Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review

Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and i...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in agronomy Vol. 3
Main Author Inbaraj, Michael Prabhu
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 19.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.
AbstractList Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient deficiencies which act as limiting factors that hampers plant growth and low agricultural productivity. Climate change and intensive agricultural practices has further aggravated the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants have to get acclimatized to various environmental abiotic stress factors. Though genetic engineering is applied to improve plants tolerance to abiotic stresses, these are long-term strategies, and many countries have not accepted them worldwide. Therefore, use of microbes can be an economical and ecofriendly tool to avoid the shortcomings of other strategies. The microbial community in close proximity to the plant roots is so diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF), and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in promoting crop productivity and providing stress tolerance. This mini review highlights and discusses the current knowledge on the role of various microbes and it's tolerance mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.
Author Inbaraj, Michael Prabhu
Author_xml – sequence: 1
  givenname: Michael Prabhu
  surname: Inbaraj
  fullname: Inbaraj, Michael Prabhu
BookMark eNp9UctOwzAQtBBIPD-AW45cUvxIneRYVUArtQLxOFsbZ10ZhbjYBsSNj-AL-RIcihDiwGV3tZqZXc3sk-3e9UjIMaMjIar61MDKuxGnnI2kLGsqtsgel6XIBWfV9q95lxyFcE8p5WPGOS32yOyqgz7mS6u9azCb9xE96GhdHzLbZ5Ouw2cL0farbNJYF63ObqLHED7e3ifZ0vY2u04IfDkkOwa6gEff_YDcnZ_dTmf54vJiPp0sci2qMuYGNGtLyU3JdCXquqUS9LimDTNcS6ybMdTYFum7hheVkUJA1UpgmsO4aIpKHJD5Rrd1cK_W3j6Af1UOrPpaOL9S4NObHSpsjMGaJnWDheZFI2QqUkMaKioGrZON1tq7xycMUT3YoLFLlqB7CopLIQvJSzlA2QaafArBo_k5zagaQlBfIaghBLUJIXHKPxxtIwzeRg-2-4f5CSicj6o
CitedBy_id crossref_primary_10_3390_ijms25020750
crossref_primary_10_1007_s10343_022_00784_2
crossref_primary_10_3390_plants13182636
crossref_primary_10_3389_fpls_2023_1249600
crossref_primary_10_1016_j_tim_2024_03_011
crossref_primary_10_1093_femsec_fiad036
crossref_primary_10_3390_plants11081055
crossref_primary_10_1007_s10725_023_01059_0
crossref_primary_10_1016_j_jece_2024_114539
crossref_primary_10_3390_cimb45080398
crossref_primary_10_3390_su151914643
crossref_primary_10_1007_s44372_024_00015_0
crossref_primary_10_1002_ajb2_16287
crossref_primary_10_3390_microorganisms10112264
crossref_primary_10_3390_plants11212976
crossref_primary_10_1016_j_envexpbot_2024_106010
crossref_primary_10_3389_fmicb_2022_1078836
crossref_primary_10_1016_j_jhazmat_2024_136489
crossref_primary_10_3389_fpls_2023_1081537
crossref_primary_10_1007_s44372_025_00121_7
crossref_primary_10_1007_s13199_022_00842_3
crossref_primary_10_1111_jam_15552
crossref_primary_10_3389_fsufs_2024_1336810
crossref_primary_10_1007_s10343_024_01094_5
crossref_primary_10_1007_s44372_024_00004_3
crossref_primary_10_3390_ijpb15040076
crossref_primary_10_3390_agriculture14122228
crossref_primary_10_1021_acsagscitech_4c00476
crossref_primary_10_1186_s12866_024_03320_6
crossref_primary_10_3389_fpls_2023_1250020
crossref_primary_10_1016_j_cpb_2025_100458
crossref_primary_10_3390_biology11111595
crossref_primary_10_3390_plants12122307
crossref_primary_10_1002_saj2_20737
crossref_primary_10_1016_j_jenvman_2024_123969
crossref_primary_10_1186_s40793_023_00469_x
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_3389_fmicb_2024_1432637
crossref_primary_10_1016_j_sajb_2024_11_026
crossref_primary_10_3389_fagro_2023_1287108
crossref_primary_10_1079_cabireviews_2023_0001
crossref_primary_10_1007_s13199_023_00945_5
Cites_doi 10.1094/MPMI-05-11-0127
10.1016/S0065-2113(08)60525-8
10.1007/s11738-010-0650-3
10.1186/1471-2229-14-36
10.1016/S1369-5266(00)00167-9
10.1093/jxb/ers003
10.1007/s00344-015-9511-z
10.1016/j.envexpbot.2007.05.011
10.1016/j.mimet.2015.01.001
10.1016/j.aquatox.2019.04.011
10.1111/j.1399-3054.1994.tb05349.x
10.1051/agro:2008021
10.1016/j.plaphy.2013.07.004
10.1016/S0098-8472(00)00084-8
10.4014/jmb.1904.04026
10.3389/fmicb.2017.02516
10.1078/0176-1617-00441
10.3389/fmicb.2018.00091
10.1093/aob/mcu239
10.1080/17429145.2018.1471527
10.1007/s13199-015-0361-z
10.1016/j.rhisph.2018.04.003
10.1016/j.scienta.2006.02.025
10.1007/s11120-018-0538-4
10.1371/journal.pone.0145726
10.1016/j.sjbs.2016.02.010
10.1016/j.scienta.2014.06.008
10.1371/journal.pone.0183147
10.1016/j.plaphy.2018.09.011
10.1016/j.funeco.2018.04.002
10.1007/978-981-10-4115-0_2
10.1016/j.jplph.2013.06.006
10.18257/raccefyn.114
10.3390/plants8120579
10.1007/s11099-014-0032-y
10.1186/s12870-018-1263-z
10.3389/fpls.2016.01123
10.1007/s13199-015-0350-2
10.1055/s-0029-1186180
10.1016/S1360-1385(01)02052-0
10.7717/peerj.6790
10.1016/j.scienta.2014.12.015
10.1080/01904167.2019.1567782
10.1016/j.plaphy.2014.09.001
10.4161/psb.26891
10.1016/j.envpol.2008.09.053
10.1007/s00253-009-2092-7
10.1016/j.jplph.2004.07.014
10.1104/pp.103.024380
10.1007/s10658-007-9162-4
10.1111/pce.12600
10.1071/FP15200
10.1007/s13213-010-0117-1
10.1016/j.chemosphere.2012.07.005
10.1146/annurev-ecolsys-102710-145039
10.3389/fmicb.2017.02593
10.1007/s13199-012-0190-2
10.1007/s10295-007-0240-6
10.1046/j.1365-3040.1997.d01-44.x
10.1007/s00344-016-9634-x
10.1007/s00248-006-9039-7
10.1007/s10725-012-9771-6
10.1016/j.apsoil.2012.12.016
10.1155/2012/217037
10.1007/s11274-011-0979-9
10.1146/annurev-arplant-050312-120106
10.1111/pce.12514
10.3389/fpls.2018.01430
10.1007/s00709-020-01517-w
10.1111/j.1744-7909.2010.00947.x
10.3390/su11041133
10.1071/FP15106
10.1006/anbo.2000.1352
10.3389/fpls.2017.00870
10.1016/j.cj.2016.10.002
10.1016/j.jplph.2004.01.014
10.1071/FP17181
10.1016/j.envexpbot.2016.09.009
10.1139/w11-044
10.5423/PPJ.SI.02.2013.0021
10.1093/jxb/erv364
10.1007/s005720000066
10.1007/s11104-009-0239-z
10.1021/bi970684w
10.1016/j.sjbs.2015.11.002
10.3389/fevo.2020.00122
10.1111/jam.12311
10.1093/jexbot/53.372.1351
10.1007/s005720050174
10.1016/j.jphotobiol.2018.02.002
10.1007/978-81-322-2776-2_13
10.1016/j.scienta.2015.08.042
10.1007/s11104-016-3169-6
10.1016/j.indcrop.2019.111931
10.1016/j.envexpbot.2016.06.015
10.1007/s00572-006-0043-z
10.1038/436174b
10.1016/S1369-5274(99)00035-1
10.1016/j.fgb.2009.03.009
10.3389/fmicb.2019.02106
10.1007/s00344-011-9239-3
10.3390/microorganisms5040077
10.1016/j.sjbs.2018.03.009
10.13140/RG.2.1.5171.2164
10.1080/17429145.2015.1052025
10.1007/s00572-013-0477-z
10.1007/s11104-017-3188-y
10.1016/j.envexpbot.2020.104023
10.1242/dev.164376
10.1631/jzus.B1500081
10.1007/s11356-014-3754-2
10.1016/j.scienta.2020.109575
10.1371/journal.pone.0161424
10.1007/s00572-010-0353-z
10.1038/nature16467
10.1016/j.plaphy.2015.11.001
10.1016/j.scienta.2019.04.066
10.1016/j.jplph.2004.09.014
10.1023/B:GROW.0000038360.09079.ad
10.1080/00103624.2020.1784917
10.1038/s41598-019-38702-8
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.3389/fagro.2021.667903
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2673-3218
ExternalDocumentID oai_doaj_org_article_ebffe90590fe4c24b3624b6cab368038
10_3389_fagro_2021_667903
GroupedDBID 9T4
AAFWJ
AAHBH
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
7S9
L.6
ID FETCH-LOGICAL-c387t-fac1d762f71c8399d06ac590b1f2c6e9b5a9ed4122b248f633a8d6a1c2a54b483
IEDL.DBID DOA
ISSN 2673-3218
IngestDate Wed Aug 27 01:30:52 EDT 2025
Thu Jul 10 17:40:13 EDT 2025
Tue Jul 01 03:58:35 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-fac1d762f71c8399d06ac590b1f2c6e9b5a9ed4122b248f633a8d6a1c2a54b483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/ebffe90590fe4c24b3624b6cab368038
PQID 2636462768
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_ebffe90590fe4c24b3624b6cab368038
proquest_miscellaneous_2636462768
crossref_primary_10_3389_fagro_2021_667903
crossref_citationtrail_10_3389_fagro_2021_667903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationTitle Frontiers in agronomy
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kang (B54) 2014; 84
Lim (B67) 2013; 29
Pearce (B91) 2001; 87
Begum (B10) 2019; 8
Lesk (B63) 2016; 529
B28
Wan (B114) 2012; 89
Yuan (B123) 2015; 38
Morte (B79) 2000; 10
Naeem (B80) 2018; 13
Xu (B118) 2017; 5
Kandel (B53) 2017; 5
Huang (B45) 2012; 63
Valentinuzzi (B112) 2015; 66
Ahmad (B4) 2011; 57
Oke (B84) 1999; 2
Sun (B109) 2018; 5
Browse (B15) 2001; 4
Hashem (B40) 2016; 23
Garg (B34) 2012; 31
Smertenko (B107) 1997; 20
Kucey (B62) 1989; 42
Mathur (B71) 2016; 180
Sindhu (B105) 2016
Hoekstra (B44) 2001; 6
Barassi (B8) 2006; 109
Galli (B33) 1994; 92
Jochum (B50) 2020; 10
Gupta (B38) 2013; 64
Ma (B69) 2015; 42
Pawlowski (B90) 2019; 42
Yang (B120) 2015; 10
Hubbard (B46) 2014; 116
Sheng (B104) 2011; 21
Wahid (B113) 2007; 61
Abdel Latef (B3) 2011; 33
Zhao (B124) 2010; 52
Schützendübel (B101) 2002; 53
Slama (B106) 2015; 115
Leyval (B64) 1997; 7
Kohl (B59) 2016; 39
Pereira (B92) 2016; 7
Khan (B58) 2019; 9
Ren (B98) 2016; 11
Khan (B57) 2017; 133
Krell (B60) 2018; 34
Ruzzi (B99) 2015; 196
Okon (B85) 1998
Waqas (B115) 2015; 16
Hashem (B41) 2015; 10
Abadi (B1) 2015; 69
Mhamdi (B78) 2018; 145
Omer (B86) 2004; 43
Kamran (B52) 2017; 8
Liu (B68) 2015; 35
Jogawat (B51) 2013; 8
Li (B65) 2015; 183
Smith (B108) 2003; 133
Bhattacharyya (B12) 2012; 28
Mena-Violante (B76) 2006; 16
Mathur (B72) 2018; 39
Tiwari (B110) 2016; 99
Calvo-Polanco (B18) 2016; 131
Nell (B83) 2010; 76
Khan (B56) 2014; 175
Chen (B20) 2017; 8
Uzu (B111) 2009; 157
Zhu (B125) 2010; 331
Farooq (B29) 2009; 29
Feng (B30) 2014; 52
Fahad (B27) 2015; 22
White (B116) 2017; 422
Duc (B25) 2018; 132
Jiang (B49) 2013; 71
Djanaguiraman (B24) 2018; 18
Guo (B37) 2018; 45
Qiyuan (B96) 2016; 43
Ait-El-Mokhtar (B5) 2019; 253
Burdman (B17) 2000
McNear (B74) 2013; 4
Porcel (B93) 2014; 25
Pasbani (B89) 2020; 272
Prity (B95) 2020; 257
De Ronde (B22) 2004; 161
Yooyongwech (B122) 2013; 69
Bilal (B14) 2020; 2019
Camejo (B19) 2005; 162
Zuccaro (B126) 2009; 46
Hajihashemi (B39) 2018; 9
Jia (B48) 2017; 36
Barrera (B9) 2020; 8
Maya (B73) 2013; 23
Hashem (B42) 2018; 25
Navarro (B82) 2014; 171
Li (B66) 2020; 174
Mao (B70) 2017; 12
Del-Saz (B23) 2017; 416
Shen (B103) 2019; 11
Hayat (B43) 2010; 60
Mehnaz (B75) 2006; 51
Ouziad (B87) 2005; 162
Sharma (B102) 2012; 2012
Abd_allah (B2) 2015; 47
Wu (B117) 2017
Yoo (B121) 2019; 29
Fu (B32) 2001; 45
Nanda (B81) 2019; 212
Friesen (B31) 2011; 42
Jha (B47) 2015; 5
Bilal (B13) 2017; 8
Parihar (B88) 2020; 2020
Elhindi (B26) 2017; 24
Rahimzadeh (B97) 2019; 7
Saleem (B100) 2007; 34
Glick (B35) 2007; 119
Kubikova (B61) 2001; 158
Bacon (B7) 2015; 68
Goswami (B36) 2015; 110
De Las Rivas (B21) 1997; 36
Porter (B94) 2005; 436
Yang (B119) 2013; 59
Berg (B11) 2009; 84
Bulgarelli (B16) 2013; 64
Meneses (B77) 2011; 24
Aldana (B6) 2014; 38
Kavroulakis (B55) 2018; 6
References_xml – volume: 24
  start-page: 1448
  year: 2011
  ident: B77
  article-title: Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus
  publication-title: Mol. Plant Microbe Interact
  doi: 10.1094/MPMI-05-11-0127
– volume: 42
  start-page: 199
  year: 1989
  ident: B62
  article-title: Microbially mediated increase in plant available phosphorus
  publication-title: Adv. Agron
  doi: 10.1016/S0065-2113(08)60525-8
– volume: 33
  start-page: 1217
  year: 2011
  ident: B3
  article-title: Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-010-0650-3
– volume: 25
  start-page: 14
  year: 2014
  ident: B93
  article-title: Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-14-36
– volume: 4
  start-page: 241
  year: 2001
  ident: B15
  article-title: Temperature sensing and cold acclimation
  publication-title: Curr. Opin. in Plant Biol.
  doi: 10.1016/S1369-5266(00)00167-9
– volume: 63
  start-page: 3455
  year: 2012
  ident: B45
  article-title: Root carbon and protein metabolism associated with heat tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers003
– volume: 35
  start-page: 109
  year: 2015
  ident: B68
  article-title: Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings
  publication-title: J. Plant Growth Regul
  doi: 10.1007/s00344-015-9511-z
– volume: 61
  start-page: 199
  year: 2007
  ident: B113
  article-title: Heat tolerance in plants: an overview
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2007.05.011
– volume: 110
  start-page: 7
  year: 2015
  ident: B36
  article-title: Simultaneous detection and quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by rhizobacteria from l-tryptophan (Trp) using HPTLC
  publication-title: J. Microbiol. Meth.
  doi: 10.1016/j.mimet.2015.01.001
– volume: 212
  start-page: 1
  year: 2019
  ident: B81
  article-title: Multimetal tolerance mechanisms in bacteria: the resistance strategies acquired by bacteria that can be exploited to “clean-up” heavy metal contaminants from water
  publication-title: Aquat. Toxicol
  doi: 10.1016/j.aquatox.2019.04.011
– volume: 92
  start-page: 364
  year: 1994
  ident: B33
  article-title: Heavy metal binding by mycorrhizal fungi
  publication-title: Physiol. Plantarum.
  doi: 10.1111/j.1399-3054.1994.tb05349.x
– volume: 29
  start-page: 185
  year: 2009
  ident: B29
  article-title: Plant drought stress: effects, mechanisms and management
  publication-title: Agron. Sustain. Dev
  doi: 10.1051/agro:2008021
– volume: 71
  start-page: 112
  year: 2013
  ident: B49
  article-title: A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.07.004
– volume: 45
  start-page: 105
  year: 2001
  ident: B32
  article-title: Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/S0098-8472(00)00084-8
– volume: 29
  start-page: 1124
  year: 2019
  ident: B121
  article-title: Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1904.04026
– volume: 8
  start-page: 25
  year: 2017
  ident: B20
  article-title: Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02516
– volume: 158
  start-page: 1227
  year: 2001
  ident: B61
  article-title: Mycorrhizal impact on osmotic adjustment in Ocimum basilicum during a lethal drying episode
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00441
– volume: 5
  start-page: 9
  year: 2018
  ident: B109
  article-title: Arbuscular mycorrhizal fungal proteins 14-3-3- are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.00091
– volume: 115
  start-page: 433
  year: 2015
  ident: B106
  article-title: Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu239
– volume: 13
  start-page: 239
  year: 2018
  ident: B80
  article-title: Effects of exogenously applied plant growth regulators in combination with PGPR on the physiology and root growth of chickpea (Cicer arietinum) and their role in drought tolerance
  publication-title: J. Plant Inter
  doi: 10.1080/17429145.2018.1471527
– volume: 69
  start-page: 9
  year: 2015
  ident: B1
  article-title: Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.)
  publication-title: Symbiosis
  doi: 10.1007/s13199-015-0361-z
– volume: 6
  start-page: 77
  year: 2018
  ident: B55
  article-title: Tolerance of tomato plants to water stress is improved by the root endophyte Fusarium solani FsK
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2018.04.003
– start-page: 229
  volume-title: Microbial Interactions in Agriculture and Forestry
  year: 2000
  ident: B17
  article-title: Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture
– volume: 109
  start-page: 8
  year: 2006
  ident: B8
  article-title: Seed inoculation with Azospirillum mitigates NaCl effects on lettuce
  publication-title: Scient. Horti.
  doi: 10.1016/j.scienta.2006.02.025
– volume: 39
  start-page: 227
  year: 2018
  ident: B72
  article-title: Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress
  publication-title: Photosyn. Res
  doi: 10.1007/s11120-018-0538-4
– volume: 10
  start-page: e0145726
  year: 2015
  ident: B120
  article-title: The combined effects of Arbuscular Mycorrhizal Fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0145726
– volume: 24
  start-page: 170
  year: 2017
  ident: B26
  article-title: The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.)
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2016.02.010
– volume: 175
  start-page: 167
  year: 2014
  ident: B56
  article-title: Regulations of capsaicin synthesis in Capsicum annuum L. by Penicillium resedanum LK6 during drought conditions
  publication-title: Sci. Horti
  doi: 10.1016/j.scienta.2014.06.008
– volume: 12
  start-page: e0183147
  year: 2017
  ident: B70
  article-title: Combined effects of O3 and UV radiation on secondary metabolites and endogenous hormones of soybean leaves
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0183147
– volume: 132
  start-page: 297
  year: 2018
  ident: B25
  article-title: Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.09.011
– volume: 34
  start-page: 43
  year: 2018
  ident: B60
  article-title: Endophytic Metarhizium brunneum mitigates nutrient deficits in potato and improves plant productivity and vitality
  publication-title: Fungal Ecol
  doi: 10.1016/j.funeco.2018.04.002
– start-page: 25
  volume-title: Arbuscular Mycorrhizas and Stress Tolerance of Plants
  year: 2017
  ident: B117
  article-title: Arbuscular mycorrhizal fungi and tolerance of drought stress in plants
  doi: 10.1007/978-981-10-4115-0_2
– volume: 171
  start-page: 76
  year: 2014
  ident: B82
  article-title: Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2013.06.006
– volume: 38
  start-page: 393
  year: 2014
  ident: B6
  article-title: Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants
  publication-title: Rev. Acad. Colomb. Cienc
  doi: 10.18257/raccefyn.114
– volume: 8
  start-page: 579
  year: 2019
  ident: B10
  article-title: Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications
  publication-title: Plants
  doi: 10.3390/plants8120579
– volume: 52
  start-page: 313
  year: 2014
  ident: B30
  article-title: Effects of NaCl stress on the growth and photosynthetic characteristics of Ulmus pumila L. seedlings in sand culture
  publication-title: Photosyn
  doi: 10.1007/s11099-014-0032-y
– volume: 18
  start-page: 1263
  year: 2018
  ident: B24
  article-title: Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles
  publication-title: BMC Plant Biol
  doi: 10.1186/s12870-018-1263-z
– volume: 7
  start-page: 1123
  year: 2016
  ident: B92
  article-title: Plant abiotic stress challenges from the changing environment
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2016.01123
– volume: 68
  start-page: 87
  year: 2015
  ident: B7
  article-title: Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants
  publication-title: Symbiosis
  doi: 10.1007/s13199-015-0350-2
– volume: 76
  start-page: 393
  year: 2010
  ident: B83
  article-title: Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L
  publication-title: Planta Med.
  doi: 10.1055/s-0029-1186180
– volume: 6
  start-page: 431
  year: 2001
  ident: B44
  article-title: Mechanisms of plant desiccation tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(01)02052-0
– volume: 7
  start-page: e6790
  year: 2019
  ident: B97
  article-title: Physiological and biochemical responses of sugar beet (Beta vulgaris L) to ultraviolet-B radiation
  publication-title: PeerJ.
  doi: 10.7717/peerj.6790
– volume: 183
  start-page: 87
  year: 2015
  ident: B65
  article-title: Arbuscular mycorrhizal fungi increase growth and phenolics synthesis in Poncirus trifoliata under iron deficiency
  publication-title: Sci. Horti
  doi: 10.1016/j.scienta.2014.12.015
– volume: 47
  start-page: 785
  year: 2015
  ident: B2
  article-title: Alleviation of adverse impact of cadmium stress in sunflower (Helianthus annuus L.) by arbuscular mycorrhizal fungi
  publication-title: Pak. J. Bot
– volume: 42
  start-page: 1267782
  year: 2019
  ident: B90
  article-title: Boron and zinc deficiencies and toxicities and their interactions with other nutrients in soybean roots, leaves, and seeds
  publication-title: J. Plant Nut
  doi: 10.1080/01904167.2019.1567782
– volume: 84
  start-page: 115
  year: 2014
  ident: B54
  article-title: Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.09.001
– volume: 8
  start-page: e26891
  year: 2013
  ident: B51
  article-title: Piriformospora indica rescues growth diminution of rice seedlings during high salt stress
  publication-title: Plant Sig. Behav.
  doi: 10.4161/psb.26891
– volume: 157
  start-page: 1178
  year: 2009
  ident: B111
  article-title: Study of lead phyto availability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.09.053
– volume: 84
  start-page: 11
  year: 2009
  ident: B11
  article-title: Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-009-2092-7
– volume: 162
  start-page: 281
  year: 2005
  ident: B19
  article-title: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2004.07.014
– volume: 133
  start-page: 16
  year: 2003
  ident: B108
  article-title: Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.024380
– volume: 119
  start-page: 329
  year: 2007
  ident: B35
  article-title: Promotion of plant growth by ACC deaminase-producing soil bacteria
  publication-title: Eur. J. Plant Pathol.
  doi: 10.1007/s10658-007-9162-4
– volume: 39
  start-page: 136
  year: 2016
  ident: B59
  article-title: Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12600
– volume: 43
  start-page: 161
  year: 2016
  ident: B96
  article-title: Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP15200
– volume: 60
  start-page: 579
  year: 2010
  ident: B43
  article-title: Soil beneficial bacteria and their role in plant growth promotion: a review
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-010-0117-1
– volume: 89
  start-page: 743
  year: 2012
  ident: B114
  article-title: Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L
  publication-title: Chemo
  doi: 10.1016/j.chemosphere.2012.07.005
– volume: 42
  start-page: 23
  year: 2011
  ident: B31
  article-title: Microbially mediated plant functional traits
  publication-title: Ann. Rev. Eco. Evol. Sys.
  doi: 10.1146/annurev-ecolsys-102710-145039
– volume: 8
  start-page: 2593
  year: 2017
  ident: B52
  article-title: Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2017.02593
– volume: 59
  start-page: 1
  year: 2013
  ident: B119
  article-title: Plant symbionts: keys to the phytosphere
  publication-title: Symbiosis
  doi: 10.1007/s13199-012-0190-2
– volume: 34
  start-page: 635
  year: 2007
  ident: B100
  article-title: Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture
  publication-title: J. Ind. Microbiol. Biotech
  doi: 10.1007/s10295-007-0240-6
– volume: 20
  start-page: 1534
  year: 1997
  ident: B107
  article-title: Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1997.d01-44.x
– volume: 36
  start-page: 240
  year: 2017
  ident: B48
  article-title: Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (Oryza sativa L.) under cold stress during the early vegetative stage
  publication-title: J. Plant Growth Regul
  doi: 10.1007/s00344-016-9634-x
– volume: 51
  start-page: 326
  year: 2006
  ident: B75
  article-title: Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-006-9039-7
– volume: 69
  start-page: 285
  year: 2013
  ident: B122
  article-title: Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-012-9771-6
– volume: 64
  start-page: 252
  year: 2013
  ident: B38
  article-title: Natural occurrence of Pseudomonas aeruginosa: a dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum (L.) R
  publication-title: Br. Appl. Soil Ecol
  doi: 10.1016/j.apsoil.2012.12.016
– volume: 2012
  start-page: 1
  year: 2012
  ident: B102
  article-title: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions
  publication-title: J. Bot.
  doi: 10.1155/2012/217037
– volume: 28
  start-page: 1327
  year: 2012
  ident: B12
  article-title: Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-011-0979-9
– volume: 64
  start-page: 807
  year: 2013
  ident: B16
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Ann. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 38
  start-page: 1637
  year: 2015
  ident: B123
  article-title: Comparative transcriptome analysis of developmental stages of the Limonium bicolor leaf generates insights into salt gland differentiation
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12514
– volume: 9
  start-page: 1430
  year: 2018
  ident: B39
  article-title: Effect of cold stress on photosynthetic traits, carbohydrates, morphology, and anatomy in nine cultivars of Stevia rebaudiana
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2018.01430
– volume: 257
  start-page: 1373
  year: 2020
  ident: B95
  article-title: Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status
  publication-title: Protoplasma
  doi: 10.1007/s00709-020-01517-w
– volume: 52
  start-page: 468
  year: 2010
  ident: B124
  article-title: Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.00947.x
– volume: 11
  start-page: 1133
  year: 2019
  ident: B103
  article-title: Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth promoting characteristics
  publication-title: Sustainability
  doi: 10.3390/su11041133
– volume: 42
  start-page: 1158
  year: 2015
  ident: B69
  article-title: Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress
  publication-title: Func. Plant Biol
  doi: 10.1071/FP15106
– volume: 87
  start-page: 417
  year: 2001
  ident: B91
  article-title: Plant freezing and damage
  publication-title: Ann. Bot.
  doi: 10.1006/anbo.2000.1352
– volume: 8
  start-page: 870
  year: 2017
  ident: B13
  article-title: Endophytic Paecilomyces formosus LHL10 augments Glycinemax L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress
  publication-title: Front. Plant Sci
  doi: 10.3389/fpls.2017.00870
– ident: B28
– volume: 5
  start-page: 251
  year: 2017
  ident: B118
  article-title: Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes
  publication-title: Crop J.
  doi: 10.1016/j.cj.2016.10.002
– volume: 161
  start-page: 1211
  year: 2004
  ident: B22
  article-title: Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2004.01.014
– volume: 45
  start-page: 350
  year: 2018
  ident: B37
  article-title: NaCl markedly improved the reproductive capacity of the euhalophyte Suaeda salsa
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP17181
– volume: 133
  start-page: 58
  year: 2017
  ident: B57
  article-title: Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium
  publication-title: Environ. Exp. Bot
  doi: 10.1016/j.envexpbot.2016.09.009
– volume: 57
  start-page: 578
  year: 2011
  ident: B4
  article-title: Inducing salt tolerance in mung bean through co-inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can. J. Microbiol
  doi: 10.1139/w11-044
– volume: 29
  start-page: 201
  year: 2013
  ident: B67
  article-title: Induction of drought stress resistance by multifunctional PGPR Bacillus licheniformis K11 in pepper
  publication-title: Plant Pathol. J
  doi: 10.5423/PPJ.SI.02.2013.0021
– volume: 4
  start-page: 1
  year: 2013
  ident: B74
  article-title: The Rhizosphere - roots, soil and everything in between
  publication-title: Nat. Educ. Knowledge
– volume: 66
  start-page: 6483
  year: 2015
  ident: B112
  article-title: Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria ananassa
  publication-title: J. Exp. Bot
  doi: 10.1093/jxb/erv364
– volume: 10
  start-page: 115
  year: 2000
  ident: B79
  article-title: Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense–Terfezia claveryi
  publication-title: Mycorrhiza
  doi: 10.1007/s005720000066
– volume: 331
  start-page: 129
  year: 2010
  ident: B125
  article-title: Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis
  publication-title: Plant Soil.
  doi: 10.1007/s11104-009-0239-z
– volume: 36
  start-page: 8897
  year: 1997
  ident: B21
  article-title: Structure and thermal stability of photosystem II reaction centers studied by infrared spectroscopy
  publication-title: Biochemistry
  doi: 10.1021/bi970684w
– volume: 23
  start-page: 272
  year: 2016
  ident: B40
  article-title: Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2015.11.002
– volume: 8
  start-page: 122
  year: 2020
  ident: B9
  article-title: Fungal endophytes enhance the photoprotective mechanisms and photochemical efficiency in the antarctic Colobanthus quitensis (Kunth) Bartl. exposed to UV-B radiation
  publication-title: Front. Ecol. Evol
  doi: 10.3389/fevo.2020.00122
– volume: 116
  start-page: 109
  year: 2014
  ident: B46
  article-title: Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.12311
– volume: 53
  start-page: 1351
  year: 2002
  ident: B101
  article-title: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.372.1351
– volume: 7
  start-page: 139
  year: 1997
  ident: B64
  article-title: Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects
  publication-title: Mycorrhiza
  doi: 10.1007/s005720050174
– volume: 180
  start-page: 149
  year: 2016
  ident: B71
  article-title: Improved photosynthetic efficacy of maize Zea mays plants with Arbuscular mycorrhizal fungi (AMF) under high temperature stress
  publication-title: J. Photochem. Photobiol. B.
  doi: 10.1016/j.jphotobiol.2018.02.002
– start-page: 171
  volume-title: Potassium Solubilizing Microorganisms for Sustainable Agriculture
  year: 2016
  ident: B105
  article-title: Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement
  doi: 10.1007/978-81-322-2776-2_13
– volume: 196
  start-page: 124
  year: 2015
  ident: B99
  article-title: Plant growth-promoting rhizobacteria act as biostimulants in horticulture
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2015.08.042
– volume: 422
  start-page: 195
  year: 2017
  ident: B116
  article-title: Disease protection and allelopathic interactions of seed transmitted endophytic Pseudomonads of invasive reed grass (Phragmites australis)
  publication-title: Plant. Soil.
  doi: 10.1007/s11104-016-3169-6
– volume: 2019
  start-page: 111931
  year: 2020
  ident: B14
  article-title: Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses: Heavy metals, high temperature and drought stress
  publication-title: Indust. Crops. Prod
  doi: 10.1016/j.indcrop.2019.111931
– volume: 131
  start-page: 47
  year: 2016
  ident: B18
  article-title: Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.06.015
– volume: 16
  start-page: 261
  year: 2006
  ident: B76
  article-title: Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho Capsicum annuum L. cv San Luis plants exposed to drought
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-006-0043-z
– volume: 436
  start-page: 174
  year: 2005
  ident: B94
  article-title: Rising temperatures are likely to reduce crop yields
  publication-title: Nature
  doi: 10.1038/436174b
– volume: 2
  start-page: 641
  year: 1999
  ident: B84
  article-title: Bacteroid formation in the Rhizobium–legume symbiosis
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(99)00035-1
– volume: 46
  start-page: 543
  year: 2009
  ident: B126
  article-title: Karyotype analysis, genome organization, and stable genetic transformation of the root colonizing fungus Piriformospora indica
  publication-title: Fungal Genet. Biol.
  doi: 10.1016/j.fgb.2009.03.009
– volume: 10
  start-page: 2106
  year: 2020
  ident: B50
  article-title: Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses
  publication-title: Front. Microbiol
  doi: 10.3389/fmicb.2019.02106
– volume: 31
  start-page: 292
  year: 2012
  ident: B34
  article-title: Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-011-9239-3
– volume: 5
  start-page: 77
  year: 2017
  ident: B53
  article-title: Bacterial endophyte colonization and distribution within plants
  publication-title: Microorganisms
  doi: 10.3390/microorganisms5040077
– volume: 25
  start-page: 1102
  year: 2018
  ident: B42
  article-title: Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L
  publication-title: Saudi J. Biol. Sci
  doi: 10.1016/j.sjbs.2018.03.009
– volume: 5
  start-page: 108
  year: 2015
  ident: B47
  article-title: Plant growth promoting rhizobacteria (PGPR): a review
  publication-title: J. Agric. Res. Dev.
  doi: 10.13140/RG.2.1.5171.2164
– volume: 10
  start-page: 230
  year: 2015
  ident: B41
  article-title: Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways
  publication-title: J. Plant Inter
  doi: 10.1080/17429145.2015.1052025
– volume: 23
  start-page: 381
  year: 2013
  ident: B73
  article-title: Influence of arbuscular mycorrhiza on the growth and antioxidative activity in Cyclamen under heat stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-013-0477-z
– volume: 416
  start-page: 97
  year: 2017
  ident: B23
  article-title: Arbuscular mycorrhizal fungus colonization in Nicotiana tabacum decreases the rate of both carboxylate exudation and root respiration and increases plant growth under phosphorus limitation
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3188-y
– volume: 174
  start-page: 104023
  year: 2020
  ident: B66
  article-title: A novel PGPR strain Kocuria rhizophila Y1 enhances salt stress tolerance in maize by regulating phytohormone levels, nutrient acquisition, redox potential, ion homeostasis, photosynthetic capacity and stress-responsive
  publication-title: Environ. Exp. Bot
  doi: 10.1016/j.envexpbot.2020.104023
– start-page: 327
  volume-title: Agricultural Biotechnology
  year: 1998
  ident: B85
  article-title: Biotechnology of biofertilization and phy-tostimulation
– volume: 145
  start-page: 164376
  year: 2018
  ident: B78
  article-title: Reactive oxygen species in plant development
  publication-title: Primer
  doi: 10.1242/dev.164376
– volume: 16
  start-page: 1011
  year: 2015
  ident: B115
  article-title: Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress
  publication-title: J. Zhejiang Univ. Sci. B
  doi: 10.1631/jzus.B1500081
– volume: 22
  start-page: 4907
  year: 2015
  ident: B27
  article-title: Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3754-2
– volume: 272
  start-page: 109575
  year: 2020
  ident: B89
  article-title: Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants
  publication-title: Scien. Horti
  doi: 10.1016/j.scienta.2020.109575
– volume: 11
  start-page: e0161424
  year: 2016
  ident: B98
  article-title: Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0161424
– volume: 21
  start-page: 423
  year: 2011
  ident: B104
  article-title: Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-010-0353-z
– volume: 529
  start-page: 84
  year: 2016
  ident: B63
  article-title: Influence of extreme weather disasters on global crop production
  publication-title: Nature
  doi: 10.1038/nature16467
– volume: 99
  start-page: 108
  year: 2016
  ident: B110
  article-title: Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.11.001
– volume: 253
  start-page: 429
  year: 2019
  ident: B5
  article-title: Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress
  publication-title: Sci. Hori.
  doi: 10.1016/j.scienta.2019.04.066
– volume: 162
  start-page: 634
  year: 2005
  ident: B87
  article-title: Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress
  publication-title: J. Plant Physiol
  doi: 10.1016/j.jplph.2004.09.014
– volume: 43
  start-page: 93
  year: 2004
  ident: B86
  article-title: Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria
  publication-title: Plant Growth Regul.
  doi: 10.1023/B:GROW.0000038360.09079.ad
– volume: 2020
  start-page: 1
  year: 2020
  ident: B88
  article-title: The effect of arbuscular mycorrhizal fungi inoculation in mitigating salt stress of Pea (Pisum Sativum L.)
  publication-title: Commun.Soil Sci. Plant Anal
  doi: 10.1080/00103624.2020.1784917
– volume: 9
  start-page: 2097
  year: 2019
  ident: B58
  article-title: Comparative physiological and metabolic analysis reveals a complex mechanism involved in drought tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-38702-8
SSID ssj0002512204
Score 2.4201324
SecondaryResourceType review_article
Snippet Crop plants are continuously exposed to various abiotic stresses like drought, salinity, ultraviolet radiation, low and high temperatures, flooding, metal...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
SubjectTerms abiotic stress
agronomy
AMF
climate change
crop losses
drought
endophytes
microbial communities
mitigation
nutrient uptake
PGPR
plant growth
plant growth-promoting rhizobacteria
salinity
stress tolerance
ultraviolet radiation
vesicular arbuscular mycorrhizae
Title Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review
URI https://www.proquest.com/docview/2636462768
https://doaj.org/article/ebffe90590fe4c24b3624b6cab368038
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFA-LJ_ewqOuyo65kwZPQtflobI5dUQZhvOwK3kKSvsiAdJZxvIp_hH-hf4nvpZ1hYEEvXkopafv6e837SN4HY0emAsD5Z4tKBIsOiqoKr1pTgGhRAcYIMrdvm1yZ8bW-vKlu1lp9UUxYXx64B-4EQkpgKUUygY5SB5S4Opjo8aQuVU7zRZ235kyRDCatLUvdb2OiF2ZPkr-dU7KfFL8M0rZskjUoolyv_z9xnHXMxRb7MhiHvOmJ2mafoNthn5vb-VAgA76yMXUZWhQTiqMLwPOCXp-bcM-nHW_uKF3cUywzb8J0hg_if3I6yMvTc8Mn027K--2AXXZ9cf73bFwM3RCKqOrTRZF8FC2KrnQqIlo1FrH0EWEJIslowIbKW2g1fneQuk5GKV-3xosofaWDrtU3ttHNOvjOeLJVa9qE1pcEXZfBGhClChW00pchwIiVS2hcHEqFU8eKO4cuA6HpMpqO0HQ9miN2vLrlX18n463Bvwnv1UAqcZ0vIOPdwHj3HuNH7OeSWw6nBO1z-A5mD_dOGmW0kehI7X3Ei_bZJtFOIQPCHrCNxfwBfqAlsgiH-afD4-Tx_BXrld3w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant-Microbe+Interactions+in+Alleviating+Abiotic+Stress%E2%80%94A+Mini+Review&rft.jtitle=Frontiers+in+agronomy&rft.au=Inbaraj%2C+Michael+Prabhu&rft.date=2021-05-19&rft.issn=2673-3218&rft.eissn=2673-3218&rft.volume=3&rft_id=info:doi/10.3389%2Ffagro.2021.667903&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fagro_2021_667903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3218&client=summon