Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review
Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and i...
Saved in:
Published in | Frontiers in agronomy Vol. 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
19.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses. |
---|---|
AbstractList | Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses. |
Author | Inbaraj, Michael Prabhu |
Author_xml | – sequence: 1 givenname: Michael Prabhu surname: Inbaraj fullname: Inbaraj, Michael Prabhu |
BookMark | eNp9UctOwzAQtBBIPD-AW45cUvxIneRYVUArtQLxOFsbZ10ZhbjYBsSNj-AL-RIcihDiwGV3tZqZXc3sk-3e9UjIMaMjIar61MDKuxGnnI2kLGsqtsgel6XIBWfV9q95lxyFcE8p5WPGOS32yOyqgz7mS6u9azCb9xE96GhdHzLbZ5Ouw2cL0farbNJYF63ObqLHED7e3ifZ0vY2u04IfDkkOwa6gEff_YDcnZ_dTmf54vJiPp0sci2qMuYGNGtLyU3JdCXquqUS9LimDTNcS6ybMdTYFum7hheVkUJA1UpgmsO4aIpKHJD5Rrd1cK_W3j6Af1UOrPpaOL9S4NObHSpsjMGaJnWDheZFI2QqUkMaKioGrZON1tq7xycMUT3YoLFLlqB7CopLIQvJSzlA2QaafArBo_k5zagaQlBfIaghBLUJIXHKPxxtIwzeRg-2-4f5CSicj6o |
CitedBy_id | crossref_primary_10_3390_ijms25020750 crossref_primary_10_1007_s10343_022_00784_2 crossref_primary_10_3390_plants13182636 crossref_primary_10_3389_fpls_2023_1249600 crossref_primary_10_1016_j_tim_2024_03_011 crossref_primary_10_1093_femsec_fiad036 crossref_primary_10_3390_plants11081055 crossref_primary_10_1007_s10725_023_01059_0 crossref_primary_10_1016_j_jece_2024_114539 crossref_primary_10_3390_cimb45080398 crossref_primary_10_3390_su151914643 crossref_primary_10_1007_s44372_024_00015_0 crossref_primary_10_1002_ajb2_16287 crossref_primary_10_3390_microorganisms10112264 crossref_primary_10_3390_plants11212976 crossref_primary_10_1016_j_envexpbot_2024_106010 crossref_primary_10_3389_fmicb_2022_1078836 crossref_primary_10_1016_j_jhazmat_2024_136489 crossref_primary_10_3389_fpls_2023_1081537 crossref_primary_10_1007_s44372_025_00121_7 crossref_primary_10_1007_s13199_022_00842_3 crossref_primary_10_1111_jam_15552 crossref_primary_10_3389_fsufs_2024_1336810 crossref_primary_10_1007_s10343_024_01094_5 crossref_primary_10_1007_s44372_024_00004_3 crossref_primary_10_3390_ijpb15040076 crossref_primary_10_3390_agriculture14122228 crossref_primary_10_1021_acsagscitech_4c00476 crossref_primary_10_1186_s12866_024_03320_6 crossref_primary_10_3389_fpls_2023_1250020 crossref_primary_10_1016_j_cpb_2025_100458 crossref_primary_10_3390_biology11111595 crossref_primary_10_3390_plants12122307 crossref_primary_10_1002_saj2_20737 crossref_primary_10_1016_j_jenvman_2024_123969 crossref_primary_10_1186_s40793_023_00469_x crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_3389_fmicb_2024_1432637 crossref_primary_10_1016_j_sajb_2024_11_026 crossref_primary_10_3389_fagro_2023_1287108 crossref_primary_10_1079_cabireviews_2023_0001 crossref_primary_10_1007_s13199_023_00945_5 |
Cites_doi | 10.1094/MPMI-05-11-0127 10.1016/S0065-2113(08)60525-8 10.1007/s11738-010-0650-3 10.1186/1471-2229-14-36 10.1016/S1369-5266(00)00167-9 10.1093/jxb/ers003 10.1007/s00344-015-9511-z 10.1016/j.envexpbot.2007.05.011 10.1016/j.mimet.2015.01.001 10.1016/j.aquatox.2019.04.011 10.1111/j.1399-3054.1994.tb05349.x 10.1051/agro:2008021 10.1016/j.plaphy.2013.07.004 10.1016/S0098-8472(00)00084-8 10.4014/jmb.1904.04026 10.3389/fmicb.2017.02516 10.1078/0176-1617-00441 10.3389/fmicb.2018.00091 10.1093/aob/mcu239 10.1080/17429145.2018.1471527 10.1007/s13199-015-0361-z 10.1016/j.rhisph.2018.04.003 10.1016/j.scienta.2006.02.025 10.1007/s11120-018-0538-4 10.1371/journal.pone.0145726 10.1016/j.sjbs.2016.02.010 10.1016/j.scienta.2014.06.008 10.1371/journal.pone.0183147 10.1016/j.plaphy.2018.09.011 10.1016/j.funeco.2018.04.002 10.1007/978-981-10-4115-0_2 10.1016/j.jplph.2013.06.006 10.18257/raccefyn.114 10.3390/plants8120579 10.1007/s11099-014-0032-y 10.1186/s12870-018-1263-z 10.3389/fpls.2016.01123 10.1007/s13199-015-0350-2 10.1055/s-0029-1186180 10.1016/S1360-1385(01)02052-0 10.7717/peerj.6790 10.1016/j.scienta.2014.12.015 10.1080/01904167.2019.1567782 10.1016/j.plaphy.2014.09.001 10.4161/psb.26891 10.1016/j.envpol.2008.09.053 10.1007/s00253-009-2092-7 10.1016/j.jplph.2004.07.014 10.1104/pp.103.024380 10.1007/s10658-007-9162-4 10.1111/pce.12600 10.1071/FP15200 10.1007/s13213-010-0117-1 10.1016/j.chemosphere.2012.07.005 10.1146/annurev-ecolsys-102710-145039 10.3389/fmicb.2017.02593 10.1007/s13199-012-0190-2 10.1007/s10295-007-0240-6 10.1046/j.1365-3040.1997.d01-44.x 10.1007/s00344-016-9634-x 10.1007/s00248-006-9039-7 10.1007/s10725-012-9771-6 10.1016/j.apsoil.2012.12.016 10.1155/2012/217037 10.1007/s11274-011-0979-9 10.1146/annurev-arplant-050312-120106 10.1111/pce.12514 10.3389/fpls.2018.01430 10.1007/s00709-020-01517-w 10.1111/j.1744-7909.2010.00947.x 10.3390/su11041133 10.1071/FP15106 10.1006/anbo.2000.1352 10.3389/fpls.2017.00870 10.1016/j.cj.2016.10.002 10.1016/j.jplph.2004.01.014 10.1071/FP17181 10.1016/j.envexpbot.2016.09.009 10.1139/w11-044 10.5423/PPJ.SI.02.2013.0021 10.1093/jxb/erv364 10.1007/s005720000066 10.1007/s11104-009-0239-z 10.1021/bi970684w 10.1016/j.sjbs.2015.11.002 10.3389/fevo.2020.00122 10.1111/jam.12311 10.1093/jexbot/53.372.1351 10.1007/s005720050174 10.1016/j.jphotobiol.2018.02.002 10.1007/978-81-322-2776-2_13 10.1016/j.scienta.2015.08.042 10.1007/s11104-016-3169-6 10.1016/j.indcrop.2019.111931 10.1016/j.envexpbot.2016.06.015 10.1007/s00572-006-0043-z 10.1038/436174b 10.1016/S1369-5274(99)00035-1 10.1016/j.fgb.2009.03.009 10.3389/fmicb.2019.02106 10.1007/s00344-011-9239-3 10.3390/microorganisms5040077 10.1016/j.sjbs.2018.03.009 10.13140/RG.2.1.5171.2164 10.1080/17429145.2015.1052025 10.1007/s00572-013-0477-z 10.1007/s11104-017-3188-y 10.1016/j.envexpbot.2020.104023 10.1242/dev.164376 10.1631/jzus.B1500081 10.1007/s11356-014-3754-2 10.1016/j.scienta.2020.109575 10.1371/journal.pone.0161424 10.1007/s00572-010-0353-z 10.1038/nature16467 10.1016/j.plaphy.2015.11.001 10.1016/j.scienta.2019.04.066 10.1016/j.jplph.2004.09.014 10.1023/B:GROW.0000038360.09079.ad 10.1080/00103624.2020.1784917 10.1038/s41598-019-38702-8 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.3389/fagro.2021.667903 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2673-3218 |
ExternalDocumentID | oai_doaj_org_article_ebffe90590fe4c24b3624b6cab368038 10_3389_fagro_2021_667903 |
GroupedDBID | 9T4 AAFWJ AAHBH AAYXX ACXDI AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E OK1 7S9 L.6 |
ID | FETCH-LOGICAL-c387t-fac1d762f71c8399d06ac590b1f2c6e9b5a9ed4122b248f633a8d6a1c2a54b483 |
IEDL.DBID | DOA |
ISSN | 2673-3218 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Jul 10 17:40:13 EDT 2025 Tue Jul 01 03:58:35 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-fac1d762f71c8399d06ac590b1f2c6e9b5a9ed4122b248f633a8d6a1c2a54b483 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/ebffe90590fe4c24b3624b6cab368038 |
PQID | 2636462768 |
PQPubID | 24069 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ebffe90590fe4c24b3624b6cab368038 proquest_miscellaneous_2636462768 crossref_primary_10_3389_fagro_2021_667903 crossref_citationtrail_10_3389_fagro_2021_667903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-19 |
PublicationDateYYYYMMDD | 2021-05-19 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in agronomy |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Kang (B54) 2014; 84 Lim (B67) 2013; 29 Pearce (B91) 2001; 87 Begum (B10) 2019; 8 Lesk (B63) 2016; 529 B28 Wan (B114) 2012; 89 Yuan (B123) 2015; 38 Morte (B79) 2000; 10 Naeem (B80) 2018; 13 Xu (B118) 2017; 5 Kandel (B53) 2017; 5 Huang (B45) 2012; 63 Valentinuzzi (B112) 2015; 66 Ahmad (B4) 2011; 57 Oke (B84) 1999; 2 Sun (B109) 2018; 5 Browse (B15) 2001; 4 Hashem (B40) 2016; 23 Garg (B34) 2012; 31 Smertenko (B107) 1997; 20 Kucey (B62) 1989; 42 Mathur (B71) 2016; 180 Sindhu (B105) 2016 Hoekstra (B44) 2001; 6 Barassi (B8) 2006; 109 Galli (B33) 1994; 92 Jochum (B50) 2020; 10 Gupta (B38) 2013; 64 Ma (B69) 2015; 42 Pawlowski (B90) 2019; 42 Yang (B120) 2015; 10 Hubbard (B46) 2014; 116 Sheng (B104) 2011; 21 Wahid (B113) 2007; 61 Abdel Latef (B3) 2011; 33 Zhao (B124) 2010; 52 Schützendübel (B101) 2002; 53 Slama (B106) 2015; 115 Leyval (B64) 1997; 7 Kohl (B59) 2016; 39 Pereira (B92) 2016; 7 Khan (B58) 2019; 9 Ren (B98) 2016; 11 Khan (B57) 2017; 133 Krell (B60) 2018; 34 Ruzzi (B99) 2015; 196 Okon (B85) 1998 Waqas (B115) 2015; 16 Hashem (B41) 2015; 10 Abadi (B1) 2015; 69 Mhamdi (B78) 2018; 145 Omer (B86) 2004; 43 Kamran (B52) 2017; 8 Liu (B68) 2015; 35 Jogawat (B51) 2013; 8 Li (B65) 2015; 183 Smith (B108) 2003; 133 Bhattacharyya (B12) 2012; 28 Mena-Violante (B76) 2006; 16 Mathur (B72) 2018; 39 Tiwari (B110) 2016; 99 Calvo-Polanco (B18) 2016; 131 Nell (B83) 2010; 76 Khan (B56) 2014; 175 Chen (B20) 2017; 8 Uzu (B111) 2009; 157 Zhu (B125) 2010; 331 Farooq (B29) 2009; 29 Feng (B30) 2014; 52 Fahad (B27) 2015; 22 White (B116) 2017; 422 Duc (B25) 2018; 132 Jiang (B49) 2013; 71 Djanaguiraman (B24) 2018; 18 Guo (B37) 2018; 45 Qiyuan (B96) 2016; 43 Ait-El-Mokhtar (B5) 2019; 253 Burdman (B17) 2000 McNear (B74) 2013; 4 Porcel (B93) 2014; 25 Pasbani (B89) 2020; 272 Prity (B95) 2020; 257 De Ronde (B22) 2004; 161 Yooyongwech (B122) 2013; 69 Bilal (B14) 2020; 2019 Camejo (B19) 2005; 162 Zuccaro (B126) 2009; 46 Hajihashemi (B39) 2018; 9 Jia (B48) 2017; 36 Barrera (B9) 2020; 8 Maya (B73) 2013; 23 Hashem (B42) 2018; 25 Navarro (B82) 2014; 171 Li (B66) 2020; 174 Mao (B70) 2017; 12 Del-Saz (B23) 2017; 416 Shen (B103) 2019; 11 Hayat (B43) 2010; 60 Mehnaz (B75) 2006; 51 Ouziad (B87) 2005; 162 Sharma (B102) 2012; 2012 Abd_allah (B2) 2015; 47 Wu (B117) 2017 Yoo (B121) 2019; 29 Fu (B32) 2001; 45 Nanda (B81) 2019; 212 Friesen (B31) 2011; 42 Jha (B47) 2015; 5 Bilal (B13) 2017; 8 Parihar (B88) 2020; 2020 Elhindi (B26) 2017; 24 Rahimzadeh (B97) 2019; 7 Saleem (B100) 2007; 34 Glick (B35) 2007; 119 Kubikova (B61) 2001; 158 Bacon (B7) 2015; 68 Goswami (B36) 2015; 110 De Las Rivas (B21) 1997; 36 Porter (B94) 2005; 436 Yang (B119) 2013; 59 Berg (B11) 2009; 84 Bulgarelli (B16) 2013; 64 Meneses (B77) 2011; 24 Aldana (B6) 2014; 38 Kavroulakis (B55) 2018; 6 |
References_xml | – volume: 24 start-page: 1448 year: 2011 ident: B77 article-title: Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus publication-title: Mol. Plant Microbe Interact doi: 10.1094/MPMI-05-11-0127 – volume: 42 start-page: 199 year: 1989 ident: B62 article-title: Microbially mediated increase in plant available phosphorus publication-title: Adv. Agron doi: 10.1016/S0065-2113(08)60525-8 – volume: 33 start-page: 1217 year: 2011 ident: B3 article-title: Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-010-0650-3 – volume: 25 start-page: 14 year: 2014 ident: B93 article-title: Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants publication-title: BMC Plant Biol doi: 10.1186/1471-2229-14-36 – volume: 4 start-page: 241 year: 2001 ident: B15 article-title: Temperature sensing and cold acclimation publication-title: Curr. Opin. in Plant Biol. doi: 10.1016/S1369-5266(00)00167-9 – volume: 63 start-page: 3455 year: 2012 ident: B45 article-title: Root carbon and protein metabolism associated with heat tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers003 – volume: 35 start-page: 109 year: 2015 ident: B68 article-title: Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings publication-title: J. Plant Growth Regul doi: 10.1007/s00344-015-9511-z – volume: 61 start-page: 199 year: 2007 ident: B113 article-title: Heat tolerance in plants: an overview publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2007.05.011 – volume: 110 start-page: 7 year: 2015 ident: B36 article-title: Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC publication-title: J. Microbiol. Meth. doi: 10.1016/j.mimet.2015.01.001 – volume: 212 start-page: 1 year: 2019 ident: B81 article-title: Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to “clean-up” heavy metal contaminants from water publication-title: Aquat. Toxicol doi: 10.1016/j.aquatox.2019.04.011 – volume: 92 start-page: 364 year: 1994 ident: B33 article-title: Heavy metal binding by mycorrhizal fungi publication-title: Physiol. Plantarum. doi: 10.1111/j.1399-3054.1994.tb05349.x – volume: 29 start-page: 185 year: 2009 ident: B29 article-title: Plant drought stress: effects, mechanisms and management publication-title: Agron. Sustain. Dev doi: 10.1051/agro:2008021 – volume: 71 start-page: 112 year: 2013 ident: B49 article-title: A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.07.004 – volume: 45 start-page: 105 year: 2001 ident: B32 article-title: Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress publication-title: Environ. Exp. Bot. doi: 10.1016/S0098-8472(00)00084-8 – volume: 29 start-page: 1124 year: 2019 ident: B121 article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1904.04026 – volume: 8 start-page: 25 year: 2017 ident: B20 article-title: Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02516 – volume: 158 start-page: 1227 year: 2001 ident: B61 article-title: Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00441 – volume: 5 start-page: 9 year: 2018 ident: B109 article-title: Arbuscular mycorrhizal fungal proteins 14-3-3- are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00091 – volume: 115 start-page: 433 year: 2015 ident: B106 article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress publication-title: Ann. Bot. doi: 10.1093/aob/mcu239 – volume: 13 start-page: 239 year: 2018 ident: B80 article-title: Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance publication-title: J. Plant Inter doi: 10.1080/17429145.2018.1471527 – volume: 69 start-page: 9 year: 2015 ident: B1 article-title: Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.) publication-title: Symbiosis doi: 10.1007/s13199-015-0361-z – volume: 6 start-page: 77 year: 2018 ident: B55 article-title: Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK publication-title: Rhizosphere doi: 10.1016/j.rhisph.2018.04.003 – start-page: 229 volume-title: Microbial Interactions in Agriculture and Forestry year: 2000 ident: B17 article-title: Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture – volume: 109 start-page: 8 year: 2006 ident: B8 article-title: Seed inoculation with Azospirillum mitigates NaCl effects on lettuce publication-title: Scient. Horti. doi: 10.1016/j.scienta.2006.02.025 – volume: 39 start-page: 227 year: 2018 ident: B72 article-title: Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress publication-title: Photosyn. Res doi: 10.1007/s11120-018-0538-4 – volume: 10 start-page: e0145726 year: 2015 ident: B120 article-title: The combined effects of Arbuscular Mycorrhizal Fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L publication-title: PLoS ONE doi: 10.1371/journal.pone.0145726 – volume: 24 start-page: 170 year: 2017 ident: B26 article-title: The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.) publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2016.02.010 – volume: 175 start-page: 167 year: 2014 ident: B56 article-title: Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions publication-title: Sci. Horti doi: 10.1016/j.scienta.2014.06.008 – volume: 12 start-page: e0183147 year: 2017 ident: B70 article-title: Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves publication-title: PLoS ONE doi: 10.1371/journal.pone.0183147 – volume: 132 start-page: 297 year: 2018 ident: B25 article-title: Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.09.011 – volume: 34 start-page: 43 year: 2018 ident: B60 article-title: Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality publication-title: Fungal Ecol doi: 10.1016/j.funeco.2018.04.002 – start-page: 25 volume-title: Arbuscular Mycorrhizas and Stress Tolerance of Plants year: 2017 ident: B117 article-title: Arbuscular mycorrhizal fungi and tolerance of drought stress in plants doi: 10.1007/978-981-10-4115-0_2 – volume: 171 start-page: 76 year: 2014 ident: B82 article-title: Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.06.006 – volume: 38 start-page: 393 year: 2014 ident: B6 article-title: Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants publication-title: Rev. Acad. Colomb. Cienc doi: 10.18257/raccefyn.114 – volume: 8 start-page: 579 year: 2019 ident: B10 article-title: Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications publication-title: Plants doi: 10.3390/plants8120579 – volume: 52 start-page: 313 year: 2014 ident: B30 article-title: Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture publication-title: Photosyn doi: 10.1007/s11099-014-0032-y – volume: 18 start-page: 1263 year: 2018 ident: B24 article-title: Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles publication-title: BMC Plant Biol doi: 10.1186/s12870-018-1263-z – volume: 7 start-page: 1123 year: 2016 ident: B92 article-title: Plant abiotic stress challenges from the changing environment publication-title: Front. Plant Sci doi: 10.3389/fpls.2016.01123 – volume: 68 start-page: 87 year: 2015 ident: B7 article-title: Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants publication-title: Symbiosis doi: 10.1007/s13199-015-0350-2 – volume: 76 start-page: 393 year: 2010 ident: B83 article-title: Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L publication-title: Planta Med. doi: 10.1055/s-0029-1186180 – volume: 6 start-page: 431 year: 2001 ident: B44 article-title: Mechanisms of plant desiccation tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(01)02052-0 – volume: 7 start-page: e6790 year: 2019 ident: B97 article-title: Physiological and biochemical responses of sugar beet (Beta vulgaris L) to ultraviolet-B radiation publication-title: PeerJ. doi: 10.7717/peerj.6790 – volume: 183 start-page: 87 year: 2015 ident: B65 article-title: Arbuscular mycorrhizal fungi increase growth and phenolics synthesis in Poncirus trifoliata under iron deficiency publication-title: Sci. Horti doi: 10.1016/j.scienta.2014.12.015 – volume: 47 start-page: 785 year: 2015 ident: B2 article-title: Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi publication-title: Pak. J. Bot – volume: 42 start-page: 1267782 year: 2019 ident: B90 article-title: Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds publication-title: J. Plant Nut doi: 10.1080/01904167.2019.1567782 – volume: 84 start-page: 115 year: 2014 ident: B54 article-title: Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.09.001 – volume: 8 start-page: e26891 year: 2013 ident: B51 article-title: Piriformospora indica rescues growth diminution of rice seedlings during high salt stress publication-title: Plant Sig. Behav. doi: 10.4161/psb.26891 – volume: 157 start-page: 1178 year: 2009 ident: B111 article-title: Study of lead phyto availability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.09.053 – volume: 84 start-page: 11 year: 2009 ident: B11 article-title: Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-009-2092-7 – volume: 162 start-page: 281 year: 2005 ident: B19 article-title: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.07.014 – volume: 133 start-page: 16 year: 2003 ident: B108 article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses publication-title: Plant Physiol. doi: 10.1104/pp.103.024380 – volume: 119 start-page: 329 year: 2007 ident: B35 article-title: Promotion of plant growth by ACC deaminase-producing soil bacteria publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-007-9162-4 – volume: 39 start-page: 136 year: 2016 ident: B59 article-title: Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils publication-title: Plant Cell Environ. doi: 10.1111/pce.12600 – volume: 43 start-page: 161 year: 2016 ident: B96 article-title: Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation publication-title: Funct. Plant Biol. doi: 10.1071/FP15200 – volume: 60 start-page: 579 year: 2010 ident: B43 article-title: Soil beneficial bacteria and their role in plant growth promotion: a review publication-title: Ann. Microbiol. doi: 10.1007/s13213-010-0117-1 – volume: 89 start-page: 743 year: 2012 ident: B114 article-title: Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L publication-title: Chemo doi: 10.1016/j.chemosphere.2012.07.005 – volume: 42 start-page: 23 year: 2011 ident: B31 article-title: Microbially mediated plant functional traits publication-title: Ann. Rev. Eco. Evol. Sys. doi: 10.1146/annurev-ecolsys-102710-145039 – volume: 8 start-page: 2593 year: 2017 ident: B52 article-title: Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat publication-title: Front. Microbiol doi: 10.3389/fmicb.2017.02593 – volume: 59 start-page: 1 year: 2013 ident: B119 article-title: Plant symbionts: keys to the phytosphere publication-title: Symbiosis doi: 10.1007/s13199-012-0190-2 – volume: 34 start-page: 635 year: 2007 ident: B100 article-title: Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture publication-title: J. Ind. Microbiol. Biotech doi: 10.1007/s10295-007-0240-6 – volume: 20 start-page: 1534 year: 1997 ident: B107 article-title: Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1997.d01-44.x – volume: 36 start-page: 240 year: 2017 ident: B48 article-title: Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage publication-title: J. Plant Growth Regul doi: 10.1007/s00344-016-9634-x – volume: 51 start-page: 326 year: 2006 ident: B75 article-title: Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions publication-title: Microb. Ecol. doi: 10.1007/s00248-006-9039-7 – volume: 69 start-page: 285 year: 2013 ident: B122 article-title: Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation publication-title: Plant Growth Regul. doi: 10.1007/s10725-012-9771-6 – volume: 64 start-page: 252 year: 2013 ident: B38 article-title: Natural occurrence of Pseudomonas aeruginosa: a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R publication-title: Br. Appl. Soil Ecol doi: 10.1016/j.apsoil.2012.12.016 – volume: 2012 start-page: 1 year: 2012 ident: B102 article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions publication-title: J. Bot. doi: 10.1155/2012/217037 – volume: 28 start-page: 1327 year: 2012 ident: B12 article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-011-0979-9 – volume: 64 start-page: 807 year: 2013 ident: B16 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Ann. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – volume: 38 start-page: 1637 year: 2015 ident: B123 article-title: Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation publication-title: Plant Cell Environ. doi: 10.1111/pce.12514 – volume: 9 start-page: 1430 year: 2018 ident: B39 article-title: Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana publication-title: Front. Plant Sci doi: 10.3389/fpls.2018.01430 – volume: 257 start-page: 1373 year: 2020 ident: B95 article-title: Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status publication-title: Protoplasma doi: 10.1007/s00709-020-01517-w – volume: 52 start-page: 468 year: 2010 ident: B124 article-title: Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00947.x – volume: 11 start-page: 1133 year: 2019 ident: B103 article-title: Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth promoting characteristics publication-title: Sustainability doi: 10.3390/su11041133 – volume: 42 start-page: 1158 year: 2015 ident: B69 article-title: Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress publication-title: Func. Plant Biol doi: 10.1071/FP15106 – volume: 87 start-page: 417 year: 2001 ident: B91 article-title: Plant freezing and damage publication-title: Ann. Bot. doi: 10.1006/anbo.2000.1352 – volume: 8 start-page: 870 year: 2017 ident: B13 article-title: Endophytic Paecilomyces formosus LHL10 augments Glycinemax L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress publication-title: Front. Plant Sci doi: 10.3389/fpls.2017.00870 – ident: B28 – volume: 5 start-page: 251 year: 2017 ident: B118 article-title: Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes publication-title: Crop J. doi: 10.1016/j.cj.2016.10.002 – volume: 161 start-page: 1211 year: 2004 ident: B22 article-title: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.01.014 – volume: 45 start-page: 350 year: 2018 ident: B37 article-title: NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa publication-title: Funct. Plant Biol. doi: 10.1071/FP17181 – volume: 133 start-page: 58 year: 2017 ident: B57 article-title: Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium publication-title: Environ. Exp. Bot doi: 10.1016/j.envexpbot.2016.09.009 – volume: 57 start-page: 578 year: 2011 ident: B4 article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase publication-title: Can. J. Microbiol doi: 10.1139/w11-044 – volume: 29 start-page: 201 year: 2013 ident: B67 article-title: Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in pepper publication-title: Plant Pathol. J doi: 10.5423/PPJ.SI.02.2013.0021 – volume: 4 start-page: 1 year: 2013 ident: B74 article-title: The Rhizosphere - roots, soil and everything in between publication-title: Nat. Educ. Knowledge – volume: 66 start-page: 6483 year: 2015 ident: B112 article-title: Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria ananassa publication-title: J. Exp. Bot doi: 10.1093/jxb/erv364 – volume: 10 start-page: 115 year: 2000 ident: B79 article-title: Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense–Terfezia claveryi publication-title: Mycorrhiza doi: 10.1007/s005720000066 – volume: 331 start-page: 129 year: 2010 ident: B125 article-title: Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis publication-title: Plant Soil. doi: 10.1007/s11104-009-0239-z – volume: 36 start-page: 8897 year: 1997 ident: B21 article-title: Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy publication-title: Biochemistry doi: 10.1021/bi970684w – volume: 23 start-page: 272 year: 2016 ident: B40 article-title: Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2015.11.002 – volume: 8 start-page: 122 year: 2020 ident: B9 article-title: Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic Colobanthus quitensis (Kunth) Bartl. exposed to UV-B radiation publication-title: Front. Ecol. Evol doi: 10.3389/fevo.2020.00122 – volume: 116 start-page: 109 year: 2014 ident: B46 article-title: Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability publication-title: J. Appl. Microbiol. doi: 10.1111/jam.12311 – volume: 53 start-page: 1351 year: 2002 ident: B101 article-title: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.372.1351 – volume: 7 start-page: 139 year: 1997 ident: B64 article-title: Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects publication-title: Mycorrhiza doi: 10.1007/s005720050174 – volume: 180 start-page: 149 year: 2016 ident: B71 article-title: Improved photosynthetic efficacy of maize Zea mays plants with Arbuscular mycorrhizal fungi (AMF) under high temperature stress publication-title: J. Photochem. Photobiol. B. doi: 10.1016/j.jphotobiol.2018.02.002 – start-page: 171 volume-title: Potassium Solubilizing Microorganisms for Sustainable Agriculture year: 2016 ident: B105 article-title: Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement doi: 10.1007/978-81-322-2776-2_13 – volume: 196 start-page: 124 year: 2015 ident: B99 article-title: Plant growth-promoting rhizobacteria act as biostimulants in horticulture publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.08.042 – volume: 422 start-page: 195 year: 2017 ident: B116 article-title: Disease protection and allelopathic interactions of seed transmitted endophytic Pseudomonads of invasive reed grass (Phragmites australis) publication-title: Plant. Soil. doi: 10.1007/s11104-016-3169-6 – volume: 2019 start-page: 111931 year: 2020 ident: B14 article-title: Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress publication-title: Indust. Crops. Prod doi: 10.1016/j.indcrop.2019.111931 – volume: 131 start-page: 47 year: 2016 ident: B18 article-title: Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.06.015 – volume: 16 start-page: 261 year: 2006 ident: B76 article-title: Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought publication-title: Mycorrhiza doi: 10.1007/s00572-006-0043-z – volume: 436 start-page: 174 year: 2005 ident: B94 article-title: Rising temperatures are likely to reduce crop yields publication-title: Nature doi: 10.1038/436174b – volume: 2 start-page: 641 year: 1999 ident: B84 article-title: Bacteroid formation in the Rhizobium–legume symbiosis publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(99)00035-1 – volume: 46 start-page: 543 year: 2009 ident: B126 article-title: Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica publication-title: Fungal Genet. Biol. doi: 10.1016/j.fgb.2009.03.009 – volume: 10 start-page: 2106 year: 2020 ident: B50 article-title: Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses publication-title: Front. Microbiol doi: 10.3389/fmicb.2019.02106 – volume: 31 start-page: 292 year: 2012 ident: B34 article-title: Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-011-9239-3 – volume: 5 start-page: 77 year: 2017 ident: B53 article-title: Bacterial endophyte colonization and distribution within plants publication-title: Microorganisms doi: 10.3390/microorganisms5040077 – volume: 25 start-page: 1102 year: 2018 ident: B42 article-title: Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L publication-title: Saudi J. Biol. Sci doi: 10.1016/j.sjbs.2018.03.009 – volume: 5 start-page: 108 year: 2015 ident: B47 article-title: Plant growth promoting rhizobacteria (PGPR): a review publication-title: J. Agric. Res. Dev. doi: 10.13140/RG.2.1.5171.2164 – volume: 10 start-page: 230 year: 2015 ident: B41 article-title: Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways publication-title: J. Plant Inter doi: 10.1080/17429145.2015.1052025 – volume: 23 start-page: 381 year: 2013 ident: B73 article-title: Influence of arbuscular mycorrhiza on the growth and antioxidative activity in Cyclamen under heat stress publication-title: Mycorrhiza doi: 10.1007/s00572-013-0477-z – volume: 416 start-page: 97 year: 2017 ident: B23 article-title: Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation publication-title: Plant Soil doi: 10.1007/s11104-017-3188-y – volume: 174 start-page: 104023 year: 2020 ident: B66 article-title: A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive publication-title: Environ. Exp. Bot doi: 10.1016/j.envexpbot.2020.104023 – start-page: 327 volume-title: Agricultural Biotechnology year: 1998 ident: B85 article-title: Biotechnology of biofertilization and phy-tostimulation – volume: 145 start-page: 164376 year: 2018 ident: B78 article-title: Reactive oxygen species in plant development publication-title: Primer doi: 10.1242/dev.164376 – volume: 16 start-page: 1011 year: 2015 ident: B115 article-title: Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress publication-title: J. Zhejiang Univ. Sci. B doi: 10.1631/jzus.B1500081 – volume: 22 start-page: 4907 year: 2015 ident: B27 article-title: Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-014-3754-2 – volume: 272 start-page: 109575 year: 2020 ident: B89 article-title: Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants publication-title: Scien. Horti doi: 10.1016/j.scienta.2020.109575 – volume: 11 start-page: e0161424 year: 2016 ident: B98 article-title: Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize publication-title: PLoS ONE doi: 10.1371/journal.pone.0161424 – volume: 21 start-page: 423 year: 2011 ident: B104 article-title: Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress publication-title: Mycorrhiza doi: 10.1007/s00572-010-0353-z – volume: 529 start-page: 84 year: 2016 ident: B63 article-title: Influence of extreme weather disasters on global crop production publication-title: Nature doi: 10.1038/nature16467 – volume: 99 start-page: 108 year: 2016 ident: B110 article-title: Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.11.001 – volume: 253 start-page: 429 year: 2019 ident: B5 article-title: Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress publication-title: Sci. Hori. doi: 10.1016/j.scienta.2019.04.066 – volume: 162 start-page: 634 year: 2005 ident: B87 article-title: Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress publication-title: J. Plant Physiol doi: 10.1016/j.jplph.2004.09.014 – volume: 43 start-page: 93 year: 2004 ident: B86 article-title: Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria publication-title: Plant Growth Regul. doi: 10.1023/B:GROW.0000038360.09079.ad – volume: 2020 start-page: 1 year: 2020 ident: B88 article-title: The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of Pea (Pisum Sativum L.) publication-title: Commun.Soil Sci. Plant Anal doi: 10.1080/00103624.2020.1784917 – volume: 9 start-page: 2097 year: 2019 ident: B58 article-title: Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs publication-title: Sci. Rep doi: 10.1038/s41598-019-38702-8 |
SSID | ssj0002512204 |
Score | 2.4201324 |
SecondaryResourceType | review_article |
Snippet | Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
SubjectTerms | abiotic stress agronomy AMF climate change crop losses drought endophytes microbial communities mitigation nutrient uptake PGPR plant growth plant growth-promoting rhizobacteria salinity stress tolerance ultraviolet radiation vesicular arbuscular mycorrhizae |
Title | Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review |
URI | https://www.proquest.com/docview/2636462768 https://doaj.org/article/ebffe90590fe4c24b3624b6cab368038 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-LJ_ewqOuyo65kwZPQtflobI5dUQZhvOwK3kKSvsiAdJZxvIp_hH-hf4nvpZ1hYEEvXkopafv6e837SN4HY0emAsD5Z4tKBIsOiqoKr1pTgGhRAcYIMrdvm1yZ8bW-vKlu1lp9UUxYXx64B-4EQkpgKUUygY5SB5S4Opjo8aQuVU7zRZ235kyRDCatLUvdb2OiF2ZPkr-dU7KfFL8M0rZskjUoolyv_z9xnHXMxRb7MhiHvOmJ2mafoNthn5vb-VAgA76yMXUZWhQTiqMLwPOCXp-bcM-nHW_uKF3cUywzb8J0hg_if3I6yMvTc8Mn027K--2AXXZ9cf73bFwM3RCKqOrTRZF8FC2KrnQqIlo1FrH0EWEJIslowIbKW2g1fneQuk5GKV-3xosofaWDrtU3ttHNOvjOeLJVa9qE1pcEXZfBGhClChW00pchwIiVS2hcHEqFU8eKO4cuA6HpMpqO0HQ9miN2vLrlX18n463Bvwnv1UAqcZ0vIOPdwHj3HuNH7OeSWw6nBO1z-A5mD_dOGmW0kehI7X3Ei_bZJtFOIQPCHrCNxfwBfqAlsgiH-afD4-Tx_BXrld3w |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant-Microbe+Interactions+in+Alleviating+Abiotic+Stress%E2%80%94A+Mini+Review&rft.jtitle=Frontiers+in+agronomy&rft.au=Inbaraj%2C+Michael+Prabhu&rft.date=2021-05-19&rft.issn=2673-3218&rft.eissn=2673-3218&rft.volume=3&rft_id=info:doi/10.3389%2Ffagro.2021.667903&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fagro_2021_667903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3218&client=summon |