A novel and fully automatic spike-sorting implementation with variable number of features

The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In a...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 120; no. 4; pp. 1859 - 1871
Main Authors Chaure, Fernando J., Rey, Hernan G., Quian Quiroga, Rodrigo
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.
AbstractList The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.
The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.
The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.
The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In this work, we propose a new fully automatic spike-sorting algorithm that can capture multiple clusters of different sizes and densities. In addition, we introduce an improved feature selection method, by using a variable number of wavelet coefficients, based on the degree of non-Gaussianity of their distributions. We evaluated the performance of the proposed algorithm with real and simulated data. With real data from single-channel recordings, in ~95% of the cases the new algorithm replicated, in an unsupervised way, the solutions obtained by expert sorters, who manually optimized the solution of a previous semiautomatic algorithm. This was done while maintaining a low number of false positives. With simulated data from single-channel and tetrode recordings, the new algorithm was able to correctly detect many more neurons compared with previous implementations and also compared with recently introduced algorithms, while significantly reducing the number of false positives. In addition, the proposed algorithm showed good performance when tested with real tetrode recordings. NEW & NOTEWORTHY We propose a new fully automatic spike-sorting algorithm, including several steps that allow the selection of multiple clusters of different sizes and densities. Moreover, it defines the dimensionality of the feature space in an unsupervised way. We evaluated the performance of the algorithm with real and simulated data, from both single-channel and tetrode recordings. The proposed algorithm was able to outperform manual sorting from experts and other recent unsupervised algorithms.
Author Chaure, Fernando J.
Rey, Hernan G.
Quian Quiroga, Rodrigo
Author_xml – sequence: 1
  givenname: Fernando J.
  surname: Chaure
  fullname: Chaure, Fernando J.
  organization: Centre for Systems Neuroscience, University of Leicester, Leicester, United Kingdom, Instituto de Ingeniería Biomédica, UBA, Buenos Aires, Argentina, Estudios de Neurociencias y Sistemas Complejos (ENYS), CONICET - Hospital El Cruce - UNAJ, Florencio Varela, Argentina, Instituto de Biología Celular y Neurociencias “Prof. E. De Robertis”, Facultad de Medicina, UBA, Buenos Aires, Argentina
– sequence: 2
  givenname: Hernan G.
  surname: Rey
  fullname: Rey, Hernan G.
  organization: Centre for Systems Neuroscience, University of Leicester, Leicester, United Kingdom
– sequence: 3
  givenname: Rodrigo
  surname: Quian Quiroga
  fullname: Quian Quiroga, Rodrigo
  organization: Centre for Systems Neuroscience, University of Leicester, Leicester, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29995603$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFvFDEMhSNURLeFI1eUI5dZnGRnMrkgVRVQpEpc4MApyiROmyWTLMnMVv33zHZLBUicbNmfny2_M3KSckJCXjNYM9byd9u0BhBCrTmw_hlZLTXesFb1J2QFsOQCpDwlZ7VuAUC2wF-QU66UajsQK_L9gqa8x0hNctTPMd5TM095NFOwtO7CD2xqLlNINzSMu4gjpmnp5UTvwnRL96YEM0SkaR4HLDR76tFMc8H6kjz3JlZ89RjPybePH75eXjXXXz59vry4bqzo5dR4a7n33jrsjLXKM-EG59rBeWTMbYaN6bqNslKIQUpusQfPZWdU67gD4YQ4J--Purt5GNHZ5cBiot6VMJpyr7MJ-u9OCrf6Ju91xwX0cBB4-yhQ8s8Z66THUC3GaBLmuWoOXa8YB8kW9M2fu56W_P7nAjRHwJZca0H_hDDQB7_0NukHv_TBr4UX__A2HP-7nBrif6Z-AQL2nFo
CitedBy_id crossref_primary_10_1038_s41593_023_01550_x
crossref_primary_10_3389_fnins_2021_691788
crossref_primary_10_1109_TBCAS_2021_3076147
crossref_primary_10_1038_s41598_024_58002_0
crossref_primary_10_3389_fpsyt_2021_678103
crossref_primary_10_1038_s41467_024_47511_1
crossref_primary_10_1523_ENEURO_0554_23_2024
crossref_primary_10_1038_s41598_020_72512_7
crossref_primary_10_1016_j_clinph_2022_06_017
crossref_primary_10_1093_cercor_bhab369
crossref_primary_10_1016_j_cub_2022_10_037
crossref_primary_10_7554_eLife_80722
crossref_primary_10_1088_2516_1091_ac6b96
crossref_primary_10_1111_jsr_13603
crossref_primary_10_1016_j_neuroimage_2022_119116
crossref_primary_10_3389_fninf_2022_851024
crossref_primary_10_1088_1741_2552_ab4896
crossref_primary_10_1038_s41598_020_74196_5
crossref_primary_10_1016_j_jneumeth_2023_110017
crossref_primary_10_1038_s41598_024_80634_5
crossref_primary_10_1523_JNEUROSCI_1212_19_2019
crossref_primary_10_1016_j_cub_2025_01_061
crossref_primary_10_1016_j_neuron_2024_08_018
crossref_primary_10_1523_JNEUROSCI_1877_20_2020
crossref_primary_10_3390_brainsci13081156
crossref_primary_10_1038_s41467_022_29318_0
crossref_primary_10_1088_1741_2552_ac5268
crossref_primary_10_1016_j_neunet_2022_08_001
crossref_primary_10_1109_ACCESS_2024_3404373
crossref_primary_10_1016_j_isci_2023_108310
crossref_primary_10_1038_s41593_023_01260_4
crossref_primary_10_1038_s41378_023_00550_y
crossref_primary_10_1371_journal_pbio_3001958
crossref_primary_10_1038_s42003_022_03044_1
crossref_primary_10_1016_j_neuron_2024_11_003
crossref_primary_10_1126_science_adn5611
crossref_primary_10_26508_lsa_202101268
crossref_primary_10_1152_jn_00376_2021
crossref_primary_10_1101_pdb_prot107086
crossref_primary_10_1038_s41598_024_78142_7
crossref_primary_10_1039_D4LC00224E
crossref_primary_10_1016_j_jneumeth_2021_109103
crossref_primary_10_3390_brainsci11060761
crossref_primary_10_1088_1741_2552_acf61d
crossref_primary_10_1038_s41593_022_01107_4
crossref_primary_10_1016_j_jneumeth_2020_108759
crossref_primary_10_3390_brainsci13020354
crossref_primary_10_1126_scitranslmed_abk0135
crossref_primary_10_7554_eLife_55167
crossref_primary_10_1186_s42234_021_00079_3
crossref_primary_10_1109_TNSRE_2021_3074162
crossref_primary_10_3389_fnbeh_2021_648483
crossref_primary_10_1152_jn_00641_2019
crossref_primary_10_3389_fncir_2023_1272925
crossref_primary_10_1523_ENEURO_0221_21_2021
crossref_primary_10_1088_1741_2552_ab0bfb
crossref_primary_10_1016_j_celrep_2024_115218
crossref_primary_10_1007_s12204_020_2197_9
crossref_primary_10_1109_TBCAS_2019_2938511
crossref_primary_10_1016_j_cub_2020_01_035
crossref_primary_10_1088_1741_2552_acc7cc
crossref_primary_10_1109_TBME_2021_3104621
crossref_primary_10_1159_000539398
crossref_primary_10_7554_eLife_61834
crossref_primary_10_1016_j_jneumeth_2024_110351
crossref_primary_10_1002_ana_27185
crossref_primary_10_1038_s41467_022_35353_8
crossref_primary_10_7554_eLife_83223
crossref_primary_10_7554_eLife_90100_3
crossref_primary_10_1109_ACCESS_2024_3524763
crossref_primary_10_1038_s41467_022_33828_2
crossref_primary_10_1073_pnas_2316365121
crossref_primary_10_3389_fnins_2020_00926
crossref_primary_10_1016_j_neuron_2022_12_021
crossref_primary_10_3389_fpsyt_2019_00513
crossref_primary_10_1111_ejn_15846
crossref_primary_10_1126_science_adr2813
crossref_primary_10_1016_j_jneumeth_2024_110127
crossref_primary_10_1088_1741_2552_acc210
crossref_primary_10_1016_j_compbiomed_2023_107253
crossref_primary_10_1038_s41467_023_36641_7
crossref_primary_10_1016_j_actbio_2023_01_002
crossref_primary_10_3390_s22103676
crossref_primary_10_1016_j_csda_2024_108078
crossref_primary_10_1016_j_xinn_2025_100846
crossref_primary_10_1016_j_neuron_2019_05_003
crossref_primary_10_3389_fnins_2021_646914
crossref_primary_10_18231_j_ijn_2022_011
crossref_primary_10_1016_j_neuron_2021_06_019
crossref_primary_10_1098_rsos_240839
crossref_primary_10_3389_fnins_2021_679910
crossref_primary_10_7554_eLife_90100
crossref_primary_10_1016_j_biomaterials_2019_119648
crossref_primary_10_1002_mds_28497
crossref_primary_10_1038_s41467_023_41323_5
crossref_primary_10_1016_j_neuron_2024_12_003
crossref_primary_10_1093_brain_awab288
crossref_primary_10_1007_s00424_022_02727_2
crossref_primary_10_1016_j_celrep_2024_114500
crossref_primary_10_1111_jnc_16182
crossref_primary_10_1007_s10827_023_00844_0
crossref_primary_10_1016_j_cnsns_2020_105685
crossref_primary_10_3390_ijms222312770
crossref_primary_10_7554_eLife_72929
crossref_primary_10_1038_s41562_023_01706_6
crossref_primary_10_1016_j_cub_2024_10_045
crossref_primary_10_1038_s41467_024_54343_6
crossref_primary_10_1016_j_jinsphys_2022_104381
crossref_primary_10_1109_TBME_2023_3347137
Cites_doi 10.4249/scholarpedia.3583
10.1523/JNEUROSCI.21-05-j0004.2001
10.1016/j.jneumeth.2013.10.001
10.1007/s00339-010-6046-9
10.1088/0954-898X_9_4_001
10.1152/jn.1996.76.6.3823
10.1152/jn.2000.84.1.390
10.1109/TBME.2004.826677
10.1016/j.jneumeth.2007.03.012
10.1038/nrn2578
10.1016/j.neuron.2017.08.030
10.1152/jn.00785.2013
10.1111/joa.12228
10.1016/j.brainresbull.2015.04.007
10.1016/S0010-4655(99)00267-2
10.1152/jn.00116.2003
10.1162/089976604774201631
10.1038/nn.2731
10.1016/j.bios.2008.11.028
10.1016/S0165-0270(01)00516-7
10.1073/pnas.0707043105
10.7554/eLife.34518
10.1101/061481
10.1038/nn.4268
10.1146/annurev-bioeng-071910-124640
10.1016/j.conb.2011.10.001
10.1038/nn.4365
10.1152/jn.00979.2005
10.1109/TNS.2004.832706
10.1371/journal.pone.0166598
10.1152/jn.00993.2014
10.1038/ncomms13408
10.1152/jn.2000.84.1.401
10.1162/NECO_a_00433
10.1152/jn.01023.2004
10.1103/PhysRevLett.76.3251
10.1126/science.1242072
10.1021/nn4012847
10.1162/neco.1997.9.8.1805
10.1038/nn1233
10.1126/science.1070502
10.1016/j.jneumeth.2012.07.010
10.1016/j.neucom.2004.10.037
ContentType Journal Article
Copyright Copyright © 2018 the American Physiological Society 2018 American Physiological Society
Copyright_xml – notice: Copyright © 2018 the American Physiological Society 2018 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00339.2018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate NEW UNSUPERVISED SPIKE SORTING
EISSN 1522-1598
EndPage 1871
ExternalDocumentID PMC6230803
29995603
10_1152_jn_00339_2018
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G1002100
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c387t-fcc2fffcde6acc9f13dbdd5bdfe11d4b4a6649c733b772ce80f276a95d2d03d33
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:33:55 EDT 2025
Fri Jul 11 16:07:30 EDT 2025
Sat May 31 02:09:08 EDT 2025
Tue Jul 01 00:33:52 EDT 2025
Thu Apr 24 23:02:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neurophysiology
tetrode
single-neuron recordings
spike sorting
Language English
License Licensed under Creative Commons Attribution CC-BY 4.0: © the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-fcc2fffcde6acc9f13dbdd5bdfe11d4b4a6649c733b772ce80f276a95d2d03d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
F. Chaure and H. Rey contributed equally.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6230803
PMID 29995603
PQID 2068912071
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6230803
proquest_miscellaneous_2068912071
pubmed_primary_29995603
crossref_primary_10_1152_jn_00339_2018
crossref_citationtrail_10_1152_jn_00339_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2018
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B42
B21
B43
B22
B44
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
Bishop CM (B3) 2006
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B4
B5
B6
B7
B8
B9
B40
B41
References_xml – ident: B33
  doi: 10.4249/scholarpedia.3583
– ident: B37
  doi: 10.1523/JNEUROSCI.21-05-j0004.2001
– ident: B14
  doi: 10.1016/j.jneumeth.2013.10.001
– ident: B25
  doi: 10.1007/s00339-010-6046-9
– ident: B26
  doi: 10.1088/0954-898X_9_4_001
– ident: B15
  doi: 10.1152/jn.1996.76.6.3823
– ident: B21
  doi: 10.1152/jn.2000.84.1.390
– ident: B43
  doi: 10.1109/TBME.2004.826677
– ident: B24
  doi: 10.1016/j.jneumeth.2007.03.012
– ident: B34
  doi: 10.1038/nrn2578
– ident: B9
  doi: 10.1016/j.neuron.2017.08.030
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: B3
– ident: B2
  doi: 10.1152/jn.00785.2013
– ident: B38
  doi: 10.1111/joa.12228
– ident: B39
  doi: 10.1016/j.brainresbull.2015.04.007
– ident: B12
  doi: 10.1016/S0010-4655(99)00267-2
– ident: B10
  doi: 10.1152/jn.00116.2003
– ident: B35
  doi: 10.1162/089976604774201631
– ident: B42
  doi: 10.1038/nn.2731
– ident: B17
  doi: 10.1016/j.bios.2008.11.028
– ident: B28
  doi: 10.1016/S0165-0270(01)00516-7
– ident: B36
  doi: 10.1073/pnas.0707043105
– ident: B44
  doi: 10.7554/eLife.34518
– ident: B30
  doi: 10.1101/061481
– ident: B41
  doi: 10.1038/nn.4268
– ident: B22
  doi: 10.1146/annurev-bioeng-071910-124640
– ident: B13
  doi: 10.1016/j.conb.2011.10.001
– ident: B20
  doi: 10.1038/nn.4365
– ident: B18
  doi: 10.1152/jn.00979.2005
– ident: B27
  doi: 10.1109/TNS.2004.832706
– ident: B29
  doi: 10.1371/journal.pone.0166598
– ident: B16
  doi: 10.1152/jn.00993.2014
– ident: B11
  doi: 10.1038/ncomms13408
– ident: B19
  doi: 10.1152/jn.2000.84.1.401
– ident: B8
  doi: 10.1162/NECO_a_00433
– ident: B4
  doi: 10.1152/jn.01023.2004
– ident: B5
  doi: 10.1103/PhysRevLett.76.3251
– ident: B40
  doi: 10.1126/science.1242072
– ident: B1
  doi: 10.1021/nn4012847
– ident: B6
  doi: 10.1162/neco.1997.9.8.1805
– ident: B7
  doi: 10.1038/nn1233
– ident: B32
  doi: 10.1126/science.1070502
– ident: B31
  doi: 10.1016/j.jneumeth.2012.07.010
– ident: B23
  doi: 10.1016/j.neucom.2004.10.037
SSID ssj0007502
Score 2.5922632
Snippet The most widely used spike-sorting algorithms are semiautomatic in practice, requiring manual tuning of the automatic solution to achieve good performance. In...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1859
SubjectTerms Algorithms
Animals
Cortical Excitability
Electrodes - standards
Electroencephalography - instrumentation
Electroencephalography - methods
Humans
Innovative Methodology
Sensitivity and Specificity
Software
Title A novel and fully automatic spike-sorting implementation with variable number of features
URI https://www.ncbi.nlm.nih.gov/pubmed/29995603
https://www.proquest.com/docview/2068912071
https://pubmed.ncbi.nlm.nih.gov/PMC6230803
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLgg2vJYoMhIqJeSksRxHsdVRbUCgWjVSuUUOX60W6iz2k0qtb--YztP6ErAxVrFjlfK92X8zcQzRug9yQSYRca9kNEMHBSeeUxI5VGRgXyGBaFQJjn567d4dhp9PqNnfbqizS6pin1-e29eyf-gCtcAV5Ml-w_IdpPCBfgN-EILCEP7VxhP93R5LV2yv4mj3-yxuipdEdbVYv5Teqtyafc1z6_afeIWbxt9vQY32SZOuVNBjGxU0tb5XK2RrLb4pY2FjILxBxesdqHsJipd9h-bjl1IfGY7-oO8jmpjWKBdNpHd41Is5-flMAgRpN12NlhDGsMJTi1Io3RkWUN_QKFoYCdBJWT3G3BqCsJe6n1zyJxJJHLWeQDm4sqiCcuoce1Iv451uwvbrofoUQjOg7F-X476GvKgkcK22ioNP47-y9SGbu4eC5U_vI_fN9EOVMnJU_SkwQZPHTc20QOpt9D2VDOgwQ3exd87sLbRjym2dMGAELZ0wR1d8IgueEwXbOiCW7pgRxdcKtzS5Rk6Pfx0cjDzmpM1PE7SpPIU56FSigsZM84zFRBRCEELoWQQiKiIWBxHGU8IKeABcpn6KkxillERCp8IQp6jDV1q-RLhOE54AaIfpKsfCQryl_CYUfACigTUrj9BH9rHmPOm7Lw5_eRXbt1PGuaXOrcA5AaACdrthi9cvZV1A9-1mORgEc1nLqZlWa-gN04zoF4STNALh1E3VQvuBCUj9LoBptr6uEfPL2zVdfATwLsir9bO-Ro97l-NN2ijWtZyBxRrVby1BLwD-V6baQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+and+fully+automatic+spike-sorting+implementation+with+variable+number+of+features&rft.jtitle=Journal+of+neurophysiology&rft.au=Chaure%2C+Fernando+J&rft.au=Rey%2C+Hernan+G&rft.au=Quian+Quiroga%2C+Rodrigo&rft.date=2018-10-01&rft.eissn=1522-1598&rft.volume=120&rft.issue=4&rft.spage=1859&rft_id=info:doi/10.1152%2Fjn.00339.2018&rft_id=info%3Apmid%2F29995603&rft.externalDocID=29995603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon