23 2021; 22 2013; 24 2017; 9 2017; 357 2012; 72 2020; 8 2018; 131 2023; 22 2017; 35 2020; 9 2020; 136 2018; 78 2021; 9 2023; 98 2021; 8 2021; 109 2021; 6 2023; 14 2021; 4 2024; 203 2011; 34 2019; 380 2021; 14 2022; 387 2021; 13 2021; 16 2018; 154 2021; 12 2001; 7 2020; 73 2017; 16 2021; 18 2023; 359 2016; 65 2019 2016; 375 2020; 69 2013 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_43_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_51_1 e_1_2_13_74_1 Datta M. (e_1_2_13_7_1) 2019 e_1_2_13_70_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_86_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_91_1 Ströhlein M. A. (e_1_2_13_35_1) 2011; 34 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_71_1 e_1_2_13_5_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_87_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_90_1 Zhou C. (e_1_2_13_26_1) 2022; 1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_30_1 e_1_2_13_72_1 Bross P. F. (e_1_2_13_107_1) 2001; 7 e_1_2_13_2_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_102_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_84_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 Fu D. (e_1_2_13_81_1) 2020; 10 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 38 start-page: 2053 issue: 18 year: 2020 end-page: 2061 article-title: Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open‐Label, Dose‐Escalation, and Dose‐Expansion Phase Ib Trial (REGONIVO, EPOC1603) publication-title: Journal of Clinical Oncology – volume: 7 start-page: 1490 issue: 6 year: 2001 end-page: 1496 article-title: Approval Summary: Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia publication-title: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research – volume: 16 start-page: 854 year: 2024 end-page: 870 article-title: Homogeneous Multi‐Payload Antibody–Drug Conjugates publication-title: Nature Chemistry – volume: 24 start-page: 1813 issue: 7 year: 2013 end-page: 1821 article-title: Ipilimumab Alone or in Combination With Radiotherapy in Metastatic Castration‐Resistant Prostate Cancer: Results From an Open‐Label, Multicenter Phase I/II Study publication-title: Annals of Oncology – volume: 390 start-page: 555 issue: 10094 year: 2017 end-page: 566 article-title: Brentuximab Vedotin or Physician's Choice in CD30‐Positive Cutaneous T‐Cell Lymphoma (ALCANZA): An International, Open‐Label, Randomised, Phase 3, Multicentre Trial publication-title: Lancet – volume: 9 start-page: 724 issue: 7 year: 2021 article-title: Bispecific Antibodies: A Smart Arsenal for Cancer Immunotherapies publication-title: Vaccines – volume: 12 start-page: 233 issue: 3 year: 2010 end-page: 242 article-title: Tumor Invasion After Treatment of Glioblastoma With Bevacizumab: Radiographic and Pathologic Correlation in Humans and Mice publication-title: Neuro‐oncology – volume: 6 start-page: 66 issue: 1 year: 2021 end-page: 77 article-title: A Systematic Review of Immune Checkpoint Inhibitor–Associated Glomerular Disease publication-title: Kidney International Reports – volume: 377 start-page: 1345 issue: 14 year: 2017 end-page: 1356 article-title: Overall Survival With Combined Nivolumab and Ipilimumab in Advanced Melanoma publication-title: New England Journal of Medicine – volume: 146 start-page: 3111 year: 2020 end-page: 3122 article-title: Bispecific Antibodies Targeting Dual Tumor‐Associated Antigens in Cancer Therapy publication-title: Journal of Cancer Research and Clinical Oncology – volume: 166 start-page: S47 year: 2022 end-page: S48 article-title: Efficacy and Safety of Cadonilimab, an Anti‐PD‐1/CTLA4 Bi‐Specific Antibody, in Previously Treated Recurrent or Metastatic (R/M) Cervical Cancer: A Multicenter, Open‐Label, Single‐Arm, Phase II Trial (075) publication-title: Gynecologic Oncology – volume: 172 year: 2020 article-title: Removing Half Antibody Byproduct by Protein A Chromatography During the Purification of a Bispecific Antibody publication-title: Protein expression and purification – volume: 136 start-page: 42 issue: S1 year: 2020 end-page: 43 article-title: Initial Clinical Activity and Safety of BFCR4350A, a FcRH5/CD3 T‐Cell‐Engaging Bispecific Antibody, in Relapsed/Refractory Multiple Myeloma publication-title: Blood – volume: 25 start-page: 389 issue: 3 year: 2019 end-page: 402 article-title: Genomic Correlates of Response to Immune Checkpoint Blockade publication-title: Nature Medicine – volume: 8 issue: 2 year: 2020 article-title: Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Patients With Human Papillomavirus‐Associated Malignancies publication-title: Journal for Immunotherapy of Cancer – volume: 5 start-page: 1731 issue: 12 year: 2019 end-page: 1738 article-title: Assessment of Combined Nivolumab and Bevacizumab in Relapsed Ovarian Cancer: A Phase 2 Clinical Trial publication-title: JAMA Oncology – volume: 367 start-page: 1783 issue: 19 year: 2012 end-page: 1791 article-title: Trastuzumab Emtansine for HER2‐Positive Advanced Breast Cancer publication-title: New England Journal of Medicine – volume: 27 start-page: 5457 issue: 20 year: 2021 end-page: 5464 article-title: Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy publication-title: Clinical Cancer Research – volume: 35 start-page: 691 issue: 8 year: 2017 end-page: 712 article-title: Affibody Molecules in Biotechnological and Medical Applications publication-title: Trends in Biotechnology – volume: 147 start-page: 547 year: 2020 end-page: 555 article-title: Repolarized Macrophages, Induced by Intermediate Stereotactic Dose Radiotherapy and Immune Checkpoint Blockade, Contribute to Long‐Term Survival in Glioma‐Bearing Mice publication-title: Journal of Neuro‐Oncology – volume: 98 start-page: 449 issue: 3 year: 2023 end-page: 463 article-title: Targeting MCL‐1 and BCL‐2 With Polatuzumab Vedotin and Venetoclax Overcomes Treatment Resistance in R/R Non‐Hodgkin Lymphoma: Results From Preclinical Models and a Phase Ib Study publication-title: American Journal of Hematology – volume: 7 start-page: 2396 issue: 1 year: 2017 article-title: Cooperation of Oncolytic Herpes Virotherapy and PD‐1 Blockade in Murine Rhabdomyosarcoma Models publication-title: Scientific Reports – volume: 38 start-page: 2380 issue: 13 year: 2019 end-page: 2393 article-title: Cisplatin‐Induced Immune Modulation in Ovarian Cancer Mouse Models With Distinct Inflammation Profiles publication-title: Oncogene – volume: 32 start-page: 1768 issue: 8 year: 2018 end-page: 1777 article-title: Moxetumomab Pasudotox in Relapsed/Refractory Hairy Cell Leukemia publication-title: Leukemia – volume: 25 start-page: 477 issue: 3 year: 2019 end-page: 486 article-title: Neoadjuvant Anti‐PD‐1 Immunotherapy Promotes a Survival Benefit With Intratumoral and Systemic Immune Responses in Recurrent Glioblastoma publication-title: Nature Medicine – volume: 359 start-page: 268 year: 2023 end-page: 286 article-title: Bispecific Antibodies for Targeted Delivery of Anti‐Cancer Therapeutic Agents: A Review publication-title: Journal of Controlled Release – volume: 22 start-page: 641 issue: 8 year: 2023 end-page: 661 article-title: Antibody–Drug Conjugates Come of Age in Oncology publication-title: Nature Reviews Drug Discovery – volume: 38 start-page: 382 issue: 9 year: 2022 end-page: 388 article-title: Tisotumab Vedotin‐Tftv in Previously Treated Recurrent or Metastatic Cervical Cancer: a Profile of Its Use in the USA publication-title: Drugs & Therapy Perspectives – year: 2019 – volume: 25 start-page: 2097 issue: 4 year: 2024 article-title: A Generic Approach for Miniaturized Unbiased High‐Throughput Screens of Bispecific Antibodies and Biparatopic Antibody–Drug Conjugates publication-title: International Journal of Molecular Sciences – volume: 78 start-page: 5327 issue: 18 year: 2018 end-page: 5339 article-title: Mucosal HPV E6/E7 Peptide Vaccination in Combination With Immune Checkpoint Modulation Induces Regression of HPV+ Oral Cancers publication-title: Cancer Research – volume: 8 year: 2021 article-title: Discovery of Novel Inhibitors From Medicinal Plants for v‐Domain ig Suppressor of T‐Cell Activation publication-title: Frontiers in Molecular Biosciences – volume: 81 start-page: 685 issue: 3 year: 2021 end-page: 697 article-title: Cyclophosphamide and Vinorelbine Activate Stem‐Like CD8+ T Cells and Improve Anti‐PD‐1 Efficacy in Triple‐Negative Breast Cancer publication-title: Cancer Research – volume: 22 start-page: 945 issue: 8 year: 2022 end-page: 949 article-title: The Evolution of Bispecific Antibodies publication-title: Expert Opinion on Biological Therapy – volume: 34 start-page: 101 issue: 3 year: 2011 end-page: 108 article-title: Immunotherapy of Peritoneal Carcinomatosis With the Antibody Catumaxomab in Colon, Gastric, or Pancreatic Cancer: An Open‐Label, Multicenter, Phase I/II Trial publication-title: Oncology Research and Treatment – volume: 14 start-page: 200 issue: 3 year: 2021 article-title: TIGIT/CD226 Axis Regulates Anti‐Tumor Immunity publication-title: Pharmaceuticals – volume: 11 issue: 1 year: 2022 article-title: Immunosuppressive Tumor Microenvironment Modulation by Chemotherapies and Targeted Therapies to Enhance Immunotherapy Effectiveness publication-title: Oncoimmunology – volume: 11 year: 2020 article-title: Engineering Immune Cells for In Vivo Secretion of Tumor‐Specific T Cell‐Redirecting Bispecific Antibodies publication-title: Frontiers in Immunology – volume: 13 start-page: 125 issue: 2 year: 2021 end-page: 141 article-title: Pasotuxizumab, a BiTE Immune Therapy for Castration‐Resistant Prostate Cancer: Phase I, Dose‐Escalation Study Findings publication-title: Immunotherapy – volume: 375 start-page: 740 issue: 8 year: 2016 end-page: 753 article-title: Inotuzumab Ozogamicin Versus Standard Therapy for Acute Lymphoblastic Leukemia publication-title: New England Journal of Medicine – volume: 20 start-page: 44 issue: 1 year: 2022 article-title: Tumor Immunotherapies by Immune Checkpoint Inhibitors (ICIs); The Pros and Cons publication-title: Cell Communication and Signaling – volume: 16 start-page: 112 issue: 1 year: 2020 end-page: 115 article-title: Tumor Mutational Burden as a Predictive Biomarker for Checkpoint Inhibitor Immunotherapy publication-title: Human Vaccines & Immunotherapeutics – volume: 38 start-page: 489 issue: 4 year: 2020 end-page: 499.e3 article-title: Nivolumab Plus Ipilimumab for Metastatic Castration‐Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial publication-title: Cancer Cell – volume: 136 start-page: 14 year: 2020 end-page: 15 article-title: Early Pharmacodynamic Changes in T‐Cell Activation, Proliferation, and Cytokine Production Confirm the Mode of Action of BFCR4350A, a FcRH5/CD3 T‐Cell‐Engaging Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma publication-title: Blood – volume: 88 year: 2020 article-title: Effects of Immune Cells and Cytokines on Inflammation and Immunosuppression in the Tumor Microenvironment publication-title: International Immunopharmacology – year: 2013 article-title: Antitumor Activity of Concurrent Blockade of Immune Checkpoint Molecules CTLA‐4 and PD‐1 in Preclinical Models publication-title: American Society of Clinical Oncology – volume: 4 issue: 5 year: 2021 article-title: Nivolumab vs Pembrolizumab for Treatment of US Patients With Platinum‐Refractory Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: A Network Meta‐Analysis and Cost‐Effectiveness Analysis publication-title: JAMA Network Open – volume: 16 issue: 1 year: 2024 article-title: Biparatopic Antibodies: Therapeutic Applications and Prospects publication-title: Mabs – volume: 375 start-page: 819 issue: 9 year: 2016 end-page: 829 article-title: Mutations Associated With Acquired Resistance to PD‐1 Blockade in Melanoma publication-title: New England Journal of Medicine – volume: 8 start-page: 1136 issue: 1 year: 2017 article-title: Resistance to Checkpoint Blockade Therapy Through Inactivation of Antigen Presentation publication-title: Nature Communications – volume: 387 start-page: 495 issue: 6 year: 2022 end-page: 505 article-title: Teclistamab in Relapsed or Refractory Multiple Myeloma publication-title: New England Journal of Medicine – volume: 136 start-page: 2401 issue: 21 year: 2020 end-page: 2409 article-title: A Phase 1b Study of AFM13 in Combination With Pembrolizumab in Patients With Relapsed or Refractory Hodgkin Lymphoma publication-title: Blood – volume: 391 start-page: 1163 issue: 10126 year: 2021 end-page: 1173 article-title: Lenvatinib Versus Sorafenib in First-Line Treatment of Patients With Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial publication-title: Lancet – volume: 6 start-page: 109 year: 2018 article-title: Safety and Efficacy of Nivolumab in Combination With Sunitinib or Pazopanib in Advanced or Metastatic Renal Cell Carcinoma: The CheckMate 016 Study publication-title: Journal for Immunotherapy of Cancer – volume: 36 start-page: 2836 issue: 28 year: 2018 end-page: 2844 article-title: CheckMate‐032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer publication-title: Journal of Clinical Oncology – volume: 2021 start-page: 1 year: 2021 end-page: 10 article-title: Combination of Immune Checkpoint Inhibitors and Radiotherapy for Advanced Non‐Small‐Cell Lung Cancer and Prostate Cancer: A Meta‐Analysis publication-title: Journal of Oncology – volume: 18 start-page: 4465 issue: 40 year: 2022 end-page: 4471 article-title: A Multicenter, Phase Ib/II, Open‐Label Study of Tivozanib With Durvalumab in Advanced Hepatocellular Carcinoma (DEDUCTIVE) publication-title: Future oncology – volume: 14 year: 2023 article-title: Immunotherapies Targeting Tumor Vasculature: Challenges and Opportunities publication-title: Frontiers in Immunology – volume: 23 start-page: 62 issue: 1 year: 2024 article-title: A Review of the Clinical Efficacy of FDA‐Approved Antibody‒Drug Conjugates in Human Cancers publication-title: Molecular Cancer – volume: 16 issue: 3 year: 2021 article-title: P77. 03 a Phase II Study of KN046 (Bispecific Anti‐PD‐L1/CTLA‐4) in Patients (PTS) With Metastatic Non‐Small Cell Lung Cancer (NSCLC) publication-title: Journal of Thoracic Oncology – volume: 7 start-page: 39 issue: 1 year: 2022 article-title: Emerging New Therapeutic Antibody Derivatives for Cancer Treatment publication-title: Signal Transduction and Targeted Therapy – volume: 16 start-page: 315 issue: 5 year: 2017 end-page: 337 article-title: Strategies and Challenges for the Next Generation of Antibody–Drug Conjugates publication-title: Nature Reviews Drug Discovery – volume: 81 start-page: 1005 issue: S13 year: 2021 article-title: Abstract 1005: The Bispecific Antibody Zanidatamab's (ZW25's) Unique Mechanisms of Action and Durable Anti‐Tumor Activity in HER2‐Expressing Cancers publication-title: Cancer Research – volume: 23 start-page: 612 issue: 5 year: 2022 end-page: 624 article-title: Nivolumab, Nivolumab–Ipilimumab, and VEGFR‐Tyrosine Kinase Inhibitors as First‐Line Treatment for Metastatic Clear‐Cell Renal Cell Carcinoma (BIONIKK): A Biomarker‐Driven, Open‐Label, Non‐Comparative, Randomised, Phase 2 Trial publication-title: Lancet Oncology – volume: 17 start-page: 776 issue: 4 year: 2018 end-page: 785 article-title: Relative Target Affinities of T‐Cell–Dependent Bispecific Antibodies Determine Biodistribution in a Solid Tumor Mouse Model publication-title: Molecular Cancer Therapeutics – volume: 131 start-page: 2307 issue: 21 year: 2018 end-page: 2319 article-title: Genetics of Diffuse Large B‐Cell Lymphoma publication-title: Blood – volume: 24 start-page: 328 year: 2024 end-page: 336 article-title: Systemic Therapy Advances for HER2‐Positive and Triple Negative Breast Cancer–What the Surgeon Needs to Know publication-title: Clinical Breast Cancer – volume: 22 start-page: 790 issue: 6 year: 2021 end-page: 800 article-title: Loncastuximab Tesirine in Relapsed or Refractory Diffuse Large B‐Cell Lymphoma (LOTIS‐2): A Multicentre, Open‐Label, Single‐Arm, Phase 2 Trial publication-title: Lancet Oncology – volume: 69 start-page: 641 year: 2020 end-page: 651 article-title: Bovine Papillomavirus Prostate Cancer Antigen Virus‐Like Particle Vaccines Are Efficacious in Advanced Cancers in the TRAMP Mouse Spontaneous Prostate Cancer Model publication-title: Cancer Immunology, Immunotherapy – volume: 203 year: 2024 article-title: When Will the Immune‐Stimulating Antibody Conjugates (ISACs) be Transferred From Bench to Bedside publication-title: Pharmacological Research – volume: 9 start-page: 257 issue: 2 year: 2017 end-page: 268 article-title: Purification of Common Light Chain IgG‐Like Bispecific Antibodies Using Highly Linear pH Gradients publication-title: MAbs – volume: 18 start-page: 327 issue: 6 year: 2021 end-page: 344 article-title: Unlocking the Potential of Antibody–Drug Conjugates for Cancer Therapy publication-title: Nature Reviews Clinical Oncology – volume: 357 start-page: 409 issue: 6349 year: 2017 end-page: 413 article-title: Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD‐1 Blockade publication-title: Science – volume: 15 start-page: 946 issue: 5 year: 2016 end-page: 957 article-title: RG7386, a Novel Tetravalent FAP‐DR5 Antibody, Effectively Triggers FAP‐Dependent, Avidity‐Driven DR5 Hyperclustering and Tumor Cell Apoptosis publication-title: Molecular Cancer Therapeutics – volume: 25 start-page: 347 issue: 5 year: 2021 end-page: 363 article-title: Reversing T‐Cell Exhaustion in Immunotherapy: A Review on Current Approaches and Limitations publication-title: Expert Opinion on Therapeutic Targets – volume: 5 start-page: 38 issue: 4 year: 2017 article-title: An Archaeosome‐Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection From Murine Melanoma publication-title: Vaccines – volume: 73 start-page: 197 issue: 4 year: 2020 end-page: 203 article-title: Expression of the Checkpoint Receptors LAG‐3, TIM‐3 and VISTA in Peripheral T Cell Lymphomas publication-title: Journal of Clinical Pathology – volume: 65 start-page: 779 year: 2016 end-page: 786 article-title: Immune‐Modulating Properties of Ionizing Radiation: Rationale for the Treatment of Cancer by Combination Radiotherapy and Immune Checkpoint Inhibitors publication-title: Cancer Immunology, Immunotherapy – volume: 34 start-page: 213 issue: 2 year: 2022 end-page: 219 article-title: Combining Immune Checkpoint Inhibitor With Lenvatinib Prolongs Survival Than Lenvatinib Alone in Sorafenib‐Experienced Hepatocellular Carcinoma Patients publication-title: European Journal of Gastroenterology & Hepatology – volume: 14 start-page: 1669 issue: 17 year: 2018 end-page: 1678 article-title: FORWARD I: A Phase III Study of Mirvetuximab Soravtansine Versus Chemotherapy in Platinum‐Resistant Ovarian Cancer publication-title: Future Oncology – volume: 109 start-page: 594 issue: 2 year: 2021 end-page: 602 article-title: Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors publication-title: International Journal of Radiation Oncology* Biology* Physics – volume: 10 start-page: 146 issue: 2 year: 2022 end-page: 153 article-title: Reversing T‐Cell Exhaustion in Cancer: Lessons Learned From PD‐1/PD‐L1 Immune Checkpoint Blockade publication-title: Cancer Immunology Research – volume: 23 start-page: 677 issue: 4 year: 2021 end-page: 686 article-title: Hypofractionated Stereotactic Re‐Irradiation With Pembrolizumab and Bevacizumab in Patients With Recurrent High‐Grade Gliomas: Results From a Phase I Study publication-title: Neuro‐oncology – volume: 72 start-page: 917 issue: 4 year: 2012 end-page: 927 article-title: Immune Inhibitory Molecules LAG‐3 and PD‐1 Synergistically Regulate T‐Cell Function to Promote Tumoral Immune Escape publication-title: Cancer Research – volume: 27 start-page: 212 issue: 2 year: 2021 end-page: 224 article-title: Intratumoral Heterogeneity in Cancer Progression and Response to Immunotherapy publication-title: Nature Medicine – volume: 14 year: 2023 article-title: Novel NKG2D‐Directed Bispecific Antibodies Enhance Antibody‐Mediated Killing of Malignant B Cells by NK Cells and T Cells publication-title: Frontiers in Immunology – volume: 23 start-page: 1558 issue: 12 year: 2021 end-page: 1570 article-title: Zanidatamab, a Novel Bispecific Antibody, for the Treatment of Locally Advanced or Metastatic HER2‐Expressing or HER2‐Amplified Cancers: A Phase 1, Dose‐Escalation and Expansion Study publication-title: Lancet Oncology – volume: 8 issue: 11 year: 2019 article-title: A Synergistic Triad of Chemotherapy, Immune Checkpoint Inhibitors, and Caloric Restriction Mimetics Eradicates Tumors in Mice publication-title: Oncoimmunology – volume: 13 start-page: 3788 issue: 1 year: 2022 article-title: Co‐Optimization of Therapeutic Antibody Affinity and Specificity Using Machine Learning Models That Generalize to Novel Mutational Space publication-title: Nature Communications – volume: 46 start-page: 131 issue: 3 year: 2023 end-page: 148 article-title: Antibody–Drug Conjugates and Bispecific Antibodies Targeting Cancers: Applications of Click Chemistry publication-title: Archives of Pharmacal Research – volume: 12 year: 2021 article-title: Bispecific Antibodies: From Research to Clinical Application publication-title: Frontiers in Immunology – volume: 22 start-page: 5990 issue: 11 year: 2021 article-title: Combined Gemcitabine and Immune‐Checkpoint Inhibition Conquers Anti‐PD‐L1 Resistance in Low‐Immunogenic Mismatch Repair‐Deficient Tumors publication-title: International Journal of Molecular Sciences – volume: 10 start-page: 473 issue: 2 year: 2020 end-page: 490 article-title: T Cell Recruitment Triggered by Optimal Dose Platinum Compounds Contributes to the Therapeutic Efficacy of Sequential PD‐1 Blockade in a Mouse Model of Colon Cancer publication-title: American Journal of Cancer Research – volume: 22 start-page: 2 year: 2022 article-title: Combination Therapy With Immune Checkpoint Inhibitors (ICIs); A New Frontier publication-title: Cancer Cell International – volume: 168 start-page: 74 year: 2022 end-page: 82 article-title: Amivantamab Compared With Real‐World Therapies in Patients With Advanced Non‐Small Cell Lung Cancer Harboring EGFR Exon 20 Insertion Mutations Who Progressed After Platinum‐Based Chemotherapy publication-title: Lung Cancer – volume: 61 start-page: 1137 year: 2012 end-page: 1147 article-title: Phase I Trial of Tremelimumab in Combination With Short‐Term Androgen Deprivation in Patients With PSA‐Recurrent Prostate Cancer publication-title: Cancer Immunology, Immunotherapy – volume: 15 start-page: 1210 issue: 7 year: 2020 end-page: 1222 article-title: Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Second‐Line Treatment of Patients With NSCLC: Results From an Expansion Cohort of a Phase 1 Trial publication-title: Journal of Thoracic Oncology – volume: 380 start-page: 741 issue: 8 year: 2019 end-page: 751 article-title: Sacituzumab Govitecan‐Hziy in Refractory Metastatic Triple‐Negative Breast Cancer publication-title: New England Journal of Medicine – volume: 16 start-page: 435 issue: 4 year: 2021 end-page: 446 article-title: Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF‐β and PD‐L1, in Patients With Esophageal Adenocarcinoma: Results From a Phase 1 Cohort publication-title: Targeted Oncology – volume: 8 issue: 11 year: 2019 article-title: Immune Checkpoint Inhibitors in mCRPC‐Rationales, Challenges and Perspectives publication-title: Oncoimmunology – volume: 30 start-page: 229 issue: 1 year: 2024 end-page: 239 article-title: Mosunetuzumab With Polatuzumab Vedotin in Relapsed or Refractory Aggressive Large B Cell Lymphoma: A Phase 1b/2 Trial publication-title: Nature Medicine – volume: 35 start-page: 2522 issue: S15 year: 2017 article-title: First‐In‐Human Phase 1/2 Study of MCLA‐128, a Full Length IgG1 Bispecific Antibody Targeting HER2 and HER3: Final Phase 1 Data and Preliminary Activity in HER2+ Metastatic Breast Cancer (MBC) publication-title: Journal of Clinical Oncology – volume: 10 start-page: 249 issue: 3 year: 2019 end-page: 259 article-title: Avelumab in Combination With Axitinib as First‐Line Treatment in Patients with Advanced Hepatocellular Carcinoma: Results from the Phase 1b VEGF Liver 100 Trial publication-title: Liver cancer – volume: 183 year: 2019 article-title: Novel HER2‐Targeting Antibody‐Drug Conjugates of Trastuzumab Beyond T‐DM1 in Breast Cancer: Trastuzumab Deruxtecan (DS‐8201a) and (Vic‐) Trastuzumab Duocarmazine (Syd985) publication-title: European Journal of Medicinal Chemistry – volume: 113 start-page: 2443 year: 2024 end-page: 2453 article-title: Evaluating the Potential of Cyclodextrins in Reducing Aggregation of Antibody–Drug Conjugates With Different Payloads publication-title: Journal of Pharmaceutical Sciences – volume: 9 start-page: 17 issue: 2 year: 2020 article-title: Combined Anti‐Cancer Strategies Based on Anti‐Checkpoint Inhibitor Antibodies publication-title: Antibodies – volume: 6 start-page: 2052 issue: 9 year: 2017 end-page: 2062 article-title: A Combination of Anti‐PD‐L1 mA b Plus Lm‐LLO‐E6 Vaccine Efficiently Suppresses Tumor Growth and Metastasis in HPV‐Infected Cancers publication-title: Cancer Medicine – volume: 1 start-page: 10 year: 2022 article-title: A Phase Ib/II Study of AK112, a PD‐1/VEGF Bispecific Antibody, as First or Second‐Line Therapy for Advanced Non‐Small Cell Lung Cancer (NSCLC) publication-title: Hypertension – volume: 21 start-page: 470 year: 2021 article-title: Recombinant Immunotoxins Development for HER2‐Based Targeted Cancer Therapies publication-title: Cancer Cell International – volume: 398 start-page: 1157 issue: 10306 year: 2021 end-page: 1169 article-title: Dose Escalation of Subcutaneous Epcoritamab in Patients With Relapsed or Refractory B‐Cell Non‐Hodgkin Lymphoma: An Open‐Label, Phase 1/2 Study publication-title: Lancet – volume: 138 start-page: 158 year: 2021 article-title: Updated Phase 1 Results From MonumenTAL‐1: First‐In‐Human Study of Talquetamab, a G Protein‐Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma publication-title: Blood – volume: 31 start-page: S1442 year: 2020 end-page: S1443 article-title: 64MO A Phase (ph) II, Multi‐Center Study of the Safety and Efficacy of Tebentafusp (tebe)(IMCgp100) in Patients (pts) With Metastatic Uveal Melanoma (mUM) publication-title: Annals of Oncology – volume: 15 start-page: 345 issue: 4 year: 2016 end-page: 351 article-title: Phase 1 Dose Escalation Study of MEDI‐565, a Bispecific T‐Cell Engager That Targets Human Carcinoembryonic Antigen, in Patients With Advanced Gastrointestinal Adenocarcinomas publication-title: Clinical Colorectal Cancer – volume: 16 issue: 1 year: 2024 article-title: Impact of Antibody Architecture and Paratope Valency on Effector Functions of Bispecific NKp30 x EGFR Natural Killer Cell Engagers publication-title: Mabs – volume: 10 start-page: 779 issue: 9 year: 2018 end-page: 786 article-title: Oncolytic Herpes Simplex Virus Immunovirotherapy in Combination With Immune Checkpoint Blockade to Treat Glioblastoma publication-title: Immunotherapy – volume: 154 start-page: 1061 issue: 4 year: 2018 end-page: 1065 article-title: Prevalence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas publication-title: Gastroenterology – volume: 13 start-page: 1663 issue: 6 year: 2007 end-page: 1674 article-title: The Blood‐Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses publication-title: Clinical Cancer Research – volume: 136 start-page: 31 year: 2020 end-page: 32 article-title: AFM13 in Patients With Relapsed or Refractory Hodgkin Lymphoma: Final Results of an Open‐Label, Randomized, Multicenter Phase II Trial publication-title: Blood – ident: e_1_2_13_104_1 doi: 10.1056/NEJMoa1209124 – ident: e_1_2_13_30_1 doi: 10.1182/blood-2020-136985 – ident: e_1_2_13_78_1 doi: 10.1158/0008-5472.CAN-20-1818 – ident: e_1_2_13_89_1 doi: 10.1007/s00262-015-1771-8 – ident: e_1_2_13_28_1 doi: 10.1016/S0140-6736(21)00889-8 – ident: e_1_2_13_11_1 doi: 10.3390/antib9020017 – ident: e_1_2_13_51_1 doi: 10.1186/s12935-021-02407-8 – ident: e_1_2_13_12_1 doi: 10.1016/j.jconrel.2023.05.032 – ident: e_1_2_13_37_1 doi: 10.2217/fon-2022-0844 – ident: e_1_2_13_74_1 doi: 10.1158/1078-0432.CCR-06-2854 – ident: e_1_2_13_23_1 doi: 10.1038/s41591-023-02726-5 – ident: e_1_2_13_108_1 doi: 10.1038/s41375-018-0210-1 – ident: e_1_2_13_4_1 doi: 10.3390/ph14030200 – ident: e_1_2_13_34_1 doi: 10.1016/j.jtho.2021.01.1161 – ident: e_1_2_13_93_1 doi: 10.1186/s40425-018-0420-0 – ident: e_1_2_13_2_1 doi: 10.1200/jco.2013.31.15_suppl.3061 – ident: e_1_2_13_40_1 doi: 10.1200/JCO.2017.35.15_suppl.2522 – volume: 7 start-page: 1490 issue: 6 year: 2001 ident: e_1_2_13_107_1 article-title: Approval Summary: Gemtuzumab Ozogamicin in Relapsed Acute Myeloid Leukemia publication-title: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research – ident: e_1_2_13_14_1 doi: 10.1186/s12943-024-01963-7 – ident: e_1_2_13_21_1 doi: 10.1007/s00432-020-03404-6 – volume-title: Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies year: 2019 ident: e_1_2_13_7_1 – ident: e_1_2_13_57_1 doi: 10.1186/s12935-021-02182-6 – ident: e_1_2_13_79_1 doi: 10.1038/s41388-018-0581-9 – ident: e_1_2_13_38_1 doi: 10.1016/S1470-2045(22)00621-0 – volume: 10 start-page: 473 issue: 2 year: 2020 ident: e_1_2_13_81_1 article-title: T Cell Recruitment Triggered by Optimal Dose Platinum Compounds Contributes to the Therapeutic Efficacy of Sequential PD‐1 Blockade in a Mouse Model of Colon Cancer publication-title: American Journal of Cancer Research – ident: e_1_2_13_19_1 doi: 10.1038/s41392-021-00868-x – ident: e_1_2_13_72_1 doi: 10.1080/2162402X.2019.1644109 – ident: e_1_2_13_77_1 doi: 10.3389/fimmu.2023.1226360 – ident: e_1_2_13_18_1 doi: 10.3389/fimmu.2023.1227572 – ident: e_1_2_13_113_1 doi: 10.1007/s40267-022-00939-1 – ident: e_1_2_13_88_1 doi: 10.1002/cam4.1143 – ident: e_1_2_13_99_1 doi: 10.1007/s11523-021-00809-2 – ident: e_1_2_13_43_1 doi: 10.2217/imt-2020-0256 – ident: e_1_2_13_105_1 doi: 10.1016/S0140-6736(17)31266-7 – ident: e_1_2_13_36_1 doi: 10.1016/j.clcc.2016.07.009 – ident: e_1_2_13_52_1 doi: 10.1186/s12964-022-00854-y – ident: e_1_2_13_60_1 doi: 10.1016/j.ccell.2020.08.007 – ident: e_1_2_13_6_1 doi: 10.1158/2326-6066.CIR-21-0515 – ident: e_1_2_13_69_1 doi: 10.1016/j.ekir.2020.10.002 – ident: e_1_2_13_24_1 doi: 10.1056/NEJMoa2203478 – ident: e_1_2_13_39_1 doi: 10.1016/S0140-6736(18)30207-1 – ident: e_1_2_13_100_1 doi: 10.1200/JCO.2017.76.6212 – ident: e_1_2_13_50_1 doi: 10.1158/1535-7163.MCT-15-0647 – ident: e_1_2_13_86_1 doi: 10.3390/vaccines5040038 – ident: e_1_2_13_70_1 doi: 10.1126/science.aan6733 – ident: e_1_2_13_119_1 doi: 10.1016/j.phrs.2024.107160 – ident: e_1_2_13_73_1 doi: 10.1093/neuonc/nop027 – ident: e_1_2_13_80_1 doi: 10.3390/ijms22115990 – ident: e_1_2_13_8_1 doi: 10.1080/2162402X.2022.2120676 – ident: e_1_2_13_27_1 doi: 10.1158/1538-7445.AM2021-1005 – ident: e_1_2_13_96_1 doi: 10.1159/000514420 – ident: e_1_2_13_102_1 doi: 10.1038/s41573-023-00709-2 – ident: e_1_2_13_29_1 doi: 10.1182/blood-2020-141250 – ident: e_1_2_13_16_1 doi: 10.3390/vaccines9070724 – ident: e_1_2_13_3_1 doi: 10.1158/0008-5472.CAN-11-1620 – ident: e_1_2_13_98_1 doi: 10.1182/blood.2019004701 – ident: e_1_2_13_82_1 doi: 10.1080/2162402X.2019.1657375 – ident: e_1_2_13_10_1 doi: 10.3389/fimmu.2021.626616 – ident: e_1_2_13_58_1 doi: 10.1007/s00262-011-1193-1 – ident: e_1_2_13_68_1 doi: 10.1080/21645515.2019.1631136 – ident: e_1_2_13_62_1 doi: 10.1093/neuonc/noaa260 – ident: e_1_2_13_112_1 doi: 10.1016/S1470-2045(21)00139-X – ident: e_1_2_13_103_1 doi: 10.1038/s41571-021-00470-8 – ident: e_1_2_13_115_1 doi: 10.1038/s41557-024-01507-y – ident: e_1_2_13_71_1 doi: 10.1053/j.gastro.2017.11.009 – ident: e_1_2_13_91_1 doi: 10.1016/j.ijrobp.2020.09.041 – ident: e_1_2_13_31_1 doi: 10.1182/blood-2020-136980 – ident: e_1_2_13_55_1 doi: 10.1016/S1470-2045(22)00128-0 – ident: e_1_2_13_92_1 doi: 10.1155/2021/8223263 – ident: e_1_2_13_46_1 doi: 10.1080/19420862.2024.2315640 – ident: e_1_2_13_41_1 doi: 10.1016/S0090-8258(22)01293-8 – ident: e_1_2_13_116_1 doi: 10.1016/j.xphs.2024.04.024 – ident: e_1_2_13_63_1 doi: 10.1056/NEJMoa1604958 – ident: e_1_2_13_83_1 doi: 10.2217/imt-2018-0009 – ident: e_1_2_13_15_1 doi: 10.1080/19420862.2016.1267090 – ident: e_1_2_13_117_1 doi: 10.3390/ijms25042097 – ident: e_1_2_13_97_1 doi: 10.1001/jamaoncol.2019.3343 – ident: e_1_2_13_95_1 doi: 10.1200/JCO.19.03296 – ident: e_1_2_13_56_1 doi: 10.1016/j.clbc.2024.03.004 – ident: e_1_2_13_75_1 doi: 10.1038/s41591-021-01233-9 – ident: e_1_2_13_94_1 doi: 10.1097/MEG.0000000000001956 – ident: e_1_2_13_118_1 doi: 10.1080/19420862.2024.2310890 – ident: e_1_2_13_17_1 doi: 10.3389/fimmu.2020.01792 – ident: e_1_2_13_20_1 doi: 10.1158/1078-0432.CCR-20-3770 – ident: e_1_2_13_101_1 doi: 10.1038/nrd.2016.268 – ident: e_1_2_13_109_1 doi: 10.1182/blood-2017-11-764332 – ident: e_1_2_13_44_1 doi: 10.1016/j.annonc.2020.10.552 – ident: e_1_2_13_65_1 doi: 10.1038/s41591-019-0382-x – ident: e_1_2_13_13_1 doi: 10.1007/s12272-023-01433-6 – ident: e_1_2_13_53_1 doi: 10.1001/jamanetworkopen.2021.8065 – ident: e_1_2_13_67_1 doi: 10.3389/fmolb.2021.716735 – ident: e_1_2_13_90_1 doi: 10.1007/s11060-020-03459-y – ident: e_1_2_13_32_1 doi: 10.1182/blood-2021-146868 – ident: e_1_2_13_5_1 doi: 10.1080/14728222.2021.1937123 – volume: 34 start-page: 101 issue: 3 year: 2011 ident: e_1_2_13_35_1 article-title: Immunotherapy of Peritoneal Carcinomatosis With the Antibody Catumaxomab in Colon, Gastric, or Pancreatic Cancer: An Open‐Label, Multicenter, Phase I/II Trial publication-title: Oncology Research and Treatment – ident: e_1_2_13_33_1 doi: 10.1016/j.jtho.2020.03.003 – ident: e_1_2_13_45_1 doi: 10.1158/1535-7163.MCT-17-0657 – ident: e_1_2_13_64_1 doi: 10.1038/s41467-017-01062-w – ident: e_1_2_13_9_1 doi: 10.1080/14712598.2022.2040987 – ident: e_1_2_13_49_1 doi: 10.1016/j.tibtech.2017.04.007 – ident: e_1_2_13_76_1 doi: 10.1016/j.intimp.2020.106939 – ident: e_1_2_13_84_1 doi: 10.1158/0008-5472.CAN-18-0892 – ident: e_1_2_13_22_1 doi: 10.1002/ajh.26809 – ident: e_1_2_13_48_1 doi: 10.1016/j.pep.2020.105635 – ident: e_1_2_13_47_1 doi: 10.1038/s41467-022-31457-3 – ident: e_1_2_13_66_1 doi: 10.1136/jclinpath-2019-206117 – ident: e_1_2_13_61_1 doi: 10.1038/s41591-018-0337-7 – ident: e_1_2_13_110_1 doi: 10.1056/NEJMoa1814213 – volume: 1 start-page: 10 year: 2022 ident: e_1_2_13_26_1 article-title: A Phase Ib/II Study of AK112, a PD‐1/VEGF Bispecific Antibody, as First or Second‐Line Therapy for Advanced Non‐Small Cell Lung Cancer (NSCLC) publication-title: Hypertension – ident: e_1_2_13_87_1 doi: 10.1038/s41598-017-02503-8 – ident: e_1_2_13_114_1 doi: 10.2217/fon-2017-0646 – ident: e_1_2_13_85_1 doi: 10.1007/s00262-020-02493-z – ident: e_1_2_13_106_1 doi: 10.1056/NEJMoa1509277 – ident: e_1_2_13_111_1 doi: 10.1016/j.ejmech.2019.111682 – ident: e_1_2_13_25_1 doi: 10.1016/j.lungcan.2022.03.005 – ident: e_1_2_13_42_1 doi: 10.1136/jitc-2020-001395 – ident: e_1_2_13_59_1 doi: 10.1093/annonc/mdt107 – ident: e_1_2_13_54_1 doi: 10.1056/NEJMoa1709684 |
SSID | ssj0009630 |
Score | 2.4006517 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs... Tumor immunotherapy includes bispecific antibodies (BsAbs), immune checkpoint inhibitors (ICIs), vaccines, and adoptive cell immunotherapy. BsAbs belong to the... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e70011 |
SubjectTerms | Antibodies Antibodies, Bispecific - immunology Antibodies, Bispecific - pharmacology Antibodies, Bispecific - therapeutic use antibody−drug conjugates Anticancer properties Antigen (tumor-associated) Antitumor activity Bispecific antibodies Cancer Cancer immunotherapy Conjugates Conjugation CTLA-4 protein Drug development Effectiveness Humans Immune checkpoint inhibitors Immune Checkpoint Inhibitors - pharmacology Immune Checkpoint Inhibitors - therapeutic use Immune response Immunoconjugates - pharmacology Immunoconjugates - therapeutic use Immunosuppressive agents Immunotherapy In vivo methods and tests Inhibitors Monoclonal antibodies Neoplasms - drug therapy Neoplasms - immunology Neoplasms - therapy PD-L1 protein Pembrolizumab Side effects Solid tumors tumor heterogeneity |
Title | Bispecific Antibodies, Immune Checkpoint Inhibitors, and Antibody−Drug Conjugates Directing Antitumor Immune Responses: Challenges and Prospects |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.70011 https://www.ncbi.nlm.nih.gov/pubmed/39463028 https://www.proquest.com/docview/3149110174 https://www.proquest.com/docview/3121280756 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSgguUMqj2xZkEAcOzTaJ3Tzg1C6sWg4IVVTqASmyHbuEUqfaJIfyC3ruT-wvYcZOUpWHhLhFythO7BnP2DPzDSGvcqZAE-g0EKExAee5CfJURQHotkgaE6KnDaMtPib7R_zD8c7xEnk75MJ4fIjxwg0lw-3XKOBCNts3oKFKmik6TfHog7FaaBAd3kBHAWP19yssSHjGB1ShMN4eW97WRb8ZmLftVadw5g_Il-FTfZzJ6bRr5VT9-AXF8T__ZYXc7w1Ruus55yFZ0naV3PGlKS9Wyd3ZUAnuEbnaqzAhE4OK6K5tK1lj6OEWPcDcEk2BUp2e15Vt6YH9WskKC_hsUWHLgfri-vLq3aI7obPafuvw4q6h_V5rTxxR253Vi6HDQx-3q5s30Hdf66Vx_X1a1C41tHlMjubvP8_2g76WQ6BYlsHa85gLs5MwFpUKXXUCmCcUXIO9ACpRmsiAKk2xPFlpdJ6WEkhYriW0MFoI9oQs29rqNUKTVKdlGMlIy4zLXGdpbkKZhcJkkYqNmpDXw6oWqgc6x3ob3wsP0RwXMN2Fm-4JeTmSnnt0jz8RbQ6sUfQC3hQMTpYRbmd8Ql6Mr2Fd0N8irK47pAG7AMGekwl56llqHIXlHBg0zuBjHWP8ffhitjd3D-v_TrpB7sVgfPmwm02y3C46_QyMp1Y-d1LyE5DxFtY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahceJTXQoGAOHBotkns5oG4tFtWu1AqVLVSL1VkO3YJBafaJIfyCzj3J_JLmMmrKg8JcYuUsZ3YM57xeOYbgJcJU6gJdOQKzxiX88S4SaR8F3WbL43x6KaNoi32wtkhf3e0ebQEb_pcmBYfYnC4kWQ0-zUJODmkNy5RQ5U0Y7o1xbPPNaroTWK5s38JHoWs1XlYmBvymPe4Ql6wMTS9qo1-MzGvWqyNypneguP-Y9tIk9NxXcmx-vYLjuP__s1tuNnZos5Wyzx3YEnbVbjeVqc8X4WVSV8M7i5cbOeUk0lxRc6WrXJZUPThujOn9BLtIKU6PStyWzlz-ymXOdXwWXeEzXrq8x_fL3YW9YkzKeznmnx3pdNtt_akIarqr8Wi73C_Dd3V5Wvsuyv3Ujb9fVwUTXZoeQ8Op28PJjO3K-fgKhbHuPw84MJshoz5maLbOoH84wmu0WRArSiNb1CbRlShLDM6iTKJJCzRElsYLQS7D8u2sPohOGGko8zzpa9lzGWi4ygxnow9YWJfBUaN4FW_rKnqsM6p5MaXtEVpDlKc7rSZ7hG8GEjPWoCPPxGt9byRdjJepgwPlz7taHwEz4fXuC505SKsLmqiQdOA8J7DETxoeWoYhSUcOTSI8WMbzvj78Olke9o8PPp30mewMjv4sJvuzvfeP4YbAdpibRTOGixXi1o_QVuqkk8bkfkJ26ga7w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPMproUBAHDg02yR284BTu8uqC6iqKir1UCmKHbuEgrPaJIfyCzj3J_JLmHEeVXlIiFukjO3EnvGMPTPfALxMmERNoCI387R2OU-0m0TSd1G3-UJrjzxtFG2xF-4e8ndHW0cr8KbPhWnxIYYLN5IMu1-TgC9yvXkBGiqFHpPTFI8-V3joxXTymh5cYEchZ3UXLMwNecx7WCEv2ByaXlZGv1mYlw1Wq3Fmt-C4_9Y20OR03NRiLL_9AuP4nz9zG252lqiz3bLOHVhRZg2utrUpz9bg-qQvBXcXzncKysikqCJn29SFKCn2cMOZU3KJcpBSni7KwtTO3HwqREEVfDaczOQ99dmP7-fTZXPiTErzuaGbu8rpNltzYonq5mu57Ds8aAN3VfUa--6KvVS2v_1laXNDq3twOHv7cbLrdsUcXMniGBefBzzTWyFjfi7JV5ch93gZV2gwoE4U2teoSyOqT5ZrlUS5QBKWKIEttMoydh9WTWnUQ3DCSEW55wtfiZiLRMVRoj0Re5mOfRloOYJX_aqmskM6p4IbX9IWozlIcbpTO90jeDGQLlp4jz8RrfeskXYSXqUMj5Y-7Wd8BM-H17gu5HDJjCobokHDgNCewxE8aFlqGIUlHBk0iPFjLWP8ffh0sjOzD4_-nfQZXNufztIP8733j-FGgIZYG4KzDqv1slFP0JCqxVMrMD8Bm9kZpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bispecific+Antibodies%2C+Immune+Checkpoint+Inhibitors%2C+and+Antibody-Drug+Conjugates+Directing+Antitumor+Immune+Responses%3A+Challenges+and+Prospects&rft.jtitle=Cell+biochemistry+and+function&rft.au=Li%2C+Chen+Lu&rft.au=Ma%2C+Xin+Yuan&rft.au=Yi%2C+Ping&rft.date=2024-12-01&rft.issn=1099-0844&rft.eissn=1099-0844&rft.volume=42&rft.issue=8&rft.spage=e70011&rft_id=info:doi/10.1002%2Fcbf.70011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon |