Effect of Increased Lactate Dehydrogenase A Activity and Aerobic Glycolysis on the Proinflammatory Profile of Autoimmune CD8+ T Cells in Rheumatoid Arthritis

Objective CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient‐poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet the...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 72; no. 12; pp. 2050 - 2064
Main Authors Souto‐Carneiro, M. Margarida, Klika, Karel D., Abreu, Mónica T., Meyer, André P., Saffrich, Rainer, Sandhoff, Roger, Jennemann, Richard, Kraus, Franziska V., Tykocinski, Lars, Eckstein, Volker, Carvalho, Lina, Kriegsmann, Mark, Giese, Thomas, Lorenz, Hanns‐Martin, Carvalho, Rui A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text
ISSN2326-5191
2326-5205
2326-5205
DOI10.1002/art.41420

Cover

Loading…
Abstract Objective CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient‐poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA. Methods Purified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13C‐labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1H‐nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed. Results RA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13C‐enriched lactate in the RA blood (2.6 to 3.7–fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect–linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low‐glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5‐fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane. Conclusion Remodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.
AbstractList CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient-poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA. Purified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing C-labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by H-nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed. RA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly C-enriched lactate in the RA blood (2.6 to 3.7-fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect-linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low-glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5-fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane. Remodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.
CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient-poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA.OBJECTIVECD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient-poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA.Purified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13 C-labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1 H-nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed.METHODSPurified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13 C-labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1 H-nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed.RA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13 C-enriched lactate in the RA blood (2.6 to 3.7-fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect-linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low-glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5-fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane.RESULTSRA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13 C-enriched lactate in the RA blood (2.6 to 3.7-fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect-linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low-glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5-fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane.Remodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.CONCLUSIONRemodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.
Objective CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient‐poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA. Methods Purified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13C‐labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1H‐nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed. Results RA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13C‐enriched lactate in the RA blood (2.6 to 3.7–fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect–linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low‐glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5‐fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane. Conclusion Remodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.
ObjectiveCD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient‐poor microenvironment such as the synovial membrane. This study was undertaken to explore the mechanisms through which CD8+ T cells meet their metabolic demands in the blood and synovial membrane of patients with RA.MethodsPurified blood CD8+ T cells from patients with RA, patients with psoriatic arthritis (PsA), and patients with spondyloarthritis (SpA), as well as healthy control subjects, and CD8+ T cells from RA synovial membrane were stimulated in medium containing 13C‐labeled metabolic substrates in the presence or absence of metabolic inhibitors, under conditions of normoxia or hypoxia. The production of metabolic intermediates was quantified by 1H‐nuclear magnetic resonance. The expression of metabolic enzymes, transcription factors, and immune effector molecules was assessed at both the messenger RNA (mRNA) and protein levels. CD8+ T cell functional studies were performed.ResultsRA blood CD8+ T cells met their metabolic demands through aerobic glycolysis, production of uniformly 13C‐enriched lactate in the RA blood (2.6 to 3.7–fold higher than in patients with SpA, patients with PsA, and healthy controls; P < 0.01), and induction of glutaminolysis. Overexpression of Warburg effect–linked enzymes in all RA CD8+ T cell subsets maintained this metabolic profile, conferring to the cells the capacity to proliferate under hypoxia and low‐glucose conditions. In all RA CD8+ T cell subsets, lactate dehydrogenase A (LDHA) was overexpressed at the mRNA level (P < 0.03 versus controls; n = 6 per group) and protein level (P < 0.05 versus controls; n = 17 RA patients, n = 9 controls). In RA blood, inhibition of LDHA with FX11 led to reductions in lipogenesis, migration and proliferation of CD8+ T cells, and CD8+ T cell effector functions, while production of reactive oxygen species was increased by 1.5‐fold (P < 0.03 versus controls). Following inhibition of LDHA with FX11, RA CD8+ T cells lost their capacity to induce healthy B cells to develop a proinflammatory phenotype. Similar metabolic alterations were observed in RA CD8+ T cells from the synovial membrane.ConclusionRemodeling glucose and glutamine metabolism in RA CD8+ T cells by targeting LDHA activity can reduce the deleterious inflammatory and cytolytic contributions of these cells to the development of autoimmunity.
Author Carvalho, Rui A.
Giese, Thomas
Sandhoff, Roger
Souto‐Carneiro, M. Margarida
Kraus, Franziska V.
Meyer, André P.
Kriegsmann, Mark
Carvalho, Lina
Jennemann, Richard
Klika, Karel D.
Eckstein, Volker
Abreu, Mónica T.
Saffrich, Rainer
Tykocinski, Lars
Lorenz, Hanns‐Martin
Author_xml – sequence: 1
  givenname: M. Margarida
  orcidid: 0000-0001-6923-0590
  surname: Souto‐Carneiro
  fullname: Souto‐Carneiro, M. Margarida
  email: margarida.souto-carneiro@med.uni-heidelberg.de
  organization: University Hospital Heidelberg
– sequence: 2
  givenname: Karel D.
  surname: Klika
  fullname: Klika, Karel D.
  organization: German Cancer Research Center
– sequence: 3
  givenname: Mónica T.
  surname: Abreu
  fullname: Abreu, Mónica T.
  organization: University of Coimbra
– sequence: 4
  givenname: André P.
  surname: Meyer
  fullname: Meyer, André P.
  organization: University Hospital Freiburg
– sequence: 5
  givenname: Rainer
  surname: Saffrich
  fullname: Saffrich, Rainer
  organization: University Hospital Heidelberg, Heidelberg, Germany, and Deutsches Rotes Kreuz Baden‐Württemberg–Hessen
– sequence: 6
  givenname: Roger
  surname: Sandhoff
  fullname: Sandhoff, Roger
  organization: German Cancer Research Center
– sequence: 7
  givenname: Richard
  surname: Jennemann
  fullname: Jennemann, Richard
  organization: German Cancer Research Center
– sequence: 8
  givenname: Franziska V.
  surname: Kraus
  fullname: Kraus, Franziska V.
  organization: University Hospital Heidelberg
– sequence: 9
  givenname: Lars
  surname: Tykocinski
  fullname: Tykocinski, Lars
  organization: University Hospital Heidelberg
– sequence: 10
  givenname: Volker
  surname: Eckstein
  fullname: Eckstein, Volker
  organization: University Hospital Heidelberg
– sequence: 11
  givenname: Lina
  surname: Carvalho
  fullname: Carvalho, Lina
  organization: University of Coimbra
– sequence: 12
  givenname: Mark
  surname: Kriegsmann
  fullname: Kriegsmann, Mark
  organization: University Hospital Heidelberg
– sequence: 13
  givenname: Thomas
  surname: Giese
  fullname: Giese, Thomas
  organization: University of Heidelberg
– sequence: 14
  givenname: Hanns‐Martin
  surname: Lorenz
  fullname: Lorenz, Hanns‐Martin
  organization: University Hospital Heidelberg
– sequence: 15
  givenname: Rui A.
  surname: Carvalho
  fullname: Carvalho, Rui A.
  organization: University of Coimbra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32602217$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9u1DAQxi1UREvpgRdAlriA0La2E-fPMdqWttJKrarlHDnOmHWV2MV2QHkY3pUJ2_ZQCXyxx_7N55n53pID5x0Q8p6zU86YOFMhneY8F-wVORKZKFZSMHnwdOY1PyQnMd4zXHXJCibfkEN8YkLw8oj8vjAGdKLe0GunA6gIPd0onVQCeg67uQ_-Ozi8pg1tdLI_bZqpcj1tIPjOano5zNoPc7SRekfTDuht8NaZQY2jSj7MS2zsAMsfzZS8HcfJAV2fV1_olq5hGCK1jt7tYFoSLEqHtAs22fiOvDZqiHDyuB-Tb18vtuur1ebm8nrdbFY6qyq2KoTm2JERpZGi7uoygzpThZBVbzqjc92rkvOMS469ZhXLZCVVr43qcT5Mdtkx-bTXfQj-xwQxtaONGitTDvwUW5EjV1eyEIh-fIHe-yk4rA6pIq8W7YX68EhN3Qh9-xDsqMLcPg0egc97QAcfYwDzjHDWLr626Gv711dkz16w2qI_1rsUlB3-l_EL5z7_W7pt7rb7jD8CuLM7
CitedBy_id crossref_primary_10_1186_s13075_021_02437_7
crossref_primary_10_3389_fimmu_2024_1381272
crossref_primary_10_1016_j_phymed_2022_154048
crossref_primary_10_1038_s41392_024_01954_6
crossref_primary_10_1021_acs_jafc_4c06490
crossref_primary_10_18632_aging_202958
crossref_primary_10_3390_nu15214697
crossref_primary_10_1136_ard_2022_222451
crossref_primary_10_1080_08830185_2021_1974856
crossref_primary_10_1007_s00018_021_03978_5
crossref_primary_10_3390_antiox11061151
crossref_primary_10_2147_JIR_S499473
crossref_primary_10_1002_ptr_7211
crossref_primary_10_3389_fcell_2023_1268646
crossref_primary_10_3389_fimmu_2021_688910
crossref_primary_10_3390_biom14101202
crossref_primary_10_1002_ctm2_70070
crossref_primary_10_1016_j_chmed_2023_11_001
crossref_primary_10_3389_fimmu_2023_1107670
crossref_primary_10_3389_fimmu_2023_1188745
crossref_primary_10_3390_genes13071216
crossref_primary_10_3389_fimmu_2021_713799
crossref_primary_10_3389_fimmu_2022_1044909
crossref_primary_10_3390_ijms25179744
crossref_primary_10_1007_s00395_021_00904_5
crossref_primary_10_1155_2023_3220235
crossref_primary_10_3389_fimmu_2021_680955
crossref_primary_10_1080_10641963_2024_2424834
crossref_primary_10_2147_JIR_S497240
crossref_primary_10_3389_fimmu_2024_1513047
crossref_primary_10_1186_s10194_024_01916_x
crossref_primary_10_18632_aging_205435
crossref_primary_10_3389_fimmu_2024_1496390
crossref_primary_10_1038_s41392_022_01151_3
crossref_primary_10_3390_metabo14040217
crossref_primary_10_1016_j_autrev_2024_103738
crossref_primary_10_1016_j_xcrm_2024_101920
crossref_primary_10_1002_art_42456
crossref_primary_10_3389_fimmu_2025_1554028
crossref_primary_10_1155_2022_2280973
crossref_primary_10_3389_fimmu_2021_779787
crossref_primary_10_1016_j_immuni_2022_11_009
crossref_primary_10_1016_j_biopha_2022_114164
crossref_primary_10_3389_fphar_2021_726529
crossref_primary_10_3389_fimmu_2021_673916
crossref_primary_10_1002_prca_202200102
crossref_primary_10_3390_ijms24129925
crossref_primary_10_3389_fcell_2022_972020
crossref_primary_10_1016_j_immuni_2025_02_008
crossref_primary_10_3390_metabo12070634
crossref_primary_10_1186_s12967_023_04842_9
crossref_primary_10_1007_s11427_019_1735_4
crossref_primary_10_3389_fimmu_2021_652771
crossref_primary_10_1002_cbf_4025
crossref_primary_10_3389_fmed_2021_778500
crossref_primary_10_1016_j_jaut_2023_103160
crossref_primary_10_1038_s41419_023_05937_3
crossref_primary_10_3390_biom12091216
crossref_primary_10_1111_jcmm_70022
crossref_primary_10_1038_s41598_023_29851_y
crossref_primary_10_1186_s12964_024_01624_8
crossref_primary_10_3892_ijmm_2024_5383
crossref_primary_10_1038_s41598_024_69987_z
crossref_primary_10_1016_j_tem_2024_01_005
crossref_primary_10_1093_cei_uxac107
crossref_primary_10_1016_j_intimp_2024_111913
crossref_primary_10_2147_JIR_S465051
crossref_primary_10_1186_s42358_024_00428_1
crossref_primary_10_3389_fimmu_2021_808799
crossref_primary_10_3389_fimmu_2022_1016112
Cites_doi 10.1126/scitranslmed.aad7151
10.4049/jimmunol.166.4.2878
10.1002/art.38376
10.1016/j.celrep.2014.07.053
10.1183/09031936.96.09081736
10.1002/art.40939
10.1002/art.27767
10.1084/jem.20130252
10.1016/j.it.2014.12.005
10.1093/rheumatology/kem279
10.1038/nature08097
10.1038/s41467-018-05044-4
10.1038/s41556-017-0002-2
10.1172/JCI69589
10.1002/eji.201343751
10.1042/BJ20081386
10.1186/s12860-016-0104-x
10.3389/fimmu.2018.01973
10.1002/art.38941
10.1186/ar2718
10.4049/jimmunol.174.1.533
10.1002/art.39608
10.1084/jem.20160061
10.1002/art.1780350804
10.1016/j.immuni.2011.12.007
10.1016/j.autrev.2005.04.012
10.1002/art.27729
10.1152/physrev.00011.2015
10.1002/art.38273
10.1146/annurev-cellbio-092910-154237
10.1038/ni.3808
10.1002/art.40218
10.1038/ni.2687
10.3389/fimmu.2018.02736
10.1016/j.celrep.2016.09.045
10.1002/1529-0131(200109)44:9<2038::AID-ART353>3.0.CO;2-1
10.1126/science.1242454
10.3389/fonc.2018.00331
10.1073/pnas.1407717111
10.1002/art.38015
10.1136/annrheumdis-2014-206119
10.4049/jimmunol.1302985
10.1038/ni.2714
10.1126/science.1250684
10.1073/pnas.91.11.4854
ContentType Journal Article
Copyright 2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology
2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.
2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology
– notice: 2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
DOI 10.1002/art.41420
DatabaseName Wiley Online Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Toxicology Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2326-5205
EndPage 2064
ExternalDocumentID 32602217
10_1002_art_41420
ART41420
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Schulze and Wucherpfennig Foundation
  funderid: SysScle‐W5‐2010
– fundername: Deutsche Forschungsgemeinschaft
  funderid: SO 1402/1‐1
GroupedDBID 0R~
1OC
24P
33P
3SF
4.4
52O
52U
52V
53G
5VS
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
DCZOG
DIK
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
FUBAC
G-S
G.N
GODZA
HGLYW
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
NF~
O66
O9-
OK1
OVD
P2W
PQQKQ
QB0
ROL
SUPJJ
SV3
TEORI
V9Y
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
YCJ
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
H94
K9.
7X8
ID FETCH-LOGICAL-c3880-62c1260f27f529b973e93a6258dfbfc4cda7113151fec3803585adcfad51905b3
IEDL.DBID 24P
ISSN 2326-5191
2326-5205
IngestDate Thu Jul 10 18:07:33 EDT 2025
Fri Jul 25 12:11:07 EDT 2025
Wed Feb 19 02:30:27 EST 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 00:56:00 EDT 2025
Wed Jan 22 16:31:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial-NoDerivs
2020 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3880-62c1260f27f529b973e93a6258dfbfc4cda7113151fec3803585adcfad51905b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6923-0590
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.41420
PMID 32602217
PQID 2464835852
PQPubID 946334
PageCount 15
ParticipantIDs proquest_miscellaneous_2419098562
proquest_journals_2464835852
pubmed_primary_32602217
crossref_primary_10_1002_art_41420
crossref_citationtrail_10_1002_art_41420
wiley_primary_10_1002_art_41420_ART41420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheumatol
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 166
2015; 36
2019; 71
2005; 174
2013; 65
2017; 69
2013; 43
2013; 123
2013; 342
2016; 75
2016; 96
1992; 35
2014; 192
2001; 44
2012; 36
2016; 17
2014; 111
2009; 417
2018; 20
2010; 62
2014; 66
2015; 67
2009; 11
2018; 9
2018; 8
2013; 14
2008; 47
2013; 210
2011; 63
2005; 4
2017; 18
2009; 460
2016; 213
2011; 27
1994; 91
2014; 8
2014; 345
2016; 8
1996; 9
2016; 68
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
Hradilkova K (e_1_2_7_20_1) 2019; 71
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Cammann C (e_1_2_7_25_1) 2016; 17
References_xml – volume: 9
  start-page: 1736
  year: 1996
  end-page: 42
  article-title: Usefulness of lactate dehydrogenase and its isoenzymes as indicators of lung damage or inflammation [review]
  publication-title: Eur Respir J
– volume: 11
  start-page: R84
  year: 2009
  article-title: Alterations in peripheral blood memory B cells in patients with active rheumatoid arthritis are dependent on the action of tumour necrosis factor
  publication-title: Arthritis Res Ther
– volume: 9
  start-page: 2755
  year: 2018
  article-title: Multi‐omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission
  publication-title: Nature Commun
– volume: 8
  start-page: 1461
  year: 2014
  end-page: 74
  article-title: Hexokinase 2‐mediated Warburg effect is required for PTEN‐ and p53‐deficiency‐driven prostate cancer growth
  publication-title: Cell Rep
– volume: 460
  start-page: 103
  year: 2009
  end-page: 7
  article-title: Enhancing CD8 T‐cell memory by modulating fatty acid metabolism
  publication-title: Nature
– volume: 4
  start-page: 549
  year: 2005
  end-page: 54
  article-title: B‐cell differentiation in the CNS of patients with multiple sclerosis
  publication-title: Autoimmun Rev
– volume: 68
  start-page: 1614
  year: 2016
  end-page: 26
  article-title: Critical role of glucose metabolism in rheumatoid arthritis fibroblast‐like synoviocytes
  publication-title: Arthritis Rheumatol
– volume: 210
  start-page: 2119
  year: 2013
  end-page: 34
  article-title: Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells
  publication-title: J Exp Med
– volume: 9
  start-page: 1973
  year: 2018
  article-title: Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis
  publication-title: Front Immunol
– volume: 96
  start-page: 409
  year: 2016
  end-page: 47
  article-title: Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy [review]
  publication-title: Physiol Rev
– volume: 67
  start-page: 363
  year: 2015
  end-page: 71
  article-title: CD8+ T cell profiles in patients with rheumatoid arthritis and their relationship to disease activity
  publication-title: Arthritis Rheumatol
– volume: 44
  start-page: 2038
  year: 2001
  end-page: 45
  article-title: Epitope specificity of clonally expanded populations of CD8+ T cells found within the joints of patients with inflammatory arthritis
  publication-title: Arthritis Rheum
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  article-title: How mitochondria produce reactive oxygen species [review]
  publication-title: Biochem J
– volume: 192
  start-page: 3190
  year: 2014
  end-page: 9
  article-title: Regulator of fatty acid metabolism, acetyl coenzyme A carboxylase 1, controls T cell immunity
  publication-title: J Immunol
– volume: 342
  start-page: 1242454
  year: 2013
  article-title: Fueling immunity: insights into metabolism and lymphocyte function [review]
  publication-title: Science
– volume: 18
  start-page: 1025
  year: 2017
  end-page: 34
  article-title: Metabolic control of the scaffold protein TKS5 in tissue‐invasive, proinflammatory T cells
  publication-title: Nat Immunol
– volume: 111
  start-page: 15526
  year: 2014
  end-page: 31
  article-title: Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial‐mesenchymal transition
  publication-title: Proc Natl Acad Sci U S A
– volume: 166
  start-page: 2878
  year: 2001
  end-page: 86
  article-title: Psoriatic arthritis joint fluids are characterized by CD8 and CD4 T cell clonal expansions appear antigen driven
  publication-title: J Immunol
– volume: 43
  start-page: 2797
  year: 2013
  end-page: 809
  article-title: The who's who of T‐cell differentiation: human memory T‐cell subsets
  publication-title: Eur J Immunol
– volume: 123
  start-page: 4479
  year: 2013
  end-page: 88
  article-title: Inhibiting glycolytic metabolism enhances CD8 T cell memory and antitumor function
  publication-title: J Clin Invest
– volume: 66
  start-page: 513
  year: 2014
  end-page: 22
  article-title: Features of the synovium of individuals at risk of developing rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis
  publication-title: Arthritis Rheumatol
– volume: 69
  start-page: 2114
  year: 2017
  end-page: 23
  article-title: Synovial immunophenotype and anti–citrullinated peptide antibodies in rheumatoid arthritis patients: relationship to treatment response and radiologic prognosis
  publication-title: Arthritis Rheumatol
– volume: 91
  start-page: 4854
  year: 1994
  end-page: 8
  article-title: Tumor necrosis factor ɑ inhibits signaling from the insulin receptor
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 331
  year: 2018
  article-title: Fructose 2,6‐bisphosphate in cancer cell metabolism [review]
  publication-title: Front Oncol
– volume: 14
  start-page: 1064
  year: 2013
  end-page: 72
  article-title: Rapid effector function of memory CD8+ T cells requires an immediate‐early glycolytic switch
  publication-title: Nat Immunol
– volume: 66
  start-page: 1272
  year: 2014
  end-page: 81
  article-title: Interleukin‐17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression
  publication-title: Arthritis Rheumatol
– volume: 20
  start-page: 21
  year: 2018
  end-page: 7
  article-title: A Pck1‐directed glycogen metabolic program regulates formation and maintenance of memory CD8 T cells
  publication-title: Nat Cell Biol
– volume: 63
  start-page: 63
  year: 2011
  end-page: 72
  article-title: V‐region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis
  publication-title: Arthritis Rheum
– volume: 75
  start-page: 748
  year: 2016
  end-page: 54
  article-title: Premature senescence of T‐cell subsets in axial spondyloarthritis
  publication-title: Ann Rheum Dis
– volume: 35
  start-page: 865
  year: 1992
  end-page: 73
  article-title: High percentage of CD8+, Leu‐7+ cells in rheumatoid arthritis synovial fluid
  publication-title: Arthritis Rheum
– volume: 36
  start-page: 68
  year: 2012
  end-page: 78
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
– volume: 27
  start-page: 441
  year: 2011
  end-page: 64
  article-title: Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
  publication-title: Ann Rev Cell Dev Biol
– volume: 345
  start-page: 1250684
  year: 2014
  article-title: mTOR‐ and HIF‐1ɑ‐mediated aerobic glycolysis as metabolic basis for trained immunity
  publication-title: Science
– volume: 174
  start-page: 533
  year: 2005
  end-page: 41
  article-title: Genetic interactions in Eae2 control collagen‐induced arthritis and the CD4+/CD8+ T cell ratio
  publication-title: J Immunol
– volume: 8
  start-page: 331ra38
  year: 2016
  article-title: Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis
  publication-title: Sci Transl Med
– volume: 62
  start-page: 2953
  year: 2010
  end-page: 62
  article-title: Monoclonal anti‐CD8 therapy induces disease amelioration in the K/BxN mouse model of spontaneous chronic polyarthritis
  publication-title: Arthritis Rheum
– volume: 14
  start-page: 1173
  year: 2013
  end-page: 82
  article-title: Hypoxia‐inducible factors enhance the effector responses of CD8+ T cells to persistent antigen
  publication-title: Nat Immunol
– volume: 9
  start-page: 2736
  year: 2018
  article-title: Naive CD8 T‐cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8 T‐cells
  publication-title: Front Immunol
– volume: 213
  start-page: 1655
  year: 2016
  end-page: 62
  article-title: GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis
  publication-title: J Exp Med
– volume: 17
  start-page: 28
  year: 2016
  article-title: Early changes in the metabolic profile of activated CD8 T cells
  publication-title: BMC Cell Biol
– volume: 36
  start-page: 81
  year: 2015
  end-page: 91
  article-title: Fatty acid metabolism in the regulation of T cell function
  publication-title: Trends Immunol
– volume: 65
  start-page: 2201
  year: 2013
  end-page: 10
  article-title: Premature cell senescence and T cell receptor–independent activation of CD8+ T cells in juvenile idiopathic arthritis
  publication-title: Arthritis Rheum
– volume: 47
  start-page: 249
  year: 2008
  end-page: 55
  article-title: Recent insights in the pharmacological actions of methotrexate in the treatment of rheumatoid arthritis [review]
  publication-title: Rheumatology (Oxford)
– volume: 17
  start-page: 821
  year: 2016
  end-page: 36
  article-title: Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells
  publication-title: Cell Rep
– volume: 71
  start-page: 756
  year: 2019
  end-page: 65
  article-title: Regulation of fatty acid oxidation by Twist 1 in the metabolic adaptation of T helper lymphocytes to chronic inflammation
  publication-title: Arthritis Rheumatol
– ident: e_1_2_7_19_1
  doi: 10.1126/scitranslmed.aad7151
– ident: e_1_2_7_40_1
  doi: 10.4049/jimmunol.166.4.2878
– ident: e_1_2_7_41_1
  doi: 10.1002/art.38376
– ident: e_1_2_7_26_1
  doi: 10.1016/j.celrep.2014.07.053
– ident: e_1_2_7_32_1
  doi: 10.1183/09031936.96.09081736
– volume: 71
  start-page: 756
  year: 2019
  ident: e_1_2_7_20_1
  article-title: Regulation of fatty acid oxidation by Twist 1 in the metabolic adaptation of T helper lymphocytes to chronic inflammation
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40939
– ident: e_1_2_7_38_1
  doi: 10.1002/art.27767
– ident: e_1_2_7_21_1
  doi: 10.1084/jem.20130252
– ident: e_1_2_7_16_1
  doi: 10.1016/j.it.2014.12.005
– ident: e_1_2_7_24_1
  doi: 10.1093/rheumatology/kem279
– ident: e_1_2_7_12_1
  doi: 10.1038/nature08097
– ident: e_1_2_7_29_1
  doi: 10.1038/s41467-018-05044-4
– ident: e_1_2_7_37_1
  doi: 10.1038/s41556-017-0002-2
– ident: e_1_2_7_28_1
  doi: 10.1172/JCI69589
– ident: e_1_2_7_31_1
  doi: 10.1002/eji.201343751
– ident: e_1_2_7_34_1
  doi: 10.1042/BJ20081386
– volume: 17
  start-page: 28
  year: 2016
  ident: e_1_2_7_25_1
  article-title: Early changes in the metabolic profile of activated CD8+ T cells
  publication-title: BMC Cell Biol
  doi: 10.1186/s12860-016-0104-x
– ident: e_1_2_7_46_1
  doi: 10.3389/fimmu.2018.01973
– ident: e_1_2_7_3_1
  doi: 10.1002/art.38941
– ident: e_1_2_7_39_1
  doi: 10.1186/ar2718
– ident: e_1_2_7_6_1
  doi: 10.4049/jimmunol.174.1.533
– ident: e_1_2_7_44_1
  doi: 10.1002/art.39608
– ident: e_1_2_7_45_1
  doi: 10.1084/jem.20160061
– ident: e_1_2_7_2_1
  doi: 10.1002/art.1780350804
– ident: e_1_2_7_11_1
  doi: 10.1016/j.immuni.2011.12.007
– ident: e_1_2_7_43_1
  doi: 10.1016/j.autrev.2005.04.012
– ident: e_1_2_7_7_1
  doi: 10.1002/art.27729
– ident: e_1_2_7_22_1
  doi: 10.1152/physrev.00011.2015
– ident: e_1_2_7_8_1
  doi: 10.1002/art.38273
– ident: e_1_2_7_15_1
  doi: 10.1146/annurev-cellbio-092910-154237
– ident: e_1_2_7_18_1
  doi: 10.1038/ni.3808
– ident: e_1_2_7_9_1
  doi: 10.1002/art.40218
– ident: e_1_2_7_17_1
  doi: 10.1038/ni.2687
– ident: e_1_2_7_36_1
  doi: 10.3389/fimmu.2018.02736
– ident: e_1_2_7_33_1
  doi: 10.1016/j.celrep.2016.09.045
– ident: e_1_2_7_5_1
  doi: 10.1002/1529-0131(200109)44:9<2038::AID-ART353>3.0.CO;2-1
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1242454
– ident: e_1_2_7_30_1
  doi: 10.3389/fonc.2018.00331
– ident: e_1_2_7_27_1
  doi: 10.1073/pnas.1407717111
– ident: e_1_2_7_4_1
  doi: 10.1002/art.38015
– ident: e_1_2_7_42_1
  doi: 10.1136/annrheumdis-2014-206119
– ident: e_1_2_7_35_1
  doi: 10.4049/jimmunol.1302985
– ident: e_1_2_7_13_1
  doi: 10.1038/ni.2714
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1250684
– ident: e_1_2_7_23_1
  doi: 10.1073/pnas.91.11.4854
SSID ssj0000970605
Score 2.5805025
Snippet Objective CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and...
CD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and nutrient-poor...
ObjectiveCD8+ T cells contribute to rheumatoid arthritis (RA) by releasing proinflammatory and cytolytic mediators, even in a challenging hypoxic and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2050
SubjectTerms Adolescent
Adult
Aged
Arthritis
Arthritis, Psoriatic - immunology
Arthritis, Psoriatic - metabolism
Arthritis, Rheumatoid - immunology
Arthritis, Rheumatoid - metabolism
Autoimmunity
Blood
CD8 antigen
CD8-Positive T-Lymphocytes - metabolism
Cell proliferation
Dehydrogenase
Dehydrogenases
Enzymes
Female
Glucose
Glucose metabolism
Glutamine
Glycolysis
Glycolysis - physiology
Humans
Hypoxia
Inflammation
Inflammation - metabolism
Inflammatory diseases
Intermediates
L-Lactate dehydrogenase
Lactate dehydrogenase
Lactate Dehydrogenase 5 - metabolism
Lactic acid
Lipogenesis
Lymphocytes
Lymphocytes B
Lymphocytes T
Male
Membranes
Metabolism
Middle Aged
NMR
Nuclear magnetic resonance
Phenotypes
Proteins
Psoriatic arthritis
Reactive oxygen species
Rheumatic diseases
Rheumatoid arthritis
Spondylarthritis - immunology
Spondylarthritis - metabolism
Substrates
Synovial membrane
Transcription factors
Young Adult
Title Effect of Increased Lactate Dehydrogenase A Activity and Aerobic Glycolysis on the Proinflammatory Profile of Autoimmune CD8+ T Cells in Rheumatoid Arthritis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.41420
https://www.ncbi.nlm.nih.gov/pubmed/32602217
https://www.proquest.com/docview/2464835852
https://www.proquest.com/docview/2419098562
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIiEuiDdLCxoQByQUGjt2nIhTtEspj6IKtVJvkeOHdqUlQfs49Mf0vzLjZIMqQOIS5WHLjmfG_ibOfMPYa9MEr20RElFqm0jly6QJqkyU1lmjKK1ADBQ-_ZafXMjPl-pyj73fxcL0_BDjBzeyjDhfk4GbZn30mzQUR_ad5FKgv36LQmtJyYU8Gz-wpCURw6iYXE7kCSIVvmMWSsXRWPvmevQHyLyJWeOic3yP3R3QIlS9eO-zPd8-YLdPh_3wh-y6Jx-GLgAaOv1f7h18NZYQJMz8_MqtOtQQvA0VVLbPFAGmdVB5ImCy8HF5hapAtCTQtYBoEM5WHWodKsqPuAFP10TeRG1U2023oIASD9NZ8RbOYeqXyzUsWvg-91uqsHDU23mkSnrELo4_nE9PkiHhQmKJEybJheXo3wShgxJlU-rMl5lBD6lwoQlWWmc05yg_ju-WFWmGvoZxNhiHo5uqJnvM9tuu9U8ZlE6l0nmR-zxQ1LppPHfW8CLgDKuFnLA3u2Gv7cBGTkkxlnXPoyxqlFAdJTRhr8aiP3sKjr8VOtzJrh6scF0LmcuCOikm7OX4GO2HNkVM67stlcGulwXCwAl70st8bAX1BiEO19jZqAT_br5G7yOePPv_ogfsjiDnPf4bc8j2N6utf44IZ9O8iJqMx9mnL78AClv20Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqIgEXxJttCwyIAxIKjR0nTiQu0ZaywG5Voa3UW-T4oV1pSdB299Afw39lxskGVYDELQ9bnnhmnG_8-IaxN7r2TpncR6JQJpKpK6Lap0WUKpXUKaUVCAeFZ2fZ5EJ-uUwv99iH3VmYjh9imHAjzwjjNTk4TUgf_2YNxa59L7kUGLDfkplQlLhByPNhhiUuiBkmDdnlRBYhVOE7aqFYHA-1b_6Q_kCZN0Fr-Ouc3mf3ergIZaffB2zPNQ_Z7Vm_IP6I_ezYh6H1gJ5OG8ydhak2BCHhxC2u7bpFE8HHUEJpulQRoBsLpSMGJgOfVtdoC8RLAm0DCAfhfN2i2aGlfA8r8HRP7E3URrndtEs6UeJgfJK_gzmM3Wp1BcsGvi3cliosLUm7CFxJj9nF6cf5eBL1GRciQ6QwUSYMxwDHC-VTUdSFSlyRaAyRcutrb6SxWnGOCuT4bUkeJxhsaGu8tti7cVonT9h-0zbuGYPCprG0TmQu83RsXdeOW6N57nGIVUKO2Ntdt1empyOnrBirqiNSFhVqqAoaGrHXQ9EfHQfH3wod7XRX9W54VQmZyZyEFCP2aniNDkSrIrpx7ZbKoOhFjjhwxJ52Oh9aQbtBjMMVChuM4N_NVxh-hIuD_y_6kt2ZzGfTavr57Oshuysokg8bZY7Y_ma9dc8R7mzqF8GqfwGMdvlE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVqq4IN4sFBgQByQUmjhOHItTtMtSoK1WqJV6ixw_tCttk2q7e-iP6X9lxskGVYDELQ9bnnhmnG_8-Iax97r2TprCR1xJE4nMqaj2mYoyKdM6o7QC4aDwyWl-dC6-X2QXO-zz9ixMxw8xTLiRZ4Txmhz8yvrD36Sh2LOfRCI4xut7tNhH5s3FbJhgiRURw2QhuRzPI0QqyZZZKOaHQ-27_6M_QOZdzBp-OtMH7H6PFqHs1PuQ7bjmEds_6dfDH7PbjnwYWg_o6LS_3Fk41oYQJEzc_MauWrQQfAwllKbLFAG6sVA6ImAy8HV5g6ZAtCTQNoBoEGarFq0ODeUyLMDTPZE3URvlZt0u6ECJg_Gk-AhnMHbL5TUsGvg5dxuqsLAk7TxQJT1h59MvZ-OjqE-4EBnihIlybhKMbzyXPuOqVjJ1KtUYIRXW194IY7VMEtRfgt-WFnGKsYa2xmuLvRtndfqU7TZt454zUDaLhXU8d7mnU-u6dok1Oik8jrCSixH7sO32yvRs5JQUY1l1PMq8Qg1VQUMj9m4oetVRcPyt0MFWd1XvhdcVF7koSEg-Ym-H1-g_tCiiG9duqAyKrgqEgSP2rNP50AraDUKcRKKwwQj-3XyF0Ue4ePH_Rd-w_dlkWh1_O_3xkt3jFMeHbTIHbHe92rhXCHbW9etg1L8AHkr4dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Increased+Lactate+Dehydrogenase+A+Activity+and+Aerobic+Glycolysis+on+the+Proinflammatory+Profile+of+Autoimmune+CD8%2B+T+Cells+in+Rheumatoid+Arthritis&rft.jtitle=Arthritis+%26+rheumatology+%28Hoboken%2C+N.J.%29&rft.au=Souto%E2%80%90Carneiro%2C+M.+Margarida&rft.au=Klika%2C+Karel+D.&rft.au=Abreu%2C+M%C3%B3nica+T.&rft.au=Meyer%2C+Andr%C3%A9+P.&rft.date=2020-12-01&rft.issn=2326-5191&rft.eissn=2326-5205&rft.volume=72&rft.issue=12&rft.spage=2050&rft.epage=2064&rft_id=info:doi/10.1002%2Fart.41420&rft.externalDBID=10.1002%252Fart.41420&rft.externalDocID=ART41420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2326-5191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2326-5191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2326-5191&client=summon