A key cytosolic iron–sulfur cluster synthesis protein localizes to the mitochondrion of Toxoplasma gondii
Iron–sulfur (Fe‐S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe‐S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe‐S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosol...
Saved in:
Published in | Molecular microbiology Vol. 115; no. 5; pp. 968 - 985 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Iron–sulfur (Fe‐S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe‐S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe‐S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe‐S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe‐S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N‐terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe‐S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe‐S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe‐S cluster biosynthesis, and imply that the assembly of cytosolic Fe‐S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites.
Iron‐sulfur clusters have functioned as important prosthetic groups on proteins since life first evolved. Iron‐sulfur clusters that are synthesized in the cytosol of eukaryotes are assembled on a molecular scaffold that includes the protein NBP35. Here, we show that the NBP35 homolog from the apicomplexan parasite Toxoplasma is critical for parasite proliferation, but, surprisingly, that it localizes to the mitochondrion. Despite this mitochondrial localisation, we demonstrate that Toxoplasma NBP35 contributes to cytosolic iron‐sulfur cluster synthesis. |
---|---|
AbstractList | Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe-S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe-S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe-S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N-terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe-S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe-S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe-S cluster biosynthesis, and imply that the assembly of cytosolic Fe-S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites. Iron–sulfur (Fe‐S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe‐S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe‐S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe‐S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe‐S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii ( Tg NBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N‐terminal transmembrane domain. We demonstrate that Tg NBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe‐S cluster synthesis in the mitochondrion. Instead, we establish that Tg NBP35 is important for the biogenesis of cytosolic Fe‐S proteins. Our data are consistent with Tg NBP35 playing a central and specific role in cytosolic Fe‐S cluster biosynthesis, and imply that the assembly of cytosolic Fe‐S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites. Iron–sulfur (Fe‐S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe‐S cluster synthesis is essential for the survival of all eukaryotes. Independent Fe‐S cluster biosynthesis pathways occur in the mitochondrion, plastid, and cytosolic compartments of eukaryotic cells. Little is known about the cytosolic Fe‐S cluster biosynthesis in apicomplexan parasites, the causative agents of diseases such as malaria and toxoplasmosis. NBP35 serves as a key scaffold protein on which cytosolic Fe‐S clusters assemble, and has a cytosolic localization in most eukaryotes studied thus far. Unexpectedly, we found that the NBP35 homolog of the apicomplexan Toxoplasma gondii (TgNBP35) localizes to the outer mitochondrial membrane, with mitochondrial targeting mediated by an N‐terminal transmembrane domain. We demonstrate that TgNBP35 is critical for parasite proliferation, but that, despite its mitochondrial localization, it is not required for Fe‐S cluster synthesis in the mitochondrion. Instead, we establish that TgNBP35 is important for the biogenesis of cytosolic Fe‐S proteins. Our data are consistent with TgNBP35 playing a central and specific role in cytosolic Fe‐S cluster biosynthesis, and imply that the assembly of cytosolic Fe‐S clusters occurs on the cytosolic face of the outer mitochondrial membrane in these parasites. Iron‐sulfur clusters have functioned as important prosthetic groups on proteins since life first evolved. Iron‐sulfur clusters that are synthesized in the cytosol of eukaryotes are assembled on a molecular scaffold that includes the protein NBP35. Here, we show that the NBP35 homolog from the apicomplexan parasite Toxoplasma is critical for parasite proliferation, but, surprisingly, that it localizes to the mitochondrion. Despite this mitochondrial localisation, we demonstrate that Toxoplasma NBP35 contributes to cytosolic iron‐sulfur cluster synthesis. |
Author | Hayward, Jenni A. Lee, Jiwon Seidi, Azadeh Makota, F. Victor Dooren, Giel G. Aw, Yi Tong Vincent Rug, Melanie |
Author_xml | – sequence: 1 givenname: Yi Tong Vincent surname: Aw fullname: Aw, Yi Tong Vincent organization: Australian National University – sequence: 2 givenname: Azadeh surname: Seidi fullname: Seidi, Azadeh organization: Australian National University – sequence: 3 givenname: Jenni A. orcidid: 0000-0001-8228-8797 surname: Hayward fullname: Hayward, Jenni A. organization: Australian National University – sequence: 4 givenname: Jiwon surname: Lee fullname: Lee, Jiwon organization: Australian National University – sequence: 5 givenname: F. Victor surname: Makota fullname: Makota, F. Victor organization: Australian National University – sequence: 6 givenname: Melanie surname: Rug fullname: Rug, Melanie organization: Australian National University – sequence: 7 givenname: Giel G. orcidid: 0000-0003-2455-9821 surname: Dooren fullname: Dooren, Giel G. email: giel.vandooren@anu.edu.au organization: Australian National University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33222310$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kbFOHDEQhq0IFA5IkRdAlmhCsXe2Z-3zlQglBAlEQyQ6y-ezg8FrH_aukk3FO_CGPAkOBymQMs1IM58-jebfRVsxRYvQZ0qmtNas6_yUtoLTD2hCQfCGLbjcQhOy4KQBya530G4pt4RQIAI-oh0AxhhQMkF3x_jOjtiMfSopeIN9TvHp4bEMwQ0ZmzCU3mZcxtjf2OILXufUWx9xSEYH_8cW3Cdcd7jzfTI3Ka6yTxEnh6_S77QOunQa_6xj7_fRttOh2E-vfQ_9-Pb16uR7c355enZyfN4YkJI2TGhBJSO2lUzbVjjupCXcLJcOODDhiDSLOWgQ7YqDo3NqJGdUc1gtjNEM9tCXjbfeej_Y0qvOF2ND0NGmoSjWChBEMNJW9PAdepuGHOt1ivGWgRRA5pU62lAmp1KydWqdfafzqChRfxNQNQH1kkBlD16Nw7Kzq3_k28srMNsAv3yw4_9N6uLibKN8BhdMkyY |
CitedBy_id | crossref_primary_10_1098_rsob_230463 crossref_primary_10_1371_journal_ppat_1011430 crossref_primary_10_1016_j_mib_2021_07_016 crossref_primary_10_3390_ijms25052493 crossref_primary_10_1038_s41467_023_39436_y crossref_primary_10_1021_acs_langmuir_2c00964 crossref_primary_10_1016_j_ijbiomac_2023_127073 crossref_primary_10_1016_j_jbc_2022_102243 crossref_primary_10_1111_jeu_12906 |
Cites_doi | 10.1371/journal.ppat.1003227 10.1128/MCB.00545-08 10.1128/EC.00158-13 10.1371/journal.pone.0089718 10.1093/emboj/18.14.3981 10.1016/j.pt.2008.07.004 10.1074/jbc.M807303200 10.1074/jbc.RA119.011605 10.1016/B978-0-12-407705-8.00001-X 10.1128/EC.00027-14 10.1016/B978-0-12-815041-2.00020-7 10.1371/journal.pone.0067269 10.1083/jcb.93.1.97 10.1111/j.1432-1033.1995.tb20354.x 10.1016/S0020-7519(02)00022-X 10.1016/j.cell.2016.08.019 10.1046/j.1365-2958.2001.02588.x 10.1016/j.bbrc.2008.11.138 10.1038/nmeth.2089 10.1371/journal.ppat.1004074 10.1016/j.pt.2015.09.001 10.1038/nbt.2375 10.1515/hsz-2020-0117 10.1007/s007750050002 10.1016/j.ijpara.2011.05.006 10.1111/tra.12464 10.1371/journal.ppat.1003655 10.1093/molbev/mss205 10.1016/j.bbamcr.2008.04.013 10.1007/s13238-015-0134-8 10.1074/jbc.M116.725069 10.1016/j.tplants.2010.12.006 10.1111/febs.14159 10.1074/jbc.M115.667022 10.1016/j.molbiopara.2019.111204 10.1074/jbc.M111.328914 10.1016/0378-1119(96)00341-1 10.1038/nchembio872 10.1101/cshperspect.a011312 10.1038/sj.emboj.7600541 10.7554/eLife.17828 10.1073/pnas.0803862105 10.1073/pnas.0406447102 10.1111/j.1574-6976.2006.00027.x 10.1111/jeu.12663 10.1126/science.1131669 10.1016/j.chom.2020.09.011 10.1074/jbc.M113.491373 10.7554/eLife.38131 10.1038/nmicrobiol.2016.116 10.1038/srep42746 10.1074/jbc.M113.484329 10.1128/mBio.01114-14 10.1111/mmi.13487 10.1016/j.tcb.2013.11.005 10.1038/ncomms14455 10.1016/S0166-6851(03)00166-X 10.1371/journal.ppat.1002392 |
ContentType | Journal Article |
Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons Ltd. Copyright © 2021 John Wiley & Sons Ltd |
Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons Ltd. – notice: Copyright © 2021 John Wiley & Sons Ltd |
DBID | NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/mmi.14651 |
DatabaseName | PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 985 |
ExternalDocumentID | 10_1111_mmi_14651 33222310 MMI14651 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Research School of Biology – fundername: Australian Research Council funderid: DP110103144 – fundername: National Health and Medical Research Council funderid: GNT1182369 – fundername: Australian Research Council grantid: DP110103144 – fundername: National Health and Medical Research Council grantid: GNT1182369 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3881-26a61820e482ae46f5f8e05cbbf35326f08c973a364d53f171c8521a53d9cca23 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Wed Dec 04 04:55:40 EST 2024 Mon Dec 16 21:27:23 EST 2024 Fri Dec 06 04:42:23 EST 2024 Sat Sep 28 08:27:16 EDT 2024 Sat Aug 24 01:03:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Toxoplasma Apicomplexa iron-sulfur cluster mitochondria |
Language | English |
License | 2020 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3881-26a61820e482ae46f5f8e05cbbf35326f08c973a364d53f171c8521a53d9cca23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8228-8797 0000-0003-2455-9821 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mmi.14651 |
PMID | 33222310 |
PQID | 2542386307 |
PQPubID | 35968 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2463606204 proquest_journals_2542386307 crossref_primary_10_1111_mmi_14651 pubmed_primary_33222310 wiley_primary_10_1111_mmi_14651_MMI14651 |
PublicationCentury | 2000 |
PublicationDate | May 2021 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – sequence: 0 name: Blackwell Publishing Ltd |
References | 2017; 7 2017; 8 2006; 30 2012; 287 2000; 5 1982; 93 2015; 32 2013; 288 2016; 102 2020; 401 2014; 24 2008; 105 2011; 16 2013; 8 2013; 5 2001; 41 2013; 9 2005; 24 2018; 7 2014; 5 2015; 290 2020; 295 2005; 102 1999; 18 2008; 28 2008; 24 2014; 13 2017; 284 2007; 3 2014; 9 1996; 178 2019; 232 2009; 1793 2014; 10 2015; 6 2013; 83 2002; 32 2017; 170 2016; 166 2018; 65 2009; 378 2008; 283 2011; 7 2012; 30 2003; 130 2016; 5 2016; 1 2007; 315 2020 2013; 30 2020; 28 1995; 227 2011; 41 2017; 18 2016; 291 2012; 9 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Bushell E. (e_1_2_7_7_1) 2017; 170 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 13 start-page: 1360 year: 2014 end-page: 1370 article-title: Characterization of the chloroquine resistance transporter homologue in publication-title: Eukaryotic Cell – volume: 5 year: 2016 article-title: The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis publication-title: Elife – volume: 7 year: 2018 article-title: Elucidating the mitochondrial proteome of reveals the presence of a divergent cytochrome c oxidase publication-title: Elife – volume: 102 start-page: 3266 year: 2005 end-page: 3271 article-title: The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron‐sulfur protein assembly machinery publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 378 start-page: 810 year: 2009 end-page: 815 article-title: cytosolic Nbp35 homodimer can assemble both [2Fe‐2S] and [4Fe‐4S] clusters in two distinct domains publication-title: Biochemical and Biophysical Research Communications – volume: 227 start-page: 9 year: 1995 end-page: 18 article-title: Import and insertion of proteins into the mitochondrial outer membrane publication-title: European Journal of Biochemistry – volume: 102 start-page: 701 year: 2016 end-page: 714 article-title: Minimal cytosolic iron‐sulfur cluster assembly machinery of is partially associated with mitosomes publication-title: Molecular Microbiology – volume: 13 start-page: 143 year: 2014 end-page: 153 article-title: Evolution of the cytosolic iron‐sulfur cluster assembly machinery in species and other microbial eukaryotes publication-title: Eukaryotic Cell – volume: 288 start-page: 22163 year: 2013 end-page: 22173 article-title: Lipid, detergent, and Coomassie Blue G‐250 affect the migration of small membrane proteins in blue native gels: Mitochondrial carriers migrate as monomers not dimers publication-title: Journal of Biological Chemistry – volume: 83 start-page: 1 year: 2013 end-page: 92 article-title: Iron‐sulphur clusters, their biosynthesis, and biological functions in protozoan parasites publication-title: Advances in Parasitology – volume: 30 start-page: 596 year: 2006 end-page: 630 article-title: Metabolic maps and functions of the mitochondrion publication-title: FEMS Microbiology Reviews – volume: 3 start-page: 278 year: 2007 end-page: 286 article-title: The Cfd1‐Nbp35 complex acts as a scaffold for iron‐sulfur protein assembly in the yeast cytosol publication-title: Nature Chemical Biology – volume: 290 start-page: 23793 year: 2015 end-page: 23802 article-title: The yeast Nbp35‐Cfd1 cytosolic iron‐sulfur cluster scaffold is an ATPase publication-title: Journal of Biological Chemistry – volume: 9 year: 2013 article-title: Parasites FeS up: Iron‐sulfur cluster biogenesis in eukaryotic pathogens publication-title: PLoS Path – volume: 93 start-page: 97 year: 1982 end-page: 102 article-title: Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum publication-title: Journal of Cell Biology – volume: 178 start-page: 97 year: 1996 end-page: 106 article-title: NBP35 encodes an essential and evolutionary conserved protein in with homology to a superfamily of bacterial ATPases publication-title: Gene – volume: 8 year: 2013 article-title: Experimental genetics of NFU in the apicoplast iron‐sulfur cluster biogenesis pathway publication-title: PLoS One – volume: 16 start-page: 218 issue: 4 year: 2011 end-page: 226 article-title: Ancient and essential: the assembly of iron–sulfur clusters in plants publication-title: Trends in Plant Science – volume: 28 start-page: 752 year: 2020 end-page: 766 article-title: A comprehensive subcellular atlas of the proteome via hyperLOPIT provides spatial context for protein functions publication-title: Cell Host & Microbe – volume: 5 start-page: 2 year: 2000 end-page: 15 article-title: Iron‐sulfur proteins: ancient structures, still full of surprises publication-title: JBIC Journal of Biological Inorganic Chemistry – volume: 6 start-page: 194 year: 2015 end-page: 210 article-title: Essential role of the iron‐sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation publication-title: Protein & Cell – volume: 8 start-page: 14455 year: 2017 article-title: Cationic amino acid transporters play key roles in the survival and transmission of apicomplexan parasites publication-title: Nature Communications – volume: 1 start-page: 16116 year: 2016 article-title: The physiology and habitat of the last universal common ancestor publication-title: Nature Microbiology – volume: 10 year: 2014 article-title: The apical complex provides a regulated gateway for secretion of invasion factors in publication-title: PLoS Path – volume: 287 start-page: 12365 year: 2012 end-page: 12378 article-title: A bridging [4Fe‐4S] cluster and nucleotide binding are essential for function of the Cfd1‐Nbp35 complex as a scaffold in iron‐sulfur protein maturation publication-title: Journal of Biological Chemistry – volume: 41 start-page: 973 year: 2001 end-page: 981 article-title: Nifs and Sufs in malaria publication-title: Molecular Microbiology – volume: 41 start-page: 991 issue: 9 year: 2011 end-page: 999 article-title: Interaction between sulphur mobilisation proteins SufB and SufC: evidence for an iron‐sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum publication-title: International Journal for Parasitology – volume: 1793 start-page: 42 year: 2009 end-page: 51 article-title: Biogenesis of mitochondrial outer membrane proteins publication-title: Biochimica et Biophysica Acta (BBA) ‐ Molecular Cell Research – volume: 288 start-page: 25318 year: 2013 end-page: 25329 article-title: Elongator protein 3 (Elp3) lysine acetyltransferase is a tail‐anchored mitochondrial protein in publication-title: Journal of Biological Chemistry – volume: 295 start-page: 1539 year: 2020 end-page: 1550 article-title: Characterization of the apicoplast‐localized enzyme UroD in reveals a key role of the apicoplast in heme biosynthesis publication-title: Journal of Biological Chemistry – volume: 5 year: 2014 article-title: Efficient gene disruption in diverse strains of using CRISPR/CAS9 publication-title: MBio – volume: 232 start-page: 111204 year: 2019 article-title: Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans publication-title: Molecular and Biochemical Parasitology – volume: 5 start-page: a011312 year: 2013 article-title: The role of mitochondria in cellular iron‐sulfur protein biogenesis: mechanisms, connected processes, and diseases publication-title: Cold Spring Harbor Perspectives in Biology – volume: 170 start-page: e268 issue: 260–272 year: 2017 article-title: Functional profiling of a genome reveals an abundance of essential genes publication-title: Cell – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 284 start-page: 2629 year: 2017 end-page: 2648 article-title: [Fe‐S] cluster assembly in the apicoplast and its indispensability in mosquito stages of the malaria parasite publication-title: FEBS Journal – volume: 28 start-page: 5517 year: 2008 end-page: 5528 article-title: Human Nbp35 is essential for both cytosolic iron‐sulfur protein assembly and iron homeostasis publication-title: Molecular and Cellular Biology – volume: 32 start-page: 1207 year: 2002 end-page: 1217 article-title: Biogenesis of iron‐sulphur clusters in amitochondriate and apicomplexan protists publication-title: International Journal for Parasitology – volume: 291 start-page: 19335 year: 2016 end-page: 19350 article-title: The import of proteins into the mitochondrion of publication-title: Journal of Biological Chemistry – volume: 7 year: 2011 article-title: A systematic screen to discover and analyze apicoplast proteins identifies a conserved and essential protein import factor publication-title: PLoS Path – volume: 30 start-page: 1143 year: 2012 end-page: 1148 article-title: Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy publication-title: Nature Biotechnology – volume: 65 start-page: 913 year: 2018 end-page: 922 article-title: Localization of Fe‐S biosynthesis machinery in Mitosome publication-title: Journal of Eukaryotic Microbiology – volume: 32 start-page: 56 year: 2015 end-page: 70 article-title: Apicomplexan energy metabolism: Carbon source promiscuity and the quiescence hyperbole publication-title: Trends in Parasitology – volume: 9 year: 2013 article-title: The suf iron‐sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites publication-title: PLoS Path – volume: 18 start-page: 3981 year: 1999 end-page: 3989 article-title: The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins publication-title: EMBO Journal – volume: 105 start-page: 13574 year: 2008 end-page: 13579 article-title: Tic20 is essential for apicoplast protein import publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 315 start-page: 612 year: 2007 end-page: 617 article-title: Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions publication-title: Science – volume: 130 start-page: 155 year: 2003 end-page: 158 article-title: Targeting GFP to the malarial mitochondrion publication-title: Molecular and Biochemical Parasitology – volume: 283 start-page: 35797 year: 2008 end-page: 35804 article-title: The essential cytosolic iron‐sulfur protein Nbp35 acts without Cfd1 partner in the green lineage publication-title: Journal of Biological Chemistry – volume: 30 start-page: 123 year: 2013 end-page: 139 article-title: Alveolate mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of parasitism as a driver of change in apicomplexans publication-title: Molecular Biology and Evolution – volume: 166 start-page: 1423 year: 2016 end-page: 1435 article-title: A genome‐wide CRISPR screen in identifies essential apicomplexan genes publication-title: Cell – volume: 24 start-page: 589 year: 2005 end-page: 598 article-title: Biogenesis of cytosolic ribosomes requires the essential iron‐sulphur protein Rli1p and mitochondria publication-title: EMBO Journal – volume: 24 start-page: 468 year: 2008 end-page: 478 article-title: Apicomplexan mitochondrial metabolism: A story of gains, losses and retentions publication-title: Trends in Parasitology – start-page: 897 year: 2020 end-page: 940 – volume: 18 start-page: 149 year: 2017 end-page: 158 article-title: Targeting of tail‐anchored membrane proteins to subcellular organelles in publication-title: Traffic – volume: 24 start-page: 303 year: 2014 end-page: 312 article-title: Maturation of cytosolic and nuclear iron‐sulfur proteins publication-title: Trends in Cell Biology – volume: 401, start-page: 855 year: 2020 end-page: 876 article-title: From the discovery to molecular understanding of cellular iron‐sulfur protein biogenesis publication-title: Biological Chemistry – volume: 7 start-page: 42746 year: 2017 article-title: Mitochondrial behaviour throughout the lytic cycle of publication-title: Scientific Reports – volume: 9 year: 2014 article-title: Identification of vital and dispensable sulfur utilization factors in the apicoplast publication-title: PLoS One – ident: e_1_2_7_13_1 doi: 10.1371/journal.ppat.1003227 – ident: e_1_2_7_49_1 doi: 10.1128/MCB.00545-08 – ident: e_1_2_7_52_1 doi: 10.1128/EC.00158-13 – ident: e_1_2_7_19_1 doi: 10.1371/journal.pone.0089718 – ident: e_1_2_7_24_1 doi: 10.1093/emboj/18.14.3981 – ident: e_1_2_7_42_1 doi: 10.1016/j.pt.2008.07.004 – ident: e_1_2_7_8_1 doi: 10.1074/jbc.M807303200 – ident: e_1_2_7_51_1 doi: 10.1074/jbc.RA119.011605 – ident: e_1_2_7_2_1 doi: 10.1016/B978-0-12-407705-8.00001-X – ident: e_1_2_7_59_1 doi: 10.1128/EC.00027-14 – ident: e_1_2_7_21_1 doi: 10.1016/B978-0-12-815041-2.00020-7 – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0067269 – ident: e_1_2_7_15_1 doi: 10.1083/jcb.93.1.97 – ident: e_1_2_7_46_1 doi: 10.1111/j.1432-1033.1995.tb20354.x – ident: e_1_2_7_41_1 doi: 10.1016/S0020-7519(02)00022-X – ident: e_1_2_7_47_1 doi: 10.1016/j.cell.2016.08.019 – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-2958.2001.02588.x – ident: e_1_2_7_26_1 doi: 10.1016/j.bbrc.2008.11.138 – ident: e_1_2_7_40_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_7_23_1 doi: 10.1371/journal.ppat.1004074 – ident: e_1_2_7_22_1 doi: 10.1016/j.pt.2015.09.001 – ident: e_1_2_7_30_1 doi: 10.1038/nbt.2375 – ident: e_1_2_7_28_1 doi: 10.1515/hsz-2020-0117 – ident: e_1_2_7_5_1 doi: 10.1007/s007750050002 – ident: e_1_2_7_27_1 doi: 10.1016/j.ijpara.2011.05.006 – ident: e_1_2_7_36_1 doi: 10.1111/tra.12464 – ident: e_1_2_7_16_1 doi: 10.1371/journal.ppat.1003655 – ident: e_1_2_7_12_1 doi: 10.1093/molbev/mss205 – ident: e_1_2_7_58_1 doi: 10.1016/j.bbamcr.2008.04.013 – ident: e_1_2_7_29_1 doi: 10.1007/s13238-015-0134-8 – ident: e_1_2_7_55_1 doi: 10.1074/jbc.M116.725069 – ident: e_1_2_7_3_1 doi: 10.1016/j.tplants.2010.12.006 – ident: e_1_2_7_10_1 doi: 10.1111/febs.14159 – ident: e_1_2_7_9_1 doi: 10.1074/jbc.M115.667022 – ident: e_1_2_7_20_1 doi: 10.1016/j.molbiopara.2019.111204 – ident: e_1_2_7_33_1 doi: 10.1074/jbc.M111.328914 – ident: e_1_2_7_57_1 doi: 10.1016/0378-1119(96)00341-1 – ident: e_1_2_7_34_1 doi: 10.1038/nchembio872 – ident: e_1_2_7_48_1 doi: 10.1101/cshperspect.a011312 – ident: e_1_2_7_25_1 doi: 10.1038/sj.emboj.7600541 – ident: e_1_2_7_56_1 doi: 10.7554/eLife.17828 – ident: e_1_2_7_54_1 doi: 10.1073/pnas.0803862105 – ident: e_1_2_7_17_1 doi: 10.1073/pnas.0406447102 – ident: e_1_2_7_53_1 doi: 10.1111/j.1574-6976.2006.00027.x – ident: e_1_2_7_31_1 doi: 10.1111/jeu.12663 – ident: e_1_2_7_6_1 doi: 10.1126/science.1131669 – ident: e_1_2_7_4_1 doi: 10.1016/j.chom.2020.09.011 – ident: e_1_2_7_50_1 doi: 10.1074/jbc.M113.491373 – ident: e_1_2_7_43_1 doi: 10.7554/eLife.38131 – volume: 170 start-page: e268 issue: 260 year: 2017 ident: e_1_2_7_7_1 article-title: Functional profiling of a Plasmodium genome reveals an abundance of essential genes publication-title: Cell contributor: fullname: Bushell E. – ident: e_1_2_7_60_1 doi: 10.1038/nmicrobiol.2016.116 – ident: e_1_2_7_35_1 doi: 10.1038/srep42746 – ident: e_1_2_7_11_1 doi: 10.1074/jbc.M113.484329 – ident: e_1_2_7_45_1 doi: 10.1128/mBio.01114-14 – ident: e_1_2_7_37_1 doi: 10.1111/mmi.13487 – ident: e_1_2_7_32_1 doi: 10.1016/j.tcb.2013.11.005 – ident: e_1_2_7_38_1 doi: 10.1038/ncomms14455 – ident: e_1_2_7_39_1 doi: 10.1016/S0166-6851(03)00166-X – ident: e_1_2_7_44_1 doi: 10.1371/journal.ppat.1002392 |
SSID | ssj0013063 |
Score | 2.4791298 |
Snippet | Iron–sulfur (Fe‐S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe‐S cluster synthesis is... Iron-sulfur (Fe-S) clusters are prosthetic groups on proteins that function in a range of enzymatic and electron transfer reactions. Fe-S cluster synthesis is... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 968 |
SubjectTerms | Apicomplexa Biosynthesis Chemical synthesis Clusters Electron transfer Eukaryotes Homology Iron iron–sulfur cluster Localization Malaria Membranes Mitochondria Parasites Prostheses Prosthetic groups Protein biosynthesis Proteins Sulfur Toxoplasma Toxoplasma gondii Toxoplasmosis Vector-borne diseases |
Title | A key cytosolic iron–sulfur cluster synthesis protein localizes to the mitochondrion of Toxoplasma gondii |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmmi.14651 https://www.ncbi.nlm.nih.gov/pubmed/33222310 https://www.proquest.com/docview/2542386307 https://search.proquest.com/docview/2463606204 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-UwFD6IMOBmxlHHqaMSBxduKrdNm7a4Et_CnYUo3MVASfMYit5Wblvwupr_4D_0l3iStlcdEWQ2pTQJSXMe-ZKcfAHYFppLFTHhou9nbkA5d7nPUCC-TAbCMMUKs94x_MVOr4LzUTiag73-LEzLDzFbcDOWYf21MXCeVS-MfDzOjZnb49MejUw43-GF_7yD0N2iloSGP9YfdaxCJopnVvL1WPQGYL7Gq3bAOf4Cv_umtnEm17tNne2K-39YHP_zXxbhcwdEyX6rOV9hThVL8Km9mnK6DNf7BM2biGldVoY6mJjjcI9_H6rmRjcTIm4aw7BAqmmBCLLKK2IJH_KC2MExv1cVqUuCaWSMPgN9bCEnqAKk1OSyvCtvEbSPOfmDn_N8Ba6Ojy4PTt3uYgZX0Dj2XJ9xZojfVRD7XAVMhzpWg1BkmaYh4kE9iEUSUU5ZIEOqvcgTMcIEHlKZoMb49BvMF2WhvgPRNBlIlknJhQq40rEnIuphsSjjsRTMgZ-9iNLbln8j7ect2Gup7TUH1nvhpZ0JVinOfBGOMPRhDmzNktF4zI4IL1TZYB5Ll2Yo-R1YbYU-q4WaPSgEvw7sWNG9X306HJ7Zl7WPZ_0BC76JjrGhk-swX08atYHwps42rR7j82TkPQEJ6vkO |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qihBseD9SChjEgk2qSZw4icSmAqopdLpAU2k2KHL8QFE7STVJpE5X_AN_yJdwr5MMFISE2EWxLSe-PtfH9vUxwCtlpTaJUD76fuFHXEpfhgINEupsokgpVtF6x-xYTE-iD4t4sQVvxrMwvT7EZsGNkOH8NQGcFqR_QflyWRLO6fz0NYR7QAFd7z6FP_cQhnvUspgUZMPFoCtEcTyboldHoz8o5lXG6oacg9vwefzYPtLkdK9riz11-ZuO4__-zR24NXBRtt93nruwZap7cL2_nXJ9H073GSKcqXVbN6QezOhE3Pev35ruzHYrps46EllgzbpCEtmUDXOaD2XF3PhYXpqGtTXDNLZEt4FuttIr7AWstmxeX9TnyNuXkn3B12X5AE4O3s_fTv3hbgZf8TQN_FBIQdrvJkpDaSJhY5uaSayKwvIYKaGdpCpLuOQi0jG3QRKoFJmCjLnOsNOE_CFsV3VlHgOzPJtoUWgtlYmksWmgEh5gsaSQqVbCg5ejjfLzXoIjH6cu2Gq5azUPdkfr5QMKmxwnv8hIBLoxD15skhE_tCkiK1N3mMcpppEqvwePeqtvauG0DYX814PXznZ_rz6fzQ7dw86_Z30ON6bz2VF-dHj88QncDClYxkVS7sJ2u-rMU2Q7bfHMdeofuiv8Pg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qiorYAOVRQksxiAWbVBM7cRKxqiijFpgKoVaaBVLk-IGidpLRJJGYrviH_iFfwrWTDG1RJcQuim058X342Pf6GOCNNELpmEsffT_3QyaELyhHgVCVjqRlipV2v2NyzA9Pw4_TaLoG74azMB0_xGrDzVqG89fWwOfKXDHy2aywZm6PT98JOU0tcf7BV_onhNBfo5ZGlkCWTntaIZvGs2p6fTL6C2FeB6xuxhk_gG_Dt3aJJmd7bZPvyYsbNI7_-TMP4X6PRMl-pzqbsKbLR7DR3U25fAxn-wTtm8hlU9WWO5jY83C_fl7W7blpF0Set5ZigdTLEiFkXdTEMT4UJXGzY3Gha9JUBMvIDJ0GOtlSLVAHSGXISfWjmiNqnwnyHV8XxRM4HX84eX_o9zcz-JIlSeBTLrhlftdhQoUOuYlMokeRzHPDIgSEZpTINGaC8VBFzARxIBPECSJiKkWVoewprJdVqZ8BMSwdKZ4rJaQOhTZJIGMWYLM4F4mS3IPXg4iyeUfAkQ0LFxy1zI2aBzuD8LLeBusMl76IRzg6MQ9erYrRemxIRJS6arGO40uznPwebHVCX_XCbBAK0a8Hb53obu8-m0yO3MPzf6_6Eu5-ORhnn4-OP23DPWozZVwa5Q6sN4tWv0Co0-S7TqV_A9T0-u0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+key+cytosolic+iron-sulfur+cluster+synthesis+protein+localizes+to+the+mitochondrion+of+Toxoplasma+gondii&rft.jtitle=Molecular+microbiology&rft.au=Aw%2C+Yi+Tong+Vincent&rft.au=Seidi%2C+Azadeh&rft.au=Hayward%2C+Jenni+A&rft.au=Lee%2C+Jiwon&rft.date=2021-05-01&rft.eissn=1365-2958&rft.volume=115&rft.issue=5&rft.spage=968&rft.epage=985&rft_id=info:doi/10.1111%2Fmmi.14651&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |