Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s disease progression modeling

•We propose a generalized algorithm to train LSTM networks robust to incomplete data.•We introduce an end-to-end approach for biomarker modeling and clinical status prediction.•It is applied to model Alzheimer’s disease progression using volumetric MRI biomarkers.•Our proposed algorithm predicts bio...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 53; pp. 39 - 46
Main Authors Mehdipour Ghazi, Mostafa, Nielsen, Mads, Pai, Akshay, Cardoso, M. Jorge, Modat, Marc, Ourselin, Sébastien, Sørensen, Lauge
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a generalized algorithm to train LSTM networks robust to incomplete data.•We introduce an end-to-end approach for biomarker modeling and clinical status prediction.•It is applied to model Alzheimer’s disease progression using volumetric MRI biomarkers.•Our proposed algorithm predicts biomarker measurements with the lowest MAE.•This is the first time RNNs are applied for neurodegenerative disease progression modeling. Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects’ trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer’s disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar’s test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts.
AbstractList Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects’ trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer’s disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar’s test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts.
Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects' trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts.Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects' trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer's disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar's test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts.
•We propose a generalized algorithm to train LSTM networks robust to incomplete data.•We introduce an end-to-end approach for biomarker modeling and clinical status prediction.•It is applied to model Alzheimer’s disease progression using volumetric MRI biomarkers.•Our proposed algorithm predicts biomarker measurements with the lowest MAE.•This is the first time RNNs are applied for neurodegenerative disease progression modeling. Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among measurements, make parametric assumptions about biomarker trajectories, do not model multiple biomarkers jointly, and need an alignment of subjects’ trajectories. In this paper, recurrent neural networks (RNNs) are utilized to address these issues. However, in many cases, longitudinal cohorts contain incomplete data, which hinders the application of standard RNNs and requires a pre-processing step such as imputation of the missing values. Instead, we propose a generalized training rule for the most widely used RNN architecture, long short-term memory (LSTM) networks, that can handle both missing predictor and target values. The proposed LSTM algorithm is applied to model the progression of Alzheimer’s disease (AD) using six volumetric magnetic resonance imaging (MRI) biomarkers, i.e., volumes of ventricles, hippocampus, whole brain, fusiform, middle temporal gyrus, and entorhinal cortex, and it is compared to standard LSTM networks with data imputation and a parametric, regression-based DPM method. The results show that the proposed algorithm achieves a significantly lower mean absolute error (MAE) than the alternatives with p < 0.05 using Wilcoxon signed rank test in predicting values of almost all of the MRI biomarkers. Moreover, a linear discriminant analysis (LDA) classifier applied to the predicted biomarker values produces a significantly larger area under the receiver operating characteristic curve (AUC) of 0.90 vs. at most 0.84 with p < 0.001 using McNemar’s test for clinical diagnosis of AD. Inspection of MAE curves as a function of the amount of missing data reveals that the proposed LSTM algorithm achieves the best performance up until more than 74% missing values. Finally, it is illustrated how the method can successfully be applied to data with varying time intervals. This paper shows that built-in handling of missing values in training an LSTM network benefits the application of RNNs in neurodegenerative disease progression modeling in longitudinal cohorts.
Author Mehdipour Ghazi, Mostafa
Modat, Marc
Ourselin, Sébastien
Cardoso, M. Jorge
Nielsen, Mads
Pai, Akshay
Sørensen, Lauge
Author_xml – sequence: 1
  givenname: Mostafa
  surname: Mehdipour Ghazi
  fullname: Mehdipour Ghazi, Mostafa
  email: mehdipour@biomediq.com
  organization: Biomediq A/S, Copenhagen, Denmark
– sequence: 2
  givenname: Mads
  surname: Nielsen
  fullname: Nielsen, Mads
  organization: Biomediq A/S, Copenhagen, Denmark
– sequence: 3
  givenname: Akshay
  surname: Pai
  fullname: Pai, Akshay
  organization: Biomediq A/S, Copenhagen, Denmark
– sequence: 4
  givenname: M. Jorge
  orcidid: 0000-0003-1284-2558
  surname: Cardoso
  fullname: Cardoso, M. Jorge
  organization: Centre for Medical Image Computing, University College London, London, UK
– sequence: 5
  givenname: Marc
  orcidid: 0000-0002-5277-8530
  surname: Modat
  fullname: Modat, Marc
  organization: Centre for Medical Image Computing, University College London, London, UK
– sequence: 6
  givenname: Sébastien
  surname: Ourselin
  fullname: Ourselin, Sébastien
  organization: Centre for Medical Image Computing, University College London, London, UK
– sequence: 7
  givenname: Lauge
  orcidid: 0000-0002-1181-7150
  surname: Sørensen
  fullname: Sørensen, Lauge
  organization: Biomediq A/S, Copenhagen, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30682584$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URB7wBUioJTZspvFr7G4kFqOIR6RI2SRry21XBw9uu7HdRLDiN_g9vgRPJskii6yqpDq3qnTvMToIMQBCrwluCSbi_badwDrdUkz6FpMWY_4MHREmyKrjlB089GR9iI5z3mKMJef4BTpkWHR03fEjdHOZtAsuXDcJzJIShNIEWJL2tZSbmL7nJsVhyaUpsXHBxGn2UKCxuugPzWaevTO6uBh2843__Q3cBOnfn7-5sS6DztDMKV4nyHkHTdGCr-deouej9hle3dUTdPX50-Xp19X5xZez0835yrBOlhXItRWDpaYH02tGpe34QKTsCKOGWE2M5JZygXsNHR8ZBWOkxuM4cKup1uwEvdvvrU_8WCAXNblswHsdIC5ZUSJ7ToWgfUXfPkK3cUmhfqcoJbwXgnTrSr25o5ah-q_m5Cadfql7SyvQ7wGTYs4JRmVcuXWoVKu9Iljt4lNbdRuf2sWnMFE1vqplj7T3659WfdyroBr500FS2TgIpoI11KJsdE_q_wO17bf4
CitedBy_id crossref_primary_10_3390_make6010024
crossref_primary_10_1007_s11277_023_10346_y
crossref_primary_10_3390_brainsci12091132
crossref_primary_10_1016_j_inffus_2022_11_028
crossref_primary_10_1016_j_compbiomed_2021_104935
crossref_primary_10_2174_0929867328666210405114938
crossref_primary_10_1016_j_compbiomed_2024_108869
crossref_primary_10_1038_s41598_023_42796_6
crossref_primary_10_1016_j_neuroimage_2021_118514
crossref_primary_10_3390_app13158953
crossref_primary_10_1016_j_media_2021_102051
crossref_primary_10_1186_s12879_024_09892_y
crossref_primary_10_1007_s10072_024_07649_8
crossref_primary_10_1016_j_mtcomm_2022_104092
crossref_primary_10_1016_j_neuroimage_2020_117460
crossref_primary_10_1063_5_0011697
crossref_primary_10_1016_j_bspc_2021_102729
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1016_j_media_2022_102571
crossref_primary_10_1109_TMI_2023_3312524
crossref_primary_10_1109_TNNLS_2022_3177366
crossref_primary_10_3389_fnins_2022_951508
crossref_primary_10_3389_fnagi_2024_1345417
crossref_primary_10_1016_j_neuroimage_2023_119892
crossref_primary_10_1016_j_media_2020_101953
crossref_primary_10_1109_ACCESS_2022_3160841
crossref_primary_10_1111_ejn_15446
crossref_primary_10_1001_jamanetworkopen_2023_42203
crossref_primary_10_1038_s42256_023_00633_5
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1162_imag_a_00294
crossref_primary_10_1038_s41380_022_01635_2
crossref_primary_10_1016_j_media_2021_102189
crossref_primary_10_1016_j_media_2022_102643
crossref_primary_10_1016_j_neunet_2022_03_016
crossref_primary_10_1016_j_media_2024_103135
crossref_primary_10_1016_j_ajp_2023_103705
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1016_j_neuroimage_2024_120695
crossref_primary_10_1109_JBHI_2020_3027443
crossref_primary_10_3389_fnins_2019_01053
crossref_primary_10_1007_s11571_023_09981_9
crossref_primary_10_1186_s13195_020_00612_7
crossref_primary_10_1016_j_neuroimage_2020_117203
crossref_primary_10_1055_s_0040_1721780
crossref_primary_10_3390_diagnostics11112103
crossref_primary_10_1016_j_eswa_2023_120761
crossref_primary_10_1109_ACCESS_2025_3548173
crossref_primary_10_1109_TMI_2020_3041227
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1016_j_bspc_2024_107253
crossref_primary_10_3233_IDA_230220
crossref_primary_10_1016_j_artmed_2023_102587
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_1016_j_jksuci_2020_12_009
crossref_primary_10_1016_j_physa_2019_122699
crossref_primary_10_1109_TMI_2022_3151118
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1016_j_knosys_2020_106688
crossref_primary_10_1109_TMI_2022_3166131
crossref_primary_10_1038_s41598_024_74508_z
crossref_primary_10_3390_diagnostics13020288
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1109_JBHI_2020_3042447
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1145_3545118
crossref_primary_10_1016_j_bspc_2023_105767
crossref_primary_10_1109_JBHI_2022_3208517
crossref_primary_10_1080_20479700_2023_2175414
crossref_primary_10_1016_j_compmedimag_2024_102404
crossref_primary_10_1016_j_neuroimage_2021_118143
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1007_s12559_023_10169_w
crossref_primary_10_1109_TKDE_2024_3385712
Cites_doi 10.1016/j.neuroimage.2016.06.049
10.2307/3001968
10.1162/neco.1997.9.8.1735
10.1007/BF03256467
10.1023/A:1010920819831
10.1007/BF02295996
10.1016/j.neuroimage.2012.07.059
10.1016/j.neurobiolaging.2013.04.006
10.1016/j.neuroimage.2015.01.048
10.1212/WNL.0b013e3181cb3e25
10.1162/neco.1989.1.2.263
10.1016/S1474-4422(15)00135-0
10.1016/j.jalz.2013.10.003
10.1109/TNNLS.2016.2582924
10.1097/WCO.0000000000000460
10.1109/72.963769
10.1038/s41598-018-24271-9
10.2217/nmt.11.11
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Apr 2019
CorporateAuthor for the Alzheimer’s Disease Neuroimaging Initiative
Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: for the Alzheimer’s Disease Neuroimaging Initiative
– name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2019.01.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 46
ExternalDocumentID 30682584
10_1016_j_media_2019_01_004
S136184151830598X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: CIHR
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-e75d6bd2c9ec9a327d84b1778132c1da1c74d24609ae84f32ecc7a0ffb4da2aa3
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 12:00:14 EDT 2025
Sat Jul 26 03:25:24 EDT 2025
Wed Feb 19 02:32:03 EST 2025
Tue Jul 01 02:49:27 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Long short-term memory
Disease progression modeling
Recurrent neural networks
Linear discriminant analysis
Alzheimer’s disease
Magnetic resonance imaging
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-e75d6bd2c9ec9a327d84b1778132c1da1c74d24609ae84f32ecc7a0ffb4da2aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1284-2558
0000-0002-5277-8530
0000-0002-1181-7150
PMID 30682584
PQID 2214966185
PQPubID 2045428
PageCount 8
ParticipantIDs proquest_miscellaneous_2179426629
proquest_journals_2214966185
pubmed_primary_30682584
crossref_citationtrail_10_1016_j_media_2019_01_004
crossref_primary_10_1016_j_media_2019_01_004
elsevier_sciencedirect_doi_10_1016_j_media_2019_01_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Biagioni, Galvin (bib0002) 2011; 1
Gers, Schmidhuber, Cummins (bib0009) 1999; 2
McNemar (bib0018) 1947; 12
Donohue, Jacqmin-Gadda, Le Goff, Thomas, Raman, Gamst, Beckett, Jack, Weiner, Dartigues, Aisen (bib0006) 2014; 10
Gers, Schmidhuber (bib0008) 2001; 12
Hochreiter, Schmidhuber (bib0013) 1997; 9
Greff, Srivastava, Koutník, Steunebrink, Schmidhuber (bib0010) 2017; 28
Petersen, Aisen, Beckett, Donohue, Gamst, Harvey, Jack, Jagust, Shaw, Toga, Trojanowski, Weiner (bib0025) 2010; 74
Hand, Till (bib0012) 2001; 45
Yoon, Zame, van der Schaar (bib0029) 2018
Che, Purushotham, Cho, Sontag, Liu (bib0004) 2018; 8
Neil, Pfeiffer, Liu (bib0020) 2016
Wilcoxon (bib0026) 1945; 1
Mehdipour Ghazi, Nielsen, Pai, Cardoso, Modat, Ourselin, Sørensen (bib0019) 2018; abs/1808.05500
Parveen, Green (bib0023) 2002
Yau, Tudorascu, McDade, Ikonomovic, James, Minhas, Mowrey, Sheu, Snitz, Weissfeld (bib0028) 2015; 14
Oxtoby, Alexander (bib0021) 2017; 30
Pearlmutter (bib0024) 1989; 1
Baytas, Xiao, Zhang, Wang, Jain, Zhou (bib0001) 2017
Fjell, Westlye, Grydeland, Amlien, Espeseth, Reinvang, Raz, Holland, Dale, Walhovd (bib0007) 2013; 34
Oxtoby, Young, Fox, Daga, Cash, Ourselin, Schott, Alexander (bib0022) 2014
Marinescu, Oxtoby, Young, Bron, Toga, Weiner, Barkhof, Fox, Klein, Alexander (bib0016) 2018; abs/1805.03909
McKhann, Drachman, Folstein, Katzman, Price, Stadlan (bib0017) 1984; 34
Jedynak, Lang, Liu, Katz, Zhang, Wyman, Raunig, Jedynak, Caffo, Prince (bib0014) 2012; 63
Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Papma, Steketee, Orellana, Meijboom (bib0003) 2015; 111
Cho, Van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bib0005) 2014; abs/1406.1078
Wu, Rosa-Neto, Gauthier (bib0027) 2011; 15
Lipton, Kale, Wetzel (bib0015) 2016
Guerrero, Schmidt-Richberg, Ledig, Tong, Wolz, Rueckert (bib0011) 2016; 142
Wilcoxon (10.1016/j.media.2019.01.004_bib0026) 1945; 1
Parveen (10.1016/j.media.2019.01.004_bib0023) 2002
Marinescu (10.1016/j.media.2019.01.004_bib0016) 2018; abs/1805.03909
Bron (10.1016/j.media.2019.01.004_bib0003) 2015; 111
Lipton (10.1016/j.media.2019.01.004_bib0015) 2016
McNemar (10.1016/j.media.2019.01.004_bib0018) 1947; 12
Donohue (10.1016/j.media.2019.01.004_bib0006) 2014; 10
Che (10.1016/j.media.2019.01.004_bib0004) 2018; 8
Jedynak (10.1016/j.media.2019.01.004_bib0014) 2012; 63
Yau (10.1016/j.media.2019.01.004_bib0028) 2015; 14
Cho (10.1016/j.media.2019.01.004_bib0005) 2014; abs/1406.1078
Greff (10.1016/j.media.2019.01.004_bib0010) 2017; 28
McKhann (10.1016/j.media.2019.01.004_sbref0014) 1984; 34
Pearlmutter (10.1016/j.media.2019.01.004_bib0024) 1989; 1
Hand (10.1016/j.media.2019.01.004_bib0012) 2001; 45
Petersen (10.1016/j.media.2019.01.004_bib0025) 2010; 74
Biagioni (10.1016/j.media.2019.01.004_bib0002) 2011; 1
Fjell (10.1016/j.media.2019.01.004_bib0007) 2013; 34
Gers (10.1016/j.media.2019.01.004_bib0009) 1999; 2
Hochreiter (10.1016/j.media.2019.01.004_bib0013) 1997; 9
Oxtoby (10.1016/j.media.2019.01.004_bib0021) 2017; 30
Guerrero (10.1016/j.media.2019.01.004_bib0011) 2016; 142
Neil (10.1016/j.media.2019.01.004_bib0020) 2016
Wu (10.1016/j.media.2019.01.004_bib0027) 2011; 15
Gers (10.1016/j.media.2019.01.004_bib0008) 2001; 12
Oxtoby (10.1016/j.media.2019.01.004_bib0022) 2014
Yoon (10.1016/j.media.2019.01.004_bib0029) 2018
Mehdipour Ghazi (10.1016/j.media.2019.01.004_bib0019) 2018; abs/1808.05500
Baytas (10.1016/j.media.2019.01.004_bib0001) 2017
References_xml – volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0026
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
– volume: 12
  start-page: 1333
  year: 2001
  end-page: 1340
  ident: bib0008
  article-title: LSTM Recurrent networks learn simple context-free and context-sensitive languages
  publication-title: IEEE Trans. Neural Netw.
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  ident: bib0003
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
– volume: 1
  start-page: 263
  year: 1989
  end-page: 269
  ident: bib0024
  article-title: Learning state space trajectories in recurrent neural networks
  publication-title: Neural Comput.
– volume: 74
  start-page: 201
  year: 2010
  end-page: 209
  ident: bib0025
  article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization
  publication-title: Neurology
– volume: 8
  start-page: 6085
  year: 2018
  ident: bib0004
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
– volume: 34
  year: 1984
  ident: bib0017
  article-title: Clinical diagnosis of Alzheimer’s disease
  publication-title: Neurol.
– volume: abs/1805.03909
  year: 2018
  ident: bib0016
  article-title: TADPOLE Challenge: prediction of longitudinal evolution in Alzheimer's disease
  publication-title: CoRR
– volume: 1
  start-page: 127
  year: 2011
  end-page: 139
  ident: bib0002
  article-title: Using biomarkers to improve detection of Alzheimer’s disease
  publication-title: Neurodegener. Dis. Manag.
– volume: 15
  start-page: 313
  year: 2011
  end-page: 325
  ident: bib0027
  article-title: Use of biomarkers in clinical trials of alzheimer disease
  publication-title: Mol. Diagn. Ther.
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: bib0010
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 2
  start-page: 850
  year: 1999
  end-page: 855
  ident: bib0009
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN 99)
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: bib0012
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Mach. Learn.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0013
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: abs/1406.1078
  year: 2014
  ident: bib0005
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: CoRR
– start-page: 65
  year: 2017
  end-page: 74
  ident: bib0001
  article-title: Patient subtyping via time-aware LSTM networks
  publication-title: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 85
  year: 2014
  end-page: 94
  ident: bib0022
  article-title: Learning imaging biomarker trajectories from noisy Alzheimer’s disease data using a Bayesian multilevel model
  publication-title: Proceedings of the Bayesian and Graphical Models for Biomedical Imaging
– volume: abs/1808.05500
  year: 2018
  ident: bib0019
  article-title: Robust training of recurrent neural networks to handle missing data for disease progression modeling
  publication-title: CoRR
– volume: 30
  start-page: 371
  year: 2017
  ident: bib0021
  article-title: Imaging plus x: multimodal models of neurodegenerative disease
  publication-title: Current Opin. Neurol.
– volume: 142
  start-page: 113
  year: 2016
  end-page: 125
  ident: bib0011
  article-title: Instantiated mixed effects modeling of Alzheimer’s disease markers
  publication-title: Neuroimage
– start-page: 1189
  year: 2002
  end-page: 1195
  ident: bib0023
  article-title: Speech recognition with missing data using recurrent neural nets
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 63
  start-page: 1478
  year: 2012
  end-page: 1486
  ident: bib0014
  article-title: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort
  publication-title: Neuroimage
– year: 2016
  ident: bib0015
  article-title: Modeling missing data in clinical time series with RNNs
  publication-title: Proceedings of Machine Learning for Healthcare
– volume: 10
  start-page: S400
  year: 2014
  end-page: S410
  ident: bib0006
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
– volume: 14
  start-page: 804
  year: 2015
  end-page: 813
  ident: bib0028
  article-title: Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study
  publication-title: Lancet Neurol.
– volume: 34
  start-page: 2239
  year: 2013
  end-page: 2247
  ident: bib0007
  article-title: Critical ages in the life course of the adult brain: nonlinear subcortical aging
  publication-title: Neurobiol. of Ag.
– year: 2018
  ident: bib0029
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 12
  start-page: 153
  year: 1947
  end-page: 157
  ident: bib0018
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychom
– start-page: 3882
  year: 2016
  end-page: 3890
  ident: bib0020
  article-title: Phased LSTM: Accelerating recurrent network training for long or event-based sequences
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 142
  start-page: 113
  year: 2016
  ident: 10.1016/j.media.2019.01.004_bib0011
  article-title: Instantiated mixed effects modeling of Alzheimer’s disease markers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.049
– start-page: 3882
  year: 2016
  ident: 10.1016/j.media.2019.01.004_bib0020
  article-title: Phased LSTM: Accelerating recurrent network training for long or event-based sequences
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.media.2019.01.004_bib0026
  article-title: Individual comparisons by ranking methods
  publication-title: Biom. Bull.
  doi: 10.2307/3001968
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.media.2019.01.004_bib0013
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: abs/1805.03909
  year: 2018
  ident: 10.1016/j.media.2019.01.004_bib0016
  article-title: TADPOLE Challenge: prediction of longitudinal evolution in Alzheimer's disease
  publication-title: CoRR
– volume: 15
  start-page: 313
  issue: 6
  year: 2011
  ident: 10.1016/j.media.2019.01.004_bib0027
  article-title: Use of biomarkers in clinical trials of alzheimer disease
  publication-title: Mol. Diagn. Ther.
  doi: 10.1007/BF03256467
– volume: 45
  start-page: 171
  issue: 2
  year: 2001
  ident: 10.1016/j.media.2019.01.004_bib0012
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 12
  start-page: 153
  issue: 2
  year: 1947
  ident: 10.1016/j.media.2019.01.004_bib0018
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychom
  doi: 10.1007/BF02295996
– start-page: 85
  year: 2014
  ident: 10.1016/j.media.2019.01.004_bib0022
  article-title: Learning imaging biomarker trajectories from noisy Alzheimer’s disease data using a Bayesian multilevel model
– volume: 63
  start-page: 1478
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2019.01.004_bib0014
  article-title: A computational neurodegenerative disease progression score: method and results with the Alzheimer’s disease neuroimaging initiative cohort
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.07.059
– volume: 34
  start-page: 2239
  issue: 10
  year: 2013
  ident: 10.1016/j.media.2019.01.004_bib0007
  article-title: Critical ages in the life course of the adult brain: nonlinear subcortical aging
  publication-title: Neurobiol. of Ag.
  doi: 10.1016/j.neurobiolaging.2013.04.006
– volume: 34
  issue: 7
  year: 1984
  ident: 10.1016/j.media.2019.01.004_sbref0014
  article-title: Clinical diagnosis of Alzheimer’s disease
  publication-title: Neurol.
– volume: abs/1808.05500
  year: 2018
  ident: 10.1016/j.media.2019.01.004_bib0019
  article-title: Robust training of recurrent neural networks to handle missing data for disease progression modeling
  publication-title: CoRR
– start-page: 65
  year: 2017
  ident: 10.1016/j.media.2019.01.004_bib0001
  article-title: Patient subtyping via time-aware LSTM networks
– volume: 111
  start-page: 562
  year: 2015
  ident: 10.1016/j.media.2019.01.004_bib0003
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.048
– year: 2018
  ident: 10.1016/j.media.2019.01.004_bib0029
  article-title: Estimating missing data in temporal data streams using multi-directional recurrent neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1189
  year: 2002
  ident: 10.1016/j.media.2019.01.004_bib0023
  article-title: Speech recognition with missing data using recurrent neural nets
– volume: 74
  start-page: 201
  issue: 3
  year: 2010
  ident: 10.1016/j.media.2019.01.004_bib0025
  article-title: Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181cb3e25
– year: 2016
  ident: 10.1016/j.media.2019.01.004_bib0015
  article-title: Modeling missing data in clinical time series with RNNs
– volume: 1
  start-page: 263
  issue: 2
  year: 1989
  ident: 10.1016/j.media.2019.01.004_bib0024
  article-title: Learning state space trajectories in recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.263
– volume: abs/1406.1078
  year: 2014
  ident: 10.1016/j.media.2019.01.004_bib0005
  article-title: Learning phrase representations using RNN encoder-decoder for statistical machine translation
  publication-title: CoRR
– volume: 14
  start-page: 804
  issue: 8
  year: 2015
  ident: 10.1016/j.media.2019.01.004_bib0028
  article-title: Longitudinal assessment of neuroimaging and clinical markers in autosomal dominant Alzheimer’s disease: a prospective cohort study
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)00135-0
– volume: 10
  start-page: S400
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2019.01.004_bib0006
  article-title: Estimating long-term multivariate progression from short-term data
  publication-title: Alzheimer’s Dement. J. Alzheimer’s Assoc.
  doi: 10.1016/j.jalz.2013.10.003
– volume: 2
  start-page: 850
  year: 1999
  ident: 10.1016/j.media.2019.01.004_bib0009
  article-title: Learning to forget: continual prediction with LSTM
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 10.1016/j.media.2019.01.004_bib0010
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 30
  start-page: 371
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2019.01.004_bib0021
  article-title: Imaging plus x: multimodal models of neurodegenerative disease
  publication-title: Current Opin. Neurol.
  doi: 10.1097/WCO.0000000000000460
– volume: 12
  start-page: 1333
  issue: 6
  year: 2001
  ident: 10.1016/j.media.2019.01.004_bib0008
  article-title: LSTM Recurrent networks learn simple context-free and context-sensitive languages
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.963769
– volume: 8
  start-page: 6085
  issue: 1
  year: 2018
  ident: 10.1016/j.media.2019.01.004_bib0004
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24271-9
– volume: 1
  start-page: 127
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2019.01.004_bib0002
  article-title: Using biomarkers to improve detection of Alzheimer’s disease
  publication-title: Neurodegener. Dis. Manag.
  doi: 10.2217/nmt.11.11
SSID ssj0007440
Score 2.5326293
Snippet •We propose a generalized algorithm to train LSTM networks robust to incomplete data.•We introduce an end-to-end approach for biomarker modeling and clinical...
Disease progression modeling (DPM) using longitudinal data is a challenging machine learning task. Existing DPM algorithms neglect temporal dependencies among...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39
SubjectTerms Aged
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Biomarkers
Biomarkers - analysis
Brain
Cases (containers)
Cortex (entorhinal)
Cortex (temporal)
Discriminant analysis
Disease Progression
Disease progression modeling
Female
Humans
Inspection
Learning algorithms
Linear discriminant analysis
Long short-term memory
Machine learning
Magnetic Resonance Imaging
Male
Mathematical models
Missing data
Modelling
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging
Neurological diseases
NMR
Nuclear magnetic resonance
Rank tests
Recurrent neural networks
Regression analysis
Temporal gyrus
Training
Trajectories
Title Training recurrent neural networks robust to incomplete data: Application to Alzheimer’s disease progression modeling
URI https://dx.doi.org/10.1016/j.media.2019.01.004
https://www.ncbi.nlm.nih.gov/pubmed/30682584
https://www.proquest.com/docview/2214966185
https://www.proquest.com/docview/2179426629
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRUJwqKD8bSmVkTgSduM4scMtVJTlp73Qor1ZtuOIRSVb7WaFxAHxGrweT8KM42xBgh44RYntxPKMPTPx528AnngMjPOJs4lpBE-EFC6xaKUTLnNvi1w0WUjad3xSTM_Em1k-24LD4SwMwSrj2t-v6WG1jk_GcTTHF_P5-H2aUbIStFgKdbZUMzrBLiRp-bNvlzAPIsDrz16lCdUemIcCxiucziB8Vxm4O2O2tr9Yp395n8EKHd2Cneg-sqrv4W3Y8u0u3PyNVHAXrh_H7fI78OU0JoBgS_qtTkRMjAgs8Q1tD_9eseXCrlcd6xaMeBqIK7jzjHCjz1l1ublN5dX5149-_tkvf37_sWJxZ4cFgFdP7sFCWh383F04O3p5ejhNYqaFxGVKdomXeV3YmrvSu9JkXNZKEC-VwljVpbVJnRQ1F8WkNF6h_DgKXppJ01hRG25Mdg-220XrHwCTqraZsCUGXh5j01xZdEgwKuKqKJ1szAj4MMLaRRpyyoZxrge82ScdxKJJLHqSahTLCJ5uGl30LBxXVy8G0ek_lEmjnbi64f4gaB3n8kpzjlEkujEqH8HjTTHOQtpaMa1frLEOrWvo6_ByBPd7Bdl0FIMyDMOV2PvfXj2EG3TX44X2Ybtbrv0jdIU6exB0_QCuVa_fTk_w-urFuw_VL6wUC6I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NIcF4QDBgFAYYiUdCG8eJHd6qianAuhc6qW-W7TiiaKRTmwqJB8Tf4O_xS7hznA4k2AOvsZ1YvrPvLvf5O4AXHgPjfORsYmrBEyGFSyxa6YTL3NsiF3UWivZNT4vJmXg3z-c7cNTfhSFYZTz7uzM9nNbxyTCu5vBisRh-SDMqVoIWS6HOlmp-Da4L3L5UxuDVt0ucBzHgdZev0oS699RDAeQVrmcQwKsM5J2xXNtfzNO_3M9gho7vwO3oP7JxN8W7sOObfbj1G6vgPtyYxnz5PfgyixUg2Ir-qxMTEyMGS3xD0-G_12y1tJt1y9olI6IGIgtuPSPg6Gs2vsxuU_v4_OtHv_jsVz-__1izmNphAeHVsXuwUFcHP3cfzo7fzI4mSSy1kLhMyTbxMq8KW3FXeleajMtKCSKmUhisurQyqZOi4qIYlcYrFCBHyUszqmsrKsONyR7AbrNs_ENgUlU2E7bEyMtjcJorix4JhkVcFaWTtRkA71dYu8hDTuUwznUPOPukg1g0iUWPUo1iGcDL7aCLjobj6u5FLzr9hzZpNBRXDzzsBa3jZl5rzjGMRD9G5QN4vm3GbUi5FdP45Qb70MGGzg4vB3DQKch2ohiVYRyuxKP_ndUzuDmZTU_0ydvT949hj1o68NAh7LarjX-CflFrnwa9_wVNbQuh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Training+recurrent+neural+networks+robust+to+incomplete+data%3A+Application+to+Alzheimer%E2%80%99s+disease+progression+modeling&rft.jtitle=Medical+image+analysis&rft.au=Ghazi%2C+Mostafa+Mehdipour&rft.au=Nielsen%2C+Mads&rft.au=Pai%2C+Akshay&rft.au=Cardoso%2C+M+Jorge&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=53&rft.spage=39&rft_id=info:doi/10.1016%2Fj.media.2019.01.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon