ERECTA signaling regulates plant immune responses via chromatin‐mediated promotion of WRKY33 binding to target genes
Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were s...
Saved in:
Published in | The New phytologist Vol. 230; no. 2; pp. 737 - 756 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear.
Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated.
In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression.
Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses. |
---|---|
AbstractList | The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one-hybrid analysis were applied to identify ER-WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER-signaling-mediated plant immune responses. Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM ( YDD ) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDD s and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDD s expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDD s gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses. The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear.Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated.In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression.Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses. Summary The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is unclear. Genetic interactions between ER signaling and the chromatin remodeling complex SWR1 in the control of plant immune responses were studied. Electrophoretic mobility shift assay and yeast one‐hybrid analysis were applied to identify ER‐WRKY33 downstream components. Chromatin immunoprecipitation analyses were further investigated. In this study, we show that the chromatin remodeling complex SWR1 enhances resistance to the white mold fungus Sclerotinia sclerotiorum in Arabidopsis thaliana via a process mediated by ER signaling. We identify a series of WRKY33 target YODA DOWNSTREAM (YDD) genes and demonstrate that SWR1 and ER signaling are required to enrich H2A.Z histone variant and H3K4me3 histone modification at YDDs and the binding of WRKY33 to YDD promoters upon S. sclerotiorum infection. We also reveal that the binding of WRKY33 to YDD promoters in turn promotes the enrichment of H2A.Z and H3K4me3 at YDD genes, thereby forming a positive regulatory loop to activate YDDs expression. Our study reveals how H2A.Z, H3K4me3 and ER signaling mutually regulate YDDs gene expression upon pathogen infection, highlighting the critical role of chromatin structure in ER‐signaling‐mediated plant immune responses. |
Author | Qin, Yuan Aslam, Mohammad Chai, Mengnan Huang, Youmei Zhang, Man Chen, Fangqian Liu, Liping Yan, Maokai He, Qing Cai, Hanyang |
Author_xml | – sequence: 1 givenname: Hanyang orcidid: 0000-0002-6091-888X surname: Cai fullname: Cai, Hanyang organization: Fujian Agriculture and Forestry University – sequence: 2 givenname: Youmei surname: Huang fullname: Huang, Youmei organization: Fujian Agriculture and Forestry University – sequence: 3 givenname: Fangqian surname: Chen fullname: Chen, Fangqian organization: Fujian Agriculture and Forestry University – sequence: 4 givenname: Liping orcidid: 0000-0003-1009-8868 surname: Liu fullname: Liu, Liping organization: Fujian Agriculture and Forestry University – sequence: 5 givenname: Mengnan surname: Chai fullname: Chai, Mengnan organization: Fujian Agriculture and Forestry University – sequence: 6 givenname: Man surname: Zhang fullname: Zhang, Man organization: Fujian Agriculture and Forestry University – sequence: 7 givenname: Maokai surname: Yan fullname: Yan, Maokai organization: Fujian Agriculture and Forestry University – sequence: 8 givenname: Mohammad surname: Aslam fullname: Aslam, Mohammad organization: Guangxi University – sequence: 9 givenname: Qing surname: He fullname: He, Qing organization: Fujian Agriculture and Forestry University – sequence: 10 givenname: Yuan orcidid: 0000-0003-4713-6151 surname: Qin fullname: Qin, Yuan email: yuanqin@fafu.edu.cn organization: Guangxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33454980$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFu1TAQRS1URF9bFvwAssQGFmnHseM4y-rplaJWUFVFwCpynHHqKrFDnLTqjk_gG_mSurzCAonZjHR1dDVz7x7Z8cEjIa8YHLI0R368PmRlDvCMrJiQVaYYL3fICiBXmRTy6y7Zi_EGAKpC5i_ILueiEJWCFbndXG7WV8c0us7r3vmOTtgtvZ4x0rHXfqZuGBaPSY5j8DHJt05Tcz2FQc_O__rxc8DWJb6lY9LC7IKnwdIvl2ffOKeN8-2j6xzorKcOZ9qhx3hAnlvdR3z5tPfJ55PN1fo0O__0_sP6-DwzXCnIpKzyBtJrBktrmAQEhSVaY6zNjbTK8sZoCYznUoFpK1EBZ1Up2ta2BTR8n7zd-qbbvi8Y53pw0WCfPsOwxDoXpSrLooAqoW_-QW_CMqVQElUAS5gQkKh3W8pMIcYJbT1ObtDTfc2gfiyjTmXUv8tI7Osnx6VJIf0l_6SfgKMtcOd6vP-_U_3x4nRr-QANaJaS |
CitedBy_id | crossref_primary_10_1186_s12870_024_04829_8 crossref_primary_10_1093_plphys_kiae025 crossref_primary_10_1111_nph_17699 crossref_primary_10_1016_j_scienta_2023_112568 crossref_primary_10_1093_jxb_erab455 crossref_primary_10_1111_tpj_15883 crossref_primary_10_1016_j_devcel_2024_03_033 crossref_primary_10_1186_s43170_023_00206_x crossref_primary_10_3389_fgene_2023_1229782 crossref_primary_10_3390_ijms24054849 crossref_primary_10_1093_plcell_koad032 crossref_primary_10_7717_peerj_11919 crossref_primary_10_1371_journal_pgen_1010023 crossref_primary_10_1042_EBC20210100 crossref_primary_10_3390_plants12040940 crossref_primary_10_1007_s00122_023_04273_6 crossref_primary_10_1007_s12042_024_09354_4 crossref_primary_10_1080_15592324_2024_2356406 crossref_primary_10_1111_tpj_16261 |
Cites_doi | 10.1126/science.1090701 10.1111/nph.15306 10.1104/pp.113.227637 10.1126/science.1096014 10.1186/gb-2009-10-6-r62 10.1111/j.1365-313X.2005.02440.x 10.1093/jxb/eru410 10.1105/tpc.112.095588 10.1111/nph.15007 10.1105/tpc.17.00867 10.1073/pnas.1716054115 10.1016/S0092-8674(03)01067-5 10.1105/tpc.18.00547 10.1371/journal.pgen.1004384 10.1111/j.1365-313X.2007.03361.x 10.1073/pnas.1010478107 10.1080/07060669409500766 10.1139/O08-117 10.1104/pp.105.063743 10.1105/tpc.105.035196 10.1038/s41467-019-11291-w 10.1111/jipb.12108 10.1093/mp/ssp019 10.1016/S1097-2765(03)00497-0 10.1111/tpj.12060 10.1104/pp.114.239665 10.1046/j.1365-313X.2003.01877.x 10.1111/jipb.12973 10.1105/tpc.106.048447 10.1111/j.1365-313X.2008.03619.x 10.1094/MPMI-06-18-0171-R 10.1104/pp.19.00913 10.1242/dev.001891 10.1105/tpc.112.104695 10.1046/j.1365-313x.1998.00343.x 10.1111/pce.12244 10.1105/tpc.113.120576 10.1094/MPMI-22-8-0953 10.1126/stke.2001.113.re22 10.1242/dev.01028 10.1105/tpc.19.00971 10.1104/pp.15.00623 10.1093/jxb/erm332 10.3390/cells8121621 10.1105/tpc.106.048041 10.4161/psb.22991 10.1099/mic.0.071233-0 10.1016/j.molp.2017.09.007 10.1105/tpc.111.084996 10.1038/cr.2008.300 10.1104/pp.106.092270 10.1126/science.1194980 10.15252/embj.2019102008 10.1101/gad.292409.116 10.1038/nature10947 10.4161/psb.6.11.17933 10.1186/s12915-017-0376-4 10.1016/j.tplants.2014.10.001 10.1105/tpc.19.00239 10.4161/epi.5.4.11520 10.1094/MPMI-08-19-0241-R 10.1093/jxb/ert270 10.1186/1471-2229-14-85 10.1093/jxb/erz285 10.1105/tpc.022335 10.1105/tpc.16.00573 10.1242/dev.152868 10.1105/tpc.105.035485 10.1126/science.1109710 10.1080/15287390500226987 10.1371/journal.pgen.1008326 10.1186/1471-2164-7-223 10.1016/j.plaphy.2019.01.018 10.1007/s11103-014-0244-3 10.1111/nph.14521 10.1006/meth.2001.1262 10.1016/j.copbio.2010.02.002 10.1093/jxb/erv125 10.1016/j.molp.2016.04.003 10.1371/journal.pone.0028224 |
ContentType | Journal Article |
Copyright | 2021 The Authors. © 2021 New Phytologist Foundation 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. Copyright © 2021 New Phytologist Trust |
Copyright_xml | – notice: 2021 The Authors. © 2021 New Phytologist Foundation – notice: 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. – notice: Copyright © 2021 New Phytologist Trust |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
DOI | 10.1111/nph.17200 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 756 |
ExternalDocumentID | 10_1111_nph_17200 33454980 NPH17200 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Technology Major Project of Guangxi funderid: GK2018‐266‐Z01 – fundername: National Natural Science Foundation of China funderid: 31700279; 31970333; U1605212 – fundername: Guangxi Distinguished Experts Fellowship |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABLJU ABPLY ABPVW ABTLG ABXSQ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AGUYK AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPNFZ IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT AHXOZ AILXY CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3880-6692b0172ce7fc160e08e7efccff2c6f8f3bca60132680cd949031974ddfd50b3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X |
IngestDate | Fri Aug 16 01:44:57 EDT 2024 Thu Oct 10 18:17:04 EDT 2024 Fri Aug 23 04:11:48 EDT 2024 Wed Oct 16 00:43:12 EDT 2024 Sat Aug 24 01:02:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | ERECTA (ER) SWR1 Arabidopsis WRKY33 S clerotinia sclerotiorum YODA DOWNSTREAM (YDD) genes |
Language | English |
License | 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3880-6692b0172ce7fc160e08e7efccff2c6f8f3bca60132680cd949031974ddfd50b3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1009-8868 0000-0003-4713-6151 0000-0002-6091-888X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17200 |
PMID | 33454980 |
PQID | 2501877440 |
PQPubID | 2026848 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2478775509 proquest_journals_2501877440 crossref_primary_10_1111_nph_17200 pubmed_primary_33454980 wiley_primary_10_1111_nph_17200_NPH17200 |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 484 2009; 87 2010; 107 2020; 62 2019; 10 2007; 143 2013; 64 2019; 15 2005; 139 2014; 26 2013; 8 2005; 68 2003; 12 1998; 16 2007; 134 2017; 31 2010; 21 2004; 131 2014; 5 2009; 10 2013; 55 2018; 218 2014; 14 2018; 30 2005; 309 2011; 23 2014; 160 2014; 165 2012; 24 2010; 5 2014; 164 1996; 8 2014; 10 2019; 8 2009; 22 2007; 19 2004; 303 2019; 70 2019; 31 2019; 32 2015; 169 2008; 18 2018; 145 2020; 182 2020; 39 2006; 7 2003; 36 2008; 59 2008; 56 2005; 43 2017; 29 2020; 33 2008; 53 2020; 32 2011; 6 2004; 304 2001; 25 2019; 221 2017; 214 2014; 86 2004; 116 2017; 15 2004; 16 2013; 73 2015; 20 2017; 10 2015; 66 2018; 115 2010; 330 2019; 137 2014; 37 1994; 16 2009; 2 2005; 17 2016; 9 2001; 2001 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 Sirko A (e_1_2_7_66_1) 2014; 5 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Torii KU (e_1_2_7_70_1) 1996; 8 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
References_xml | – volume: 16 start-page: 1801 year: 2004 end-page: 1811 article-title: An Arabidopsis homolog of the bacterial cell division inhibitor SulA is involved in plastid division publication-title: The Plant Cell – volume: 20 start-page: 56 year: 2015 end-page: 64 article-title: Mitogen‐activated protein kinase cascades in signaling plant growth and development publication-title: Trends in Plant Science – volume: 304 start-page: 1494 year: 2004 end-page: 1497 article-title: Stomatal development and pattern controlled by a MAPKK kinase publication-title: Science – volume: 55 start-page: 1238 year: 2013 end-page: 1250 article-title: Diverse roles of family genes in plant development publication-title: Journal of Integrative Plant Biology – volume: 218 start-page: 661 year: 2018 end-page: 680 article-title: YODA MAP3K kinase regulates plant immune responses conferring broad‐spectrum disease resistance publication-title: New Phytologist – volume: 134 start-page: 1931 year: 2007 end-page: 1941 article-title: homologs of components of the SWR1 complex regulate flowering and plant development publication-title: Development – volume: 32 start-page: 673 year: 2019 end-page: 684 article-title: Regulation of GDSL lipase gene expression by the MPK3/MPK6 cascade and its downstream WRKY transcription factors in immunity publication-title: Molecular Plant–Microbe Interactions – volume: 73 start-page: 733 year: 2013 end-page: 746 article-title: The mutant, like the mutant, is specifically affected in the very long chain fatty acid elongation process publication-title: The Plant Journal – volume: 10 start-page: 3352 year: 2019 article-title: Arabidopsis SWR1‐associated protein methyl‐CpG‐binding domain 9 is required for histone H2A.Z deposition publication-title: Nature Communications – volume: 309 start-page: 290 year: 2005 end-page: 293 article-title: Stomatal patterning and differentiation by synergistic interactions of receptor kinases publication-title: Science – volume: 221 start-page: 295 year: 2019 end-page: 308 article-title: Epigenetic regulation of anthocyanin biosynthesis by an antagonistic interaction between H2A.Z and H3K4me3 publication-title: New Phytologist – volume: 87 start-page: 19 year: 2009 end-page: 25 article-title: Transcriptional and epigenetic functions of histone variant H2A.Z publication-title: Biochemistry and Cell Biology – volume: 66 start-page: 189 year: 2015 end-page: 201 article-title: Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in publication-title: Journal of Experimental Botany – volume: 39 year: 2020 article-title: A plant‐specific SWR1 chromatin‐remodeling complex couples histone H2A.Z deposition with nucleosome sliding publication-title: EMBO Journal – volume: 37 start-page: 1404 year: 2014 end-page: 1414 article-title: Altered growth and improved resistance of against by overexpression of the basic amino acid transporter publication-title: Plant, Cell & Environment – volume: 19 start-page: 1665 year: 2007 end-page: 1681 article-title: ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in publication-title: The Plant Cell – volume: 10 start-page: 1274 year: 2017 end-page: 1292 article-title: H2A.Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in publication-title: Molecular Plant – volume: 137 start-page: 25 year: 2019 end-page: 41 article-title: The mitogen activated protein kinase (MAPK) gene family functions as a cohort during the defense response to publication-title: Plant Physiology and Biochemistry – volume: 165 start-page: 791 year: 2014 end-page: 809 article-title: Contrasting roles of the apoplastic aspartyl protease APOPLASTIC, ‐DEPENDENT1 and LEGUME LECTIN‐LIKE PROTEIN1 in Arabidopsis systemic acquired resistance publication-title: Plant Physiology – volume: 24 start-page: 2001 year: 2012 end-page: 2014 article-title: Fatty acid phytyl ester synthesis in chloroplasts of publication-title: The Plant Cell – volume: 68 start-page: 1939 year: 2005 end-page: 1961 article-title: The bipyridyl herbicide paraquat produces oxidative stress‐mediated toxicity in human neuroblastoma SH‐SY5Y cells: relevance to the dopaminergic pathogenesis publication-title: Journal of Toxicology and Environmental Health – volume: 145 year: 2018 article-title: H2A.Z promotes the transcription of and in by facilitating the deposition of H3K4me3 publication-title: Development – volume: 115 start-page: E526 year: 2018 end-page: E535 article-title: suppresses megasporocyte cell fate through SWR1‐mediated activation of expression in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2 method publication-title: Methods – volume: 21 start-page: 218 year: 2010 end-page: 224 article-title: Genetic and biotechnological approaches for biofuel crop improvement publication-title: Current Opinion in Biotechnology – volume: 182 start-page: 640 year: 2020 end-page: 657 article-title: H2Bub1 regulates ‐dependent hydrogen peroxide signal pathway in the defense responses to toxins publication-title: Plant Physiology – volume: 17 start-page: 2633 year: 2005 end-page: 2646 article-title: The nuclear actin‐related protein ARP6 is a pleiotropic developmental regulator required for the maintenance of expression and repression of flowering in publication-title: The Plant Cell – volume: 31 start-page: 2206 year: 2019 end-page: 2222 article-title: The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to publication-title: The Plant Cell – volume: 5 start-page: 267 year: 2010 end-page: 272 article-title: Reconciling the positive and negative roles of histone H2A.Z in gene transcription publication-title: Epigenetics – volume: 59 start-page: 653 year: 2008 end-page: 666 article-title: Mutations in the gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development publication-title: Journal of Experimental Botany – volume: 143 start-page: 893 year: 2007 end-page: 901 article-title: SEF, a new protein required for flowering repression in Arabidopsis, interacts with PIE1 and ARP6 publication-title: Plant Physiology – volume: 10 start-page: R62 year: 2009 article-title: Genome‐wide analysis of mono, di and trimethylation of histone H3 lysine 4 in publication-title: Genome Biology – volume: 116 start-page: 109 year: 2004 end-page: 119 article-title: A MAPKK kinase gene regulates extra‐embryonic cell fate in publication-title: Cell – volume: 31 start-page: 617 year: 2017 end-page: 627 article-title: Transcriptional integration of paternal and maternal factors in the zygote publication-title: Genes & Development – volume: 330 start-page: 1393 year: 2010 end-page: 1397 article-title: type I metacaspases control cell death publication-title: Science – volume: 107 start-page: 18557 year: 2010 end-page: 18562 article-title: SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 6 start-page: 1875 year: 2011 end-page: 1877 article-title: Two Arabidopsis guard cell‐preferential MAPK genes, and , function in biotic stress response publication-title: Plant Signaling & Behavior – volume: 29 start-page: 791 year: 2017 end-page: 807 article-title: Dual role of the histone variant H2A.Z in transcriptional regulation of stress‐response genes publication-title: The Plant Cell – volume: 9 start-page: 1051 year: 2016 end-page: 1065 article-title: SWR1 chromatin‐remodeling complex subunits and H2A.Z have non‐overlapping functions in immunity and gene regulation in publication-title: Molecular Plant – volume: 66 start-page: 3163 year: 2015 end-page: 3174 article-title: CaWRKY6 transcriptionally activates , regulates resistance, and confers high‐temperature and high‐humidity tolerance in pepper publication-title: Journal of Experimental Botany – volume: 18 start-page: 1190 year: 2008 end-page: 1198 article-title: MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen‐activated protein kinase cascade to regulate innate immunity in plants publication-title: Cell Research – volume: 36 start-page: 353 year: 2003 end-page: 365 article-title: ERECTA, an LRR receptor‐like kinase protein controlling development pleiotropically affects resistance to bacterial wilt publication-title: The Plant Journal – volume: 303 start-page: 343 year: 2004 end-page: 348 article-title: ATP‐driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex publication-title: Science – volume: 64 start-page: 5323 year: 2013 end-page: 5333 article-title: Regulation of floral patterning and organ identity by ‐family receptor kinase genes publication-title: Journal of Experimental Botany – volume: 7 start-page: 223 year: 2006 article-title: MAP‐ping genomic organization and organ‐specific expression profiles of poplar MAP kinases and MAP kinase kinases publication-title: BMC Genomics – volume: 70 start-page: 5217 year: 2019 end-page: 5229 article-title: Epigenetic regulation of miR396 expression by SWR1‐C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis publication-title: Journal of Experimental Botany – volume: 23 start-page: 1639 year: 2011 end-page: 1653 article-title: Phosphorylation of a WRKY transcription factor by two pathogen‐responsive MAPKs drives phytoalexin biosynthesis in publication-title: The Plant Cell – volume: 33 start-page: 945 year: 2020 end-page: 957 article-title: CaCBL1 acts as a positive regulator in pepper response to publication-title: Molecular Plant–Microbe Interactions – volume: 10 year: 2014 article-title: Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in publication-title: PLoS Genetics – volume: 139 start-page: 5 year: 2005 end-page: 17 article-title: Genome‐wide identification and testing of superior reference genes for transcript normalization in Arabidopsis publication-title: Plant Physiology – volume: 2001 start-page: re22 year: 2001 article-title: Plant receptor‐like kinase gene family: diversity, function, and signaling publication-title: Science Signaling – volume: 19 start-page: 74 year: 2007 end-page: 83 article-title: Repression of flowering in requires activation of expression by the histone variant H2A.Z publication-title: The Plant Cell – volume: 5 start-page: 774 year: 2014 article-title: The family of LSU‐like proteins publication-title: Frontiers in Plant Science – volume: 30 start-page: 2480 year: 2018 end-page: 2494 article-title: A MPK3/6‐WRKY33‐ALD1‐pipecolic acid regulatory loop contributes to systemic acquired resistance publication-title: The Plant Cell – volume: 17 start-page: 2647 year: 2005 end-page: 2660 article-title: encodes a nuclear ACTIN‐RELATED PROTEIN6 required for floral repression in publication-title: The Plant Cell – volume: 16 start-page: 735 year: 1998 end-page: 743 article-title: Floral dip: a simplified method for ‐mediated transformation of publication-title: The Plant Journal – volume: 14 start-page: 85 year: 2014 article-title: ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of to publication-title: BMC Plant Biology – volume: 160 start-page: 91 year: 2014 end-page: 101 article-title: Regulation of the mannitol utilization genes: promoter structure and transcriptional activation by the wild‐type regulator (MtlR) and its mutants publication-title: Microbiology – volume: 2 start-page: 565 year: 2009 end-page: 577 article-title: The beauty of being a variant: H2A.Z and the SWR1 complex in plants publication-title: Molecular Plant – volume: 86 start-page: 495 year: 2014 end-page: 511 article-title: A novel protein elicitor (SsCut) from induces multiple defense responses in plants publication-title: Plant Molecular Biology – volume: 131 start-page: 1491 year: 2004 end-page: 1501 article-title: Synergistic interaction of three ERECTA‐family receptor‐like kinases controls organ growth and flower development by promoting cell proliferation publication-title: Development – volume: 8 start-page: 735 year: 1996 end-page: 746 article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats publication-title: The Plant Cell – volume: 214 start-page: 1579 year: 2017 end-page: 1596 article-title: ERECTA signaling controls inflorescence architecture through chromatin‐mediated activation of expression publication-title: New Phytologist – volume: 62 start-page: 1780 year: 2020 end-page: 1796 article-title: Co‐regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways publication-title: Journal of Integrative Plant Biology – volume: 15 start-page: 36 year: 2017 article-title: NO ious gases and the unpredictability of emerging plant pathogens under climate change publication-title: BMC Biology – volume: 6 year: 2011 article-title: The role of histone methylation and H2A.Z occupancy during rapid activation of ethylene responsive genes publication-title: PLoS ONE – volume: 30 start-page: 1337 year: 2018 end-page: 1352 article-title: The chromatin remodelers PKL and PIE1 act in an epigenetic pathway that determines H3K27me3 homeostasis in Arabidopsis publication-title: The Plant Cell – volume: 169 start-page: 780 year: 2015 end-page: 792 article-title: Calcineurin B‐like protein‐interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis publication-title: Plant Physiology – volume: 164 start-page: 1093 year: 2014 end-page: 1107 article-title: Arabidopsis s contribute to immunity against publication-title: Plant Physiology – volume: 8 year: 2013 article-title: Constitutively active MPK4 helps to clarify its role in plant immunity publication-title: Plant Signaling & Behavior – volume: 24 start-page: 4948 year: 2012 end-page: 4960 article-title: A MAPK cascade downstream of ERECTA receptor‐like protein kinase regulates inflorescence architecture by promoting localized cell proliferation publication-title: The Plant Cell – volume: 22 start-page: 953 year: 2009 end-page: 963 article-title: The ERECTA receptor‐like kinase regulates cell wall‐mediated resistance to pathogens in publication-title: Molecular Plant–Microbe Interactions – volume: 56 start-page: 457 year: 2008 end-page: 469 article-title: Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric gene publication-title: The Plant Journal – volume: 12 start-page: 1565 year: 2003 end-page: 1576 article-title: A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1 publication-title: Molecular Cell – volume: 16 start-page: 93 year: 1994 end-page: 108 article-title: Index of plant hosts of Sclerotinia sclerotiorum publication-title: Canadian Journal of Plant Pathology – volume: 15 year: 2019 article-title: Methyl‐CpG‐binding domain 9 (MBD9) is required for H2A.Z incorporation into chromatin at a subset of H2A.Z‐enriched regions in the Arabidopsis genome publication-title: PLoS Genetics – volume: 53 start-page: 475 year: 2008 end-page: 487 article-title: Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis publication-title: The Plant Journal – volume: 32 start-page: 2621 year: 2020 end-page: 2638 article-title: Differential phosphorylation of the transcription factor WRKY33 by the protein kinases CPK5/CPK6 and MPK3/MPK6 cooperatively regulates camalexin biosynthesis in Arabidopsis publication-title: The Plant Cell – volume: 484 start-page: 186 year: 2012 end-page: 194 article-title: Emerging fungal threats to animal, plant and ecosystem health publication-title: Nature – volume: 43 start-page: 165 year: 2005 end-page: 180 article-title: ERECTA receptor‐like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus publication-title: The Plant Journal – volume: 26 start-page: 1612 year: 2014 end-page: 1628 article-title: ACTIN‐RELATED PROTEIN6 regulates female meiosis by modulating meiotic gene expression in publication-title: The Plant Cell – volume: 8 start-page: 1621 year: 2019 article-title: SWR1 chromatin remodeling complex: a key transcriptional regulator in plants publication-title: Cells – ident: e_1_2_7_52_1 doi: 10.1126/science.1090701 – ident: e_1_2_7_12_1 doi: 10.1111/nph.15306 – volume: 8 start-page: 735 year: 1996 ident: e_1_2_7_70_1 article-title: The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine‐rich repeats publication-title: The Plant Cell contributor: fullname: Torii KU – ident: e_1_2_7_8_1 doi: 10.1104/pp.113.227637 – ident: e_1_2_7_6_1 doi: 10.1126/science.1096014 – ident: e_1_2_7_80_1 doi: 10.1186/gb-2009-10-6-r62 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-313X.2005.02440.x – ident: e_1_2_7_68_1 doi: 10.1093/jxb/eru410 – ident: e_1_2_7_40_1 doi: 10.1105/tpc.112.095588 – ident: e_1_2_7_67_1 doi: 10.1111/nph.15007 – ident: e_1_2_7_14_1 doi: 10.1105/tpc.17.00867 – ident: e_1_2_7_82_1 doi: 10.1073/pnas.1716054115 – ident: e_1_2_7_43_1 doi: 10.1016/S0092-8674(03)01067-5 – ident: e_1_2_7_73_1 doi: 10.1105/tpc.18.00547 – ident: e_1_2_7_29_1 doi: 10.1371/journal.pgen.1004384 – ident: e_1_2_7_47_1 doi: 10.1111/j.1365-313X.2007.03361.x – ident: e_1_2_7_30_1 doi: 10.1073/pnas.1010478107 – ident: e_1_2_7_9_1 doi: 10.1080/07060669409500766 – ident: e_1_2_7_24_1 doi: 10.1139/O08-117 – ident: e_1_2_7_20_1 doi: 10.1104/pp.105.063743 – ident: e_1_2_7_22_1 doi: 10.1105/tpc.105.035196 – ident: e_1_2_7_56_1 doi: 10.1038/s41467-019-11291-w – ident: e_1_2_7_62_1 doi: 10.1111/jipb.12108 – ident: e_1_2_7_48_1 doi: 10.1093/mp/ssp019 – ident: e_1_2_7_38_1 doi: 10.1016/S1097-2765(03)00497-0 – ident: e_1_2_7_55_1 doi: 10.1111/tpj.12060 – ident: e_1_2_7_10_1 doi: 10.1104/pp.114.239665 – ident: e_1_2_7_28_1 doi: 10.1046/j.1365-313X.2003.01877.x – ident: e_1_2_7_77_1 doi: 10.1111/jipb.12973 – ident: e_1_2_7_23_1 doi: 10.1105/tpc.106.048447 – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-313X.2008.03619.x – ident: e_1_2_7_32_1 doi: 10.1094/MPMI-06-18-0171-R – ident: e_1_2_7_81_1 doi: 10.1104/pp.19.00913 – ident: e_1_2_7_16_1 doi: 10.1242/dev.001891 – volume: 5 start-page: 774 year: 2014 ident: e_1_2_7_66_1 article-title: The family of LSU‐like proteins publication-title: Frontiers in Plant Science contributor: fullname: Sirko A – ident: e_1_2_7_51_1 doi: 10.1105/tpc.112.104695 – ident: e_1_2_7_17_1 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_2_7_76_1 doi: 10.1111/pce.12244 – ident: e_1_2_7_57_1 doi: 10.1105/tpc.113.120576 – ident: e_1_2_7_59_1 doi: 10.1094/MPMI-22-8-0953 – ident: e_1_2_7_61_1 doi: 10.1126/stke.2001.113.re22 – ident: e_1_2_7_63_1 doi: 10.1242/dev.01028 – ident: e_1_2_7_83_1 doi: 10.1105/tpc.19.00971 – ident: e_1_2_7_54_1 doi: 10.1104/pp.15.00623 – ident: e_1_2_7_39_1 doi: 10.1093/jxb/erm332 – ident: e_1_2_7_3_1 doi: 10.3390/cells8121621 – ident: e_1_2_7_2_1 doi: 10.1105/tpc.106.048041 – ident: e_1_2_7_18_1 doi: 10.4161/psb.22991 – ident: e_1_2_7_34_1 doi: 10.1099/mic.0.071233-0 – ident: e_1_2_7_21_1 doi: 10.1016/j.molp.2017.09.007 – ident: e_1_2_7_45_1 doi: 10.1105/tpc.111.084996 – ident: e_1_2_7_27_1 doi: 10.1038/cr.2008.300 – ident: e_1_2_7_46_1 doi: 10.1104/pp.106.092270 – ident: e_1_2_7_19_1 doi: 10.1126/science.1194980 – ident: e_1_2_7_44_1 doi: 10.15252/embj.2019102008 – ident: e_1_2_7_71_1 doi: 10.1101/gad.292409.116 – ident: e_1_2_7_25_1 doi: 10.1038/nature10947 – ident: e_1_2_7_37_1 doi: 10.4161/psb.6.11.17933 – ident: e_1_2_7_26_1 doi: 10.1186/s12915-017-0376-4 – ident: e_1_2_7_74_1 doi: 10.1016/j.tplants.2014.10.001 – ident: e_1_2_7_33_1 doi: 10.1105/tpc.19.00239 – ident: e_1_2_7_49_1 doi: 10.4161/epi.5.4.11520 – ident: e_1_2_7_60_1 doi: 10.1094/MPMI-08-19-0241-R – ident: e_1_2_7_5_1 doi: 10.1093/jxb/ert270 – ident: e_1_2_7_31_1 doi: 10.1186/1471-2229-14-85 – ident: e_1_2_7_35_1 doi: 10.1093/jxb/erz285 – ident: e_1_2_7_58_1 doi: 10.1105/tpc.022335 – ident: e_1_2_7_69_1 doi: 10.1105/tpc.16.00573 – ident: e_1_2_7_75_1 doi: 10.1242/dev.152868 – ident: e_1_2_7_15_1 doi: 10.1105/tpc.105.035485 – ident: e_1_2_7_64_1 doi: 10.1126/science.1109710 – ident: e_1_2_7_78_1 doi: 10.1080/15287390500226987 – ident: e_1_2_7_65_1 doi: 10.1371/journal.pgen.1008326 – ident: e_1_2_7_53_1 doi: 10.1186/1471-2164-7-223 – ident: e_1_2_7_50_1 doi: 10.1016/j.plaphy.2019.01.018 – ident: e_1_2_7_79_1 doi: 10.1007/s11103-014-0244-3 – ident: e_1_2_7_13_1 doi: 10.1111/nph.14521 – ident: e_1_2_7_41_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_7_72_1 doi: 10.1016/j.copbio.2010.02.002 – ident: e_1_2_7_11_1 doi: 10.1093/jxb/erv125 – ident: e_1_2_7_7_1 doi: 10.1016/j.molp.2016.04.003 – ident: e_1_2_7_36_1 doi: 10.1371/journal.pone.0028224 |
SSID | ssj0009562 |
Score | 2.503552 |
Snippet | Summary
The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is... The signaling pathway mediated by the receptor-like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is... The signaling pathway mediated by the receptor‐like kinase ERECTA (ER) plays important roles in plant immune responses, but the underlying mechanism is... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 737 |
SubjectTerms | Arabidopsis Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Ascomycota Binding Chromatin Chromatin remodeling Electrophoretic mobility ERECTA (ER) Fungi Gene expression Gene Expression Regulation, Plant Genes Histones Immune response Immunoprecipitation Infections Kinases Pathogens Plant immunity Plant Immunity - genetics Promoters Receptors S clerotinia sclerotiorum Signal Transduction Signaling SWR1 White mold WRKY33 Yeasts YODA DOWNSTREAM (YDD) genes |
Title | ERECTA signaling regulates plant immune responses via chromatin‐mediated promotion of WRKY33 binding to target genes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17200 https://www.ncbi.nlm.nih.gov/pubmed/33454980 https://www.proquest.com/docview/2501877440 https://search.proquest.com/docview/2478775509 |
Volume | 230 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fS-QwEB-W5R7uRb0_6up65MSHe-nSbdo0wSf1VpY7FFkUVxBKkybuorTL_gN98iPcZ7xPcpl0u6iHIL6VNCFtJpOZSX7zC8AeZxlTkYm8gArthTJue8Iaeo9LTrnRdlI5Lr2TU9a9CH_1o34N9qtcmJIfYrnhhprh1mtU8FROnih5Phq0rPX1MV5v0xjhXD97wRPCXRZUDMwsZP0FqxCieJYtn9ui_xzM5_6qMzjHq3BdfWqJM7ltzaaypR5esDi-81_WYGXhiJKDcuZ8gprOP8OHw8I6i_dfYN7pdY7ODwjCO1LMWCfj8tJ6PSGjOysNMsTEEm2LHcbWFs-HKVGDcYEucP738Y_LSbH-LBmViL8iJ4Uhl73fV5QSOXTZNGRakBKLTm5w0f0KF8ed86Out7iiwVPIIuMxJgKJYaTSsVFt5muf61gbpYwJFDPcUKlShgc6jPsqE6HAtKk4zDKTRb6k61DPi1xvAomkkm0R6SgN01BksfB5FmimlI1wlZ_6DdithJWMSiaOpIpg7Pglbvwa0KzEmCyUcZIESFoYIxNiA74vX1s1wrORNNfFzNZBkqLYhmuiARul-Je9UBraKJrb1j-cEF_vPjk967qHrbdX3YaPAeJkHBqoCfXpeKZ3rKMzld_cjP4HgOX5mQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9NYxK8jI2vFfZhEA-8pErjxLElXvbRqbCtQlUnygOKYsdmFSipunYSPPEn7G_kL-HOaaptCAnxFjm2nPh8vjv7dz8DvJaiECZxSRBxZYNYp51AoaEPpJZcOouTynPpnfVF7zx-P0pGK_C2yYWp-SGWG26kGX69JgWnDekbWl5OLtpofkMM2O-hunO6uOFoEN2g3BVRw8EsYjFa8AoRjmfZ9LY1-sPFvO2xepNz_BA-Nx9bI02-tucz3TY_7vA4_u_fbMD6whdl-_Xk2YQVWz6CtYMK_cXvj-GqO-geDvcZITxySlpn0_reenvJJt9QIGxMuSUWiz3MFouvxjkzF9OKvODy189rn5aCLi2b1KC_qmSVYx8HJ584Z3rsE2rYrGI1HJ19oXX3CZwfd4eHvWBxS0NgiEgmEEJFmiJJY1NnOiK0obSpdcY4FxnhpOPa5ILOdIQMTaFiRZlTaVwUrkhCzZ_CalmVdgtYoo3uqMQmeZzHqkhVKIvICmMwyDVhHrbgVSOtbFKTcWRNEIPjl_nxa8F2I8dsoY-XWUS8hSmRIbbg5fI1ahIdj-SlreZYh3iKUozYVAue1fJf9sJ5jIG0xNZvvBT_3n3W_9DzD8__veoe3O8Nz06z03f9kxfwICLYjAcHbcPqbDq3O-j3zPSun96_AQbY_bE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2aNoR4YXxuZRsYxAMvqdLEcWzxNLZWhUE1VZsoElIUO_ZWgZKoayeNJ34Cv5Ffwr1OU20gJMRb5NhK4utrnxufewzwUopCmMQlQRQrG3Cd9gKFC30gtYylsziovJbeh5EYnvJ3k2SyBq_bXJhGH2L1w408w8_X5OB14a45eVmfd3H1DTFe3-ACkS8honF0TXFXRK0Es-BispQVIhrPqunNxegPhHkTsPoVZ7AJn9t3bYgmX7qLue6ab7_JOP7nx9yDu0skyvaboXMf1mz5AG69qRAtXj2Ey_64f3Cyz4jfkVPKOps1p9bbC1Z_RXOwKWWWWCz2JFssvpzmzJzPKsLA5c_vP3xSCgJaVjeUv6pklWMfx0ef4pjpqU-nYfOKNWR0dkaz7iM4HfRPDobB8oyGwJCMTCCEijTFkcamzvREaENpU-uMcS4ywkkXa5ML2tERMjSF4oryplJeFK5IQh0_hvWyKu02sEQb3VOJTXKec1WkKpRFZIUxGOKaMA878KI1VlY3UhxZG8Jg_2W-_zqw25oxW3rjRRaRamFKUogdeL66jX5EmyN5aasF1iGVohTjNdWBrcb8q6fEMccwWmLrV96If398Njoe-osn_171Gdw-Phxk79-OjnbgTkScGc8M2oX1-Wxh9xD0zPVTP7h_ARfI_GA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERECTA+signaling+regulates+plant+immune+responses+via+chromatin-mediated+promotion+of+WRKY33+binding+to+target+genes&rft.jtitle=The+New+phytologist&rft.au=Cai%2C+Hanyang&rft.au=Huang%2C+Youmei&rft.au=Chen%2C+Fangqian&rft.au=Liu%2C+Liping&rft.date=2021-04-01&rft.eissn=1469-8137&rft.volume=230&rft.issue=2&rft.spage=737&rft.epage=756&rft_id=info:doi/10.1111%2Fnph.17200&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |