Neural decoding and feature selection methods for closed-loop control of avoidance behavior

Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the fou...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 5; pp. 56041 - 56070
Main Authors Liu, Jinhan, Younk, Rebecca, M Drahos, Lauren, S Nagrale, Sumedh, Yadav, Shreya, S Widge, Alik, Shoaran, Mahsa
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.10.2024
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ad8839

Cover

Loading…
Abstract Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring < 310 ms for training, < 0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
AbstractList Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring <310 ms for training, <0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation. &#xD.
Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring < 310 ms for training, < 0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors. Approach. We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance. Main results. Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80–150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $ < $\end{document} < 310 ms for training, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} $ < $\end{document} < 0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU. Significance. Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in obsessive-compulsive disorders. Developing algorithms to predict these behaviors from local field potentials (LFPs) could serve as the foundational technology for closed-loop control of such disorders. A significant challenge is identifying the LFP features that encode these defensive behaviors.Approach.We analyzed LFP signals from the infralimbic cortex and basolateral amygdala of rats undergoing tone-shock conditioning and extinction, standard for investigating defensive behaviors. We utilized a comprehensive set of neuro-markers across spectral, temporal, and connectivity domains, employing SHapley Additive exPlanations for feature importance evaluation within Light Gradient-Boosting Machine models. Our goal was to decode three commonly studied avoidance/defensive behaviors: freezing, bar-press suppression, and motion (accelerometry), examining the impact of different features on decoding performance.Main results.Band power and band power ratio between channels emerged as optimal features across sessions. High-gamma (80-150 Hz) power, power ratios, and inter-regional correlations were more informative than other bands that are more classically linked to defensive behaviors. Focusing on highly informative features enhanced performance. Across 4 recording sessions with 16 subjects, we achieved an average coefficient of determination of 0.5357 and 0.3476, and Pearson correlation coefficients of 0.7579 and 0.6092 for accelerometry jerk and bar press rate, respectively. Utilizing only the most informative features revealed differential encoding between accelerometry and bar press rate, with the former primarily through local spectral power and the latter via inter-regional connectivity. Our methodology demonstrated remarkably low training/inference time and memory usage, requiring<310 ms for training,<0.051 ms for inference, and 16.6 kB of memory, using a single core of AMD Ryzen Threadripper PRO 5995WX CPU.Significance.Our results demonstrate the feasibility of accurately decoding defensive behaviors with minimal latency, using LFP features from neural circuits strongly linked to these behaviors. This methodology holds promise for real-time decoding to identify physiological targets in closed-loop psychiatric neuromodulation.
Author Younk, Rebecca
Liu, Jinhan
S Nagrale, Sumedh
Yadav, Shreya
Shoaran, Mahsa
M Drahos, Lauren
S Widge, Alik
Author_xml – sequence: 1
  givenname: Jinhan
  orcidid: 0000-0002-7887-8169
  surname: Liu
  fullname: Liu, Jinhan
  organization: Neuro-X Institute, EPFL , Geneva, Switzerland
– sequence: 2
  givenname: Rebecca
  surname: Younk
  fullname: Younk, Rebecca
  organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America
– sequence: 3
  givenname: Lauren
  surname: M Drahos
  fullname: M Drahos, Lauren
  organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America
– sequence: 4
  givenname: Sumedh
  orcidid: 0000-0002-0039-9125
  surname: S Nagrale
  fullname: S Nagrale, Sumedh
  organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America
– sequence: 5
  givenname: Shreya
  orcidid: 0009-0009-8644-9223
  surname: Yadav
  fullname: Yadav, Shreya
  organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America
– sequence: 6
  givenname: Alik
  orcidid: 0000-0001-8510-341X
  surname: S Widge
  fullname: S Widge, Alik
  organization: University of Minnesota Department of Psychiatry and Behavioral Sciences, Minneapolis, MN, United States of America
– sequence: 7
  givenname: Mahsa
  orcidid: 0000-0002-6426-4799
  surname: Shoaran
  fullname: Shoaran, Mahsa
  organization: Neuro-X Institute, EPFL , Geneva, Switzerland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39419091$$D View this record in MEDLINE/PubMed
BookMark eNp1kbtPHDEQxi1EFF7pqZDLFNngx-7tukIRIg8JJQ1UFJbXHnNGPs_F3j2J_z4-HZxCQWVr5jffjL7vhBwmTEDIOWdfORuGS963vBFdJy6NGwapDsjxvnS4_y_YETkp5YkxyXvFPpIjqVqumOLH5OE3zNlE6sCiC-mRmuSoBzPNGWiBCHYKmOgKpiW6Qj1maiMWcE1EXFOLacoYKXpqNhicSRboCEuzCZjPyAdvYoFPL-8puf9-c3f9s7n98-PX9bfbxsqhnxpoReedXHjfecHGHrgCO3Db1eutdYIv-r4Vg_ECtkXOxGJko2ml82qU0shTcrXTXc_jCpyFepOJep3DyuRnjSbot50UlvoRN5rzTsiqWBU-vyhk_DtDmfQqFAsxmgQ4Fy15NU5JOaiKXvy_bL_l1dIKsB1gM5aSwe8RzvQ2Nb2NRW8j0rvU6siX3UjAtX7COadq1_v4P15EmT4
CODEN JNEOBH
Cites_doi 10.1038/s41598-019-43272-w
10.1016/j.neuron.2014.04.042
10.1176/jnp.9.3.471
10.1016/j.neuroimage.2016.02.079
10.1523/JNEUROSCI.05-07-01688.1985
10.1038/s41467-019-09557-4
10.1016/S2215-0366(15)00505-2
10.1016/j.cell.2018.09.028
10.1093/bjps/axx023
10.1038/nn.4251
10.1038/s41386-023-01643-y
10.1109/TBCAS.2015.2477264
10.1016/j.jneumeth.2022.109725
10.1101/lm.041400.115
10.1016/j.conb.2014.11.004
10.1109/TNSRE.2023.3243992
10.1038/nrn.2018.22
10.1017/S003329171200147X
10.3389/fnbeh.2022.936036
10.1016/j.neuron.2009.12.002
10.31887/DCNS.2015.17.3/bbandelow
10.1038/s41598-019-48870-2
10.1176/appi.ajp.2016.16030353
10.7554/eLife.11352
10.7554/eLife.64934
10.1038/nature04970
10.1016/j.neuron.2015.09.028
10.1038/s41386-020-0767-z
10.1016/j.neubiorev.2010.11.012
10.1038/s41591-021-01480-w
10.3389/fnbeh.2019.00045
10.1038/s41593-019-0488-y
10.1155/2019/3761203
10.1146/annurev-neuro-061010-113638
10.1088/1741-2552/abc529
10.1590/1516-4446-2013-1139
10.1016/j.biopsych.2015.09.003
10.1016/j.cell.2018.10.005
10.1088/1741-2552/ac4ed1
10.3389/fnhum.2020.569973
10.1146/annurev.neuro.23.1.155
10.1038/s41380-019-0365-9
10.3389/fnbeh.2014.00112
10.1023/A:1010933404324
10.1371/journal.pone.0021714
10.3791/65177
10.1098/rstb.2016.0206
10.3233/BME-130919
10.1007/s00422-002-0374-6
10.1016/S0896-6273(03)00597-X
10.3389/fnins.2015.00055
10.1007/978-1-60761-883-6_5
10.1016/j.neuroimage.2012.01.064
10.1016/j.clinph.2014.05.022
10.1016/j.neuron.2014.08.038
10.1523/JNEUROSCI.3468-05.2006
10.1523/JNEUROSCI.2450-20.2021
10.1007/BF00994018
10.1080/2326263X.2014.912885
10.1109/MSSC.2023.3309782
10.1126/science.1117593
10.1109/TBCAS.2021.3112756
10.1038/nn.3582
10.1016/S0959-4388(00)00203-8
10.1088/1741-2552/ab2c58
10.1136/jnnp-2019-321400
10.1016/j.pneurobio.2019.01.008
10.1016/j.neuron.2009.07.027
10.1523/JNEUROSCI.0256-23.2023
10.1109/LSSC.2023.3238797
10.1088/1741-2560/12/3/036009
10.1038/nature10987
10.1016/S0140-6736(11)60602-8
10.1016/S0149-7634(01)00056-2
10.1016/j.neuron.2017.03.022
10.1109/JSSC.2022.3204508
10.1152/jn.1998.79.2.1017
10.1016/j.clinph.2019.09.021
10.1016/j.biopsych.2017.11.019
10.1016/j.clinph.2014.02.015
10.1016/j.biopsych.2015.03.017
10.1016/j.neuron.2014.07.026
10.1088/1741-2560/11/3/036009
10.1038/npp.2009.83
10.1023/B:MACH.0000035475.85309.1b
10.1162/neco.1997.9.8.1735
10.1038/nn.4320
10.1016/j.cell.2018.02.012
10.1007/s11517-012-0904-x
10.7554/eLife.23743
10.1109/TNSRE.2020.3030714
10.1016/j.expneurol.2016.07.021
10.1016/j.cobeha.2015.06.005
10.1016/j.copbio.2021.10.012
10.1038/s41587-019-0397-3
10.1038/s41386-020-00805-6
10.1038/nrn3945
10.1016/j.jpsychires.2010.04.022
10.1016/j.nurt.2007.10.069
10.1038/s41583-018-0039-7
10.1109/TITB.2006.884369
10.1038/s41562-022-01310-0
10.1093/brain/awy210
10.14257/ijbsbt.2015.7.3.03
10.1109/JETCAS.2018.2844733
10.1093/bmb/65.1.193
10.1038/s41551-021-00804-y
10.1109/TII.2021.3133307
10.1038/s41586-023-06541-3
10.1007/s00521-021-06612-4
10.1093/braincomms/fcaa036
10.1038/s41586-021-03726-6
10.1038/nature14539
10.1109/10.661266
10.1016/j.cub.2012.11.055
10.1109/TBCAS.2020.3004544
10.1038/nn.3865
10.1016/j.bspc.2021.103102
10.1038/nature14188
10.1038/mp.2015.124
10.1038/nbt.4200
10.3389/fnbeh.2014.00094
10.1016/j.aei.2022.101718
10.1007/s11571-017-9447-z
10.1007/s11571-022-09819-w
10.7554/eLife.14316
10.1016/j.neuron.2023.12.017
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
2024 The Author(s). Published by IOP Publishing Ltd 2024
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
– notice: 2024 The Author(s). Published by IOP Publishing Ltd 2024
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1088/1741-2552/ad8839
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID PMC11523571
39419091
10_1088_1741_2552_ad8839
jnead8839
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Mental Health
  grantid: R01-MH-123634
  funderid: http://dx.doi.org/10.13039/100000025
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
CITATION
NPM
7X8
5PM
AEINN
ID FETCH-LOGICAL-c387t-e425fd36ff5f20b7e19ec81c5741ccd21677428af2e1c571026b0ba43df9b33a3
IEDL.DBID O3W
ISSN 1741-2560
1741-2552
IngestDate Thu Aug 21 18:43:55 EDT 2025
Fri Jul 11 09:00:39 EDT 2025
Mon Jul 21 06:02:18 EDT 2025
Tue Jul 01 01:48:13 EDT 2025
Wed Nov 06 05:17:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords defensive behavior
psychiatric brain-machine interfaces
machine learning
neural decoder
neuro-marker
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-e425fd36ff5f20b7e19ec81c5741ccd21677428af2e1c571026b0ba43df9b33a3
Notes JNE-107643.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors jointly supervised this work.
ORCID 0000-0001-8510-341X
0009-0009-8644-9223
0000-0002-0039-9125
0000-0002-6426-4799
0000-0002-7887-8169
OpenAccessLink https://iopscience.iop.org/article/10.1088/1741-2552/ad8839
PMID 39419091
PQID 3117993389
PQPubID 23479
PageCount 30
ParticipantIDs proquest_miscellaneous_3117993389
crossref_primary_10_1088_1741_2552_ad8839
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11523571
pubmed_primary_39419091
iop_journals_10_1088_1741_2552_ad8839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Jackson (jnead8839bib140) 2024
Flash (jnead8839bib137) 1985; 5
Yao (jnead8839bib143) 2018
Mobbs (jnead8839bib16) 2015; 9
Shin (jnead8839bib31) 2023; 6
Mayberg (jnead8839bib57) 1997; 9
Ethier (jnead8839bib43) 2012; 485
Reis (jnead8839bib87) 2021; 10
Zhu (jnead8839bib117) 2022; 54
Colom-Lapetina (jnead8839bib21) 2019; 13
Terburg (jnead8839bib24) 2018; 175
Duvarci (jnead8839bib10) 2014; 82
Zhu (jnead8839bib39) 2021; 15
Avvaru (jnead8839bib79) 2021
Shin (jnead8839bib32) 2022
Bijanzadeh (jnead8839bib73) 2022; 6
Bandarabadi (jnead8839bib101) 2014
Zhu (jnead8839bib132) 2021
McDannald (jnead8839bib85) 2023; 43
Olsen (jnead8839bib116) 2020; 14
Breiman (jnead8839bib123) 2001; 45
Dasdemir (jnead8839bib113) 2017; 11
Milad (jnead8839bib84) 2011
Xiang (jnead8839bib107) 2020; 2
Langevin (jnead8839bib26) 2010; 44
Yoo (jnead8839bib36) 2021; 72
Shanechi (jnead8839bib34) 2019; 22
LeDoux (jnead8839bib138) 2018; 19
Shoaran (jnead8839bib97) 2018; 8
Lesting (jnead8839bib62) 2011; 6
Shin (jnead8839bib7) 2010; 35
Fenster (jnead8839bib11) 2018; 19
Ibos (jnead8839bib45) 2017; 6
Srinivasan (jnead8839bib108) 2007; 11
Scangos (jnead8839bib145) 2021; 27
Luyten (jnead8839bib28) 2016; 21
Raposo (jnead8839bib51) 2014; 17
Bandelow (jnead8839bib8) 2015; 17
Kuhlmann (jnead8839bib120) 2018; 141
Robinson (jnead8839bib23) 2019; 90
Koppe (jnead8839bib118) 2021; 46
Jia (jnead8839bib135) 2023; 31
Poulos (jnead8839bib18) 2016; 23
Gruene (jnead8839bib92) 2015; 4
Stavisky (jnead8839bib96) 2015; 12
Dhar (jnead8839bib130) 2022; 34
Totty (jnead8839bib93) 2022; 16
LeDoux (jnead8839bib3) 1998
LeDoux (jnead8839bib5) 2000; 23
Durstewitz (jnead8839bib119) 2019; 24
Krizhevsky (jnead8839bib125) 2012
Bandarabadi (jnead8839bib99) 2015; 126
Adolphs (jnead8839bib1) 2013; 23
LeDoux (jnead8839bib15) 2016; 173
Mukhopadhyay (jnead8839bib106) 1998; 45
Drevets (jnead8839bib54) 2001; 11
Campos (jnead8839bib20) 2013; 35
Baeg (jnead8839bib44) 2003; 40
Yao (jnead8839bib114) 2022; 19
Pan (jnead8839bib129) 2023; 17
Weygandt (jnead8839bib53) 2012; 60
Lydon-Staley (jnead8839bib66) 2021; 46
Langevin (jnead8839bib25) 2016; 79
Adhikari (jnead8839bib13) 2014; 8
Basu (jnead8839bib69) 2023; 7
Wang (jnead8839bib63) 2014; 11
Vigo (jnead8839bib9) 2016; 3
Serruya (jnead8839bib42) 2003; 88
Likhtik (jnead8839bib60) 2014; 17
Barlow (jnead8839bib2) 2004
Roelofs (jnead8839bib19) 2017; 372
Thuwajit (jnead8839bib127) 2021; 18
Yao (jnead8839bib76) 2020
Mayberg (jnead8839bib55) 2003; 65
Rich (jnead8839bib49) 2016; 19
Glaser (jnead8839bib67) 2019; 175
Dejean (jnead8839bib80) 2015; 78
Zhu (jnead8839bib98) 2020; 14
Maling (jnead8839bib95) 2016
Jercog (jnead8839bib59) 2021; 595
Ke (jnead8839bib121) 2017
Deslauriers (jnead8839bib22) 2018; 83
Zhang (jnead8839bib100) 2015; 10
Nandi (jnead8839bib112) 2019; 9
Yao (jnead8839bib75) 2021; 18
Baxter (jnead8839bib6) 2013; 43
Zhang (jnead8839bib46) 1998; 79
Siegle (jnead8839bib90) 2015; 32
Reis (jnead8839bib86) 2021; 41
Tovote (jnead8839bib12) 2015; 16
Li (jnead8839bib88) 2014; 8
Sani (jnead8839bib40) 2023
Koolen (jnead8839bib102) 2014; 125
Munia (jnead8839bib111) 2019; 9
LeCun (jnead8839bib68) 2015; 521
Logesparan (jnead8839bib94) 2012; 50
Shoaran (jnead8839bib35) 2023; 15
Zhu (jnead8839bib141) 2019
Widge (jnead8839bib37) 2019; 10
Majid Mehmood (jnead8839bib103) 2015; 7
Kirkby (jnead8839bib110) 2018; 175
Dekleva (jnead8839bib50) 2016; 5
Hochberg (jnead8839bib58) 2006; 442
Younk (jnead8839bib89) 2022; 382
Sun (jnead8839bib146) 2008; 5
Lundberg (jnead8839bib128) 2017
Sellers (jnead8839bib77) 2023
Mobbs (jnead8839bib82) 2015; 5
Widge (jnead8839bib33) 2014; 1
Davidson (jnead8839bib47) 2009; 63
Hultman (jnead8839bib74) 2018; 173
Janak (jnead8839bib14) 2015; 517
Kupfer (jnead8839bib56) 2012; 379
Stein (jnead8839bib4) 2011; 35
He (jnead8839bib126) 2016
Widge (jnead8839bib29) 2023; 49
Hung (jnead8839bib48) 2005; 310
Jie (jnead8839bib109) 2014; 24
Caroline Blanchard (jnead8839bib81) 2001; 25
Aggarwal (jnead8839bib131) 2018
Alagapan (jnead8839bib72) 2023; 622
Bocchio (jnead8839bib83) 2017; 94
Avvaru (jnead8839bib71) 2021
Zeng (jnead8839bib133) 2019; 2019
Yao (jnead8839bib142) 2019
Widge (jnead8839bib30) 2017; 287
Shenoy (jnead8839bib41) 2014; 84
Adhikari (jnead8839bib17) 2010; 65
Provenza (jnead8839bib70) 2019; 16
Hochreiter (jnead8839bib124) 1997; 9
Zhu (jnead8839bib144) 2020
Quian Quiroga (jnead8839bib52) 2006; 26
Stujenske (jnead8839bib61) 2014; 83
Karalis (jnead8839bib64) 2016; 19
Cortes (jnead8839bib122) 1995; 20
Dunsmoor (jnead8839bib139) 2015; 88
Sani (jnead8839bib38) 2018; 36
Brendan Ritchie (jnead8839bib65) 2019; 70
Lo (jnead8839bib91) 2020; 28
Arbabshirani (jnead8839bib115) 2017; 145
Kingma (jnead8839bib147) 2014
Yao (jnead8839bib104) 2020; 131
Abenna (jnead8839bib134) 2022; 71
Mitchell (jnead8839bib136) 2004; 57
Holtzheimer (jnead8839bib27) 2011; 34
Wu (jnead8839bib78) 2020; 38
Shin (jnead8839bib105) 2022; 57
References_xml – volume: 9
  start-page: 6933
  year: 2019
  ident: jnead8839bib112
  article-title: Inferring the direction of rhythmic neural transmission via inter-regional phase-amplitude coupling (ir-PAC)
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43272-w
– volume: 82
  start-page: 966
  year: 2014
  ident: jnead8839bib10
  article-title: Amygdala microcircuits controlling learned fear
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.04.042
– volume: 9
  start-page: 471
  year: 1997
  ident: jnead8839bib57
  article-title: Limbic-cortical dysregulation: a proposed model of depression
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/jnp.9.3.471
– volume: 145
  start-page: 137
  year: 2017
  ident: jnead8839bib115
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 5
  start-page: 1688
  year: 1985
  ident: jnead8839bib137
  article-title: The coordination of arm movements: an experimentally confirmed mathematical model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– volume: 10
  start-page: 1536
  year: 2019
  ident: jnead8839bib37
  article-title: Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09557-4
– year: 2014
  ident: jnead8839bib147
  article-title: Adam: a method for stochastic optimization
– start-page: pp 770
  year: 2016
  ident: jnead8839bib126
  article-title: Deep residual learning for image recognition
– volume: 3
  start-page: 171
  year: 2016
  ident: jnead8839bib9
  article-title: Estimating the true global burden of mental illness
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(15)00505-2
– volume: 175
  start-page: 723
  year: 2018
  ident: jnead8839bib24
  article-title: The basolateral amygdala is essential for rapid escape: a human and rodent study
  publication-title: Cell
  doi: 10.1016/j.cell.2018.09.028
– volume: 70
  start-page: 581
  year: 2019
  ident: jnead8839bib65
  article-title: Decoding the brain: Neural representation and the limits of multivariate pattern analysis in cognitive neuroscience
  publication-title: Br. J. Phil. Sci.
  doi: 10.1093/bjps/axx023
– volume: 19
  start-page: 605
  year: 2016
  ident: jnead8839bib64
  article-title: 4-hz oscillations synchronize prefrontal–amygdala circuits during fear behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4251
– volume: 49
  start-page: 1
  year: 2023
  ident: jnead8839bib29
  article-title: Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics and plasticity
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-023-01643-y
– volume: 10
  start-page: 693
  year: 2015
  ident: jnead8839bib100
  article-title: Low-complexity seizure prediction from IEEG/sEEG using spectral power and ratios of spectral power
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2015.2477264
– volume: 382
  year: 2022
  ident: jnead8839bib89
  article-title: Quantifying defensive behavior and threat response through integrated headstage accelerometry
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2022.109725
– volume: 23
  start-page: 379
  year: 2016
  ident: jnead8839bib18
  article-title: Conditioning-and time-dependent increases in context fear and generalization
  publication-title: Learn. Mem.
  doi: 10.1101/lm.041400.115
– volume: 32
  start-page: 53
  year: 2015
  ident: jnead8839bib90
  article-title: Neural ensemble communities: open-source approaches to hardware for large-scale electrophysiology
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2014.11.004
– volume: 31
  start-page: 1311
  year: 2023
  ident: jnead8839bib135
  article-title: A model combining multi branch spectral-temporal cnn, efficient channel attention and lightgbm for mi-bci classification
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2023.3243992
– start-page: pp 181
  year: 2021
  ident: jnead8839bib132
  article-title: Unsupervised domain adaptation for cross-subject few-shot neurological symptom detection
– volume: 19
  start-page: 269
  year: 2018
  ident: jnead8839bib138
  article-title: Surviving threats: neural circuit and computational implications of a new taxonomy of defensive behaviour
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn.2018.22
– volume: 43
  start-page: 897
  year: 2013
  ident: jnead8839bib6
  article-title: Global prevalence of anxiety disorders: a systematic review and meta-regression
  publication-title: Psychol. Med.
  doi: 10.1017/S003329171200147X
– volume: 16
  year: 2022
  ident: jnead8839bib93
  article-title: Neural oscillations in aversively motivated behavior
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2022.936036
– volume: 65
  start-page: 257
  year: 2010
  ident: jnead8839bib17
  article-title: Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.12.002
– volume: 17
  start-page: 327
  year: 2015
  ident: jnead8839bib8
  article-title: Epidemiology of anxiety disorders in the 21st century
  publication-title: Dialog. Clin. Neurosc.
  doi: 10.31887/DCNS.2015.17.3/bbandelow
– volume: 9
  year: 2019
  ident: jnead8839bib111
  article-title: Time-frequency based phase-amplitude coupling measure for neuronal oscillations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-48870-2
– volume: 173
  start-page: 1083
  year: 2016
  ident: jnead8839bib15
  article-title: Using neuroscience to help understand fear and anxiety: a two-system framework
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2016.16030353
– volume: 4
  year: 2015
  ident: jnead8839bib92
  article-title: Sexually divergent expression of active and passive conditioned fear responses in rats
  publication-title: eLife
  doi: 10.7554/eLife.11352
– start-page: p 25
  year: 2012
  ident: jnead8839bib125
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 10
  year: 2021
  ident: jnead8839bib87
  article-title: Dorsal periaqueductal gray ensembles represent approach and avoidance states
  publication-title: eLife
  doi: 10.7554/eLife.64934
– volume: 442
  start-page: 164
  year: 2006
  ident: jnead8839bib58
  article-title: Neuronal ensemble control of prosthetic devices by a human with tetraplegia
  publication-title: Nature
  doi: 10.1038/nature04970
– volume: 88
  start-page: 47
  year: 2015
  ident: jnead8839bib139
  article-title: Rethinking extinction
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.028
– volume: 46
  start-page: 176
  year: 2021
  ident: jnead8839bib118
  article-title: Deep learning for small and big data in psychiatry
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-0767-z
– volume: 35
  start-page: 1075
  year: 2011
  ident: jnead8839bib4
  article-title: Threat detection, precautionary responses and anxiety disorders
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2010.11.012
– volume: 27
  start-page: 1696
  year: 2021
  ident: jnead8839bib145
  article-title: Closed-loop neuromodulation in an individual with treatment-resistant depression
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01480-w
– volume: 13
  start-page: 45
  year: 2019
  ident: jnead8839bib21
  article-title: Behavioral diversity across classic rodent models is sex-dependent
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2019.00045
– volume: 22
  start-page: 1554
  year: 2019
  ident: jnead8839bib34
  article-title: Brain–machine interfaces from motor to mood
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0488-y
– volume: 2019
  year: 2019
  ident: jnead8839bib133
  article-title: A lightgbm-based EEG analysis method for driver mental states classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/3761203
– volume: 34
  start-page: 289
  year: 2011
  ident: jnead8839bib27
  article-title: Deep brain stimulation for psychiatric disorders
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-061010-113638
– volume: 18
  year: 2021
  ident: jnead8839bib75
  article-title: Predicting task performance from biomarkers of mental fatigue in global brain activity
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abc529
– volume: 35
  start-page: S101
  year: 2013
  ident: jnead8839bib20
  article-title: Animal models of anxiety disorders and stress
  publication-title: Braz. J. Psychiatry
  doi: 10.1590/1516-4446-2013-1139
– volume: 79
  start-page: e82
  year: 2016
  ident: jnead8839bib25
  article-title: Deep brain stimulation of the basolateral amygdala for treatment-refractory posttraumatic stress disorder
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.09.003
– volume: 175
  start-page: 1688
  year: 2018
  ident: jnead8839bib110
  article-title: An amygdala-hippocampus subnetwork that encodes variation in human mood
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.005
– volume: 19
  year: 2022
  ident: jnead8839bib114
  article-title: Fast and accurate decoding of finger movements from ECoG through riemannian features and modern machine learning techniques
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac4ed1
– start-page: pp 1259
  year: 2020
  ident: jnead8839bib76
  article-title: Mental fatigue prediction from multi-channel ecog signal
– volume: 14
  year: 2020
  ident: jnead8839bib116
  article-title: Case report of dual-site neurostimulation and chronic recording of cortico-striatal circuitry in a patient with treatment refractory obsessive compulsive disorder
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2020.569973
– volume: 23
  start-page: 155
  year: 2000
  ident: jnead8839bib5
  article-title: Emotion circuits in the brain
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.23.1.155
– volume: 24
  start-page: 1583
  year: 2019
  ident: jnead8839bib119
  article-title: Deep neural networks in psychiatry
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0365-9
– start-page: 67
  year: 2016
  ident: jnead8839bib95
  article-title: Local field potential analysis for closed-loop neuromodulation
– volume: 8
  start-page: 112
  year: 2014
  ident: jnead8839bib13
  article-title: Distributed circuits underlying anxiety
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2014.00112
– volume: 45
  start-page: 5
  year: 2001
  ident: jnead8839bib123
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 1998
  ident: jnead8839bib3
– volume: 6
  year: 2011
  ident: jnead8839bib62
  article-title: Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0021714
– year: 2023
  ident: jnead8839bib77
  article-title: Closed-loop neurostimulation for biomarker-driven, personalized treatment of major depressive disorder
  publication-title: J. Vis. Exp.
  doi: 10.3791/65177
– volume: 372
  year: 2017
  ident: jnead8839bib19
  article-title: Freeze for action: neurobiological mechanisms in animal and human freezing
  publication-title: Phil. Trans. R. Soci. B
  doi: 10.1098/rstb.2016.0206
– volume: 24
  start-page: 1185
  year: 2014
  ident: jnead8839bib109
  article-title: Emotion recognition based on the sample entropy of eeg
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-130919
– volume: 88
  start-page: 219
  year: 2003
  ident: jnead8839bib42
  article-title: Robustness of neuroprosthetic decoding algorithms
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-002-0374-6
– volume: 40
  start-page: 177
  year: 2003
  ident: jnead8839bib44
  article-title: Dynamics of population code for working memory in the prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00597-X
– volume: 9
  start-page: 55
  year: 2015
  ident: jnead8839bib16
  article-title: The ecology of human fear: survival optimization and the nervous system
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00055
– start-page: 111
  year: 2011
  ident: jnead8839bib84
  article-title: Fear conditioning in rodents and humans
  publication-title: Animal Mod. Behav. Anal.
  doi: 10.1007/978-1-60761-883-6_5
– volume: 60
  start-page: 1186
  year: 2012
  ident: jnead8839bib53
  article-title: fmri pattern recognition in obsessive–compulsive disorder
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.064
– volume: 126
  start-page: 237
  year: 2015
  ident: jnead8839bib99
  article-title: Epileptic seizure prediction using relative spectral power features
  publication-title: Clin. Neurophys.
  doi: 10.1016/j.clinph.2014.05.022
– volume: 84
  start-page: 665
  year: 2014
  ident: jnead8839bib41
  article-title: Combining decoder design and neural adaptation in brain-machine interfaces
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.038
– volume: 26
  start-page: 3615
  year: 2006
  ident: jnead8839bib52
  article-title: Movement intention is better predicted than attention in the posterior parietal cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3468-05.2006
– volume: 41
  start-page: 5399
  year: 2021
  ident: jnead8839bib86
  article-title: Shared dorsal periaqueductal gray activation patterns during exposure to innate and conditioned threats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2450-20.2021
– volume: 20
  start-page: 273
  year: 1995
  ident: jnead8839bib122
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– start-page: pp 1
  year: 2019
  ident: jnead8839bib141
  article-title: Cost-efficient classification for neurological disease detection
– volume: 1
  start-page: 126
  year: 2014
  ident: jnead8839bib33
  article-title: Affective brain-computer interfaces as enabling technology for responsive psychiatric stimulation
  publication-title: Brain-Comput. Interfaces
  doi: 10.1080/2326263X.2014.912885
– volume: 15
  start-page: 41
  year: 2023
  ident: jnead8839bib35
  article-title: Next-generation closed-loop neural interfaces: circuit and AI-driven innovations
  publication-title: IEEE Solid-State Circuits Mag.
  doi: 10.1109/MSSC.2023.3309782
– start-page: p 30
  year: 2017
  ident: jnead8839bib128
  article-title: A unified approach to interpreting model predictions
– volume: 310
  start-page: 863
  year: 2005
  ident: jnead8839bib48
  article-title: Fast readout of object identity from macaque inferior temporal cortex
  publication-title: Science
  doi: 10.1126/science.1117593
– volume: 15
  start-page: 877
  year: 2021
  ident: jnead8839bib39
  article-title: Closed-loop neural prostheses with on-chip intelligence: A review and a low-latency machine learning model for brain state detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2021.3112756
– volume: 17
  start-page: 106
  year: 2014
  ident: jnead8839bib60
  article-title: Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3582
– volume: 11
  start-page: 240
  year: 2001
  ident: jnead8839bib54
  article-title: Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders
  publication-title: Curr. opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00203-8
– volume: 16
  year: 2019
  ident: jnead8839bib70
  article-title: Decoding task engagement from distributed network electrophysiology in humans
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab2c58
– start-page: pp 1
  year: 2018
  ident: jnead8839bib143
  article-title: Resting tremor detection in parkinson’s disease with machine learning and kalman filtering
– volume: 90
  start-page: 1353
  year: 2019
  ident: jnead8839bib23
  article-title: The translational neural circuitry of anxiety
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2019-321400
– start-page: p 30
  year: 2017
  ident: jnead8839bib121
  article-title: Lightgbm: a highly efficient gradient boosting decision tree
– volume: 175
  start-page: 126
  year: 2019
  ident: jnead8839bib67
  article-title: The roles of supervised machine learning in systems neuroscience
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2019.01.008
– volume: 63
  start-page: 497
  year: 2009
  ident: jnead8839bib47
  article-title: Hippocampal replay of extended experience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.07.027
– volume: 43
  start-page: 8079
  year: 2023
  ident: jnead8839bib85
  article-title: Pavlovian fear conditioning is more than you think it is
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0256-23.2023
– start-page: pp 451
  year: 2021
  ident: jnead8839bib79
  article-title: Decoding human cognitive control using functional connectivity of local field potentials
– start-page: pp 4447
  year: 2014
  ident: jnead8839bib101
  article-title: Robust and low complexity algorithms for seizure detection
– volume: 6
  start-page: 21
  year: 2023
  ident: jnead8839bib31
  article-title: A 16-channel low-power neural connectivity extraction and phase-locked deep brain stimulation soc
  publication-title: IEEE Solid-State Circuits Lett.
  doi: 10.1109/LSSC.2023.3238797
– volume: 12
  year: 2015
  ident: jnead8839bib96
  article-title: A high performing brain–machine interface driven by low-frequency local field potentials alone and together with spikes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/036009
– start-page: pp 01
  year: 2022
  ident: jnead8839bib32
  article-title: A 16-channel 60 µw neural synchrony processor for multi-mode phase-locked neurostimulation
– volume: 485
  start-page: 368
  year: 2012
  ident: jnead8839bib43
  article-title: Restoration of grasp following paralysis through brain-controlled stimulation of muscles
  publication-title: Nature
  doi: 10.1038/nature10987
– start-page: pp 1317
  year: 2023
  ident: jnead8839bib40
  article-title: Brain-machine interfaces for closed-loop electrical brain stimulation in neuropsychiatric disorders
– volume: 379
  start-page: 1045
  year: 2012
  ident: jnead8839bib56
  article-title: Major depressive disorder: new clinical, neurobiological and treatment perspectives
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60602-8
– volume: 25
  start-page: 761
  year: 2001
  ident: jnead8839bib81
  article-title: Human defensive behaviors to threat scenarios show parallels to fear-and anxiety-related defense patterns of non-human mammals
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/S0149-7634(01)00056-2
– volume: 94
  start-page: 731
  year: 2017
  ident: jnead8839bib83
  article-title: Synaptic plasticity, engrams and network oscillations in amygdala circuits for storage and retrieval of emotional memories
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.03.022
– volume: 57
  start-page: 3243
  year: 2022
  ident: jnead8839bib105
  article-title: Neuraltree: A 256-channel 0.227-µj/class versatile neural activity classification and closed-loop neuromodulation soc
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2022.3204508
– volume: 79
  start-page: 1017
  year: 1998
  ident: jnead8839bib46
  article-title: Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1998.79.2.1017
– volume: 131
  start-page: 274
  year: 2020
  ident: jnead8839bib104
  article-title: Improved detection of parkinsonian resting tremor with feature engineering and kalman filtering
  publication-title: Clin. Neurophys.
  doi: 10.1016/j.clinph.2019.09.021
– volume: 83
  start-page: 895
  year: 2018
  ident: jnead8839bib22
  article-title: Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes and future challenges in improving translation
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2017.11.019
– volume: 125
  start-page: 1985
  year: 2014
  ident: jnead8839bib102
  article-title: Line length as a robust method to detect high-activity events: automated burst detection in premature EEG recordings
  publication-title: Clin. Neurophys.
  doi: 10.1016/j.clinph.2014.02.015
– start-page: pp 6062
  year: 2021
  ident: jnead8839bib71
  article-title: Spectral features based decoding of task engagement: The role of theta and high gamma bands in cognitive control
– volume: 78
  start-page: 298
  year: 2015
  ident: jnead8839bib80
  article-title: Neuronal circuits for fear expression and recovery: recent advances and potential therapeutic strategies
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.03.017
– volume: 83
  start-page: 919
  year: 2014
  ident: jnead8839bib61
  article-title: Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.026
– volume: 11
  year: 2014
  ident: jnead8839bib63
  article-title: Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/3/036009
– volume: 35
  start-page: 169
  year: 2010
  ident: jnead8839bib7
  article-title: The neurocircuitry of fear, stress and anxiety disorders
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2009.83
– volume: 57
  start-page: 145
  year: 2004
  ident: jnead8839bib136
  article-title: Learning to decode cognitive states from brain images
  publication-title: Mach. Learn.
  doi: 10.1023/B:MACH.0000035475.85309.1b
– volume: 9
  start-page: 1735
  year: 1997
  ident: jnead8839bib124
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 19
  start-page: 973
  year: 2016
  ident: jnead8839bib49
  article-title: Decoding subjective decisions from orbitofrontal cortex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4320
– volume: 173
  start-page: 166
  year: 2018
  ident: jnead8839bib74
  article-title: Brain-wide electrical spatiotemporal dynamics encode depression vulnerability
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.012
– volume: 50
  start-page: 659
  year: 2012
  ident: jnead8839bib94
  article-title: Optimal features for online seizure detection
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-0904-x
– volume: 6
  year: 2017
  ident: jnead8839bib45
  article-title: Sequential sensory and decision processing in posterior parietal cortex
  publication-title: eLife
  doi: 10.7554/eLife.23743
– volume: 28
  start-page: 2721
  year: 2020
  ident: jnead8839bib91
  article-title: Paired electrical pulse trains for controlling connectivity in emotion-related brain circuitry
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2020.3030714
– volume: 287
  start-page: 461
  year: 2017
  ident: jnead8839bib30
  article-title: Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2016.07.021
– volume: 5
  start-page: 8
  year: 2015
  ident: jnead8839bib82
  article-title: Neuroethological studies of fear, anxiety and risky decision-making in rodents and humans
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2015.06.005
– volume: 72
  start-page: 95
  year: 2021
  ident: jnead8839bib36
  article-title: Neural interface systems with on-device computing: Machine learning and neuromorphic architectures
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2021.10.012
– start-page: pp 1
  year: 2020
  ident: jnead8839bib144
  article-title: Closed-loop neural interfaces with embedded machine learning
– volume: 38
  start-page: 439
  year: 2020
  ident: jnead8839bib78
  article-title: An electroencephalographic signature predicts antidepressant response in major depression
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0397-3
– volume: 46
  start-page: 20
  year: 2021
  ident: jnead8839bib66
  article-title: Modeling brain, symptom and behavior in the winds of change
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-020-00805-6
– volume: 16
  start-page: 317
  year: 2015
  ident: jnead8839bib12
  article-title: Neuronal circuits for fear and anxiety
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3945
– volume: 44
  start-page: 1241
  year: 2010
  ident: jnead8839bib26
  article-title: Deep brain stimulation of the amygdala alleviates post-traumatic stress disorder symptoms in a rat model
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2010.04.022
– volume: 5
  start-page: 68
  year: 2008
  ident: jnead8839bib146
  article-title: Responsive cortical stimulation for the treatment of epilepsy
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2007.10.069
– volume: 19
  start-page: 535
  year: 2018
  ident: jnead8839bib11
  article-title: Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0039-7
– volume: 11
  start-page: 288
  year: 2007
  ident: jnead8839bib108
  article-title: Approximate entropy-based epileptic eeg detection using artificial neural networks
  publication-title: IEEE Trans. Inf. Technolo. Biomed.
  doi: 10.1109/TITB.2006.884369
– volume: 6
  start-page: 823
  year: 2022
  ident: jnead8839bib73
  article-title: Decoding naturalistic affective behaviour from spectro-spatial features in multiday human IEEG
  publication-title: Nat. Human Behav.
  doi: 10.1038/s41562-022-01310-0
– volume: 141
  start-page: 2619
  year: 2018
  ident: jnead8839bib120
  article-title: Epilepsyecosystem ORG: CROWD-sourcing reproducible seizure prediction with long-term human intracranial EEG
  publication-title: Brain
  doi: 10.1093/brain/awy210
– volume: 7
  start-page: 23
  year: 2015
  ident: jnead8839bib103
  article-title: Eeg based emotion recognition from human brain using hjorth parameters and svm
  publication-title: Int. J. Bio-Sci. Bio-Technol.
  doi: 10.14257/ijbsbt.2015.7.3.03
– volume: 8
  start-page: 693
  year: 2018
  ident: jnead8839bib97
  article-title: Energy- efficient classification for resource-constrained biomedical applications
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2018.2844733
– volume: 65
  start-page: 193
  year: 2003
  ident: jnead8839bib55
  article-title: Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/65.1.193
– volume: 7
  start-page: 576
  year: 2023
  ident: jnead8839bib69
  article-title: Closed-loop enhancement and neural decoding of cognitive control in humans
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-021-00804-y
– volume: 18
  start-page: 5547
  year: 2021
  ident: jnead8839bib127
  article-title: Eegwavenet: Multiscale cnn-based spatiotemporal feature extraction for EEG seizure detection
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3133307
– volume: 622
  start-page: 1
  year: 2023
  ident: jnead8839bib72
  article-title: Cingulate dynamics track depression recovery with deep brain stimulation
  publication-title: Nature
  doi: 10.1038/s41586-023-06541-3
– volume: 34
  start-page: 4567
  year: 2022
  ident: jnead8839bib130
  article-title: An adaptive intelligent diagnostic system to predict early stage of parkinson’s disease using two-stage dimension reduction with genetically optimized lightgbm algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06612-4
– volume: 2
  start-page: fcaa036
  year: 2020
  ident: jnead8839bib107
  article-title: Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcaa036
– start-page: pp 2063
  year: 2019
  ident: jnead8839bib142
  article-title: Enhanced classification of individual finger movements with ecog
– volume: 595
  start-page: 690
  year: 2021
  ident: jnead8839bib59
  article-title: Dynamical prefrontal population coding during defensive behaviours
  publication-title: Nature
  doi: 10.1038/s41586-021-03726-6
– volume: 521
  start-page: 436
  year: 2015
  ident: jnead8839bib68
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 45
  start-page: 180
  year: 1998
  ident: jnead8839bib106
  article-title: A new interpretation of nonlinear energy operator and its efficacy in spike detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.661266
– volume: 23
  start-page: R79
  year: 2013
  ident: jnead8839bib1
  article-title: The biology of fear
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.11.055
– volume: 14
  start-page: 692
  year: 2020
  ident: jnead8839bib98
  article-title: Resot: resource-efficient oblique trees for neural signal classification
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2020.3004544
– volume: 17
  start-page: 1784
  year: 2014
  ident: jnead8839bib51
  article-title: A category-free neural population supports evolving demands during decision-making
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3865
– volume: 71
  year: 2022
  ident: jnead8839bib134
  article-title: Motor imagery based brain-computer interface: improving the EEG classification using delta rhythm and lightgbm algorithm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103102
– volume: 517
  start-page: 284
  year: 2015
  ident: jnead8839bib14
  article-title: From circuits to behaviour in the amygdala
  publication-title: Nature
  doi: 10.1038/nature14188
– volume: 21
  start-page: 1272
  year: 2016
  ident: jnead8839bib28
  article-title: Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder
  publication-title: Molecular Psychiatry
  doi: 10.1038/mp.2015.124
– volume: 36
  start-page: 954
  year: 2018
  ident: jnead8839bib38
  article-title: Mood variations decoded from multi-site intracranial human brain activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4200
– volume: 8
  start-page: 94
  year: 2014
  ident: jnead8839bib88
  article-title: Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression
  publication-title: Front. Behav. Neurosci.
  doi: 10.3389/fnbeh.2014.00094
– year: 2004
  ident: jnead8839bib2
– volume: 54
  year: 2022
  ident: jnead8839bib117
  article-title: Identifying uncertainty states during wayfinding in indoor environments: an EEG classification study
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101718
– volume: 11
  start-page: 487
  year: 2017
  ident: jnead8839bib113
  article-title: Analysis of functional brain connections for positive–negative emotions using phase locking value
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-017-9447-z
– start-page: pp 266
  year: 2018
  ident: jnead8839bib131
  article-title: EEG based participant independent emotion classification using gradient boosting machines
– volume: 17
  start-page: 373
  year: 2023
  ident: jnead8839bib129
  article-title: The lightgbm-based classification algorithm for chinese characters speech imagery BCI system
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-022-09819-w
– volume: 5
  year: 2016
  ident: jnead8839bib50
  article-title: Uncertainty leads to persistent effects on reach representations in dorsal premotor cortex
  publication-title: eLife
  doi: 10.7554/eLife.14316
– year: 2024
  ident: jnead8839bib140
  article-title: Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies a cross-species biomarker of emotional state
  publication-title: Neuron
  doi: 10.1016/j.neuron.2023.12.017
SSID ssj0031790
Score 2.403537
Snippet Objective. Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals...
Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals in...
Objective.Many psychiatric disorders involve excessive avoidant or defensive behavior, such as avoidance in anxiety and trauma disorders or defensive rituals...
SourceID pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 56041
SubjectTerms defensive behavior
machine learning
neural decoder
neuro-marker
psychiatric brain-machine interfaces
Title Neural decoding and feature selection methods for closed-loop control of avoidance behavior
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad8839
https://www.ncbi.nlm.nih.gov/pubmed/39419091
https://www.proquest.com/docview/3117993389
https://pubmed.ncbi.nlm.nih.gov/PMC11523571
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB5cvXgR364vIqjgodo2fUzxtIiyCj4OioKH0rxQ0Haxq-C_d9J0F1dEpJfSDk2YSTLfNDNfAHYzkSZpUkhPCuRepChmRZToRQJTHdAVoq1GvrxK-nfRxUP8MAXH41qYatAu_Yd064iCnQrbhDg8IgwdeISEw6NCIfn3DsxwTNBGXtf8frQMc0s95aohrXTit3uUv31hwid1qN3f4ObPrMlvbuhsHuZa_Mh6rrcLMKXLRVjqlRQ7v36yfdZkdDa_ypfg0TJvkLCiENO6KFaUihndUHmyujkAh6zC3CHSNSP4yuRLVWvlvVTVgLVZ7KwyrPionpUdH2xU1r8Md2entyd9rz1MwZMc06GnaXIaxRNjYhP6ggyRaYmBjEkXUqowSAgIhliYUNuHhDsS4Ysi4spkgvOCr8B0WZV6DRiPeSaE9LVv0ihWSEoMaP1OY8lDGWnZhYOROvOB48zIm71uxNyqPreqz53qu7BH-s7biVP_IbczskhOE8DuahSlrt7rnDekdhRpk8yqs9C4VZ5FBHiyoAs4YbuxgCXXnnxTPj81JNuElC0TULD-zw5uwGxIeMfl-W3C9PDtXW8RXhmKbeicX99sN6PzC3q55fc
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-QLyIb9dnBBU81G2bNk2Pi7qsbw-KgofQvFDQdrGr4L93knTFFRHppbTTJsw0yTfNzDcI7eQioxktZCAFI0GiwGdlTLIgESzTERwxs9nIF5e0d5uc3qf3TZ1TlwtT9Zup_wBOPVGwV2ETEMfagKGjAJBw3C4Ug_W93VdmHE2mhFJbu-GK3A2nYmLpp3xGpH2Chs0-5W9vGVmXxqHt3yDnz8jJb0tRdxbNNBgSd3yP59CYLufRQqcE__nlA-9hF9XpfpcvoAfLvgHCCtxMu0zholTYaEfniWtXBAcsg30h6RoDhMXyuaq1Cp6rqo-bSHZcGVy8V0_KfiN4mNq_iG67xzeHvaApqBBIwrJBoGGAGkWoMamJQwHGyLVkkUxBF1KqOKIABmNWmFjbi4A9qAhFkRBlckFIQZbQRFmVegVhkpJcCBnq0GRJqhgoMYI5PEsliWWiZQvtD9XJ-543g7v9bsa4VT23qude9S20C_rmzeCp_5DbHlqEwyCwOxtFqau3mhNHbAfeNsgsewt9tUryBEBPHrUQG7Hdl4Al2B69Uz49OqJtQMuWDSha_WcHt9DU9VGXn59cnq2h6Rjgjw_7W0cTg9c3vQHwZSA23Sf6CUCJ6N0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+decoding+and+feature+selection+methods+for+closed-loop+control+of+avoidance+behavior&rft.jtitle=Journal+of+neural+engineering&rft.au=Liu%2C+Jinhan&rft.au=Younk%2C+Rebecca&rft.au=M+Drahos%2C+Lauren&rft.au=S+Nagrale%2C+Sumedh&rft.date=2024-10-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=5&rft.spage=56041&rft_id=info:doi/10.1088%2F1741-2552%2Fad8839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ad8839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon