Neural decoding and feature selection methods for closed-loop control of avoidance behavior
Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the fou...
Saved in:
Published in | Journal of neural engineering Vol. 21; no. 5; pp. 56041 - 56070 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/ad8839 |
Cover
Loading…
Abstract | Objective.
Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.
Approach.
We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.
Main results.
Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring
<
310 ms for training,
<
0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.
Significance.
Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. |
---|---|
AbstractList | Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring <310 ms for training, <0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. 
. Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring < 310 ms for training, < 0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $ < $\end{document} < 310 ms for training, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $ < $\end{document} < 0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. |
Author | Younk, Rebecca Liu, Jinhan S Nagrale, Sumedh Yadav, Shreya Shoaran, Mahsa M Drahos, Lauren S Widge, Alik |
Author_xml | – sequence: 1 givenname: Jinhan orcidid: 0000-0002-7887-8169 surname: Liu fullname: Liu, Jinhan organization: Neuro-X Institute, EPFL , Geneva, Switzerland – sequence: 2 givenname: Rebecca surname: Younk fullname: Younk, Rebecca organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America – sequence: 3 givenname: Lauren surname: M Drahos fullname: M Drahos, Lauren organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America – sequence: 4 givenname: Sumedh orcidid: 0000-0002-0039-9125 surname: S Nagrale fullname: S Nagrale, Sumedh organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America – sequence: 5 givenname: Shreya orcidid: 0009-0009-8644-9223 surname: Yadav fullname: Yadav, Shreya organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America – sequence: 6 givenname: Alik orcidid: 0000-0001-8510-341X surname: S Widge fullname: S Widge, Alik organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America – sequence: 7 givenname: Mahsa orcidid: 0000-0002-6426-4799 surname: Shoaran fullname: Shoaran, Mahsa organization: Neuro-X Institute, EPFL , Geneva, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39419091$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kbtPHDEQxi1EFF7pqZDLFNngx-7tukIRIg8JJQ1UFJbXHnNGPs_F3j2J_z4-HZxCQWVr5jffjL7vhBwmTEDIOWdfORuGS963vBFdJy6NGwapDsjxvnS4_y_YETkp5YkxyXvFPpIjqVqumOLH5OE3zNlE6sCiC-mRmuSoBzPNGWiBCHYKmOgKpiW6Qj1maiMWcE1EXFOLacoYKXpqNhicSRboCEuzCZjPyAdvYoFPL-8puf9-c3f9s7n98-PX9bfbxsqhnxpoReedXHjfecHGHrgCO3Db1eutdYIv-r4Vg_ECtkXOxGJko2ml82qU0shTcrXTXc_jCpyFepOJep3DyuRnjSbot50UlvoRN5rzTsiqWBU-vyhk_DtDmfQqFAsxmgQ4Fy15NU5JOaiKXvy_bL_l1dIKsB1gM5aSwe8RzvQ2Nb2NRW8j0rvU6siX3UjAtX7COadq1_v4P15EmT4 |
CODEN | JNEOBH |
Cites_doi | 10.1038/s41598-019-43272-w 10.1016/j.neuron.2014.04.042 10.1176/jnp.9.3.471 10.1016/j.neuroimage.2016.02.079 10.1523/JNEUROSCI.05-07-01688.1985 10.1038/s41467-019-09557-4 10.1016/S2215-0366(15)00505-2 10.1016/j.cell.2018.09.028 10.1093/bjps/axx023 10.1038/nn.4251 10.1038/s41386-023-01643-y 10.1109/TBCAS.2015.2477264 10.1016/j.jneumeth.2022.109725 10.1101/lm.041400.115 10.1016/j.conb.2014.11.004 10.1109/TNSRE.2023.3243992 10.1038/nrn.2018.22 10.1017/S003329171200147X 10.3389/fnbeh.2022.936036 10.1016/j.neuron.2009.12.002 10.31887/DCNS.2015.17.3/bbandelow 10.1038/s41598-019-48870-2 10.1176/appi.ajp.2016.16030353 10.7554/eLife.11352 10.7554/eLife.64934 10.1038/nature04970 10.1016/j.neuron.2015.09.028 10.1038/s41386-020-0767-z 10.1016/j.neubiorev.2010.11.012 10.1038/s41591-021-01480-w 10.3389/fnbeh.2019.00045 10.1038/s41593-019-0488-y 10.1155/2019/3761203 10.1146/annurev-neuro-061010-113638 10.1088/1741-2552/abc529 10.1590/1516-4446-2013-1139 10.1016/j.biopsych.2015.09.003 10.1016/j.cell.2018.10.005 10.1088/1741-2552/ac4ed1 10.3389/fnhum.2020.569973 10.1146/annurev.neuro.23.1.155 10.1038/s41380-019-0365-9 10.3389/fnbeh.2014.00112 10.1023/A:1010933404324 10.1371/journal.pone.0021714 10.3791/65177 10.1098/rstb.2016.0206 10.3233/BME-130919 10.1007/s00422-002-0374-6 10.1016/S0896-6273(03)00597-X 10.3389/fnins.2015.00055 10.1007/978-1-60761-883-6_5 10.1016/j.neuroimage.2012.01.064 10.1016/j.clinph.2014.05.022 10.1016/j.neuron.2014.08.038 10.1523/JNEUROSCI.3468-05.2006 10.1523/JNEUROSCI.2450-20.2021 10.1007/BF00994018 10.1080/2326263X.2014.912885 10.1109/MSSC.2023.3309782 10.1126/science.1117593 10.1109/TBCAS.2021.3112756 10.1038/nn.3582 10.1016/S0959-4388(00)00203-8 10.1088/1741-2552/ab2c58 10.1136/jnnp-2019-321400 10.1016/j.pneurobio.2019.01.008 10.1016/j.neuron.2009.07.027 10.1523/JNEUROSCI.0256-23.2023 10.1109/LSSC.2023.3238797 10.1088/1741-2560/12/3/036009 10.1038/nature10987 10.1016/S0140-6736(11)60602-8 10.1016/S0149-7634(01)00056-2 10.1016/j.neuron.2017.03.022 10.1109/JSSC.2022.3204508 10.1152/jn.1998.79.2.1017 10.1016/j.clinph.2019.09.021 10.1016/j.biopsych.2017.11.019 10.1016/j.clinph.2014.02.015 10.1016/j.biopsych.2015.03.017 10.1016/j.neuron.2014.07.026 10.1088/1741-2560/11/3/036009 10.1038/npp.2009.83 10.1023/B:MACH.0000035475.85309.1b 10.1162/neco.1997.9.8.1735 10.1038/nn.4320 10.1016/j.cell.2018.02.012 10.1007/s11517-012-0904-x 10.7554/eLife.23743 10.1109/TNSRE.2020.3030714 10.1016/j.expneurol.2016.07.021 10.1016/j.cobeha.2015.06.005 10.1016/j.copbio.2021.10.012 10.1038/s41587-019-0397-3 10.1038/s41386-020-00805-6 10.1038/nrn3945 10.1016/j.jpsychires.2010.04.022 10.1016/j.nurt.2007.10.069 10.1038/s41583-018-0039-7 10.1109/TITB.2006.884369 10.1038/s41562-022-01310-0 10.1093/brain/awy210 10.14257/ijbsbt.2015.7.3.03 10.1109/JETCAS.2018.2844733 10.1093/bmb/65.1.193 10.1038/s41551-021-00804-y 10.1109/TII.2021.3133307 10.1038/s41586-023-06541-3 10.1007/s00521-021-06612-4 10.1093/braincomms/fcaa036 10.1038/s41586-021-03726-6 10.1038/nature14539 10.1109/10.661266 10.1016/j.cub.2012.11.055 10.1109/TBCAS.2020.3004544 10.1038/nn.3865 10.1016/j.bspc.2021.103102 10.1038/nature14188 10.1038/mp.2015.124 10.1038/nbt.4200 10.3389/fnbeh.2014.00094 10.1016/j.aei.2022.101718 10.1007/s11571-017-9447-z 10.1007/s11571-022-09819-w 10.7554/eLife.14316 10.1016/j.neuron.2023.12.017 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. 2024 The Author(s). Published by IOP Publishing Ltd 2024 |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. – notice: 2024 The Author(s). Published by IOP Publishing Ltd 2024 |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1088/1741-2552/ad8839 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | PMC11523571 39419091 10_1088_1741_2552_ad8839 jnead8839 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Mental Health grantid: R01-MH-123634 funderid: http://dx.doi.org/10.13039/100000025 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RO9 ROL RPA SY9 TSCCA W28 XPP AAYXX ADEQX CITATION NPM 7X8 5PM AEINN |
ID | FETCH-LOGICAL-c387t-e425fd36ff5f20b7e19ec81c5741ccd21677428af2e1c571026b0ba43df9b33a3 |
IEDL.DBID | O3W |
ISSN | 1741-2560 1741-2552 |
IngestDate | Thu Aug 21 18:43:55 EDT 2025 Fri Jul 11 09:00:39 EDT 2025 Mon Jul 21 06:02:18 EDT 2025 Tue Jul 01 01:48:13 EDT 2025 Wed Nov 06 05:17:51 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | defensive behavior psychiatric brain-machine interfaces machine learning neural decoder neuro-marker |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-e425fd36ff5f20b7e19ec81c5741ccd21677428af2e1c571026b0ba43df9b33a3 |
Notes | JNE-107643.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors jointly supervised this work. |
ORCID | 0000-0001-8510-341X 0009-0009-8644-9223 0000-0002-0039-9125 0000-0002-6426-4799 0000-0002-7887-8169 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1741-2552/ad8839 |
PMID | 39419091 |
PQID | 3117993389 |
PQPubID | 23479 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_3117993389 crossref_primary_10_1088_1741_2552_ad8839 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11523571 pubmed_primary_39419091 iop_journals_10_1088_1741_2552_ad8839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Jackson (jnead8839bib140) 2024 Flash (jnead8839bib137) 1985; 5 Yao (jnead8839bib143) 2018 Mobbs (jnead8839bib16) 2015; 9 Shin (jnead8839bib31) 2023; 6 Mayberg (jnead8839bib57) 1997; 9 Ethier (jnead8839bib43) 2012; 485 Reis (jnead8839bib87) 2021; 10 Zhu (jnead8839bib117) 2022; 54 Colom-Lapetina (jnead8839bib21) 2019; 13 Terburg (jnead8839bib24) 2018; 175 Duvarci (jnead8839bib10) 2014; 82 Zhu (jnead8839bib39) 2021; 15 Avvaru (jnead8839bib79) 2021 Shin (jnead8839bib32) 2022 Bijanzadeh (jnead8839bib73) 2022; 6 Bandarabadi (jnead8839bib101) 2014 Zhu (jnead8839bib132) 2021 McDannald (jnead8839bib85) 2023; 43 Olsen (jnead8839bib116) 2020; 14 Breiman (jnead8839bib123) 2001; 45 Dasdemir (jnead8839bib113) 2017; 11 Milad (jnead8839bib84) 2011 Xiang (jnead8839bib107) 2020; 2 Langevin (jnead8839bib26) 2010; 44 Yoo (jnead8839bib36) 2021; 72 Shanechi (jnead8839bib34) 2019; 22 LeDoux (jnead8839bib138) 2018; 19 Shoaran (jnead8839bib97) 2018; 8 Lesting (jnead8839bib62) 2011; 6 Shin (jnead8839bib7) 2010; 35 Fenster (jnead8839bib11) 2018; 19 Ibos (jnead8839bib45) 2017; 6 Srinivasan (jnead8839bib108) 2007; 11 Scangos (jnead8839bib145) 2021; 27 Luyten (jnead8839bib28) 2016; 21 Raposo (jnead8839bib51) 2014; 17 Bandelow (jnead8839bib8) 2015; 17 Kuhlmann (jnead8839bib120) 2018; 141 Robinson (jnead8839bib23) 2019; 90 Koppe (jnead8839bib118) 2021; 46 Jia (jnead8839bib135) 2023; 31 Poulos (jnead8839bib18) 2016; 23 Gruene (jnead8839bib92) 2015; 4 Stavisky (jnead8839bib96) 2015; 12 Dhar (jnead8839bib130) 2022; 34 Totty (jnead8839bib93) 2022; 16 LeDoux (jnead8839bib3) 1998 LeDoux (jnead8839bib5) 2000; 23 Durstewitz (jnead8839bib119) 2019; 24 Krizhevsky (jnead8839bib125) 2012 Bandarabadi (jnead8839bib99) 2015; 126 Adolphs (jnead8839bib1) 2013; 23 LeDoux (jnead8839bib15) 2016; 173 Mukhopadhyay (jnead8839bib106) 1998; 45 Drevets (jnead8839bib54) 2001; 11 Campos (jnead8839bib20) 2013; 35 Baeg (jnead8839bib44) 2003; 40 Yao (jnead8839bib114) 2022; 19 Pan (jnead8839bib129) 2023; 17 Weygandt (jnead8839bib53) 2012; 60 Lydon-Staley (jnead8839bib66) 2021; 46 Langevin (jnead8839bib25) 2016; 79 Adhikari (jnead8839bib13) 2014; 8 Basu (jnead8839bib69) 2023; 7 Wang (jnead8839bib63) 2014; 11 Vigo (jnead8839bib9) 2016; 3 Serruya (jnead8839bib42) 2003; 88 Likhtik (jnead8839bib60) 2014; 17 Barlow (jnead8839bib2) 2004 Roelofs (jnead8839bib19) 2017; 372 Thuwajit (jnead8839bib127) 2021; 18 Yao (jnead8839bib76) 2020 Mayberg (jnead8839bib55) 2003; 65 Rich (jnead8839bib49) 2016; 19 Glaser (jnead8839bib67) 2019; 175 Dejean (jnead8839bib80) 2015; 78 Zhu (jnead8839bib98) 2020; 14 Maling (jnead8839bib95) 2016 Jercog (jnead8839bib59) 2021; 595 Ke (jnead8839bib121) 2017 Deslauriers (jnead8839bib22) 2018; 83 Zhang (jnead8839bib100) 2015; 10 Nandi (jnead8839bib112) 2019; 9 Yao (jnead8839bib75) 2021; 18 Baxter (jnead8839bib6) 2013; 43 Zhang (jnead8839bib46) 1998; 79 Siegle (jnead8839bib90) 2015; 32 Reis (jnead8839bib86) 2021; 41 Tovote (jnead8839bib12) 2015; 16 Li (jnead8839bib88) 2014; 8 Sani (jnead8839bib40) 2023 Koolen (jnead8839bib102) 2014; 125 Munia (jnead8839bib111) 2019; 9 LeCun (jnead8839bib68) 2015; 521 Logesparan (jnead8839bib94) 2012; 50 Shoaran (jnead8839bib35) 2023; 15 Zhu (jnead8839bib141) 2019 Widge (jnead8839bib37) 2019; 10 Majid Mehmood (jnead8839bib103) 2015; 7 Kirkby (jnead8839bib110) 2018; 175 Dekleva (jnead8839bib50) 2016; 5 Hochberg (jnead8839bib58) 2006; 442 Younk (jnead8839bib89) 2022; 382 Sun (jnead8839bib146) 2008; 5 Lundberg (jnead8839bib128) 2017 Sellers (jnead8839bib77) 2023 Mobbs (jnead8839bib82) 2015; 5 Widge (jnead8839bib33) 2014; 1 Davidson (jnead8839bib47) 2009; 63 Hultman (jnead8839bib74) 2018; 173 Janak (jnead8839bib14) 2015; 517 Kupfer (jnead8839bib56) 2012; 379 Stein (jnead8839bib4) 2011; 35 He (jnead8839bib126) 2016 Widge (jnead8839bib29) 2023; 49 Hung (jnead8839bib48) 2005; 310 Jie (jnead8839bib109) 2014; 24 Caroline Blanchard (jnead8839bib81) 2001; 25 Aggarwal (jnead8839bib131) 2018 Alagapan (jnead8839bib72) 2023; 622 Bocchio (jnead8839bib83) 2017; 94 Avvaru (jnead8839bib71) 2021 Zeng (jnead8839bib133) 2019; 2019 Yao (jnead8839bib142) 2019 Widge (jnead8839bib30) 2017; 287 Shenoy (jnead8839bib41) 2014; 84 Adhikari (jnead8839bib17) 2010; 65 Provenza (jnead8839bib70) 2019; 16 Hochreiter (jnead8839bib124) 1997; 9 Zhu (jnead8839bib144) 2020 Quian Quiroga (jnead8839bib52) 2006; 26 Stujenske (jnead8839bib61) 2014; 83 Karalis (jnead8839bib64) 2016; 19 Cortes (jnead8839bib122) 1995; 20 Dunsmoor (jnead8839bib139) 2015; 88 Sani (jnead8839bib38) 2018; 36 Brendan Ritchie (jnead8839bib65) 2019; 70 Lo (jnead8839bib91) 2020; 28 Arbabshirani (jnead8839bib115) 2017; 145 Kingma (jnead8839bib147) 2014 Yao (jnead8839bib104) 2020; 131 Abenna (jnead8839bib134) 2022; 71 Mitchell (jnead8839bib136) 2004; 57 Holtzheimer (jnead8839bib27) 2011; 34 Wu (jnead8839bib78) 2020; 38 Shin (jnead8839bib105) 2022; 57 |
References_xml | – volume: 9 start-page: 6933 year: 2019 ident: jnead8839bib112 article-title: Inferring the direction of rhythmic neural transmission via inter-regional phase-amplitude coupling (ir-PAC) publication-title: Sci. Rep. doi: 10.1038/s41598-019-43272-w – volume: 82 start-page: 966 year: 2014 ident: jnead8839bib10 article-title: Amygdala microcircuits controlling learned fear publication-title: Neuron doi: 10.1016/j.neuron.2014.04.042 – volume: 9 start-page: 471 year: 1997 ident: jnead8839bib57 article-title: Limbic-cortical dysregulation: a proposed model of depression publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/jnp.9.3.471 – volume: 145 start-page: 137 year: 2017 ident: jnead8839bib115 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 5 start-page: 1688 year: 1985 ident: jnead8839bib137 article-title: The coordination of arm movements: an experimentally confirmed mathematical model publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.05-07-01688.1985 – volume: 10 start-page: 1536 year: 2019 ident: jnead8839bib37 article-title: Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function publication-title: Nat. Commun. doi: 10.1038/s41467-019-09557-4 – year: 2014 ident: jnead8839bib147 article-title: Adam: a method for stochastic optimization – start-page: pp 770 year: 2016 ident: jnead8839bib126 article-title: Deep residual learning for image recognition – volume: 3 start-page: 171 year: 2016 ident: jnead8839bib9 article-title: Estimating the true global burden of mental illness publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(15)00505-2 – volume: 175 start-page: 723 year: 2018 ident: jnead8839bib24 article-title: The basolateral amygdala is essential for rapid escape: a human and rodent study publication-title: Cell doi: 10.1016/j.cell.2018.09.028 – volume: 70 start-page: 581 year: 2019 ident: jnead8839bib65 article-title: Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience publication-title: Br. J. Phil. Sci. doi: 10.1093/bjps/axx023 – volume: 19 start-page: 605 year: 2016 ident: jnead8839bib64 article-title: 4-hz oscillations synchronize prefrontal–amygdala circuits during fear behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4251 – volume: 49 start-page: 1 year: 2023 ident: jnead8839bib29 article-title: Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics and plasticity publication-title: Neuropsychopharmacology doi: 10.1038/s41386-023-01643-y – volume: 10 start-page: 693 year: 2015 ident: jnead8839bib100 article-title: Low-complexity seizure prediction from IEEG/sEEG using spectral power and ratios of spectral power publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2015.2477264 – volume: 382 year: 2022 ident: jnead8839bib89 article-title: Quantifying defensive behavior and threat response through integrated headstage accelerometry publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2022.109725 – volume: 23 start-page: 379 year: 2016 ident: jnead8839bib18 article-title: Conditioning-and time-dependent increases in context fear and generalization publication-title: Learn. Mem. doi: 10.1101/lm.041400.115 – volume: 32 start-page: 53 year: 2015 ident: jnead8839bib90 article-title: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2014.11.004 – volume: 31 start-page: 1311 year: 2023 ident: jnead8839bib135 article-title: A model combining multi branch spectral-temporal cnn, efficient channel attention and lightgbm for mi-bci classification publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2023.3243992 – start-page: pp 181 year: 2021 ident: jnead8839bib132 article-title: Unsupervised domain adaptation for cross-subject few-shot neurological symptom detection – volume: 19 start-page: 269 year: 2018 ident: jnead8839bib138 article-title: Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn.2018.22 – volume: 43 start-page: 897 year: 2013 ident: jnead8839bib6 article-title: Global prevalence of anxiety disorders: a systematic review and meta-regression publication-title: Psychol. Med. doi: 10.1017/S003329171200147X – volume: 16 year: 2022 ident: jnead8839bib93 article-title: Neural oscillations in aversively motivated behavior publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2022.936036 – volume: 65 start-page: 257 year: 2010 ident: jnead8839bib17 article-title: Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety publication-title: Neuron doi: 10.1016/j.neuron.2009.12.002 – volume: 17 start-page: 327 year: 2015 ident: jnead8839bib8 article-title: Epidemiology of anxiety disorders in the 21st century publication-title: Dialog. Clin. Neurosc. doi: 10.31887/DCNS.2015.17.3/bbandelow – volume: 9 year: 2019 ident: jnead8839bib111 article-title: Time-frequency based phase-amplitude coupling measure for neuronal oscillations publication-title: Sci. Rep. doi: 10.1038/s41598-019-48870-2 – volume: 173 start-page: 1083 year: 2016 ident: jnead8839bib15 article-title: Using neuroscience to help understand fear and anxiety: a two-system framework publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.2016.16030353 – volume: 4 year: 2015 ident: jnead8839bib92 article-title: Sexually divergent expression of active and passive conditioned fear responses in rats publication-title: eLife doi: 10.7554/eLife.11352 – start-page: p 25 year: 2012 ident: jnead8839bib125 article-title: Imagenet classification with deep convolutional neural networks – volume: 10 year: 2021 ident: jnead8839bib87 article-title: Dorsal periaqueductal gray ensembles represent approach and avoidance states publication-title: eLife doi: 10.7554/eLife.64934 – volume: 442 start-page: 164 year: 2006 ident: jnead8839bib58 article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia publication-title: Nature doi: 10.1038/nature04970 – volume: 88 start-page: 47 year: 2015 ident: jnead8839bib139 article-title: Rethinking extinction publication-title: Neuron doi: 10.1016/j.neuron.2015.09.028 – volume: 46 start-page: 176 year: 2021 ident: jnead8839bib118 article-title: Deep learning for small and big data in psychiatry publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-0767-z – volume: 35 start-page: 1075 year: 2011 ident: jnead8839bib4 article-title: Threat detection, precautionary responses and anxiety disorders publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2010.11.012 – volume: 27 start-page: 1696 year: 2021 ident: jnead8839bib145 article-title: Closed-loop neuromodulation in an individual with treatment-resistant depression publication-title: Nat. Med. doi: 10.1038/s41591-021-01480-w – volume: 13 start-page: 45 year: 2019 ident: jnead8839bib21 article-title: Behavioral diversity across classic rodent models is sex-dependent publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2019.00045 – volume: 22 start-page: 1554 year: 2019 ident: jnead8839bib34 article-title: Brain–machine interfaces from motor to mood publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0488-y – volume: 2019 year: 2019 ident: jnead8839bib133 article-title: A lightgbm-based EEG analysis method for driver mental states classification publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/3761203 – volume: 34 start-page: 289 year: 2011 ident: jnead8839bib27 article-title: Deep brain stimulation for psychiatric disorders publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-061010-113638 – volume: 18 year: 2021 ident: jnead8839bib75 article-title: Predicting task performance from biomarkers of mental fatigue in global brain activity publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abc529 – volume: 35 start-page: S101 year: 2013 ident: jnead8839bib20 article-title: Animal models of anxiety disorders and stress publication-title: Braz. J. Psychiatry doi: 10.1590/1516-4446-2013-1139 – volume: 79 start-page: e82 year: 2016 ident: jnead8839bib25 article-title: Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.09.003 – volume: 175 start-page: 1688 year: 2018 ident: jnead8839bib110 article-title: An amygdala-hippocampus subnetwork that encodes variation in human mood publication-title: Cell doi: 10.1016/j.cell.2018.10.005 – volume: 19 year: 2022 ident: jnead8839bib114 article-title: Fast and accurate decoding of finger movements from ECoG through riemannian features and modern machine learning techniques publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac4ed1 – start-page: pp 1259 year: 2020 ident: jnead8839bib76 article-title: Mental fatigue prediction from multi-channel ecog signal – volume: 14 year: 2020 ident: jnead8839bib116 article-title: Case report of dual-site neurostimulation and chronic recording of cortico-striatal circuitry in a patient with treatment refractory obsessive compulsive disorder publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2020.569973 – volume: 23 start-page: 155 year: 2000 ident: jnead8839bib5 article-title: Emotion circuits in the brain publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.23.1.155 – volume: 24 start-page: 1583 year: 2019 ident: jnead8839bib119 article-title: Deep neural networks in psychiatry publication-title: Mol. Psychiatry doi: 10.1038/s41380-019-0365-9 – start-page: 67 year: 2016 ident: jnead8839bib95 article-title: Local field potential analysis for closed-loop neuromodulation – volume: 8 start-page: 112 year: 2014 ident: jnead8839bib13 article-title: Distributed circuits underlying anxiety publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2014.00112 – volume: 45 start-page: 5 year: 2001 ident: jnead8839bib123 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 1998 ident: jnead8839bib3 – volume: 6 year: 2011 ident: jnead8839bib62 article-title: Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction publication-title: PLoS One doi: 10.1371/journal.pone.0021714 – year: 2023 ident: jnead8839bib77 article-title: Closed-loop neurostimulation for biomarker-driven, personalized treatment of major depressive disorder publication-title: J. Vis. Exp. doi: 10.3791/65177 – volume: 372 year: 2017 ident: jnead8839bib19 article-title: Freeze for action: neurobiological mechanisms in animal and human freezing publication-title: Phil. Trans. R. Soci. B doi: 10.1098/rstb.2016.0206 – volume: 24 start-page: 1185 year: 2014 ident: jnead8839bib109 article-title: Emotion recognition based on the sample entropy of eeg publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-130919 – volume: 88 start-page: 219 year: 2003 ident: jnead8839bib42 article-title: Robustness of neuroprosthetic decoding algorithms publication-title: Biol. Cybern. doi: 10.1007/s00422-002-0374-6 – volume: 40 start-page: 177 year: 2003 ident: jnead8839bib44 article-title: Dynamics of population code for working memory in the prefrontal cortex publication-title: Neuron doi: 10.1016/S0896-6273(03)00597-X – volume: 9 start-page: 55 year: 2015 ident: jnead8839bib16 article-title: The ecology of human fear: survival optimization and the nervous system publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00055 – start-page: 111 year: 2011 ident: jnead8839bib84 article-title: Fear conditioning in rodents and humans publication-title: Animal Mod. Behav. Anal. doi: 10.1007/978-1-60761-883-6_5 – volume: 60 start-page: 1186 year: 2012 ident: jnead8839bib53 article-title: fmri pattern recognition in obsessive–compulsive disorder publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.064 – volume: 126 start-page: 237 year: 2015 ident: jnead8839bib99 article-title: Epileptic seizure prediction using relative spectral power features publication-title: Clin. Neurophys. doi: 10.1016/j.clinph.2014.05.022 – volume: 84 start-page: 665 year: 2014 ident: jnead8839bib41 article-title: Combining decoder design and neural adaptation in brain-machine interfaces publication-title: Neuron doi: 10.1016/j.neuron.2014.08.038 – volume: 26 start-page: 3615 year: 2006 ident: jnead8839bib52 article-title: Movement intention is better predicted than attention in the posterior parietal cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3468-05.2006 – volume: 41 start-page: 5399 year: 2021 ident: jnead8839bib86 article-title: Shared dorsal periaqueductal gray activation patterns during exposure to innate and conditioned threats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2450-20.2021 – volume: 20 start-page: 273 year: 1995 ident: jnead8839bib122 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – start-page: pp 1 year: 2019 ident: jnead8839bib141 article-title: Cost-efficient classification for neurological disease detection – volume: 1 start-page: 126 year: 2014 ident: jnead8839bib33 article-title: Affective brain-computer interfaces as enabling technology for responsive psychiatric stimulation publication-title: Brain-Comput. Interfaces doi: 10.1080/2326263X.2014.912885 – volume: 15 start-page: 41 year: 2023 ident: jnead8839bib35 article-title: Next-generation closed-loop neural interfaces: circuit and AI-driven innovations publication-title: IEEE Solid-State Circuits Mag. doi: 10.1109/MSSC.2023.3309782 – start-page: p 30 year: 2017 ident: jnead8839bib128 article-title: A unified approach to interpreting model predictions – volume: 310 start-page: 863 year: 2005 ident: jnead8839bib48 article-title: Fast readout of object identity from macaque inferior temporal cortex publication-title: Science doi: 10.1126/science.1117593 – volume: 15 start-page: 877 year: 2021 ident: jnead8839bib39 article-title: Closed-loop neural prostheses with on-chip intelligence: A review and a low-latency machine learning model for brain state detection publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2021.3112756 – volume: 17 start-page: 106 year: 2014 ident: jnead8839bib60 article-title: Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety publication-title: Nat. Neurosci. doi: 10.1038/nn.3582 – volume: 11 start-page: 240 year: 2001 ident: jnead8839bib54 article-title: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders publication-title: Curr. opin. Neurobiol. doi: 10.1016/S0959-4388(00)00203-8 – volume: 16 year: 2019 ident: jnead8839bib70 article-title: Decoding task engagement from distributed network electrophysiology in humans publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab2c58 – start-page: pp 1 year: 2018 ident: jnead8839bib143 article-title: Resting tremor detection in parkinson’s disease with machine learning and kalman filtering – volume: 90 start-page: 1353 year: 2019 ident: jnead8839bib23 article-title: The translational neural circuitry of anxiety publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp-2019-321400 – start-page: p 30 year: 2017 ident: jnead8839bib121 article-title: Lightgbm: a highly efficient gradient boosting decision tree – volume: 175 start-page: 126 year: 2019 ident: jnead8839bib67 article-title: The roles of supervised machine learning in systems neuroscience publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2019.01.008 – volume: 63 start-page: 497 year: 2009 ident: jnead8839bib47 article-title: Hippocampal replay of extended experience publication-title: Neuron doi: 10.1016/j.neuron.2009.07.027 – volume: 43 start-page: 8079 year: 2023 ident: jnead8839bib85 article-title: Pavlovian fear conditioning is more than you think it is publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0256-23.2023 – start-page: pp 451 year: 2021 ident: jnead8839bib79 article-title: Decoding human cognitive control using functional connectivity of local field potentials – start-page: pp 4447 year: 2014 ident: jnead8839bib101 article-title: Robust and low complexity algorithms for seizure detection – volume: 6 start-page: 21 year: 2023 ident: jnead8839bib31 article-title: A 16-channel low-power neural connectivity extraction and phase-locked deep brain stimulation soc publication-title: IEEE Solid-State Circuits Lett. doi: 10.1109/LSSC.2023.3238797 – volume: 12 year: 2015 ident: jnead8839bib96 article-title: A high performing brain–machine interface driven by low-frequency local field potentials alone and together with spikes publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/036009 – start-page: pp 01 year: 2022 ident: jnead8839bib32 article-title: A 16-channel 60 µw neural synchrony processor for multi-mode phase-locked neurostimulation – volume: 485 start-page: 368 year: 2012 ident: jnead8839bib43 article-title: Restoration of grasp following paralysis through brain-controlled stimulation of muscles publication-title: Nature doi: 10.1038/nature10987 – start-page: pp 1317 year: 2023 ident: jnead8839bib40 article-title: Brain-machine interfaces for closed-loop electrical brain stimulation in neuropsychiatric disorders – volume: 379 start-page: 1045 year: 2012 ident: jnead8839bib56 article-title: Major depressive disorder: new clinical, neurobiological and treatment perspectives publication-title: Lancet doi: 10.1016/S0140-6736(11)60602-8 – volume: 25 start-page: 761 year: 2001 ident: jnead8839bib81 article-title: Human defensive behaviors to threat scenarios show parallels to fear-and anxiety-related defense patterns of non-human mammals publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(01)00056-2 – volume: 94 start-page: 731 year: 2017 ident: jnead8839bib83 article-title: Synaptic plasticity, engrams and network oscillations in amygdala circuits for storage and retrieval of emotional memories publication-title: Neuron doi: 10.1016/j.neuron.2017.03.022 – volume: 57 start-page: 3243 year: 2022 ident: jnead8839bib105 article-title: Neuraltree: A 256-channel 0.227-µj/class versatile neural activity classification and closed-loop neuromodulation soc publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2022.3204508 – volume: 79 start-page: 1017 year: 1998 ident: jnead8839bib46 article-title: Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells publication-title: J. Neurophysiol. doi: 10.1152/jn.1998.79.2.1017 – volume: 131 start-page: 274 year: 2020 ident: jnead8839bib104 article-title: Improved detection of parkinsonian resting tremor with feature engineering and kalman filtering publication-title: Clin. Neurophys. doi: 10.1016/j.clinph.2019.09.021 – volume: 83 start-page: 895 year: 2018 ident: jnead8839bib22 article-title: Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes and future challenges in improving translation publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.11.019 – volume: 125 start-page: 1985 year: 2014 ident: jnead8839bib102 article-title: Line length as a robust method to detect high-activity events: automated burst detection in premature EEG recordings publication-title: Clin. Neurophys. doi: 10.1016/j.clinph.2014.02.015 – start-page: pp 6062 year: 2021 ident: jnead8839bib71 article-title: Spectral features based decoding of task engagement: The role of theta and high gamma bands in cognitive control – volume: 78 start-page: 298 year: 2015 ident: jnead8839bib80 article-title: Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2015.03.017 – volume: 83 start-page: 919 year: 2014 ident: jnead8839bib61 article-title: Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala publication-title: Neuron doi: 10.1016/j.neuron.2014.07.026 – volume: 11 year: 2014 ident: jnead8839bib63 article-title: Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/3/036009 – volume: 35 start-page: 169 year: 2010 ident: jnead8839bib7 article-title: The neurocircuitry of fear, stress and anxiety disorders publication-title: Neuropsychopharmacology doi: 10.1038/npp.2009.83 – volume: 57 start-page: 145 year: 2004 ident: jnead8839bib136 article-title: Learning to decode cognitive states from brain images publication-title: Mach. Learn. doi: 10.1023/B:MACH.0000035475.85309.1b – volume: 9 start-page: 1735 year: 1997 ident: jnead8839bib124 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 19 start-page: 973 year: 2016 ident: jnead8839bib49 article-title: Decoding subjective decisions from orbitofrontal cortex publication-title: Nat. Neurosci. doi: 10.1038/nn.4320 – volume: 173 start-page: 166 year: 2018 ident: jnead8839bib74 article-title: Brain-wide electrical spatiotemporal dynamics encode depression vulnerability publication-title: Cell doi: 10.1016/j.cell.2018.02.012 – volume: 50 start-page: 659 year: 2012 ident: jnead8839bib94 article-title: Optimal features for online seizure detection publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-0904-x – volume: 6 year: 2017 ident: jnead8839bib45 article-title: Sequential sensory and decision processing in posterior parietal cortex publication-title: eLife doi: 10.7554/eLife.23743 – volume: 28 start-page: 2721 year: 2020 ident: jnead8839bib91 article-title: Paired electrical pulse trains for controlling connectivity in emotion-related brain circuitry publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2020.3030714 – volume: 287 start-page: 461 year: 2017 ident: jnead8839bib30 article-title: Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2016.07.021 – volume: 5 start-page: 8 year: 2015 ident: jnead8839bib82 article-title: Neuroethological studies of fear, anxiety and risky decision-making in rodents and humans publication-title: Curr. Opin. Behav. Sci. doi: 10.1016/j.cobeha.2015.06.005 – volume: 72 start-page: 95 year: 2021 ident: jnead8839bib36 article-title: Neural interface systems with on-device computing: Machine learning and neuromorphic architectures publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2021.10.012 – start-page: pp 1 year: 2020 ident: jnead8839bib144 article-title: Closed-loop neural interfaces with embedded machine learning – volume: 38 start-page: 439 year: 2020 ident: jnead8839bib78 article-title: An electroencephalographic signature predicts antidepressant response in major depression publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0397-3 – volume: 46 start-page: 20 year: 2021 ident: jnead8839bib66 article-title: Modeling brain, symptom and behavior in the winds of change publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-00805-6 – volume: 16 start-page: 317 year: 2015 ident: jnead8839bib12 article-title: Neuronal circuits for fear and anxiety publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3945 – volume: 44 start-page: 1241 year: 2010 ident: jnead8839bib26 article-title: Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model publication-title: J. Psychiatr. Res. doi: 10.1016/j.jpsychires.2010.04.022 – volume: 5 start-page: 68 year: 2008 ident: jnead8839bib146 article-title: Responsive cortical stimulation for the treatment of epilepsy publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2007.10.069 – volume: 19 start-page: 535 year: 2018 ident: jnead8839bib11 article-title: Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-018-0039-7 – volume: 11 start-page: 288 year: 2007 ident: jnead8839bib108 article-title: Approximate entropy-based epileptic eeg detection using artificial neural networks publication-title: IEEE Trans. Inf. Technolo. Biomed. doi: 10.1109/TITB.2006.884369 – volume: 6 start-page: 823 year: 2022 ident: jnead8839bib73 article-title: Decoding naturalistic affective behaviour from spectro-spatial features in multiday human IEEG publication-title: Nat. Human Behav. doi: 10.1038/s41562-022-01310-0 – volume: 141 start-page: 2619 year: 2018 ident: jnead8839bib120 article-title: Epilepsyecosystem ORG: CROWD-sourcing reproducible seizure prediction with long-term human intracranial EEG publication-title: Brain doi: 10.1093/brain/awy210 – volume: 7 start-page: 23 year: 2015 ident: jnead8839bib103 article-title: Eeg based emotion recognition from human brain using hjorth parameters and svm publication-title: Int. J. Bio-Sci. Bio-Technol. doi: 10.14257/ijbsbt.2015.7.3.03 – volume: 8 start-page: 693 year: 2018 ident: jnead8839bib97 article-title: Energy- efficient classification for resource-constrained biomedical applications publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2018.2844733 – volume: 65 start-page: 193 year: 2003 ident: jnead8839bib55 article-title: Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment publication-title: Br. Med. Bull. doi: 10.1093/bmb/65.1.193 – volume: 7 start-page: 576 year: 2023 ident: jnead8839bib69 article-title: Closed-loop enhancement and neural decoding of cognitive control in humans publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-021-00804-y – volume: 18 start-page: 5547 year: 2021 ident: jnead8839bib127 article-title: Eegwavenet: Multiscale cnn-based spatiotemporal feature extraction for EEG seizure detection publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3133307 – volume: 622 start-page: 1 year: 2023 ident: jnead8839bib72 article-title: Cingulate dynamics track depression recovery with deep brain stimulation publication-title: Nature doi: 10.1038/s41586-023-06541-3 – volume: 34 start-page: 4567 year: 2022 ident: jnead8839bib130 article-title: An adaptive intelligent diagnostic system to predict early stage of parkinson’s disease using two-stage dimension reduction with genetically optimized lightgbm algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06612-4 – volume: 2 start-page: fcaa036 year: 2020 ident: jnead8839bib107 article-title: Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy publication-title: Brain Commun. doi: 10.1093/braincomms/fcaa036 – start-page: pp 2063 year: 2019 ident: jnead8839bib142 article-title: Enhanced classification of individual finger movements with ecog – volume: 595 start-page: 690 year: 2021 ident: jnead8839bib59 article-title: Dynamical prefrontal population coding during defensive behaviours publication-title: Nature doi: 10.1038/s41586-021-03726-6 – volume: 521 start-page: 436 year: 2015 ident: jnead8839bib68 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 45 start-page: 180 year: 1998 ident: jnead8839bib106 article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.661266 – volume: 23 start-page: R79 year: 2013 ident: jnead8839bib1 article-title: The biology of fear publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.11.055 – volume: 14 start-page: 692 year: 2020 ident: jnead8839bib98 article-title: Resot: resource-efficient oblique trees for neural signal classification publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2020.3004544 – volume: 17 start-page: 1784 year: 2014 ident: jnead8839bib51 article-title: A category-free neural population supports evolving demands during decision-making publication-title: Nat. Neurosci. doi: 10.1038/nn.3865 – volume: 71 year: 2022 ident: jnead8839bib134 article-title: Motor imagery based brain-computer interface: improving the EEG classification using delta rhythm and lightgbm algorithm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103102 – volume: 517 start-page: 284 year: 2015 ident: jnead8839bib14 article-title: From circuits to behaviour in the amygdala publication-title: Nature doi: 10.1038/nature14188 – volume: 21 start-page: 1272 year: 2016 ident: jnead8839bib28 article-title: Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder publication-title: Molecular Psychiatry doi: 10.1038/mp.2015.124 – volume: 36 start-page: 954 year: 2018 ident: jnead8839bib38 article-title: Mood variations decoded from multi-site intracranial human brain activity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4200 – volume: 8 start-page: 94 year: 2014 ident: jnead8839bib88 article-title: Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2014.00094 – year: 2004 ident: jnead8839bib2 – volume: 54 year: 2022 ident: jnead8839bib117 article-title: Identifying uncertainty states during wayfinding in indoor environments: an EEG classification study publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2022.101718 – volume: 11 start-page: 487 year: 2017 ident: jnead8839bib113 article-title: Analysis of functional brain connections for positive–negative emotions using phase locking value publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-017-9447-z – start-page: pp 266 year: 2018 ident: jnead8839bib131 article-title: EEG based participant independent emotion classification using gradient boosting machines – volume: 17 start-page: 373 year: 2023 ident: jnead8839bib129 article-title: The lightgbm-based classification algorithm for chinese characters speech imagery BCI system publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-022-09819-w – volume: 5 year: 2016 ident: jnead8839bib50 article-title: Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex publication-title: eLife doi: 10.7554/eLife.14316 – year: 2024 ident: jnead8839bib140 article-title: Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state publication-title: Neuron doi: 10.1016/j.neuron.2023.12.017 |
SSID | ssj0031790 |
Score | 2.403537 |
Snippet | Objective.
Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals... Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in... Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals... |
SourceID | pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 56041 |
SubjectTerms | defensive behavior machine learning neural decoder neuro-marker psychiatric brain-machine interfaces |
Title | Neural decoding and feature selection methods for closed-loop control of avoidance behavior |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad8839 https://www.ncbi.nlm.nih.gov/pubmed/39419091 https://www.proquest.com/docview/3117993389 https://pubmed.ncbi.nlm.nih.gov/PMC11523571 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cvXgR364vIqjgodo2fUzxtIiyCj4OioKH0rxQ0Haxq-C_d9J0F1dEpJfSDk2YSTLfNDNfAHYzkSZpUkhPCuRepChmRZToRQJTHdAVoq1GvrxK-nfRxUP8MAXH41qYatAu_Yd064iCnQrbhDg8IgwdeISEw6NCIfn3DsxwTNBGXtf8frQMc0s95aohrXTit3uUv31hwid1qN3f4ObPrMlvbuhsHuZa_Mh6rrcLMKXLRVjqlRQ7v36yfdZkdDa_ypfg0TJvkLCiENO6KFaUihndUHmyujkAh6zC3CHSNSP4yuRLVWvlvVTVgLVZ7KwyrPionpUdH2xU1r8Md2entyd9rz1MwZMc06GnaXIaxRNjYhP6ggyRaYmBjEkXUqowSAgIhliYUNuHhDsS4Ysi4spkgvOCr8B0WZV6DRiPeSaE9LVv0ihWSEoMaP1OY8lDGWnZhYOROvOB48zIm71uxNyqPreqz53qu7BH-s7biVP_IbczskhOE8DuahSlrt7rnDekdhRpk8yqs9C4VZ5FBHiyoAs4YbuxgCXXnnxTPj81JNuElC0TULD-zw5uwGxIeMfl-W3C9PDtXW8RXhmKbeicX99sN6PzC3q55fc |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QLyIb9dnBBU81G2bNk2Pi7qsbw-KgofQvFDQdrGr4L93knTFFRHppbTTJsw0yTfNzDcI7eQioxktZCAFI0GiwGdlTLIgESzTERwxs9nIF5e0d5uc3qf3TZ1TlwtT9Zup_wBOPVGwV2ETEMfagKGjAJBw3C4Ug_W93VdmHE2mhFJbu-GK3A2nYmLpp3xGpH2Chs0-5W9vGVmXxqHt3yDnz8jJb0tRdxbNNBgSd3yP59CYLufRQqcE__nlA-9hF9XpfpcvoAfLvgHCCtxMu0zholTYaEfniWtXBAcsg30h6RoDhMXyuaq1Cp6rqo-bSHZcGVy8V0_KfiN4mNq_iG67xzeHvaApqBBIwrJBoGGAGkWoMamJQwHGyLVkkUxBF1KqOKIABmNWmFjbi4A9qAhFkRBlckFIQZbQRFmVegVhkpJcCBnq0GRJqhgoMYI5PEsliWWiZQvtD9XJ-543g7v9bsa4VT23qude9S20C_rmzeCp_5DbHlqEwyCwOxtFqau3mhNHbAfeNsgsewt9tUryBEBPHrUQG7Hdl4Al2B69Uz49OqJtQMuWDSha_WcHt9DU9VGXn59cnq2h6Rjgjw_7W0cTg9c3vQHwZSA23Sf6CUCJ6N0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+decoding+and+feature+selection+methods+for+closed-loop+control+of+avoidance+behavior&rft.jtitle=Journal+of+neural+engineering&rft.au=Liu%2C+Jinhan&rft.au=Younk%2C+Rebecca&rft.au=M+Drahos%2C+Lauren&rft.au=S+Nagrale%2C+Sumedh&rft.date=2024-10-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=5&rft.spage=56041&rft_id=info:doi/10.1088%2F1741-2552%2Fad8839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ad8839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |