Cerebrospinal fluid pulse wave velocity measurements: In vitro and in vivo evaluation of a novel multiband cine phase‐contrast MRI sequence

Purpose Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse w...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 1; pp. 197 - 208
Main Authors Sonnabend, Kristina, Brinker, Gerrit, Maintz, David, Bunck, Alexander C., Weiss, Kilian
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase‐contrast MRI sequence and a foot‐to‐foot algorithm. Methods We used computational simulations to estimate the accuracy of the MRI acquisition and transit‐time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting. Results Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square‐root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s). Conclusion This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase‐contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
AbstractList Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase-contrast MRI sequence and a foot-to-foot algorithm.PURPOSEIntracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase-contrast MRI sequence and a foot-to-foot algorithm.We used computational simulations to estimate the accuracy of the MRI acquisition and transit-time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting.METHODSWe used computational simulations to estimate the accuracy of the MRI acquisition and transit-time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting.Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square-root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s).RESULTSSimulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square-root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s).This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase-contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.CONCLUSIONThis study evaluates the feasibility of CSF PWV measurements using a multiband cine phase-contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase-contrast MRI sequence and a foot-to-foot algorithm. We used computational simulations to estimate the accuracy of the MRI acquisition and transit-time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting. Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square-root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s). This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase-contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
Click here for author‐reader discussions
PurposeIntracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase‐contrast MRI sequence and a foot‐to‐foot algorithm.MethodsWe used computational simulations to estimate the accuracy of the MRI acquisition and transit‐time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting.ResultsSimulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square‐root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s).ConclusionThis study evaluates the feasibility of CSF PWV measurements using a multiband cine phase‐contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
Purpose Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase‐contrast MRI sequence and a foot‐to‐foot algorithm. Methods We used computational simulations to estimate the accuracy of the MRI acquisition and transit‐time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting. Results Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square‐root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s). Conclusion This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase‐contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
Author Weiss, Kilian
Sonnabend, Kristina
Brinker, Gerrit
Bunck, Alexander C.
Maintz, David
Author_xml – sequence: 1
  givenname: Kristina
  orcidid: 0000-0003-3064-0247
  surname: Sonnabend
  fullname: Sonnabend, Kristina
  email: kristina.sonnabend@uk-koeln.de
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne
– sequence: 2
  givenname: Gerrit
  surname: Brinker
  fullname: Brinker, Gerrit
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne
– sequence: 3
  givenname: David
  surname: Maintz
  fullname: Maintz, David
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne
– sequence: 4
  givenname: Alexander C.
  orcidid: 0000-0003-0986-0042
  surname: Bunck
  fullname: Bunck, Alexander C.
  organization: University of Cologne, Faculty of Medicine and University Hospital Cologne
– sequence: 5
  givenname: Kilian
  orcidid: 0000-0003-4295-4585
  surname: Weiss
  fullname: Weiss, Kilian
  organization: Philips GmbH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32783240$$D View this record in MEDLINE/PubMed
BookMark eNp90cuKFDEUBuAgI07P6MIXkIAbXdRMrlWJO2m8NEwjDLouUlUnmCGVtElVDb3zBQSf0ScxPT26GNBVCHznHPj_M3QSYgCEnlNyQQlhl2MaL5gSnDxCKyoZq5jU4gStSCNIxakWp-gs5xtCiNaNeIJOOWsUZ4Ks0I81JOhSzDsXjMfWz27Au9lnwLdmAbyAj72b9ngEk-cEI4Qpv8GbgBc3pYhNGLA7fJaIYTF-NpOLAUeLDQ6xTONx9pPrDq53AfDuq8nw6_vPPoYpmTzh7fUGZ_g2Q-jhKXpsTbn97P49R1_ev_u8_lhdffqwWb-9qnquFKmshYaohvGuNoqCkoT2WkOtldVyqLmpCaOGGynJYIURddPxQQ5S2r4mprb8HL067t2lWC7nqR1d7sF7EyDOuWWCc8a1UHWhLx_QmzinktVBSUoJV1wX9eJezd0IQ7tLbjRp3_4JuoDXR9CXrHMC-5dQ0h5KbEuJ7V2JxV4-sKWBu1xLYs7_b-LWedj_e3W7vd4eJ34DZZavdw
CitedBy_id crossref_primary_10_1038_s41598_023_43799_z
crossref_primary_10_1155_2021_3739045
crossref_primary_10_1186_s12987_024_00595_9
crossref_primary_10_1016_j_bas_2025_104211
crossref_primary_10_1063_5_0150158
crossref_primary_10_1016_j_jconrel_2023_10_024
crossref_primary_10_2147_MDER_S498589
crossref_primary_10_1186_s12987_022_00401_4
Cites_doi 10.3171/jns.1983.59.5.0817
10.1186/s12872-016-0292-5
10.1002/jmri.25591
10.1002/mrm.25897
10.1016/0141-5425(92)90060-X
10.3171/jns.1997.87.5.0687
10.1002/mrm.27752
10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
10.1186/s12872-016-0224-4
10.3171/jns.1975.43.5.0523
10.1007/3-211-32318-X_62
10.1002/andp.18782411206
10.1002/jmri.20227
10.1016/j.neuroimage.2015.07.073
10.1186/s12968-017-0341-y
10.1186/s12987-019-0129-6
10.1098/rspb.1922.0022
10.1097/00006123-200111000-00028
10.1148/radiology.217.3.r00dc42877
10.1186/1532-429X-14-77
10.1002/jmri.20999
10.1002/mrm.20401
10.1002/mrm.20787
10.1109/TBME.2008.2011647
10.1016/0141-5425(79)90010-4
10.1590/S0004-282X1997000200003
10.1115/1.2073687
10.1186/s12987-019-0164-3
10.1523/JNEUROSCI.3246-14.2015
10.1161/01.CIR.72.6.1257
10.1002/jmri.1880050604
10.3171/jns.2005.103.1.0046
10.1136/jcp.2007.047175
10.1007/s10439-013-0854-y
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
Copyright Wiley Subscription Services, Inc. Jan 2021
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine
– notice: 2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: Copyright Wiley Subscription Services, Inc. Jan 2021
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28430
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 208
ExternalDocumentID 32783240
10_1002_mrm_28430
MRM28430
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3880-ffe708723b6a81e8501c99e698f95d63a6021a3a550df4a467b3d5d55fc60a6f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 23:31:35 EDT 2025
Fri Jul 25 12:05:40 EDT 2025
Thu Apr 03 07:02:17 EDT 2025
Tue Jul 01 04:26:57 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Jan 22 16:33:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords phase-contrast MRI
normal pressure hydrocephalus
pulse wave velocity
intracranial compliance
cerebrospinal fluid
Language English
License Attribution
2020 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-ffe708723b6a81e8501c99e698f95d63a6021a3a550df4a467b3d5d55fc60a6f3
Notes Alexander C. Bunck and Kilian Weiss contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0986-0042
0000-0003-4295-4585
0000-0003-3064-0247
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28430
PMID 32783240
PQID 2451103839
PQPubID 1016391
PageCount 12
ParticipantIDs proquest_miscellaneous_2433239486
proquest_journals_2451103839
pubmed_primary_32783240
crossref_primary_10_1002_mrm_28430
crossref_citationtrail_10_1002_mrm_28430
wiley_primary_10_1002_mrm_28430_MRM28430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 35
1997; 87
2006; 55
2015; 122
2000; 217
1922; 93
2017; 46
2013; 41
2020; 17
2019; 16
2016; 75
2005; 21
2001; 49
1992; 14
2012; 14
1983; 59
2016; 16
1995; 5
1878
2009; 56
2019; 82
1997; 55
2020
2005; 103
1878; 241
2000; 11
2005; 127
2005; 95
2005; 53
2017; 19
1979; 1
1975; 43
1985; 72
2008; 61
2007; 26
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Isebree MA (e_1_2_8_11_1) 1878
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
Sonnabend K (e_1_2_8_28_1) 2020
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 241
  start-page: 525
  year: 1878
  end-page: 542
  article-title: Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren
  publication-title: Ann Phys
– volume: 59
  start-page: 817
  year: 1983
  end-page: 821
  article-title: Analysis of the cerebrospinal fluid pulse wave in intracranial pressure
  publication-title: J Neurosurg
– volume: 19
  start-page: 32
  year: 2017
  article-title: Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 9
  year: 2019
  article-title: Cerebrospinal fluid dynamics and intracranial pressure elevation in neurological diseases
  publication-title: Fluids Barriers CNS
– volume: 95
  start-page: 303
  year: 2005
  end-page: 306
  article-title: Non‐invasive measurement of intracranial compliance using cine MRI in normal pressure hydrocephalus
  publication-title: Acta Neurochir Suppl
– volume: 103
  start-page: 46
  year: 2005
  end-page: 52
  article-title: Magnetic resonance imaging‐based measurements of cerebrospinal fluid and blood flow as indicators of intracranial compliance in patients with Chiari malformation
  publication-title: J Neurosurg
– volume: 217
  start-page: 877
  year: 2000
  end-page: 885
  article-title: MR‐intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study
  publication-title: Radiology
– volume: 21
  start-page: 53
  year: 2005
  end-page: 58
  article-title: Feasibility of aortic pulse pressure and pressure wave velocity MRI measurement in young adults
  publication-title: J Magn Reson Imaging
– volume: 26
  start-page: 274
  year: 2007
  end-page: 278
  article-title: Noninvasive MRI assessment of intracranial compliance in idiopathic normal pressure hydrocephalus
  publication-title: J Magn Reson Imaging
– volume: 14
  start-page: 250
  year: 1992
  end-page: 256
  article-title: Non‐invasive Doppler ultrasound technique for the in vivo assessment of aortic compliance
  publication-title: J Biomed Eng
– volume: 41
  start-page: 2617
  year: 2013
  end-page: 2629
  article-title: A technical assessment of pulse wave velocity algorithms applied to non‐invasive arterial waveforms
  publication-title: Ann Biomed Eng
– volume: 35
  start-page: 2485
  year: 2015
  end-page: 2491
  article-title: Inspiration is the major regulator of human CSF flow
  publication-title: J Neurosci
– year: 1878
– volume: 16
  start-page: 110
  year: 2016
  article-title: Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase‐contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry
  publication-title: BMC Cardiovasc Disord
– volume: 1
  start-page: 50
  year: 1979
  end-page: 54
  article-title: Errors in velocity measurement by the Pitot principle in fluids with slowly propagated pressure waves
  publication-title: J Biomed Eng
– volume: 127
  start-page: 1110
  year: 2005
  end-page: 1120
  article-title: Syringomyelia hydrodynamics: an in vitro study based on in vivo measurements
  publication-title: J Biomech Eng
– volume: 11
  start-page: 438
  year: 2000
  end-page: 444
  article-title: Detection of a relation between respiration and CSF pulsation with an echoplanar technique
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 523
  year: 1975
  end-page: 534
  article-title: Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system
  publication-title: J Neurosurg
– volume: 14
  start-page: 77
  year: 2012
  article-title: Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross‐sectional study
  publication-title: J Cardiovasc Magn Reson
– volume: 16
  start-page: 50
  year: 2016
  article-title: Measurement of pulse wave velocity in normal ageing: comparison of Vicorder and magnetic resonance phase contrast imaging
  publication-title: BMC Cardiovasc Disord
– volume: 17
  start-page: 4
  year: 2020
  article-title: Non‐invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients
  publication-title: Fluids Barriers CNS
– volume: 55
  start-page: 179
  year: 1997
  end-page: 185
  article-title: The predictive value of cerebrospinal fluid tap‐test in normal pressure hydrocephalus
  publication-title: Arq Neuropsiquiatr
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– volume: 46
  start-page: 431
  year: 2017
  end-page: 439
  article-title: Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real‐time phase‐contrast MRI
  publication-title: J Magn Reson Imaging
– volume: 82
  start-page: 658
  year: 2019
  end-page: 670
  article-title: Assessing test‐retest reliability of phase contrast MRI for measuring cerebrospinal fluid and cerebral blood flow dynamics
  publication-title: Magn Reson Med
– volume: 61
  start-page: 419
  year: 2008
  end-page: 425
  article-title: What is a significant difference between sequential laboratory results?
  publication-title: J Clin Pathol
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging
  publication-title: Magn Reson Med
– volume: 5
  start-page: 635
  year: 1995
  end-page: 639
  article-title: Measurement of regional aortic compliance by MR imaging: a study of reproducibility
  publication-title: J Magn Reson Imaging
– volume: 122
  start-page: 281
  year: 2015
  end-page: 287
  article-title: Dynamics of respiratory and cardiac CSF motion revealed with real‐time simultaneous multi‐slice EPI velocity phase contrast imaging
  publication-title: NeuroImage
– volume: 49
  start-page: 1166
  year: 2001
  end-page: 1184
  article-title: Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome
  publication-title: Neurosurgery
– year: 2020
– volume: 87
  start-page: 687
  year: 1997
  end-page: 693
  article-title: Dutch normal‐pressure hydrocephalus study: prediction of outcome after shunting by resistance to outflow of cerebrospinal fluid
  publication-title: J Neurosurg
– volume: 72
  start-page: 1257
  year: 1985
  end-page: 1269
  article-title: Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures
  publication-title: Circulation
– volume: 93
  start-page: 298
  year: 1922
  end-page: 306
  article-title: The velocity of the pulse wave in man
  publication-title: Proc Royal Soc B
– volume: 56
  start-page: 1765
  year: 2009
  end-page: 1768
  article-title: MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal
  publication-title: IEEE Trans Biomed Eng
– volume: 75
  start-page: 63
  year: 2016
  end-page: 81
  article-title: Simultaneous multislice (SMS) imaging techniques
  publication-title: Magn Reson Med
– ident: e_1_2_8_8_1
  doi: 10.3171/jns.1983.59.5.0817
– ident: e_1_2_8_29_1
  doi: 10.1186/s12872-016-0292-5
– ident: e_1_2_8_24_1
  doi: 10.1002/jmri.25591
– volume-title: ISMRM & SMRT Virtual Conference & Exhibition
  year: 2020
  ident: e_1_2_8_28_1
– ident: e_1_2_8_27_1
  doi: 10.1002/mrm.25897
– ident: e_1_2_8_14_1
  doi: 10.1016/0141-5425(92)90060-X
– ident: e_1_2_8_9_1
  doi: 10.3171/jns.1997.87.5.0687
– ident: e_1_2_8_37_1
  doi: 10.1002/mrm.27752
– ident: e_1_2_8_22_1
  doi: 10.1002/(SICI)1522-2586(200004)11:4<438::AID-JMRI12>3.0.CO;2-O
– ident: e_1_2_8_34_1
  doi: 10.1186/s12872-016-0224-4
– ident: e_1_2_8_7_1
  doi: 10.3171/jns.1975.43.5.0523
– ident: e_1_2_8_3_1
  doi: 10.1007/3-211-32318-X_62
– ident: e_1_2_8_12_1
  doi: 10.1002/andp.18782411206
– ident: e_1_2_8_16_1
  doi: 10.1002/jmri.20227
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2015.07.073
– ident: e_1_2_8_36_1
  doi: 10.1186/s12968-017-0341-y
– ident: e_1_2_8_2_1
  doi: 10.1186/s12987-019-0129-6
– ident: e_1_2_8_13_1
  doi: 10.1098/rspb.1922.0022
– ident: e_1_2_8_6_1
  doi: 10.1097/00006123-200111000-00028
– volume-title: Die Pulscurve
  year: 1878
  ident: e_1_2_8_11_1
– ident: e_1_2_8_10_1
  doi: 10.1148/radiology.217.3.r00dc42877
– ident: e_1_2_8_20_1
  doi: 10.1186/1532-429X-14-77
– ident: e_1_2_8_35_1
  doi: 10.1002/jmri.20999
– ident: e_1_2_8_25_1
  doi: 10.1002/mrm.20401
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.20787
– ident: e_1_2_8_17_1
  doi: 10.1109/TBME.2008.2011647
– ident: e_1_2_8_32_1
  doi: 10.1016/0141-5425(79)90010-4
– ident: e_1_2_8_5_1
  doi: 10.1590/S0004-282X1997000200003
– ident: e_1_2_8_33_1
  doi: 10.1115/1.2073687
– ident: e_1_2_8_18_1
  doi: 10.1186/s12987-019-0164-3
– ident: e_1_2_8_21_1
  doi: 10.1523/JNEUROSCI.3246-14.2015
– ident: e_1_2_8_19_1
  doi: 10.1161/01.CIR.72.6.1257
– ident: e_1_2_8_15_1
  doi: 10.1002/jmri.1880050604
– ident: e_1_2_8_4_1
  doi: 10.3171/jns.2005.103.1.0046
– ident: e_1_2_8_30_1
  doi: 10.1136/jcp.2007.047175
– ident: e_1_2_8_31_1
  doi: 10.1007/s10439-013-0854-y
SSID ssj0009974
Score 2.3994663
Snippet Purpose Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal...
Click here for author‐reader discussions
Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure...
PurposeIntracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 197
SubjectTerms Algorithms
Cerebrospinal fluid
Cerebrospinal Fluid - diagnostic imaging
Communication
Compliance
Computer applications
Controlled conditions
Evaluation
Feasibility studies
Feet
Humans
Hydrocephalus
Hydrocephalus, Normal Pressure - diagnostic imaging
In vivo methods and tests
intracranial compliance
Magnetic Resonance Imaging
Magnetic Resonance Imaging, Cine
normal pressure hydrocephalus
Patients
phase‐contrast MRI
Pressure
Pulse Wave Analysis
pulse wave velocity
Reproducibility
Reproducibility of Results
Surgery
Velocity
Wave velocity
Title Cerebrospinal fluid pulse wave velocity measurements: In vitro and in vivo evaluation of a novel multiband cine phase‐contrast MRI sequence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28430
https://www.ncbi.nlm.nih.gov/pubmed/32783240
https://www.proquest.com/docview/2451103839
https://www.proquest.com/docview/2433239486
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSiAuBcproVQGceCSbRo7LzihiqpFCkIrKvWAFNmOLVZ0k9Um2Uqc-ANI_EZ-CTPOY1UeEuKWKOPYSWY839iTbwCehzoWRaGUZ1MTecIItLlQol3xOIxl4gvl6qdk76KTM_H2PDzfglfDvzAdP8S44EaW4eZrMnCp6oMNaehitZji3MopXqdcLQJEsw11VJp2DMyxoHkmFQOrkB8cjC2v-qLfAOZVvOoczvEt-DgMtcsz-TxtGzXVX35hcfzPZ7kNOz0QZa87zbkDW6bchRtZv9W-C9ddbqiu78K3I7PCyJkKjFALe9HOC7Zs0aeyS7k2jLKONIJ5ttisN9Yv2WnJ1vNmVTFZFmxOJ-uKbcjFWWWZZGWFrZnLalQkR32z5Sd0rT--fndp9LJuWDY7ZUPO9z04O37z4ejE66s4eJqIZjxrTewnccBVJJNDk4T-oU5RMdLEpmERcRkhzJBcYqhUWCFx4la8CIswtDryZWT5fdguq9I8BJboIJAIiZLCxELibbg1qbEyQAfrK2Mm8GL4nrnuKc6p0sZF3pEzBzm-6Ny96Ak8G0WXHa_Hn4T2BqXIe9Ou84AY3XwM7NMJPB0vo1HSTossTdWSDOdUcz6JJvCgU6axF061TRBH4WCdSvy9-zybZe7g0b-LPoabAWXduEWiPdhuVq15grCpUftwLRDv952V_ARfcRZM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRTwuPAqFhQIGceCSbRrHeVRcUEW1C00Pq1bqBUV2YosV3WS1mywSJ_4AUn9jf0lnnMeqPCTELVHGsZPM25NvAN6ILPTzXCnHxDpwfO2jzAmJcsVDEcrI9ZXtn5IcB6NT_-OZONuAd92_MA0-RJ9wI8mw-poEnBLSu2vU0NliNkTlyjFgv0EdvW1ANVmDR8Vxg8Ec-qRpYr_DFXK93X7odWv0m4t53WO1JufwHnzuFttUmnwd1pUaZt9_wXH836e5D3dbX5S9b5jnAWzoYgtuJe1u-xbctOWh2fIh_DzQCwyeqccIjTDn9TRn8xrNKvsmV5pR4VGG_jybrVOOy302LthqWi1KJoucTelkVbI1vjgrDZOsKHE0s4WNiuhobjb_gtb18seFraSXy4olkzHryr4fwenhh5ODkdM2cnAywppxjNGhG4UeV4GM9nQk3L0sRt6IIxOLPOAyQE9DconRUm58ibpb8VzkQpgscGVg-DZsFmWhnwCLMs-T6BVFuQ59ibfhRsfaSA9trKu0HsDb7oOmWYtyTs02ztMGn9lL8UWn9kUP4HVPOm-gPf5EtNNxRdpK9zL1CNTNxdg-HsCr_jLKJW22yEKXNdFwTm3no2AAjxtu6mfh1N4EXSlcrOWJv0-fJpPEHjz9d9KXcHt0khylR-PjT8_gjkdFODZntAOb1aLWz9GLqtQLKyxXF_gZkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceJTXQgGDOHDJNo0dx4ETall1gVRoRaUekCIntsWKbrLaTRaJE3-gUn9jf0nHzmNVHhLilijj2ElmPN_Yk28AXoZ5xJTKMs_EmntMM7S5UKJd0SiMpPBZ5uqnJEf88Ji9PwlPNuBN9y9Mww_RL7hZy3DztTXwuTK7a9LQ2WI2xLmVYrx-jXFfWJU-mKy5o-K4oWCOmJ1oYtbRCvnBbt_0qjP6DWFeBazO44xuwZdurE2iybdhXWXD_McvNI7_-TC34WaLRMnbRnXuwIYutmEraffat-G6Sw7Nl3fhbF8vMHS2FUZsC3NaTxWZ1-hUyXe50sSmHeWI5slsveC4fE3GBVlNq0VJZKHI1J6sSrJmFyelIZIUJbYmLq0xs3K2bzL_ir714ue5y6OXy4okkzHpkr7vwfHo3ef9Q68t4-DllmnGM0ZHvogCmnEp9rQI_b08Rs2IhYlDxankiDMklRgrKcMkztwZVaEKQ5NzX3JD78NmURb6IRCRB4FETCSUjpjE21CjY21kgB7Wz7QewKvue6Z5y3FuS22cpg07c5Dii07dix7Ai1503hB7_Elop1OKtLXtZRpYSjcfI_t4AM_7y2iVdqtFFrqsrQyltui84AN40ChT3wu1xU0QSOFgnUr8vfs0mSTu4NG_iz6DrU8Ho_Tj-OjDY7gR2Awct2C0A5vVotZPEEJV2VNnKpfeLBhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cerebrospinal+fluid+pulse+wave+velocity+measurements%3A+In+vitro+and+in+vivo+evaluation+of+a+novel+multiband+cine+phase%E2%80%90contrast+MRI+sequence&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sonnabend%2C+Kristina&rft.au=Brinker%2C+Gerrit&rft.au=Maintz%2C+David&rft.au=Bunck%2C+Alexander+C&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=1&rft.spage=197&rft.epage=208&rft_id=info:doi/10.1002%2Fmrm.28430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon