X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles

Structural and cation distribution studies on Ni 1− x Zn x Fe 2 O 4 (with x =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction analysis are reported. In this work the Nickel–Zinc ferrites nanoparticles are synthesized by sol–gel auto combustion using respective metal...

Full description

Saved in:
Bibliographic Details
Published inJournal of superconductivity and novel magnetism Vol. 27; no. 2; pp. 547 - 553
Main Authors Kurmude, D. V., Barkule, R. S., Raut, A. V., Shengule, D. R., Jadhav, K. M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structural and cation distribution studies on Ni 1− x Zn x Fe 2 O 4 (with x =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction analysis are reported. In this work the Nickel–Zinc ferrites nanoparticles are synthesized by sol–gel auto combustion using respective metal nitrates and citric acid as fuel for the auto combustion reaction. Formation of ferrite nanoparticles having single-phase spinel structure is evident from the obtained X-ray diffraction patterns. Lattice constant values of the Ni 1− x Zn x Fe 2 O 4 ferrite system are found to increase with increase of zinc substitution x . Broad and intense XRD peaks in the patterns indicate the nanocrystalline nature of the produced ferrite samples. Average particle size calculated from most intense Bragg’s reflection (311) using Debye–Scherrer’s formula is found to be 30 nm. The particle size is found to decrease with increase in zinc substitution  x . Observed X-ray density is found to decrease with increase in zinc substitution  x . Bulk density, porosity, and unit cell volume are also calculated from the XRD data. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data show that along with Ni 2+ ions most of the Zn 2+ ions also occupy the octahedral [B] sites, which are attributed to nanosize dimensions of the ferrite samples.
AbstractList Structural and cation distribution studies on Ni 1− x Zn x Fe 2 O 4 (with x =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction analysis are reported. In this work the Nickel–Zinc ferrites nanoparticles are synthesized by sol–gel auto combustion using respective metal nitrates and citric acid as fuel for the auto combustion reaction. Formation of ferrite nanoparticles having single-phase spinel structure is evident from the obtained X-ray diffraction patterns. Lattice constant values of the Ni 1− x Zn x Fe 2 O 4 ferrite system are found to increase with increase of zinc substitution x . Broad and intense XRD peaks in the patterns indicate the nanocrystalline nature of the produced ferrite samples. Average particle size calculated from most intense Bragg’s reflection (311) using Debye–Scherrer’s formula is found to be 30 nm. The particle size is found to decrease with increase in zinc substitution  x . Observed X-ray density is found to decrease with increase in zinc substitution  x . Bulk density, porosity, and unit cell volume are also calculated from the XRD data. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data show that along with Ni 2+ ions most of the Zn 2+ ions also occupy the octahedral [B] sites, which are attributed to nanosize dimensions of the ferrite samples.
Structural and cation distribution studies on Ni1ax Zn x Fe2O4 (with x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction analysis are reported. In this work the NickelaZinc ferrites nanoparticles are synthesized by sol-gel auto combustion using respective metal nitrates and citric acid as fuel for the auto combustion reaction. Formation of ferrite nanoparticles having single-phase spinel structure is evident from the obtained X-ray diffraction patterns. Lattice constant values of the Ni1ax Zn x Fe2O4 ferrite system are found to increase with increase of zinc substitution x. Broad and intense XRD peaks in the patterns indicate the nanocrystalline nature of the produced ferrite samples. Average particle size calculated from most intense Braggas reflection (311) using DebyeaScherreras formula is found to be 30 nm. The particle size is found to decrease with increase in zinc substitution x. Observed X-ray density is found to decrease with increase in zinc substitution x. Bulk density, porosity, and unit cell volume are also calculated from the XRD data. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data show that along with Ni2+ ions most of the Zn2+ ions also occupy the octahedral [B] sites, which are attributed to nanosize dimensions of the ferrite samples.
Author Kurmude, D. V.
Raut, A. V.
Jadhav, K. M.
Shengule, D. R.
Barkule, R. S.
Author_xml – sequence: 1
  givenname: D. V.
  surname: Kurmude
  fullname: Kurmude, D. V.
  organization: Milind College of Science
– sequence: 2
  givenname: R. S.
  surname: Barkule
  fullname: Barkule, R. S.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University
– sequence: 3
  givenname: A. V.
  surname: Raut
  fullname: Raut, A. V.
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University
– sequence: 4
  givenname: D. R.
  surname: Shengule
  fullname: Shengule, D. R.
  organization: Vivekanand Arts, Sardar Dalipsingh Commerce and Science College
– sequence: 5
  givenname: K. M.
  surname: Jadhav
  fullname: Jadhav, K. M.
  email: drjadhavkm@gmail.com
  organization: Department of Physics, Dr. Babasaheb Ambedkar Marathwada University
BookMark eNp9kMtKAzEUhoNUsK0-gLss3URzmclkltJaFYqCVRA3IZOLpE4zNcks-vZOW3Hp5lzg-w-cbwJGoQsWgEuCrwnG1U0iuC4EwoQhynCJ6AkYk7KsEKmLavQ3s_oMTFJaY1yUDPMxaN7Ri9rBuXcuKp19F6AKBs7UYZz7lKNv-sOyyr3xNkEf4IcPGq36JmWf-2wNfPL6y7ZwYWP02cInFbqtitnr1qZzcOpUm-zFb5-Ct8Xd6-wBLZ_vH2e3S6SZqDIyzjXKUUIFLRSuOWGUGs2sYDUVhuKiZpY3JbfNAGjBmeGGOceaQhQlVYJNwdXx7jZ2371NWW580rZtVbBdnyQpMWe8YhUeUHJEdexSitbJbfQbFXeSYLn3KY8-5eBT7n0OZQroMZMGNnzaKNddH8Pw0T-hH6BAelU
CitedBy_id crossref_primary_10_1016_j_jmmm_2022_169852
crossref_primary_10_1016_j_ceramint_2021_06_062
crossref_primary_10_1016_j_jallcom_2015_07_238
crossref_primary_10_1007_s10948_016_3736_3
crossref_primary_10_1016_j_ceramint_2021_02_095
crossref_primary_10_1088_1361_648X_ad266c
crossref_primary_10_1007_s10904_021_02116_9
crossref_primary_10_1016_j_jmmm_2018_05_069
crossref_primary_10_1038_s41598_019_54250_7
crossref_primary_10_1016_j_compscitech_2020_108343
crossref_primary_10_1140_epje_i2019_11917_5
crossref_primary_10_1007_s10971_022_06022_5
crossref_primary_10_1016_j_jmmm_2019_03_002
crossref_primary_10_1007_s00339_024_07547_y
crossref_primary_10_1016_j_materresbull_2015_02_056
crossref_primary_10_1016_j_jallcom_2022_166954
crossref_primary_10_1016_j_jmmm_2014_12_040
crossref_primary_10_1007_s11664_018_6297_3
crossref_primary_10_1016_j_solidstatesciences_2019_05_007
crossref_primary_10_1557_s43578_023_01119_1
crossref_primary_10_1016_j_jssc_2021_122279
crossref_primary_10_1039_D3MA00105A
crossref_primary_10_1080_14328917_2023_2181488
crossref_primary_10_1088_1742_6596_1907_1_012065
crossref_primary_10_1007_s00339_022_06163_y
crossref_primary_10_1016_j_ensm_2023_102769
crossref_primary_10_1007_s10854_016_5347_y
crossref_primary_10_1016_j_jmmm_2024_172184
crossref_primary_10_1007_s10948_017_4081_x
crossref_primary_10_1016_j_jallcom_2021_162966
crossref_primary_10_1007_s10948_014_2535_y
crossref_primary_10_1016_j_inoche_2023_111717
crossref_primary_10_1016_j_jmmm_2018_02_072
crossref_primary_10_1016_j_jallcom_2014_08_241
crossref_primary_10_1007_s00339_024_07366_1
crossref_primary_10_1016_j_jelechem_2023_117206
crossref_primary_10_1007_s10854_022_09266_7
crossref_primary_10_1080_01932691_2023_2263548
crossref_primary_10_1007_s10971_023_06121_x
crossref_primary_10_1016_j_est_2022_105320
crossref_primary_10_1088_1402_4896_acccb7
crossref_primary_10_1039_C9CE01324E
crossref_primary_10_1016_j_mseb_2023_116554
crossref_primary_10_3390_pharmaceutics13122148
crossref_primary_10_1155_2016_4709687
crossref_primary_10_4028_www_scientific_net_MSF_970_17
crossref_primary_10_1007_s10854_015_3750_4
crossref_primary_10_1016_j_jmmm_2020_166710
crossref_primary_10_1016_j_mseb_2018_12_003
crossref_primary_10_1063_5_0102965
crossref_primary_10_1002_celc_202400181
crossref_primary_10_1016_j_ceramint_2021_09_136
crossref_primary_10_1007_s10854_019_01303_2
crossref_primary_10_1007_s10854_022_08870_x
crossref_primary_10_1016_j_ceramint_2014_03_183
crossref_primary_10_1016_j_ceramint_2022_06_338
crossref_primary_10_1016_j_matchemphys_2022_127165
crossref_primary_10_1016_j_physb_2016_09_006
crossref_primary_10_1039_D2NA00200K
crossref_primary_10_4236_ojapps_2017_710040
crossref_primary_10_1016_j_ceramint_2016_12_029
crossref_primary_10_1080_16583655_2022_2059953
crossref_primary_10_1007_s10854_021_05869_8
crossref_primary_10_1016_j_ceramint_2016_12_111
crossref_primary_10_1016_j_ceramint_2019_06_020
crossref_primary_10_1016_j_solidstatesciences_2019_106052
crossref_primary_10_1007_s00339_022_05977_0
crossref_primary_10_1007_s10948_015_3162_y
crossref_primary_10_3103_S1061386215020053
crossref_primary_10_1016_j_ceramint_2019_07_259
crossref_primary_10_1007_s10854_022_08469_2
crossref_primary_10_1016_j_catcom_2023_106719
crossref_primary_10_1007_s10854_020_03554_w
crossref_primary_10_1016_j_surfin_2023_103130
crossref_primary_10_1016_j_inoche_2024_112647
crossref_primary_10_1016_j_partic_2015_10_004
Cites_doi 10.1093/oso/9780198555773.001.0001
10.1111/j.1151-2916.1999.tb02241.x
10.1023/A:1004866119183
10.1007/BF02707350
10.1107/S0567739476001551
10.1109/20.489779
10.1023/B:JMSC.0000011497.30763.bc
10.1007/s10853-006-0929-3
10.1016/j.mseb.2004.12.018
10.1063/1.1699501
10.1016/j.jmmm.2011.10.017
10.4314/ijest.v2i8.63832
10.1016/j.jmmm.2009.05.074
10.1103/PhysRevB.8.29
10.1007/s10853-005-6099-x
10.1143/JPSJ.16.1881
10.1016/0022-1902(73)80531-7
10.1023/A:1013790129045
10.1016/j.matchemphys.2005.12.012
10.1016/S1452-3981(23)19503-4
10.1039/DT9850002155
10.1016/S0921-4526(00)00286-6
10.1016/0022-1902(68)80475-0
10.1111/j.1151-2916.1981.tb09550.x
10.1021/ef070064w
10.1107/S0021889869006558
10.1111/j.1551-2916.2005.00098.x
10.1023/A:1014505620254
10.1016/0022-4596(74)90108-X
10.1016/0041-0101(83)90286-6
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Copyright_xml – notice: Springer Science+Business Media New York 2013
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1007/s10948-013-2305-2
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1557-1947
EndPage 553
ExternalDocumentID 10_1007_s10948_013_2305_2
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
2.D
203
29L
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADJSZ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYGD
AFEXP
AFGCZ
AFGFF
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L8X
LAK
LLZTM
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P9T
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WIP
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~A9
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7U5
8FD
L7M
ID FETCH-LOGICAL-c387t-dffbaf212824a0961322dc3e83928d20493e6b56eb824c863d6d3ff3b48452a83
IEDL.DBID AGYKE
ISSN 1557-1939
IngestDate Fri Aug 16 08:01:51 EDT 2024
Thu Sep 12 17:29:23 EDT 2024
Sat Dec 16 12:04:44 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Ni–Zn nanoferrites
Cation distribution
Structural and physical properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-dffbaf212824a0961322dc3e83928d20493e6b56eb824c863d6d3ff3b48452a83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1506367370
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1506367370
crossref_primary_10_1007_s10948_013_2305_2
springer_journals_10_1007_s10948_013_2305_2
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Incorporating Novel Magnetism
PublicationTitle Journal of superconductivity and novel magnetism
PublicationTitleAbbrev J Supercond Nov Magn
PublicationYear 2014
Publisher Springer US
Publisher_xml – name: Springer US
References Kumar, P., Mishra, P., Sahu, S.K.: Int. J. Sci. Eng. Res. 2(8) (2011)
Sattar, A.A.: J. Mater. Sci. 39 (2004)
WhinferyC.G.EckortD.W.TauberA.J. Am. Chem. Soc.19608211
ChengS.L.LinJ.G.KuoK.M.ChernG.J. Appl. Phys.2012111
Hankare, P.P., Patil, R.P., Sankpal, U.B., Jadhav, S.D., Mulla, I.S., Jadhav, K.M., Chougule, B.K.: J. Magn. Magn. Mater. 321(19) (2009)
Verma, A., Dube, D.C.: J. Am. Ceram. Soc. 88(3) (2005)
Porta, P., Stone, F.S., Turner, R.G.: J. Solid State Chem. 11 (1974)
Hamdeh, H.H., Ho, J.C., Oliver, S.A., Willey, R.J., Kramer, J., Chen, Y.Y., Lin, S.H., Yao, Y.D., Daturi, M., Busca, G.: IEEE Trans. Magn. 31(6) (1995)
YoungR.A.The Rietveld Method1993OxfordOxford University Press
WeiQ.M.LiJ.B.ChenY.J.J. Mater. Sci.2001362110.1023/A:1012473207424
RaghavenderA.T.KulkarniR.G.JadhavK.M.Chin. J. Phys.2010484
Dung, N.K., Tuan, N.H.: VNU J. Sci. Math.-Phys. 25 (2009)
Sawant, S.R., Patil, R.N.: Ind. J. Pure Appl. Phys. 21 (1983)
Haque, M.M., Huq, M., Hakim, M.A.: Ind. J. Phys. 78A(3) (2004)
NikumbhA.K.NagawadeA.V.GugaleG.S.ChaskarM.G.BakareP.P.J. Mater. Sci.200237310.1023/A:1013790129045
TangG.D.JiD.H.YaoY.X.LiuS.P.LiZ.Z.QiW.H.HanQ.J.HouX.HouD.L.Appl. Phys. Lett.20119810.1063/1.35537742011ApPhL..98g2511T
Attia, S.M.: Egyp. J. Solids 29(2) (2006)
Pandit, A.A., Shitre, A.R., Shengule, D.R., Jadhav, K.M.: J. Mater. Sci. 40(2) (2005)
Deka, S., Joy, P.A.: Mater. Chem. Phys. 100(1) (2006)
Kadam, G.B., Shelke, S.B., Jadhav, K.M.: J. Elect. Electron. Eng. 1(1) (2010)
Leung, L.K., Evans, B.J., Morrish, A.H.: Phys. Rev. B 8(29) (1973)
CullityB.D.Elements of X-Ray Diffraction20003LondonChapman & Hall301304
SmitJ.WijnH.P.J.Ferrites1959New YorkWiley233
Furuhashi, H., Inagaki, M., Naka, S.: J. Inorg. Chem. 35 (1973)
Singh, R.K., Upadhyay, Ch., Layek, S., Yadav, A.: Int. J. Eng. Sci. Technol. 2(8) (2010)
Shannon, R.D.: Acta Crystallogr. A, Found Crystallogr. 32 (1976)
Gonzalez, J.M.R., Arean, C.O.: J. Chem. Soc. 2155 (1985)
SickafusK.E.WillsJ.M.GrimesN.W.J. Am. Ceram. Soc.19998212
Sathishkumar, G., Venkataraju, Ch., Sivakumar, K.: Mater. Sci. Appl. 1 (2010)
Ohinishi, H., Teranishi, T.: J. Phys. Soc. Jpn. 16 (1961)
Battle, J., Clark, T., Evans, B.J.: J. Phys., IV 7 (1997)
Kadam, G.B., Shelke, S.B., Jadhav, K.M.: J. Electr. Electron. Eng. 1(1) (2010)
Deraz, N.M., Alarifi, A.: Int. J. Electrochem. Sci. 7 (2012)
Zhang, R., Huang, J., Zhao, J., Sun, Zh., Wang, Y.: Energy Fuels 21 (2007)
Pandit, A.A., More, S.S., Dorik, R.G., Jadhav, K.M.: Bull. Mater. Sci. 26(5) (2003)
WuC.C.MasonT.O.J. Am. Ceram. Soc.198164910.1111/j.1151-2916.1981.tb10317.x
SinghV.K.KhatriN.K.LokanathanS.Pramana1981164
SebastianM.T.Dielectric Materials for Wireless Communication20081AmsterdamElsevier
Birajdar, D.S., Devatwal, U.N., Jadhav, K.M.: J. Mater. Sci. 37 (2002)
Rietveld, H.: J. Appl. Crystallogr. 2 (1969)
Modi, K.B., Rangolia, M.K., Chhantbar, M.C., Joshi, H.H.: J. Mater. Sci. 41(22) (2006)
NavrotskyA.KleppaO.J.J. Inorg. Nucl. Chem.19683047910.1016/0022-1902(68)80475-0
Sharifi, I., Shokrollahi, H.: J. Magn. Magn. Mater. 324 (2012)
Shinde, A.B., Dhage, V.N., Jadhav, K.M.: Int. J. Eng. Adv. Technol. 2(3) (2013)
Jadhav, K.M., Kawade, V.B., Modi, R.B., Bichile, G.K., Kulkarni, R.G.: Physica B, Condens. Matter 291(3–4) (2000)
BuergerM.G.Crystal Structure Analysis1960New YorkWiley
Ghazanfar, U., Siddiqi, S.A., Abbas, G.: Mater. Sci. Eng., B 118(1–3) (2005)
NaiduV.AhmedS.K.SuganthiM.Int. J. Comput. Appl.2011242
Ateia, E.: Egypt J. Solids 29(2) (2006)
Ying, Y., Kim, J.M., Lee, Y.P., Kang, J.H.: J. Kor. Phys. Soc. 58(4) (2011)
Upadhyay, Ch., Verma, H.C.: J. Appl. Phys. 95(10) (2004)
C.G. Whinfery (2305_CR4) 1960; 82
2305_CR39
2305_CR37
2305_CR36
V.K. Singh (2305_CR8) 1981; 16
2305_CR35
2305_CR34
2305_CR33
2305_CR32
2305_CR31
2305_CR30
S.L. Cheng (2305_CR7) 2012; 111
G.D. Tang (2305_CR10) 2011; 98
B.D. Cullity (2305_CR24) 2000
C.C. Wu (2305_CR9) 1981; 64
V. Naidu (2305_CR21) 2011; 24
2305_CR29
2305_CR28
2305_CR27
K.E. Sickafus (2305_CR2) 1999; 82
2305_CR25
2305_CR23
2305_CR22
2305_CR20
A. Navrotsky (2305_CR49) 1968; 30
J. Smit (2305_CR26) 1959
Q.M. Wei (2305_CR3) 2001; 36
2305_CR6
A.T. Raghavender (2305_CR5) 2010; 48
2305_CR18
2305_CR17
2305_CR16
2305_CR15
2305_CR14
2305_CR13
2305_CR11
2305_CR51
2305_CR50
M.G. Buerger (2305_CR38) 1960
2305_CR19
A.K. Nikumbh (2305_CR1) 2002; 37
2305_CR48
2305_CR47
R.A. Young (2305_CR12) 1993
2305_CR45
M.T. Sebastian (2305_CR46) 2008
2305_CR44
2305_CR43
2305_CR42
2305_CR41
2305_CR40
References_xml – volume-title: The Rietveld Method
  year: 1993
  ident: 2305_CR12
  doi: 10.1093/oso/9780198555773.001.0001
  contributor:
    fullname: R.A. Young
– volume: 82
  start-page: 12
  year: 1999
  ident: 2305_CR2
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1999.tb02241.x
  contributor:
    fullname: K.E. Sickafus
– ident: 2305_CR17
– ident: 2305_CR27
– start-page: 301
  volume-title: Elements of X-Ray Diffraction
  year: 2000
  ident: 2305_CR24
  contributor:
    fullname: B.D. Cullity
– volume: 98
  year: 2011
  ident: 2305_CR10
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: G.D. Tang
– volume: 36
  start-page: 21
  year: 2001
  ident: 2305_CR3
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004866119183
  contributor:
    fullname: Q.M. Wei
– ident: 2305_CR33
– ident: 2305_CR41
  doi: 10.1007/BF02707350
– ident: 2305_CR36
  doi: 10.1107/S0567739476001551
– ident: 2305_CR47
  doi: 10.1109/20.489779
– volume: 16
  start-page: 4
  year: 1981
  ident: 2305_CR8
  publication-title: Pramana
  contributor:
    fullname: V.K. Singh
– ident: 2305_CR44
  doi: 10.1023/B:JMSC.0000011497.30763.bc
– ident: 2305_CR16
  doi: 10.1007/s10853-006-0929-3
– ident: 2305_CR22
– volume: 24
  issue: 2
  year: 2011
  ident: 2305_CR21
  publication-title: Int. J. Comput. Appl.
  contributor:
    fullname: V. Naidu
– ident: 2305_CR43
– volume-title: Dielectric Materials for Wireless Communication
  year: 2008
  ident: 2305_CR46
  contributor:
    fullname: M.T. Sebastian
– ident: 2305_CR31
  doi: 10.1016/j.mseb.2004.12.018
– ident: 2305_CR28
  doi: 10.1063/1.1699501
– ident: 2305_CR37
  doi: 10.1016/j.jmmm.2011.10.017
– ident: 2305_CR32
– volume-title: Crystal Structure Analysis
  year: 1960
  ident: 2305_CR38
  contributor:
    fullname: M.G. Buerger
– ident: 2305_CR51
  doi: 10.4314/ijest.v2i8.63832
– ident: 2305_CR25
  doi: 10.1016/j.jmmm.2009.05.074
– volume: 111
  year: 2012
  ident: 2305_CR7
  publication-title: J. Appl. Phys.
  contributor:
    fullname: S.L. Cheng
– ident: 2305_CR48
– ident: 2305_CR29
  doi: 10.1103/PhysRevB.8.29
– ident: 2305_CR35
  doi: 10.1007/s10853-005-6099-x
– ident: 2305_CR40
  doi: 10.1143/JPSJ.16.1881
– ident: 2305_CR14
  doi: 10.1016/0022-1902(73)80531-7
– volume: 37
  start-page: 3
  year: 2002
  ident: 2305_CR1
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1013790129045
  contributor:
    fullname: A.K. Nikumbh
– ident: 2305_CR20
  doi: 10.1016/j.matchemphys.2005.12.012
– ident: 2305_CR18
– start-page: 233
  volume-title: Ferrites
  year: 1959
  ident: 2305_CR26
  contributor:
    fullname: J. Smit
– ident: 2305_CR45
– ident: 2305_CR50
  doi: 10.1016/S1452-3981(23)19503-4
– ident: 2305_CR30
– ident: 2305_CR13
  doi: 10.1039/DT9850002155
– volume: 48
  start-page: 4
  year: 2010
  ident: 2305_CR5
  publication-title: Chin. J. Phys.
  contributor:
    fullname: A.T. Raghavender
– ident: 2305_CR15
  doi: 10.1016/S0921-4526(00)00286-6
– ident: 2305_CR34
– volume: 30
  start-page: 479
  year: 1968
  ident: 2305_CR49
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(68)80475-0
  contributor:
    fullname: A. Navrotsky
– volume: 64
  start-page: 9
  year: 1981
  ident: 2305_CR9
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1981.tb09550.x
  contributor:
    fullname: C.C. Wu
– ident: 2305_CR23
  doi: 10.1021/ef070064w
– ident: 2305_CR11
  doi: 10.1107/S0021889869006558
– ident: 2305_CR19
  doi: 10.1111/j.1551-2916.2005.00098.x
– ident: 2305_CR39
  doi: 10.1023/A:1014505620254
– ident: 2305_CR42
  doi: 10.1016/0022-4596(74)90108-X
– ident: 2305_CR6
  doi: 10.1016/0041-0101(83)90286-6
– volume: 82
  start-page: 11
  year: 1960
  ident: 2305_CR4
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: C.G. Whinfery
SSID ssj0045306
Score 2.3354182
Snippet Structural and cation distribution studies on Ni 1− x Zn x Fe 2 O 4 (with x =0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction...
Structural and cation distribution studies on Ni1ax Zn x Fe2O4 (with x=0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrite nanoparticles by using X-ray diffraction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 547
SubjectTerms Cations
Characterization and Evaluation of Materials
Condensed Matter Physics
Magnetic Materials
Magnetism
Original Paper
Physics
Physics and Astronomy
Strongly Correlated Systems
Superconductivity
Title X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles
URI https://link.springer.com/article/10.1007/s10948-013-2305-2
https://search.proquest.com/docview/1506367370
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60InjxLdZHieBJSWk3yT6ObbWKogexUL0sySaBUlnF3R701zvZh28PXpcQ2Mxkvi-ZLzMAhxGSbsQVTiPEOop4zakUkaKio7vK7yqPWXcPeXXtn4_4xViM58B7v7pIp-06I1kE6k9v3SLudFeMImsWFMPugnD1vhqw0Du7uzyt4y8XrOioiUAZUKQnUZ3L_G2Sr2j0QTG_ZUULsBmulA8As6JGodOYTNuzXLWT158VHP_xH6uwXHFP0iudZQ3mTLoOi4UGNMk2QI3pjXwhJxNrn8vnDkSmmgwK2-Hn7L05FqnUh2SSkvtJmlAXfkrNgSboW1PzQIau5GNuCIZvPJdX8rtNGA1PbwfntGrBQBMWBjnV1ippEd5Cj0vXHQb3v06YcbQq1B4eL5jxlfCNwgFJ6DPta2YtUzzkwpMh24JG-piabSDITLSXhFaE2nIeKBkwHiRdiYTD1x2pmnBUmyJ-KittxB81ld2ixbhosVu02GvCQW2sGPeDS3LI1DzOsthVTGSu-U6nCce1BeJqY2Z_z7jzr9G7sFR4eCHf3oNG_jwz-8hOctVCdxz2-9etyi1bMD_yem8369u-
link.rule.ids 315,786,790,27955,27956,41114,41556,42183,42625,52144,52267
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kInrxLdZnBE9KpN1kX0dRa7Xag1SoXkKySaAoq7jbg_56J_uwWvTgdQlhNzOZ78vOlxmAwxhJN-IKpzFiHUW85lT6saJ-S7dV0FYes-4_5G0_6N7z66E_rO5xZ7XavU5JFpH622W3mDvhFaNIm32KcXeWO4BvwOzp5UPvog7A3GdFS01EypAiP4nrZOZvk_yEownHnEqLFmjTWYJB_Z6lyOTpZJyrk-RjqoTjPz9kGRYr9klOS3dZgRmTrsJcoQJNsjVQQ3on38n5yNq38sIDkakmZ4X18HH21R6LVPpDMkrJ4yhNqAtApepAE_SuJ_NMOq7oY24IBnA8mVcCvHW471wMzrq0asJAExaFOdXWKmkR4CKPS9cfBiOATphxxCrSHh4wmAmUHxiFA5IoYDrQzFqmeMR9T0ZsAxrpS2o2gSA30V4SWT_SlvNQyZDxMGlLpByBbknVhKPaFuK1rLUhJlWV3aIJXDThFk14TTiorSVwR7g0h0zNyzgTrmYic-13Wk04ri0gqq2Z_T3j1r9G78N8d3B7I26u-r1tWCj8vRBz70AjfxubXeQqudqrfPMTI7bdLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SUbyIT6zPCJ6U0HaT3c0eS-tSX0XEQvESkk0CRdmW7vbgv3eyD6uiB6-7IYfZyXxfdr6ZQegiAtINuMJIBFhHAK8ZkX6kiN_WHRV0lEet-w_5MAwGI3Y79sfVnNOsVrvXKcmypsF1aUrz1kzb1pfCt4g5ERYlQKF9AjF41SGjc_GR161DMfNpMVwT3oQEmEpUpzV_2-I7MC3Z5o8EaYE78RbarAgj7pZfeButmHQHrRXCzSTbRWpMnuQ77k-snZc1ClimGvcKg8Pj7HOiFa4kg3iS4pdJmhAXM0qhgMbgEK_mDceuT2NuMMRcuExXmrk9NIqvn3sDUs1NIAnlYU60tUpawCTuMelGusCh1Qk1jgtx7cGdgJpA-YFRsCDhAdWBptZSxTjzPcnpPmqk09QcIAx0QnsJtz7XlrFQyZCyMOlIYAmBbkvVRJe10cSsbI8hlo2QnYUFWFg4Cwuvic5rswpwYpeZkKmZLjLh2hxSNzGn3URXtb1FdZqyv3c8_NfqM7T-2I_F_c3w7ghtFB5ayK-PUSOfL8wJsItcnRYe9AGPN8S1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-Ray+Diffraction+and+Cation+Distribution+Studies+in+Zinc-Substituted+Nickel+Ferrite+Nanoparticles&rft.jtitle=Journal+of+superconductivity+and+novel+magnetism&rft.au=Kurmude%2C+D.+V.&rft.au=Barkule%2C+R.+S.&rft.au=Raut%2C+A.+V.&rft.au=Shengule%2C+D.+R.&rft.date=2014-02-01&rft.issn=1557-1939&rft.eissn=1557-1947&rft.volume=27&rft.issue=2&rft.spage=547&rft.epage=553&rft_id=info:doi/10.1007%2Fs10948-013-2305-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10948_013_2305_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1939&client=summon