ERECTA signaling regulates plant immune responses via chromatin‐mediated promotion of WRKY33 binding to target genes

Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were s...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 2; pp. 737 - 756
Main Authors Cai, Hanyang, Huang, Youmei, Chen, Fangqian, Liu, Liping, Chai, Mengnan, Zhang, Man, Yan, Maokai, Aslam, Mohammad, He, Qing, Qin, Yuan
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses.
AbstractList The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses.
Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM ( YDD ) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDD s and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDD s expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDD s gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses.
The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear.Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated.In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression.Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses.
Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses.
Author Qin, Yuan
Aslam, Mohammad
Chai, Mengnan
Huang, Youmei
Zhang, Man
Chen, Fangqian
Liu, Liping
Yan, Maokai
He, Qing
Cai, Hanyang
Author_xml – sequence: 1
  givenname: Hanyang
  orcidid: 0000-0002-6091-888X
  surname: Cai
  fullname: Cai, Hanyang
  organization: Fujian Agriculture and Forestry University
– sequence: 2
  givenname: Youmei
  surname: Huang
  fullname: Huang, Youmei
  organization: Fujian Agriculture and Forestry University
– sequence: 3
  givenname: Fangqian
  surname: Chen
  fullname: Chen, Fangqian
  organization: Fujian Agriculture and Forestry University
– sequence: 4
  givenname: Liping
  orcidid: 0000-0003-1009-8868
  surname: Liu
  fullname: Liu, Liping
  organization: Fujian Agriculture and Forestry University
– sequence: 5
  givenname: Mengnan
  surname: Chai
  fullname: Chai, Mengnan
  organization: Fujian Agriculture and Forestry University
– sequence: 6
  givenname: Man
  surname: Zhang
  fullname: Zhang, Man
  organization: Fujian Agriculture and Forestry University
– sequence: 7
  givenname: Maokai
  surname: Yan
  fullname: Yan, Maokai
  organization: Fujian Agriculture and Forestry University
– sequence: 8
  givenname: Mohammad
  surname: Aslam
  fullname: Aslam, Mohammad
  organization: Guangxi University
– sequence: 9
  givenname: Qing
  surname: He
  fullname: He, Qing
  organization: Fujian Agriculture and Forestry University
– sequence: 10
  givenname: Yuan
  orcidid: 0000-0003-4713-6151
  surname: Qin
  fullname: Qin, Yuan
  email: yuanqin@fafu.edu.cn
  organization: Guangxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33454980$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1TAQRS1URF9bFvwAssQGFmnHseM4y-rplaJWUFVFwCpynHHqKrFDnLTqjk_gG_mSurzCAonZjHR1dDVz7x7Z8cEjIa8YHLI0R368PmRlDvCMrJiQVaYYL3fICiBXmRTy6y7Zi_EGAKpC5i_ILueiEJWCFbndXG7WV8c0us7r3vmOTtgtvZ4x0rHXfqZuGBaPSY5j8DHJt05Tcz2FQc_O__rxc8DWJb6lY9LC7IKnwdIvl2ffOKeN8-2j6xzorKcOZ9qhx3hAnlvdR3z5tPfJ55PN1fo0O__0_sP6-DwzXCnIpKzyBtJrBktrmAQEhSVaY6zNjbTK8sZoCYznUoFpK1EBZ1Up2ta2BTR8n7zd-qbbvi8Y53pw0WCfPsOwxDoXpSrLooAqoW_-QW_CMqVQElUAS5gQkKh3W8pMIcYJbT1ObtDTfc2gfiyjTmXUv8tI7Osnx6VJIf0l_6SfgKMtcOd6vP-_U_3x4nRr-QANaJaS
CitedBy_id crossref_primary_10_1186_s12870_024_04829_8
crossref_primary_10_1093_plphys_kiae025
crossref_primary_10_1111_nph_17699
crossref_primary_10_1016_j_scienta_2023_112568
crossref_primary_10_1093_jxb_erab455
crossref_primary_10_1111_tpj_15883
crossref_primary_10_1016_j_devcel_2024_03_033
crossref_primary_10_1186_s43170_023_00206_x
crossref_primary_10_3389_fgene_2023_1229782
crossref_primary_10_3390_ijms24054849
crossref_primary_10_1093_plcell_koad032
crossref_primary_10_7717_peerj_11919
crossref_primary_10_1371_journal_pgen_1010023
crossref_primary_10_1042_EBC20210100
crossref_primary_10_3390_plants12040940
crossref_primary_10_1007_s00122_023_04273_6
crossref_primary_10_1007_s12042_024_09354_4
crossref_primary_10_1080_15592324_2024_2356406
crossref_primary_10_1111_tpj_16261
Cites_doi 10.1126/science.1090701
10.1111/nph.15306
10.1104/pp.113.227637
10.1126/science.1096014
10.1186/gb-2009-10-6-r62
10.1111/j.1365-313X.2005.02440.x
10.1093/jxb/eru410
10.1105/tpc.112.095588
10.1111/nph.15007
10.1105/tpc.17.00867
10.1073/pnas.1716054115
10.1016/S0092-8674(03)01067-5
10.1105/tpc.18.00547
10.1371/journal.pgen.1004384
10.1111/j.1365-313X.2007.03361.x
10.1073/pnas.1010478107
10.1080/07060669409500766
10.1139/O08-117
10.1104/pp.105.063743
10.1105/tpc.105.035196
10.1038/s41467-019-11291-w
10.1111/jipb.12108
10.1093/mp/ssp019
10.1016/S1097-2765(03)00497-0
10.1111/tpj.12060
10.1104/pp.114.239665
10.1046/j.1365-313X.2003.01877.x
10.1111/jipb.12973
10.1105/tpc.106.048447
10.1111/j.1365-313X.2008.03619.x
10.1094/MPMI-06-18-0171-R
10.1104/pp.19.00913
10.1242/dev.001891
10.1105/tpc.112.104695
10.1046/j.1365-313x.1998.00343.x
10.1111/pce.12244
10.1105/tpc.113.120576
10.1094/MPMI-22-8-0953
10.1126/stke.2001.113.re22
10.1242/dev.01028
10.1105/tpc.19.00971
10.1104/pp.15.00623
10.1093/jxb/erm332
10.3390/cells8121621
10.1105/tpc.106.048041
10.4161/psb.22991
10.1099/mic.0.071233-0
10.1016/j.molp.2017.09.007
10.1105/tpc.111.084996
10.1038/cr.2008.300
10.1104/pp.106.092270
10.1126/science.1194980
10.15252/embj.2019102008
10.1101/gad.292409.116
10.1038/nature10947
10.4161/psb.6.11.17933
10.1186/s12915-017-0376-4
10.1016/j.tplants.2014.10.001
10.1105/tpc.19.00239
10.4161/epi.5.4.11520
10.1094/MPMI-08-19-0241-R
10.1093/jxb/ert270
10.1186/1471-2229-14-85
10.1093/jxb/erz285
10.1105/tpc.022335
10.1105/tpc.16.00573
10.1242/dev.152868
10.1105/tpc.105.035485
10.1126/science.1109710
10.1080/15287390500226987
10.1371/journal.pgen.1008326
10.1186/1471-2164-7-223
10.1016/j.plaphy.2019.01.018
10.1007/s11103-014-0244-3
10.1111/nph.14521
10.1006/meth.2001.1262
10.1016/j.copbio.2010.02.002
10.1093/jxb/erv125
10.1016/j.molp.2016.04.003
10.1371/journal.pone.0028224
ContentType Journal Article
Copyright 2021 The Authors. © 2021 New Phytologist Foundation
2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2021 The Authors. © 2021 New Phytologist Foundation
– notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
DOI 10.1111/nph.17200
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 756
ExternalDocumentID 10_1111_nph_17200
33454980
NPH17200
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Science and Technology Major Project of Guangxi
  funderid: GK2018‐266‐Z01
– fundername: National Natural Science Foundation of China
  funderid: 31700279; 31970333; U1605212
– fundername: Guangxi Distinguished Experts Fellowship
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABLJU
ABPLY
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AGUYK
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
AHXOZ
AILXY
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3880-6692b0172ce7fc160e08e7efccff2c6f8f3bca60132680cd949031974ddfd50b3
IEDL.DBID DR2
ISSN 0028-646X
IngestDate Fri Aug 16 01:44:57 EDT 2024
Thu Oct 10 18:17:04 EDT 2024
Fri Aug 23 04:11:48 EDT 2024
Wed Oct 16 00:43:12 EDT 2024
Sat Aug 24 01:02:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ERECTA (ER)
SWR1
Arabidopsis
WRKY33
S clerotinia sclerotiorum
YODA DOWNSTREAM (YDD) genes
Language English
License 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-6692b0172ce7fc160e08e7efccff2c6f8f3bca60132680cd949031974ddfd50b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1009-8868
0000-0003-4713-6151
0000-0002-6091-888X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17200
PMID 33454980
PQID 2501877440
PQPubID 2026848
PageCount 20
ParticipantIDs proquest_miscellaneous_2478775509
proquest_journals_2501877440
crossref_primary_10_1111_nph_17200
pubmed_primary_33454980
wiley_primary_10_1111_nph_17200_NPH17200
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 484
2009; 87
2010; 107
2020; 62
2019; 10
2007; 143
2013; 64
2019; 15
2005; 139
2014; 26
2013; 8
2005; 68
2003; 12
1998; 16
2007; 134
2017; 31
2010; 21
2004; 131
2014; 5
2009; 10
2013; 55
2018; 218
2014; 14
2018; 30
2005; 309
2011; 23
2014; 160
2014; 165
2012; 24
2010; 5
2014; 164
1996; 8
2014; 10
2019; 8
2009; 22
2007; 19
2004; 303
2019; 70
2019; 31
2019; 32
2015; 169
2008; 18
2018; 145
2020; 182
2020; 39
2006; 7
2003; 36
2008; 59
2008; 56
2005; 43
2017; 29
2020; 33
2008; 53
2020; 32
2011; 6
2004; 304
2001; 25
2019; 221
2017; 214
2014; 86
2004; 116
2017; 15
2004; 16
2013; 73
2015; 20
2017; 10
2015; 66
2018; 115
2010; 330
2019; 137
2014; 37
1994; 16
2009; 2
2005; 17
2016; 9
2001; 2001
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
Sirko A (e_1_2_7_66_1) 2014; 5
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Torii KU (e_1_2_7_70_1) 1996; 8
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 16
  start-page: 1801
  year: 2004
  end-page: 1811
  article-title: An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division
  publication-title: The Plant Cell
– volume: 20
  start-page: 56
  year: 2015
  end-page: 64
  article-title: Mitogen‐activated protein kinase cascades in signaling plant growth and development
  publication-title: Trends in Plant Science
– volume: 304
  start-page: 1494
  year: 2004
  end-page: 1497
  article-title: Stomatal development and pattern controlled by a MAPKK kinase
  publication-title: Science
– volume: 55
  start-page: 1238
  year: 2013
  end-page: 1250
  article-title: Diverse roles of family genes in plant development
  publication-title: Journal of Integrative Plant Biology
– volume: 218
  start-page: 661
  year: 2018
  end-page: 680
  article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance
  publication-title: New Phytologist
– volume: 134
  start-page: 1931
  year: 2007
  end-page: 1941
  article-title: homologs of components of the SWR1 complex regulate flowering and plant development
  publication-title: Development
– volume: 32
  start-page: 673
  year: 2019
  end-page: 684
  article-title: Regulation of GDSL lipase gene expression by the MPK3/MPK6 cascade and its downstream WRKY transcription factors in immunity
  publication-title: Molecular Plant–Microbe Interactions
– volume: 73
  start-page: 733
  year: 2013
  end-page: 746
  article-title: The mutant, like the mutant, is specifically affected in the very long chain fatty acid elongation process
  publication-title: The Plant Journal
– volume: 10
  start-page: 3352
  year: 2019
  article-title: Arabidopsis SWR1‐associated protein methyl‐CpG‐binding domain 9 is required for histone H2A.Z deposition
  publication-title: Nature Communications
– volume: 309
  start-page: 290
  year: 2005
  end-page: 293
  article-title: Stomatal patterning and differentiation by synergistic interactions of receptor kinases
  publication-title: Science
– volume: 221
  start-page: 295
  year: 2019
  end-page: 308
  article-title: Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3
  publication-title: New Phytologist
– volume: 87
  start-page: 19
  year: 2009
  end-page: 25
  article-title: Transcriptional and epigenetic functions of histone variant H2A.Z
  publication-title: Biochemistry and Cell Biology
– volume: 66
  start-page: 189
  year: 2015
  end-page: 201
  article-title: Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in
  publication-title: Journal of Experimental Botany
– volume: 39
  year: 2020
  article-title: A plant‐specific SWR1 chromatin‐remodeling complex couples histone H2A.Z deposition with nucleosome sliding
  publication-title: EMBO Journal
– volume: 37
  start-page: 1404
  year: 2014
  end-page: 1414
  article-title: Altered growth and improved resistance of against by overexpression of the basic amino acid transporter
  publication-title: Plant, Cell & Environment
– volume: 19
  start-page: 1665
  year: 2007
  end-page: 1681
  article-title: ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in
  publication-title: The Plant Cell
– volume: 10
  start-page: 1274
  year: 2017
  end-page: 1292
  article-title: H2A.Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in
  publication-title: Molecular Plant
– volume: 137
  start-page: 25
  year: 2019
  end-page: 41
  article-title: The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the defense response to
  publication-title: Plant Physiology and Biochemistry
– volume: 165
  start-page: 791
  year: 2014
  end-page: 809
  article-title: Contrasting roles of the apoplastic aspartyl protease APOPLASTIC, ‐DEPENDENT1 and LEGUME LECTIN‐LIKE PROTEIN1 in Arabidopsis systemic acquired resistance
  publication-title: Plant Physiology
– volume: 24
  start-page: 2001
  year: 2012
  end-page: 2014
  article-title: Fatty acid phytyl ester synthesis in chloroplasts of
  publication-title: The Plant Cell
– volume: 68
  start-page: 1939
  year: 2005
  end-page: 1961
  article-title: The bipyridyl herbicide paraquat produces oxidative stress‐mediated toxicity in human neuroblastoma SH‐SY5Y cells: relevance to the dopaminergic pathogenesis
  publication-title: Journal of Toxicology and Environmental Health
– volume: 145
  year: 2018
  article-title: H2A.Z promotes the transcription of and in by facilitating the deposition of H3K4me3
  publication-title: Development
– volume: 115
  start-page: E526
  year: 2018
  end-page: E535
  article-title: suppresses megasporocyte cell fate through SWR1‐mediated activation of expression in
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method
  publication-title: Methods
– volume: 21
  start-page: 218
  year: 2010
  end-page: 224
  article-title: Genetic and biotechnological approaches for biofuel crop improvement
  publication-title: Current Opinion in Biotechnology
– volume: 182
  start-page: 640
  year: 2020
  end-page: 657
  article-title: H2Bub1 regulates ‐dependent hydrogen peroxide signal pathway in the defense responses to toxins
  publication-title: Plant Physiology
– volume: 17
  start-page: 2633
  year: 2005
  end-page: 2646
  article-title: The nuclear actin‐related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of expression and repression of flowering in
  publication-title: The Plant Cell
– volume: 31
  start-page: 2206
  year: 2019
  end-page: 2222
  article-title: The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to
  publication-title: The Plant Cell
– volume: 5
  start-page: 267
  year: 2010
  end-page: 272
  article-title: Reconciling the positive and negative roles of histone H2A.Z in gene transcription
  publication-title: Epigenetics
– volume: 59
  start-page: 653
  year: 2008
  end-page: 666
  article-title: Mutations in the gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development
  publication-title: Journal of Experimental Botany
– volume: 143
  start-page: 893
  year: 2007
  end-page: 901
  article-title: SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6
  publication-title: Plant Physiology
– volume: 10
  start-page: R62
  year: 2009
  article-title: Genome‐wide analysis of mono, di and trimethylation of histone H3 lysine 4 in
  publication-title: Genome Biology
– volume: 116
  start-page: 109
  year: 2004
  end-page: 119
  article-title: A MAPKK kinase gene regulates extra‐embryonic cell fate in
  publication-title: Cell
– volume: 31
  start-page: 617
  year: 2017
  end-page: 627
  article-title: Transcriptional integration of paternal and maternal factors in the zygote
  publication-title: Genes & Development
– volume: 330
  start-page: 1393
  year: 2010
  end-page: 1397
  article-title: type I metacaspases control cell death
  publication-title: Science
– volume: 107
  start-page: 18557
  year: 2010
  end-page: 18562
  article-title: SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 6
  start-page: 1875
  year: 2011
  end-page: 1877
  article-title: Two Arabidopsis guard cell‐preferential MAPK genes, and , function in biotic stress response
  publication-title: Plant Signaling & Behavior
– volume: 29
  start-page: 791
  year: 2017
  end-page: 807
  article-title: Dual role of the histone variant H2A.Z in transcriptional regulation of stress‐response genes
  publication-title: The Plant Cell
– volume: 9
  start-page: 1051
  year: 2016
  end-page: 1065
  article-title: SWR1 chromatin‐remodeling complex subunits and H2A.Z have non‐overlapping functions in immunity and gene regulation in
  publication-title: Molecular Plant
– volume: 66
  start-page: 3163
  year: 2015
  end-page: 3174
  article-title: CaWRKY6 transcriptionally activates , regulates resistance, and confers high‐temperature and high‐humidity tolerance in pepper
  publication-title: Journal of Experimental Botany
– volume: 18
  start-page: 1190
  year: 2008
  end-page: 1198
  article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen‐activated protein kinase cascade to regulate innate immunity in plants
  publication-title: Cell Research
– volume: 36
  start-page: 353
  year: 2003
  end-page: 365
  article-title: ERECTA, an LRR receptor‐like kinase protein controlling development pleiotropically affects resistance to bacterial wilt
  publication-title: The Plant Journal
– volume: 303
  start-page: 343
  year: 2004
  end-page: 348
  article-title: ATP‐driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex
  publication-title: Science
– volume: 64
  start-page: 5323
  year: 2013
  end-page: 5333
  article-title: Regulation of floral patterning and organ identity by ‐family receptor kinase genes
  publication-title: Journal of Experimental Botany
– volume: 7
  start-page: 223
  year: 2006
  article-title: MAP‐ping genomic organization and organ‐specific expression profiles of poplar MAP kinases and MAP kinase kinases
  publication-title: BMC Genomics
– volume: 70
  start-page: 5217
  year: 2019
  end-page: 5229
  article-title: Epigenetic regulation of miR396 expression by SWR1‐C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 1639
  year: 2011
  end-page: 1653
  article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in
  publication-title: The Plant Cell
– volume: 33
  start-page: 945
  year: 2020
  end-page: 957
  article-title: CaCBL1 acts as a positive regulator in pepper response to
  publication-title: Molecular Plant–Microbe Interactions
– volume: 10
  year: 2014
  article-title: Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in
  publication-title: PLoS Genetics
– volume: 139
  start-page: 5
  year: 2005
  end-page: 17
  article-title: Genome‐wide identification and testing of superior reference genes for transcript normalization in Arabidopsis
  publication-title: Plant Physiology
– volume: 2001
  start-page: re22
  year: 2001
  article-title: Plant receptor‐like kinase gene family: diversity, function, and signaling
  publication-title: Science Signaling
– volume: 19
  start-page: 74
  year: 2007
  end-page: 83
  article-title: Repression of flowering in requires activation of expression by the histone variant H2A.Z
  publication-title: The Plant Cell
– volume: 5
  start-page: 774
  year: 2014
  article-title: The family of LSU‐like proteins
  publication-title: Frontiers in Plant Science
– volume: 30
  start-page: 2480
  year: 2018
  end-page: 2494
  article-title: A MPK3/6‐WRKY33‐ALD1‐pipecolic acid regulatory loop contributes to systemic acquired resistance
  publication-title: The Plant Cell
– volume: 17
  start-page: 2647
  year: 2005
  end-page: 2660
  article-title: encodes a nuclear ACTIN‐RELATED PROTEIN6 required for floral repression in
  publication-title: The Plant Cell
– volume: 16
  start-page: 735
  year: 1998
  end-page: 743
  article-title: Floral dip: a simplified method for ‐mediated transformation of
  publication-title: The Plant Journal
– volume: 14
  start-page: 85
  year: 2014
  article-title: ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of to
  publication-title: BMC Plant Biology
– volume: 160
  start-page: 91
  year: 2014
  end-page: 101
  article-title: Regulation of the mannitol utilization genes: promoter structure and transcriptional activation by the wild‐type regulator (MtlR) and its mutants
  publication-title: Microbiology
– volume: 2
  start-page: 565
  year: 2009
  end-page: 577
  article-title: The beauty of being a variant: H2A.Z and the SWR1 complex in plants
  publication-title: Molecular Plant
– volume: 86
  start-page: 495
  year: 2014
  end-page: 511
  article-title: A novel protein elicitor (SsCut) from induces multiple defense responses in plants
  publication-title: Plant Molecular Biology
– volume: 131
  start-page: 1491
  year: 2004
  end-page: 1501
  article-title: Synergistic interaction of three ERECTA‐family receptor‐like kinases controls organ growth and flower development by promoting cell proliferation
  publication-title: Development
– volume: 8
  start-page: 735
  year: 1996
  end-page: 746
  article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats
  publication-title: The Plant Cell
– volume: 214
  start-page: 1579
  year: 2017
  end-page: 1596
  article-title: ERECTA signaling controls inflorescence architecture through chromatin‐mediated activation of expression
  publication-title: New Phytologist
– volume: 62
  start-page: 1780
  year: 2020
  end-page: 1796
  article-title: Co‐regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways
  publication-title: Journal of Integrative Plant Biology
– volume: 15
  start-page: 36
  year: 2017
  article-title: NO ious gases and the unpredictability of emerging plant pathogens under climate change
  publication-title: BMC Biology
– volume: 6
  year: 2011
  article-title: The role of histone methylation and H2A.Z occupancy during rapid activation of ethylene responsive genes
  publication-title: PLoS ONE
– volume: 30
  start-page: 1337
  year: 2018
  end-page: 1352
  article-title: The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis
  publication-title: The Plant Cell
– volume: 169
  start-page: 780
  year: 2015
  end-page: 792
  article-title: Calcineurin B‐like protein‐interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis
  publication-title: Plant Physiology
– volume: 164
  start-page: 1093
  year: 2014
  end-page: 1107
  article-title: Arabidopsis s contribute to immunity against
  publication-title: Plant Physiology
– volume: 8
  year: 2013
  article-title: Constitutively active MPK4 helps to clarify its role in plant immunity
  publication-title: Plant Signaling & Behavior
– volume: 24
  start-page: 4948
  year: 2012
  end-page: 4960
  article-title: A MAPK cascade downstream of ERECTA receptor‐like protein kinase regulates inflorescence architecture by promoting localized cell proliferation
  publication-title: The Plant Cell
– volume: 22
  start-page: 953
  year: 2009
  end-page: 963
  article-title: The ERECTA receptor‐like kinase regulates cell wall‐mediated resistance to pathogens in
  publication-title: Molecular Plant–Microbe Interactions
– volume: 56
  start-page: 457
  year: 2008
  end-page: 469
  article-title: Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric gene
  publication-title: The Plant Journal
– volume: 12
  start-page: 1565
  year: 2003
  end-page: 1576
  article-title: A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1
  publication-title: Molecular Cell
– volume: 16
  start-page: 93
  year: 1994
  end-page: 108
  article-title: Index of plant hosts of Sclerotinia sclerotiorum
  publication-title: Canadian Journal of Plant Pathology
– volume: 15
  year: 2019
  article-title: Methyl‐CpG‐binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z‐enriched regions in the Arabidopsis genome
  publication-title: PLoS Genetics
– volume: 53
  start-page: 475
  year: 2008
  end-page: 487
  article-title: Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis
  publication-title: The Plant Journal
– volume: 32
  start-page: 2621
  year: 2020
  end-page: 2638
  article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis
  publication-title: The Plant Cell
– volume: 484
  start-page: 186
  year: 2012
  end-page: 194
  article-title: Emerging fungal threats to animal, plant and ecosystem health
  publication-title: Nature
– volume: 43
  start-page: 165
  year: 2005
  end-page: 180
  article-title: ERECTA receptor‐like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus
  publication-title: The Plant Journal
– volume: 26
  start-page: 1612
  year: 2014
  end-page: 1628
  article-title: ACTIN‐RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in
  publication-title: The Plant Cell
– volume: 8
  start-page: 1621
  year: 2019
  article-title: SWR1 chromatin remodeling complex: a key transcriptional regulator in plants
  publication-title: Cells
– ident: e_1_2_7_52_1
  doi: 10.1126/science.1090701
– ident: e_1_2_7_12_1
  doi: 10.1111/nph.15306
– volume: 8
  start-page: 735
  year: 1996
  ident: e_1_2_7_70_1
  article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats
  publication-title: The Plant Cell
  contributor:
    fullname: Torii KU
– ident: e_1_2_7_8_1
  doi: 10.1104/pp.113.227637
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1096014
– ident: e_1_2_7_80_1
  doi: 10.1186/gb-2009-10-6-r62
– ident: e_1_2_7_42_1
  doi: 10.1111/j.1365-313X.2005.02440.x
– ident: e_1_2_7_68_1
  doi: 10.1093/jxb/eru410
– ident: e_1_2_7_40_1
  doi: 10.1105/tpc.112.095588
– ident: e_1_2_7_67_1
  doi: 10.1111/nph.15007
– ident: e_1_2_7_14_1
  doi: 10.1105/tpc.17.00867
– ident: e_1_2_7_82_1
  doi: 10.1073/pnas.1716054115
– ident: e_1_2_7_43_1
  doi: 10.1016/S0092-8674(03)01067-5
– ident: e_1_2_7_73_1
  doi: 10.1105/tpc.18.00547
– ident: e_1_2_7_29_1
  doi: 10.1371/journal.pgen.1004384
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1365-313X.2007.03361.x
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1010478107
– ident: e_1_2_7_9_1
  doi: 10.1080/07060669409500766
– ident: e_1_2_7_24_1
  doi: 10.1139/O08-117
– ident: e_1_2_7_20_1
  doi: 10.1104/pp.105.063743
– ident: e_1_2_7_22_1
  doi: 10.1105/tpc.105.035196
– ident: e_1_2_7_56_1
  doi: 10.1038/s41467-019-11291-w
– ident: e_1_2_7_62_1
  doi: 10.1111/jipb.12108
– ident: e_1_2_7_48_1
  doi: 10.1093/mp/ssp019
– ident: e_1_2_7_38_1
  doi: 10.1016/S1097-2765(03)00497-0
– ident: e_1_2_7_55_1
  doi: 10.1111/tpj.12060
– ident: e_1_2_7_10_1
  doi: 10.1104/pp.114.239665
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1365-313X.2003.01877.x
– ident: e_1_2_7_77_1
  doi: 10.1111/jipb.12973
– ident: e_1_2_7_23_1
  doi: 10.1105/tpc.106.048447
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1365-313X.2008.03619.x
– ident: e_1_2_7_32_1
  doi: 10.1094/MPMI-06-18-0171-R
– ident: e_1_2_7_81_1
  doi: 10.1104/pp.19.00913
– ident: e_1_2_7_16_1
  doi: 10.1242/dev.001891
– volume: 5
  start-page: 774
  year: 2014
  ident: e_1_2_7_66_1
  article-title: The family of LSU‐like proteins
  publication-title: Frontiers in Plant Science
  contributor:
    fullname: Sirko A
– ident: e_1_2_7_51_1
  doi: 10.1105/tpc.112.104695
– ident: e_1_2_7_17_1
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_2_7_76_1
  doi: 10.1111/pce.12244
– ident: e_1_2_7_57_1
  doi: 10.1105/tpc.113.120576
– ident: e_1_2_7_59_1
  doi: 10.1094/MPMI-22-8-0953
– ident: e_1_2_7_61_1
  doi: 10.1126/stke.2001.113.re22
– ident: e_1_2_7_63_1
  doi: 10.1242/dev.01028
– ident: e_1_2_7_83_1
  doi: 10.1105/tpc.19.00971
– ident: e_1_2_7_54_1
  doi: 10.1104/pp.15.00623
– ident: e_1_2_7_39_1
  doi: 10.1093/jxb/erm332
– ident: e_1_2_7_3_1
  doi: 10.3390/cells8121621
– ident: e_1_2_7_2_1
  doi: 10.1105/tpc.106.048041
– ident: e_1_2_7_18_1
  doi: 10.4161/psb.22991
– ident: e_1_2_7_34_1
  doi: 10.1099/mic.0.071233-0
– ident: e_1_2_7_21_1
  doi: 10.1016/j.molp.2017.09.007
– ident: e_1_2_7_45_1
  doi: 10.1105/tpc.111.084996
– ident: e_1_2_7_27_1
  doi: 10.1038/cr.2008.300
– ident: e_1_2_7_46_1
  doi: 10.1104/pp.106.092270
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1194980
– ident: e_1_2_7_44_1
  doi: 10.15252/embj.2019102008
– ident: e_1_2_7_71_1
  doi: 10.1101/gad.292409.116
– ident: e_1_2_7_25_1
  doi: 10.1038/nature10947
– ident: e_1_2_7_37_1
  doi: 10.4161/psb.6.11.17933
– ident: e_1_2_7_26_1
  doi: 10.1186/s12915-017-0376-4
– ident: e_1_2_7_74_1
  doi: 10.1016/j.tplants.2014.10.001
– ident: e_1_2_7_33_1
  doi: 10.1105/tpc.19.00239
– ident: e_1_2_7_49_1
  doi: 10.4161/epi.5.4.11520
– ident: e_1_2_7_60_1
  doi: 10.1094/MPMI-08-19-0241-R
– ident: e_1_2_7_5_1
  doi: 10.1093/jxb/ert270
– ident: e_1_2_7_31_1
  doi: 10.1186/1471-2229-14-85
– ident: e_1_2_7_35_1
  doi: 10.1093/jxb/erz285
– ident: e_1_2_7_58_1
  doi: 10.1105/tpc.022335
– ident: e_1_2_7_69_1
  doi: 10.1105/tpc.16.00573
– ident: e_1_2_7_75_1
  doi: 10.1242/dev.152868
– ident: e_1_2_7_15_1
  doi: 10.1105/tpc.105.035485
– ident: e_1_2_7_64_1
  doi: 10.1126/science.1109710
– ident: e_1_2_7_78_1
  doi: 10.1080/15287390500226987
– ident: e_1_2_7_65_1
  doi: 10.1371/journal.pgen.1008326
– ident: e_1_2_7_53_1
  doi: 10.1186/1471-2164-7-223
– ident: e_1_2_7_50_1
  doi: 10.1016/j.plaphy.2019.01.018
– ident: e_1_2_7_79_1
  doi: 10.1007/s11103-014-0244-3
– ident: e_1_2_7_13_1
  doi: 10.1111/nph.14521
– ident: e_1_2_7_41_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_7_72_1
  doi: 10.1016/j.copbio.2010.02.002
– ident: e_1_2_7_11_1
  doi: 10.1093/jxb/erv125
– ident: e_1_2_7_7_1
  doi: 10.1016/j.molp.2016.04.003
– ident: e_1_2_7_36_1
  doi: 10.1371/journal.pone.0028224
SSID ssj0009562
Score 2.503552
Snippet Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is...
The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is...
The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 737
SubjectTerms Arabidopsis
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Ascomycota
Binding
Chromatin
Chromatin remodeling
Electrophoretic mobility
ERECTA (ER)
Fungi
Gene expression
Gene Expression Regulation, Plant
Genes
Histones
Immune response
Immunoprecipitation
Infections
Kinases
Pathogens
Plant immunity
Plant Immunity - genetics
Promoters
Receptors
S clerotinia sclerotiorum
Signal Transduction
Signaling
SWR1
White mold
WRKY33
Yeasts
YODA DOWNSTREAM (YDD) genes
Title ERECTA signaling regulates plant immune responses via chromatin‐mediated promotion of WRKY33 binding to target genes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17200
https://www.ncbi.nlm.nih.gov/pubmed/33454980
https://www.proquest.com/docview/2501877440
https://search.proquest.com/docview/2478775509
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEB-W5R7uRb0_6up65MSHe-nSbdo0wSf1VpY7FFkUVxBKkybuorTL_gN98iPcZ7xPcpl0u6iHIL6VNCFtJpOZSX7zC8AeZxlTkYm8gArthTJue8Iaeo9LTrnRdlI5Lr2TU9a9CH_1o34N9qtcmJIfYrnhhprh1mtU8FROnih5Phq0rPX1MV5v0xjhXD97wRPCXRZUDMwsZP0FqxCieJYtn9ui_xzM5_6qMzjHq3BdfWqJM7ltzaaypR5esDi-81_WYGXhiJKDcuZ8gprOP8OHw8I6i_dfYN7pdY7ODwjCO1LMWCfj8tJ6PSGjOysNMsTEEm2LHcbWFs-HKVGDcYEucP738Y_LSbH-LBmViL8iJ4Uhl73fV5QSOXTZNGRakBKLTm5w0f0KF8ed86Out7iiwVPIIuMxJgKJYaTSsVFt5muf61gbpYwJFDPcUKlShgc6jPsqE6HAtKk4zDKTRb6k61DPi1xvAomkkm0R6SgN01BksfB5FmimlI1wlZ_6DdithJWMSiaOpIpg7Pglbvwa0KzEmCyUcZIESFoYIxNiA74vX1s1wrORNNfFzNZBkqLYhmuiARul-Je9UBraKJrb1j-cEF_vPjk967qHrbdX3YaPAeJkHBqoCfXpeKZ3rKMzld_cjP4HgOX5mQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NYxK8jI2vFfZhEA-8pErjxLElXvbRqbCtQlUnygOKYsdmFSipunYSPPEn7G_kL-HOaaptCAnxFjm2nPh8vjv7dz8DvJaiECZxSRBxZYNYp51AoaEPpJZcOouTynPpnfVF7zx-P0pGK_C2yYWp-SGWG26kGX69JgWnDekbWl5OLtpofkMM2O-hunO6uOFoEN2g3BVRw8EsYjFa8AoRjmfZ9LY1-sPFvO2xepNz_BA-Nx9bI02-tucz3TY_7vA4_u_fbMD6whdl-_Xk2YQVWz6CtYMK_cXvj-GqO-geDvcZITxySlpn0_reenvJJt9QIGxMuSUWiz3MFouvxjkzF9OKvODy189rn5aCLi2b1KC_qmSVYx8HJ584Z3rsE2rYrGI1HJ19oXX3CZwfd4eHvWBxS0NgiEgmEEJFmiJJY1NnOiK0obSpdcY4FxnhpOPa5ILOdIQMTaFiRZlTaVwUrkhCzZ_CalmVdgtYoo3uqMQmeZzHqkhVKIvICmMwyDVhHrbgVSOtbFKTcWRNEIPjl_nxa8F2I8dsoY-XWUS8hSmRIbbg5fI1ahIdj-SlreZYh3iKUozYVAue1fJf9sJ5jIG0xNZvvBT_3n3W_9DzD8__veoe3O8Nz06z03f9kxfwICLYjAcHbcPqbDq3O-j3zPSun96_AQbY_bE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2aNoR4YXxuZRsYxAMvqdLEcWzxNLZWhUE1VZsoElIUO_ZWgZKoayeNJ34Cv5Ffwr1OU20gJMRb5NhK4utrnxufewzwUopCmMQlQRQrG3Cd9gKFC30gtYylsziovJbeh5EYnvJ3k2SyBq_bXJhGH2L1w408w8_X5OB14a45eVmfd3H1DTFe3-ACkS8honF0TXFXRK0Es-BispQVIhrPqunNxegPhHkTsPoVZ7AJn9t3bYgmX7qLue6ab7_JOP7nx9yDu0skyvaboXMf1mz5AG69qRAtXj2Ey_64f3Cyz4jfkVPKOps1p9bbC1Z_RXOwKWWWWCz2JFssvpzmzJzPKsLA5c_vP3xSCgJaVjeUv6pklWMfx0ef4pjpqU-nYfOKNWR0dkaz7iM4HfRPDobB8oyGwJCMTCCEijTFkcamzvREaENpU-uMcS4ywkkXa5ML2tERMjSF4oryplJeFK5IQh0_hvWyKu02sEQb3VOJTXKec1WkKpRFZIUxGOKaMA878KI1VlY3UhxZG8Jg_2W-_zqw25oxW3rjRRaRamFKUogdeL66jX5EmyN5aasF1iGVohTjNdWBrcb8q6fEMccwWmLrV96If398Njoe-osn_171Gdw-Phxk79-OjnbgTkScGc8M2oX1-Wxh9xD0zPVTP7h_ARfI_GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERECTA+signaling+regulates+plant+immune+responses+via+chromatin-mediated+promotion+of+WRKY33+binding+to+target+genes&rft.jtitle=The+New+phytologist&rft.au=Cai%2C+Hanyang&rft.au=Huang%2C+Youmei&rft.au=Chen%2C+Fangqian&rft.au=Liu%2C+Liping&rft.date=2021-04-01&rft.eissn=1469-8137&rft.volume=230&rft.issue=2&rft.spage=737&rft.epage=756&rft_id=info:doi/10.1111%2Fnph.17200&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon