Evaluation of 3D stack‐of‐spiral turbo FLASH acquisitions for pseudo‐continuous and velocity‐selective ASL–derived brain perfusion mapping

Purpose The most‐used 3D acquisitions for ASL are gradient and spin echo (GRASE)– and stack‐of‐spiral (SOS)–based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS‐TFL has the potential to reduce the number of shots to even single‐shot,...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 90; no. 3; pp. 939 - 949
Main Authors Zhu, Dan, Xu, Feng, Liu, Dapeng, Hillis, Argye Elizabeth, Lin, Doris, Zijl, Peter C. M., Qin, Qin
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose The most‐used 3D acquisitions for ASL are gradient and spin echo (GRASE)– and stack‐of‐spiral (SOS)–based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS‐TFL has the potential to reduce the number of shots to even single‐shot, thus improving the temporal resolution. Here we compare the performance of 3D SOS‐TFL and 3D GRASE for ASL at 3T. Methods The 3D SOS‐TFL readout was optimized with respect to fat suppression and excitation flip angles for pseudo‐continuous ASL– and velocity‐selective (VS)ASL–derived cerebral blood flow (CBF) mapping as well as for VSASL‐derived cerebral blood volume (CBV) mapping. Results were compared with 3D GRASE readout on healthy volunteers in terms of perfusion quantification and temporal SNR (tSNR) efficiency. CBF and CBV mapping derived from 3D SOS‐TFL–based ASL was demonstrated on one stroke patient, and the potential for single‐shot acquisitions was exemplified. Results SOS‐TFL with a 15° flip angle resulted in adequate tSNR efficiency with negligible image blurring. Selective water excitation was necessary to eliminate fat‐induced artifacts. For pseudo‐continuous ASL– and VSASL‐based CBF and CBV mapping, compared to the employed four‐shot 3D GRASE with an acceleration factor of 2, the fully sampled 3D SOS‐TFL delivered comparable performance (with a similar scan time) using three shots, which could be further undersampled to achieve single‐shot acquisition with higher tSNR efficiency. SOS‐TFL had reduced CSF contamination for VSASL‐CBF. Conclusion 3D SOS‐TFL acquisition was found to be a viable substitute for 3D GRASE for ASL with sufficient tSNR efficiency, minimal relaxation‐induced blurring, reduced CSF contamination, and the potential of single‐shot, especially for VSASL.
AbstractList Purpose The most‐used 3D acquisitions for ASL are gradient and spin echo (GRASE)– and stack‐of‐spiral (SOS)–based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS‐TFL has the potential to reduce the number of shots to even single‐shot, thus improving the temporal resolution. Here we compare the performance of 3D SOS‐TFL and 3D GRASE for ASL at 3T. Methods The 3D SOS‐TFL readout was optimized with respect to fat suppression and excitation flip angles for pseudo‐continuous ASL– and velocity‐selective (VS)ASL–derived cerebral blood flow (CBF) mapping as well as for VSASL‐derived cerebral blood volume (CBV) mapping. Results were compared with 3D GRASE readout on healthy volunteers in terms of perfusion quantification and temporal SNR (tSNR) efficiency. CBF and CBV mapping derived from 3D SOS‐TFL–based ASL was demonstrated on one stroke patient, and the potential for single‐shot acquisitions was exemplified. Results SOS‐TFL with a 15° flip angle resulted in adequate tSNR efficiency with negligible image blurring. Selective water excitation was necessary to eliminate fat‐induced artifacts. For pseudo‐continuous ASL– and VSASL‐based CBF and CBV mapping, compared to the employed four‐shot 3D GRASE with an acceleration factor of 2, the fully sampled 3D SOS‐TFL delivered comparable performance (with a similar scan time) using three shots, which could be further undersampled to achieve single‐shot acquisition with higher tSNR efficiency. SOS‐TFL had reduced CSF contamination for VSASL‐CBF. Conclusion 3D SOS‐TFL acquisition was found to be a viable substitute for 3D GRASE for ASL with sufficient tSNR efficiency, minimal relaxation‐induced blurring, reduced CSF contamination, and the potential of single‐shot, especially for VSASL.
The most-used 3D acquisitions for ASL are gradient and spin echo (GRASE)- and stack-of-spiral (SOS)-based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS-TFL has the potential to reduce the number of shots to even single-shot, thus improving the temporal resolution. Here we compare the performance of 3D SOS-TFL and 3D GRASE for ASL at 3T. The 3D SOS-TFL readout was optimized with respect to fat suppression and excitation flip angles for pseudo-continuous ASL- and velocity-selective (VS)ASL-derived cerebral blood flow (CBF) mapping as well as for VSASL-derived cerebral blood volume (CBV) mapping. Results were compared with 3D GRASE readout on healthy volunteers in terms of perfusion quantification and temporal SNR (tSNR) efficiency. CBF and CBV mapping derived from 3D SOS-TFL-based ASL was demonstrated on one stroke patient, and the potential for single-shot acquisitions was exemplified. SOS-TFL with a 15° flip angle resulted in adequate tSNR efficiency with negligible image blurring. Selective water excitation was necessary to eliminate fat-induced artifacts. For pseudo-continuous ASL- and VSASL-based CBF and CBV mapping, compared to the employed four-shot 3D GRASE with an acceleration factor of 2, the fully sampled 3D SOS-TFL delivered comparable performance (with a similar scan time) using three shots, which could be further undersampled to achieve single-shot acquisition with higher tSNR efficiency. SOS-TFL had reduced CSF contamination for VSASL-CBF. 3D SOS-TFL acquisition was found to be a viable substitute for 3D GRASE for ASL with sufficient tSNR efficiency, minimal relaxation-induced blurring, reduced CSF contamination, and the potential of single-shot, especially for VSASL.
PURPOSEThe most-used 3D acquisitions for ASL are gradient and spin echo (GRASE)- and stack-of-spiral (SOS)-based fast spin echo, which require multiple shots. Alternatively, turbo FLASH (TFL) allows longer echo trains, and SOS-TFL has the potential to reduce the number of shots to even single-shot, thus improving the temporal resolution. Here we compare the performance of 3D SOS-TFL and 3D GRASE for ASL at 3T.METHODSThe 3D SOS-TFL readout was optimized with respect to fat suppression and excitation flip angles for pseudo-continuous ASL- and velocity-selective (VS)ASL-derived cerebral blood flow (CBF) mapping as well as for VSASL-derived cerebral blood volume (CBV) mapping. Results were compared with 3D GRASE readout on healthy volunteers in terms of perfusion quantification and temporal SNR (tSNR) efficiency. CBF and CBV mapping derived from 3D SOS-TFL-based ASL was demonstrated on one stroke patient, and the potential for single-shot acquisitions was exemplified.RESULTSSOS-TFL with a 15° flip angle resulted in adequate tSNR efficiency with negligible image blurring. Selective water excitation was necessary to eliminate fat-induced artifacts. For pseudo-continuous ASL- and VSASL-based CBF and CBV mapping, compared to the employed four-shot 3D GRASE with an acceleration factor of 2, the fully sampled 3D SOS-TFL delivered comparable performance (with a similar scan time) using three shots, which could be further undersampled to achieve single-shot acquisition with higher tSNR efficiency. SOS-TFL had reduced CSF contamination for VSASL-CBF.CONCLUSION3D SOS-TFL acquisition was found to be a viable substitute for 3D GRASE for ASL with sufficient tSNR efficiency, minimal relaxation-induced blurring, reduced CSF contamination, and the potential of single-shot, especially for VSASL.
Author Zhu, Dan
Qin, Qin
Xu, Feng
Hillis, Argye Elizabeth
Liu, Dapeng
Lin, Doris
Zijl, Peter C. M.
Author_xml – sequence: 1
  givenname: Dan
  orcidid: 0000-0002-0940-1519
  surname: Zhu
  fullname: Zhu, Dan
  email: dzhu12@jhmi.edu
  organization: Johns Hopkins University School of Medicine
– sequence: 2
  givenname: Feng
  orcidid: 0000-0001-7958-3787
  surname: Xu
  fullname: Xu, Feng
  organization: Johns Hopkins University School of Medicine
– sequence: 3
  givenname: Dapeng
  orcidid: 0000-0002-4432-3202
  surname: Liu
  fullname: Liu, Dapeng
  organization: Johns Hopkins University School of Medicine
– sequence: 4
  givenname: Argye Elizabeth
  surname: Hillis
  fullname: Hillis, Argye Elizabeth
  organization: Johns Hopkins University School of Medicine
– sequence: 5
  givenname: Doris
  surname: Lin
  fullname: Lin, Doris
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: Peter C. M.
  surname: Zijl
  fullname: Zijl, Peter C. M.
  organization: Johns Hopkins University School of Medicine
– sequence: 7
  givenname: Qin
  orcidid: 0000-0002-6432-2944
  surname: Qin
  fullname: Qin, Qin
  organization: Johns Hopkins University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37125611$$D View this record in MEDLINE/PubMed
BookMark eNp10U1LHDEYB_AgFl1tD34BCXhpD6N5m5ccF19qYaVQ2_OQzTyR6EwyJpMte_MjFNpP6Cdptms9FHpJCPzy50n-B2jXeQcIHVFySglhZ0MYTpmsGrqDZrRkrGClFLtoRmpBCk6l2EcHMd4TQqSsxR7a5zVlZUXpDP26XKk-qcl6h73B_ALHSemH56cf3uQljjaoHk8pLD2-Wsxvr7HSj8lGu7kRsfEBjxFS5zPW3k3WJZ8iVq7DK-i9ttN6EwM96MmuAM9vF89PPzsI-dDhZVDW4RGCSXEzwaDG0bq7t-iNUX2Edy_7Ifp2dfn1_LpYfP746Xy-KDRvGlqUUNbESEEqsqQN6xpOaP6GWhqjJKcaahBSldxwJXRnKKfA6kbK0lTZVpQfovfb3DH4xwRxagcbNfS9cpBf0bKGNIwKIkmmJ__Qe5-Cy9NlxQkvheRVVh-2SgcfYwDTjsEOKqxbStpNVW2uqv1TVbbHL4lpOUD3Kv92k8HZFny3Paz_n9TefLnZRv4GzvClOA
CitedBy_id crossref_primary_10_3390_brainsci14020126
crossref_primary_10_1002_mrm_30085
crossref_primary_10_1002_mrm_30166
crossref_primary_10_1002_mrm_30134
crossref_primary_10_1002_mrm_29695
crossref_primary_10_1016_j_jmr_2023_107572
Cites_doi 10.1002/mrm.29371
10.1016/j.mri.2020.08.007
10.1002/mrm.25462
10.1002/mrm.28815
10.1016/j.mri.2012.04.017
10.1002/mrm.27668
10.1002/mrm.26010
10.1016/j.neuroimage.2023.120039
10.1002/mrm.21790
10.1002/mrm.28310
10.1002/mrm.21391
10.1002/mrm.24261
10.1002/mrm.27118
10.1006/jmrb.1994.1048
10.1002/mrm.29381
10.1002/mrm.1910370206
10.1002/jmri.27638
10.1016/j.neuroimage.2020.117371
10.1002/mrm.25645
10.1109/TMI.1986.4307732
10.1088/0031-9155/59/18/5559
10.1002/mrm.28622
10.1002/1522-2594(200009)44:3<491::AID-MRM22>3.0.CO;2-Z
10.1002/mrm.25197
10.1002/mrm.27226
10.1016/j.mri.2022.01.015
10.1002/mrm.1910370416
10.1002/mrm.28982
10.1002/mrm.29247
10.1002/mrm.27461
10.1109/TIP.2011.2169974
10.1002/mrm.26515
ContentType Journal Article
Copyright 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29681
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 949
ExternalDocumentID 10_1002_mrm_29681
37125611
MRM29681
Genre researchArticle
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41 EB031771; P50 HD103538; R01 HL138182; R01 HL144751; S10 OD021648
– fundername: NIBIB NIH HHS
  grantid: P41 EB031771
– fundername: NHLBI NIH HHS
  grantid: R01 HL144751
– fundername: NHLBI NIH HHS
  grantid: R01 HL138182
– fundername: NIH HHS
  grantid: S10 OD021648
– fundername: NICHD NIH HHS
  grantid: P50 HD103538
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3881-5e570f94060b182d830129679ffa931ce7e49a53f3a4cdf131e278995f6d83613
IEDL.DBID 24P
ISSN 0740-3194
IngestDate Sat Aug 17 05:18:46 EDT 2024
Thu Oct 10 22:52:15 EDT 2024
Fri Aug 23 00:46:56 EDT 2024
Tue Oct 15 08:54:05 EDT 2024
Sat Aug 24 00:56:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords pseudo-continuous ASL
cerebral blood flow
stack-of-spiral turbo FLASH
velocity-selective arterial spin labeling
cerebral blood volume
Language English
License Attribution
2023 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3881-5e570f94060b182d830129679ffa931ce7e49a53f3a4cdf131e278995f6d83613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0940-1519
0000-0001-7958-3787
0000-0002-6432-2944
0000-0002-4432-3202
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29681
PMID 37125611
PQID 2830354936
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_2808214090
proquest_journals_2830354936
crossref_primary_10_1002_mrm_29681
pubmed_primary_37125611
wiley_primary_10_1002_mrm_29681_MRM29681
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 86
2013; 69
2015; 73
2020; 84
2000; 44
2015; 74
2016; 76
2016; 75
2018; 80
2022; 87
2022; 88
2020; 223
2007; 58
2012; 30
2021; 54
2019; 81
1994; 104
2020; 73
2023; 271
1997; 37
2017; 77
1986; 5
2014; 59
2021; 85
2008; 60
2012; 21
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 69
  start-page: 382
  year: 2013
  end-page: 390
  article-title: Functional perfusion imaging using pseudocontinuous arterial spin labeling with low‐flip‐angle segmented 3D spiral readouts
  publication-title: Magn Reson Med
– volume: 87
  start-page: 207
  year: 2022
  end-page: 219
  article-title: Hybrid‐shimming and gradient adaptions for improved pseudo‐continuous arterial spin labeling at 7T
  publication-title: Magn Reson Med
– volume: 271
  year: 2023
  article-title: Test‐retest reliability of 3D velocity‐selective arterial spin labeling for detecting normal variations of cerebral blood flow
  publication-title: Neuroimage
– volume: 223
  year: 2020
  article-title: Rotated spiral RARE for high spatial and temporal resolution volumetric arterial spin labeling acquisition
  publication-title: Neuroimage
– volume: 44
  start-page: 491
  year: 2000
  end-page: 494
  article-title: Rapid method for deblurring spiral MR images
  publication-title: Magn Reson Med
– volume: 85
  start-page: 2723
  year: 2021
  end-page: 2734
  article-title: Ensuring both velocity and spatial responses robust to field inhomogeneities for velocity‐selective arterial spin labeling through dynamic phase‐cycling
  publication-title: Magn Reson Med
– volume: 88
  start-page: 2021
  year: 2022
  end-page: 2042
  article-title: Recent technical developments in ASL: a review of the state of the art
  publication-title: Magn Reson Med
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1391
  year: 2018
  end-page: 1401
  article-title: Controlling T blurring in 3D RARE arterial spin labeling acquisition through optimal combination of variable flip angles and k‐space filtering
  publication-title: Magn Reson Med
– volume: 74
  start-page: 694
  year: 2015
  end-page: 705
  article-title: Increased SNR efficiency in velocity selective arterial spin labeling using multiple velocity selective saturation modules (mm‐VSASL)
  publication-title: Magn Reson Med
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1134
  year: 2012
  end-page: 1142
  article-title: Point spread functions of the T2 decay in k‐space trajectories with long echo train
  publication-title: Magn Reson Imaging
– volume: 81
  start-page: 3544
  year: 2019
  end-page: 3554
  article-title: Cerebral blood volume mapping using Fourier‐transform‐based velocity‐selective saturation pulse trains
  publication-title: Magn Reson Med
– volume: 21
  start-page: 934
  year: 2012
  end-page: 945
  article-title: S : a spectral and spatial measure of local perceived sharpness in natural images
  publication-title: IEEE Trans Image Process
– volume: 37
  start-page: 176
  year: 1997
  end-page: 184
  article-title: The sensitivity of low flip angle RARE imaging
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 88
  start-page: 757
  year: 2022
  end-page: 769
  article-title: Ultrafast B1 mapping with RF‐prepared 3D FLASH acquisition: correcting the bias due to T ‐induced k‐space filtering effect
  publication-title: Magn Reson Med
– volume: 84
  start-page: 2512
  year: 2020
  end-page: 2522
  article-title: Improved velocity‐selective‐inversion arterial spin labeling for cerebral blood flow mapping with 3D acquisition
  publication-title: Magn Reson Med
– volume: 5
  start-page: 2
  year: 1986
  end-page: 7
  article-title: High‐speed spiral‐scan echo planar NMR imaging‐I
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 5559
  year: 2014
  end-page: 5573
  article-title: A variable flip angle‐based method for reducing blurring in 3D GRASE ASL
  publication-title: Phys Med Biol
– volume: 88
  start-page: 76
  year: 2022
  end-page: 88
  article-title: A revisit of the k‐space filtering effects of magnetization‐prepared 3D FLASH and balanced SSFP acquisitions: analytical characterization of the point spread functions
  publication-title: Magn Reson Imaging
– volume: 80
  start-page: 2475
  year: 2018
  end-page: 2484
  article-title: Accelerated 3D‐GRASE imaging improves quantitative multiple post labeling delay arterial spin labeling
  publication-title: Magn Reson Med
– volume: 37
  start-page: 569
  year: 1997
  end-page: 575
  article-title: Reduction of motion artifacts in cine MRI using variable‐density spiral trajectories
  publication-title: Magn Reson Med
– volume: 54
  start-page: 1053
  year: 2021
  end-page: 1065
  article-title: Multi‐parametric evaluation of cerebral hemodynamics in neonatal piglets using non‐contrast‐enhanced magnetic resonance imaging methods
  publication-title: J Magn Reson Imaging
– volume: 75
  start-page: 266
  year: 2016
  end-page: 273
  article-title: Arterial spin labeled perfusion imaging using three‐dimensional turbo spin echo with a distributed spiral‐in/out trajectory
  publication-title: Magn Reson Med
– volume: 81
  start-page: 1004
  year: 2019
  end-page: 1015
  article-title: Improved sensitivity and temporal resolution in perfusion FMRI using velocity selective inversion ASL
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1136
  year: 2016
  end-page: 1148
  article-title: Velocity‐selective‐inversion prepared arterial spin labeling: velocity‐selective‐inversion prepared ASL
  publication-title: Magn Reson Med
– volume: 88
  start-page: 1528
  year: 2022
  end-page: 1547
  article-title: Velocity‐selective arterial spin labeling perfusion MRI: a review of the state of the art and recommendations for clinical implementation
  publication-title: Magn Reson Med
– volume: 77
  start-page: 92
  year: 2017
  end-page: 101
  article-title: Quantitative measurement of cerebral blood volume using velocity‐selective pulse trains
  publication-title: Magn Reson Med
– volume: 104
  start-page: 1
  year: 1994
  end-page: 10
  article-title: WET, a T ‐ and B ‐insensitive water‐suppression method for in vivo localized H NMR spectroscopy
  publication-title: J Magn Reson B
– volume: 86
  start-page: 1420
  year: 2021
  end-page: 1433
  article-title: Three‐dimensional whole‐brain mapping of cerebral blood volume and venous cerebral blood volume using Fourier transform–based velocity‐selective pulse trains
  publication-title: Magn Reson Med
– volume: 73
  start-page: 138
  year: 2020
  end-page: 147
  article-title: Quantitative T2 mapping using accelerated 3D stack‐of‐spiral gradient echo readout
  publication-title: Magn Reson Imaging
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.29371
– ident: e_1_2_7_32_1
  doi: 10.1016/j.mri.2020.08.007
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.25462
– ident: e_1_2_7_7_1
  doi: 10.1002/mrm.28815
– ident: e_1_2_7_11_1
  doi: 10.1016/j.mri.2012.04.017
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.27668
– ident: e_1_2_7_20_1
  doi: 10.1002/mrm.26010
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neuroimage.2023.120039
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.28310
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.21391
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.24261
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.27118
– ident: e_1_2_7_23_1
  doi: 10.1006/jmrb.1994.1048
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.29381
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.1910370206
– ident: e_1_2_7_6_1
  doi: 10.1002/jmri.27638
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2020.117371
– ident: e_1_2_7_15_1
  doi: 10.1002/mrm.25645
– ident: e_1_2_7_8_1
  doi: 10.1109/TMI.1986.4307732
– ident: e_1_2_7_30_1
  doi: 10.1088/0031-9155/59/18/5559
– ident: e_1_2_7_5_1
  doi: 10.1002/mrm.28622
– ident: e_1_2_7_25_1
  doi: 10.1002/1522-2594(200009)44:3<491::AID-MRM22>3.0.CO;2-Z
– ident: e_1_2_7_2_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_7_26_1
  doi: 10.1002/mrm.27226
– ident: e_1_2_7_16_1
  doi: 10.1016/j.mri.2022.01.015
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.1910370416
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.28982
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.29247
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.27461
– ident: e_1_2_7_29_1
  doi: 10.1109/TIP.2011.2169974
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.26515
SSID ssj0009974
Score 2.5017557
Snippet Purpose The most‐used 3D acquisitions for ASL are gradient and spin echo (GRASE)– and stack‐of‐spiral (SOS)–based fast spin echo, which require multiple shots....
The most-used 3D acquisitions for ASL are gradient and spin echo (GRASE)- and stack-of-spiral (SOS)-based fast spin echo, which require multiple shots....
PurposeThe most‐used 3D acquisitions for ASL are gradient and spin echo (GRASE)– and stack‐of‐spiral (SOS)–based fast spin echo, which require multiple shots....
PURPOSEThe most-used 3D acquisitions for ASL are gradient and spin echo (GRASE)- and stack-of-spiral (SOS)-based fast spin echo, which require multiple shots....
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 939
SubjectTerms Acceleration
Blood flow
Blood volume
Blurring
Brain - blood supply
Brain Mapping
Cerebral blood flow
cerebral blood volume
Cerebrospinal fluid
Cerebrovascular Circulation - physiology
Contamination
Efficiency
Excitation
Flow mapping
Humans
Imaging, Three-Dimensional - methods
Perfusion
pseudo‐continuous ASL
Spin Labels
stack‐of‐spiral turbo FLASH
Temporal resolution
Velocity
velocity‐selective arterial spin labeling
Title Evaluation of 3D stack‐of‐spiral turbo FLASH acquisitions for pseudo‐continuous and velocity‐selective ASL–derived brain perfusion mapping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29681
https://www.ncbi.nlm.nih.gov/pubmed/37125611
https://www.proquest.com/docview/2830354936
https://search.proquest.com/docview/2808214090
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RS9xAEB7EYumLVKv2rJZt6YMvqUk2m2Tp06EeR_FK0Qq-hU12V6Recl5Mn_0Jgv2F_hJnNrmIFKEvIZDJLuzM7Hy7O_sNwBeEBGES5MaLfZN7aBTCk7lQXhrbxGJAMsqV6Zz8iMdn0fdzcb4E3xZ3YVp-iH7DjTzDzdfk4Cqv959IQ6fz6ddQxnTt-hXCmpRMOox-PjHuypaCOYloopHRglbID_f7X58Ho38Q5nPA6iLO6C2sdlCRDVvdrsGSKdfh9aQ7DF-HFZe9WdTv4O9Rz9nNKsv4IUPMV_x-uL2rLD7cYfoVw-CSV2x0PDwdM1VcN5dduhZD3MpmtWl0hcKUu35ZNlVTM1VqRilFBSJ1asaVzMHZkQ1Pjx9u7zUa7x-jWU5VJtjMzG1DW29sqojz4WIDzkZHvw7GXlduwSt4mgaeMCLxrcQI7-e46tApp02qOJHWKsmDwiQmkkpwy1VUaBvwwNA1WilsjLIICzZhuaxK8x6YwUUUD4RGI9CR5hgCo1QLrvzUiiS0egCfF-OezVpWjazlTw4zVE7mlDOAnYVGss6x6oz4yjiuaXk8gE_9Z3QJOudQpcHRQRnENUTk5Q9gq9Vk3wtPENHFATa-51T7cvfZ5GTiXrb_X_QDvKFy9G0O2g4s38wbs4ug5Sb_6IwTn4cn4SNMvO0p
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwEB5VRfxcKihQthQwiAOX0CS2k1jisoKuFthUiLZSb5ET26iCTZbdhnMfAQmesE_CjJNNVSEkLlGkTGzJM_Z8Ho-_AXiJkCBOo9IGSWjLAI1CBqqUOsgSlzp0SFb7Mp35YTI9ER9O5ekGvFnfhen4IYaAG80Mv17TBKeA9P4Va-h8OX8dq4TuXd8QRARHvM7i0xXlruo4mFNBK40Sa16hMN4ffr3ujf6CmNcRq3c5k7uw1WNFNu6Uew82bL0Nt_L-NHwbbvr0zWp1H34fDKTdrHGMv2MI-qqvlxc_G4cPf5r-jaF3KRs2mY2PpkxX39uzPl-LIXBli5VtTYPClLx-VrdNu2K6NoxyiiqE6tSMr5mDyyMbH80uL34ZtN4f1rCSykywhV26lmJvbK6J9OHLAziZHBy_nQZ9vYWg4lkWBdLKNHQKXXxY4rbDZJyiVEmqnNOKR5VNrVBacse1qIyLeGTpHq2SLkFZxAUPYbNuavsImMVdFI-kQSswwnD0gSIzkuswczKNnRnBi_W4F4uOVqPoCJTjApVTeOWMYG-tkaKfWauCCMs4bmp5MoLnw2ecE3TQoWuLo4MyCGyIySscwU6nyaEXniKkSyJs_JVX7b-7L_LPuX_Z_X_RZ3B7epzPitn7w4-P4Q7Vpu8S0vZg83zZ2ieIYM7Lp95Q_wBy1e-o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB4hUFEviEJ_ltLWoB56SUnin8TqaVVYbcsuQqVI3CIntivUbrLdJZx5BCR4Qp6kYycbhFAlLlGkTGzJM-P5bI-_AfiIkCBOotwEIjR5gEbBA5lzFaTCJhYDklG-TOf4SAxP2fczfrYEXxZ3YRp-iG7DzXmGn6-dg0-13bsnDZ3MJp9jKdy16xUmEDk4Wmd2fM-4KxsK5oS5iUayBa1QGO91vz4MRo8Q5kPA6iPOYB3WWqhI-o1uX8CSKTdgddwehm_AM5-9Wcw34fag4-wmlSV0nyDmK37fXV1XFh_-MP0PweCSV2Qw6p8MiSr-1udtuhZB3Eqmc1PrCoVd7vp5WVf1nKhSE5dSVCBSd834kjk4O5L-yeju6kaj8V4aTXJXZYJMzczWbuuNTJTjfPj1Ek4HBz-_DoO23EJQ0DSNAm54ElqJET7McdWhU-o2qUQirVWSRoVJDJOKU0sVK7SNaGTcNVrJrUBZhAWvYLmsSvMGiMFFFI24RiPQTFMMgSzVnKowtTyJre7B7mLcs2nDqpE1_MlxhsrJvHJ6sL3QSNY61jxzfGUU17RU9GCn-4wu4c45VGlwdFAGcY0j8gp78LrRZNcLTRDRiQgb_-RV-__us_GPsX_ZerroB1g93h9ko29Hh2_huatM36SjbcPyxaw27xC_XOTvvZ3-AwqX7tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+3D+stack%E2%80%90of%E2%80%90spiral+turbo+FLASH+acquisitions+for+pseudo%E2%80%90continuous+and+velocity%E2%80%90selective+ASL%E2%80%93derived+brain+perfusion+mapping&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Zhu%2C+Dan&rft.au=Xu%2C+Feng&rft.au=Liu%2C+Dapeng&rft.au=Hillis%2C+Argye+Elizabeth&rft.date=2023-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=90&rft.issue=3&rft.spage=939&rft.epage=949&rft_id=info:doi/10.1002%2Fmrm.29681&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon