Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform
A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency represent...
Saved in:
Published in | IEEE transactions on biomedical engineering Vol. 62; no. 2; pp. 541 - 552 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0018-9294 1558-2531 1558-2531 |
DOI | 10.1109/TBME.2014.2360101 |
Cover
Loading…
Abstract | A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series. |
---|---|
AbstractList | A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series. A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series. |
Author | Samiee, Kaveh Kovacs, Peter Gabbouj, Moncef |
Author_xml | – sequence: 1 givenname: Kaveh surname: Samiee fullname: Samiee, Kaveh email: kaveh.samiee@tut.fi organization: Department of Signal Processing, Tampere University of Technology, Tampere, Finland – sequence: 2 givenname: Peter surname: Kovacs fullname: Kovacs, Peter email: kovika@inf.elte.hu organization: Department of Numerical Analysis, Eötvös Loránd University, Budapest, Hungary – sequence: 3 givenname: Moncef surname: Gabbouj fullname: Gabbouj, Moncef email: moncef.gabbouj@tut.fi organization: Department of Signal Processing, Tampere University of Technology, Tampere, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25265603$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPGzEQhS1ERQLtD6gqIR972dRjr531saSbgESFRMLZcryzxdXuOti7B_j1bEjg0ENPo9F872lm3jk57UKHhHwFNgNg-sfm6nc54wzyGReKAYMTMgUpi4xLAadkyhgUmeY6n5DzlP6ObV7k6oxMuORKKiam5LHc-QZ3vXd0jf5liEgXjU3J197Z3oeOhpqW5YpufIvZGqPHRB-S7_7Q-7e5begvn1zEHun6McQ-25N0GYYRjXQTbZfqENvP5FNtm4RfjvWCPCzLzeI6u71b3Sx-3mZOFPM-q1w95xKFc1hZ1FoyhpWS27koaoGVqwQIzgXgiCDoKs-t4q4GrXJU1lbignw_-O5ieBow9aYd18OmsR2GIRlQkgtdFApG9PKIDtsWK7OLvrXx2bx_ZwTmB8DFkFLE2jjfv13dR-sbA8zsczD7HMw-B3PMYVTCP8p38_9pvh00HhE_eKWZZuMur3-Ek64 |
CODEN | IEBEAX |
CitedBy_id | crossref_primary_10_3233_IDT_190043 crossref_primary_10_1016_j_robot_2024_104899 crossref_primary_10_4218_etrij_2018_0118 crossref_primary_10_1109_ACCESS_2019_2951376 crossref_primary_10_1016_j_compbiomed_2021_104338 crossref_primary_10_1016_j_bspc_2021_102492 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_32604_cmc_2022_029073 crossref_primary_10_1109_ACCESS_2021_3105917 crossref_primary_10_1088_1742_6596_2070_1_012145 crossref_primary_10_1016_j_medengphy_2024_104213 crossref_primary_10_1109_TCYB_2020_2974776 crossref_primary_10_1109_ACCESS_2019_2915602 crossref_primary_10_1063_5_0062242 crossref_primary_10_1007_s11571_016_9408_y crossref_primary_10_3390_s18061720 crossref_primary_10_1007_s42979_024_03510_z crossref_primary_10_1109_TBCAS_2024_3456825 crossref_primary_10_29109_gujsc_1119624 crossref_primary_10_1109_TNSRE_2020_2966290 crossref_primary_10_32604_cmc_2024_055910 crossref_primary_10_1109_ACCESS_2019_2943881 crossref_primary_10_1007_s11042_019_7359_0 crossref_primary_10_1016_j_bbe_2021_02_003 crossref_primary_10_1016_j_bspc_2019_101777 crossref_primary_10_1016_j_bspc_2021_103450 crossref_primary_10_1109_TNSRE_2023_3342331 crossref_primary_10_1002_eng2_12812 crossref_primary_10_1109_ACCESS_2021_3126065 crossref_primary_10_1186_s40779_025_00598_z crossref_primary_10_1016_j_eswa_2024_125585 crossref_primary_10_1109_TNSRE_2017_2697920 crossref_primary_10_1016_j_eswa_2017_08_012 crossref_primary_10_1002_cpe_5622 crossref_primary_10_1016_j_eswa_2024_123755 crossref_primary_10_3390_app7040385 crossref_primary_10_1109_ACCESS_2021_3081767 crossref_primary_10_1016_j_bspc_2018_03_004 crossref_primary_10_1016_j_knosys_2016_11_023 crossref_primary_10_1145_3675402 crossref_primary_10_1016_j_compbiomed_2020_104033 crossref_primary_10_1016_j_bspc_2018_12_019 crossref_primary_10_1016_j_eswa_2018_03_022 crossref_primary_10_1016_j_physa_2020_124161 crossref_primary_10_1088_1742_6596_1456_1_012017 crossref_primary_10_1109_ACCESS_2020_3002095 crossref_primary_10_3390_computers8040084 crossref_primary_10_1109_ACCESS_2021_3089358 crossref_primary_10_1016_j_bspc_2022_103774 crossref_primary_10_1016_j_ymssp_2018_07_039 crossref_primary_10_1142_S0219519419400050 crossref_primary_10_1186_s40708_018_0084_z crossref_primary_10_2139_ssrn_4065237 crossref_primary_10_1109_ACCESS_2019_2915610 crossref_primary_10_1016_j_bspc_2022_103645 crossref_primary_10_1007_s41870_023_01657_1 crossref_primary_10_1016_j_procs_2019_12_123 crossref_primary_10_1016_j_bspc_2020_102086 crossref_primary_10_1016_j_bspc_2021_102935 crossref_primary_10_1186_s12883_017_0977_0 crossref_primary_10_1007_s10044_024_01221_y crossref_primary_10_1016_j_clinph_2018_10_010 crossref_primary_10_1016_j_cmpb_2016_08_013 crossref_primary_10_1109_TKDE_2022_3186963 crossref_primary_10_1016_j_neucom_2019_12_010 crossref_primary_10_3233_IDT_200091 crossref_primary_10_3389_fphys_2023_1227952 crossref_primary_10_1109_TNSRE_2019_2915621 crossref_primary_10_1515_bmt_2022_0098 crossref_primary_10_1109_JTEHM_2021_3090214 crossref_primary_10_1109_ACCESS_2017_2706318 crossref_primary_10_1007_s13755_019_0069_1 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1016_j_vlsi_2023_03_011 crossref_primary_10_1109_TIM_2021_3102689 crossref_primary_10_1016_j_compbiomed_2021_104708 crossref_primary_10_1016_j_asoc_2021_107639 crossref_primary_10_3390_app9235215 crossref_primary_10_1007_s12652_021_03189_7 crossref_primary_10_1016_j_jneumeth_2018_11_014 crossref_primary_10_3389_frai_2023_1156269 crossref_primary_10_1515_bmt_2018_0246 crossref_primary_10_1016_j_apacoust_2020_107607 crossref_primary_10_1016_j_eswa_2021_115175 crossref_primary_10_3390_math11071606 crossref_primary_10_1049_iet_smt_2016_0443 crossref_primary_10_1186_s13634_020_00681_8 crossref_primary_10_1080_10255842_2024_2431886 crossref_primary_10_1155_2021_6651445 crossref_primary_10_3389_fnhum_2024_1336157 crossref_primary_10_1016_j_bspc_2020_101977 crossref_primary_10_32604_cmc_2021_018239 crossref_primary_10_1016_j_bspc_2019_101569 crossref_primary_10_1049_iet_ipr_2018_5697 crossref_primary_10_32604_cmc_2021_015524 crossref_primary_10_1007_s11071_022_08118_7 crossref_primary_10_1016_j_cmpb_2021_106034 crossref_primary_10_1016_j_eswa_2022_116783 crossref_primary_10_1080_10255842_2023_2271603 crossref_primary_10_1016_j_bspc_2020_102034 crossref_primary_10_1007_s41870_023_01213_x crossref_primary_10_2139_ssrn_4142417 crossref_primary_10_1109_TCDS_2022_3232121 crossref_primary_10_1007_s11042_022_13180_9 crossref_primary_10_1142_S0219519417400036 crossref_primary_10_1016_j_compbiomed_2022_106053 crossref_primary_10_1016_j_asoc_2022_109552 crossref_primary_10_1016_j_neucom_2024_129174 crossref_primary_10_1016_j_apacoust_2021_108098 crossref_primary_10_1038_s41598_024_52551_0 crossref_primary_10_1049_ccs_2020_0011 crossref_primary_10_1016_j_eswa_2018_04_021 crossref_primary_10_1109_TBME_2016_2631620 crossref_primary_10_1016_j_chaos_2021_110939 crossref_primary_10_1007_s13246_018_0694_z crossref_primary_10_1007_s11571_018_9477_1 crossref_primary_10_24237_djes_2024_17304 crossref_primary_10_1007_s11042_019_08440_0 crossref_primary_10_1080_02522667_2022_2036352 crossref_primary_10_3389_fnins_2024_1436619 crossref_primary_10_1109_TSP_2019_2961234 crossref_primary_10_1007_s11045_018_0628_7 crossref_primary_10_1007_s00500_018_3487_0 crossref_primary_10_1016_j_imu_2020_100325 crossref_primary_10_1007_s00521_020_05675_z crossref_primary_10_1016_j_bspc_2019_101702 crossref_primary_10_1142_S0129065721500544 crossref_primary_10_3390_app8091528 crossref_primary_10_3389_fnhum_2022_895761 crossref_primary_10_1142_S0219467825500135 crossref_primary_10_1109_JETCAS_2018_2842761 crossref_primary_10_1109_ACCESS_2024_3401568 crossref_primary_10_1109_JSEN_2025_3532456 crossref_primary_10_4015_S1016237221500241 crossref_primary_10_1016_j_patrec_2017_03_023 crossref_primary_10_1016_j_eswa_2024_125621 crossref_primary_10_1007_s11277_020_07742_z crossref_primary_10_17482_uumfd_754577 crossref_primary_10_1016_j_bspc_2020_101966 crossref_primary_10_1088_1741_2552_ab909d crossref_primary_10_1109_ACCESS_2020_3009665 crossref_primary_10_1016_j_knosys_2019_105333 crossref_primary_10_1016_j_neucom_2018_03_074 crossref_primary_10_1088_1674_1056_acdfbf crossref_primary_10_1038_s41598_023_41537_z crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1007_s12652_020_01722_8 crossref_primary_10_1109_RBME_2021_3055956 crossref_primary_10_4103_0028_3886_317233 crossref_primary_10_3390_s23208609 crossref_primary_10_1080_21681163_2023_2250872 crossref_primary_10_1142_S0129065718500107 crossref_primary_10_1109_TNSRE_2022_3156931 crossref_primary_10_1088_1361_6579_ac2c5b crossref_primary_10_1155_2017_2948742 crossref_primary_10_4015_S1016237218500370 crossref_primary_10_1016_j_bbe_2023_04_003 crossref_primary_10_1088_1742_6596_1846_1_012054 crossref_primary_10_1007_s12652_019_01613_7 crossref_primary_10_1109_JBHI_2017_2654479 crossref_primary_10_21541_apjes_569553 crossref_primary_10_1016_j_bspc_2024_106824 crossref_primary_10_1109_TNSRE_2023_3337802 crossref_primary_10_1109_ACCESS_2020_3011877 crossref_primary_10_1109_TCYB_2022_3169327 crossref_primary_10_1007_s12530_023_09488_y crossref_primary_10_1007_s10462_019_09755_y crossref_primary_10_1515_bmt_2018_0012 crossref_primary_10_1109_TNSRE_2021_3103210 crossref_primary_10_1016_j_cmpb_2020_105899 crossref_primary_10_1007_s11042_022_12702_9 crossref_primary_10_1186_s13634_018_0568_2 crossref_primary_10_11648_j_mma_20240903_13 crossref_primary_10_1016_j_bbe_2022_02_004 crossref_primary_10_1016_j_eswa_2020_113676 crossref_primary_10_1016_j_eswa_2019_112895 crossref_primary_10_1007_s13246_020_00901_3 crossref_primary_10_1088_1361_6579_ab3e2e crossref_primary_10_1016_j_neuri_2023_100139 crossref_primary_10_1016_j_compbiomed_2022_106086 crossref_primary_10_1016_j_ymssp_2024_111785 crossref_primary_10_1007_s00221_020_05815_w crossref_primary_10_3390_s24113360 crossref_primary_10_1016_j_bspc_2024_107066 crossref_primary_10_1007_s00034_022_02282_2 crossref_primary_10_1515_bmt_2019_0001 crossref_primary_10_3389_fncom_2024_1340251 crossref_primary_10_1016_j_bspc_2023_105165 crossref_primary_10_1007_s12652_022_03737_9 crossref_primary_10_1109_ACCESS_2021_3139850 crossref_primary_10_1109_TITS_2019_2918438 crossref_primary_10_1016_j_bspc_2021_103138 crossref_primary_10_1016_j_bspc_2021_102723 crossref_primary_10_1016_j_bspc_2017_08_013 crossref_primary_10_1016_j_eswa_2023_121359 crossref_primary_10_1109_LSP_2019_2953870 crossref_primary_10_1016_j_bspc_2021_102728 crossref_primary_10_31590_ejosat_1145969 crossref_primary_10_1016_j_trb_2023_05_005 crossref_primary_10_1109_TNSRE_2021_3129467 crossref_primary_10_1088_1741_2552_aca82c crossref_primary_10_3390_s20195645 crossref_primary_10_1159_000512985 crossref_primary_10_1049_iet_smt_2018_5358 crossref_primary_10_1109_ACCESS_2018_2887354 crossref_primary_10_3390_s24010077 crossref_primary_10_1016_j_cam_2018_07_046 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1016_j_bspc_2020_101921 crossref_primary_10_1016_j_knosys_2018_07_019 crossref_primary_10_1109_JSEN_2022_3172133 crossref_primary_10_1016_j_bspc_2022_104520 crossref_primary_10_1142_S0219519419400074 crossref_primary_10_1016_j_bspc_2017_08_023 crossref_primary_10_1016_j_measurement_2022_111948 crossref_primary_10_1016_j_bspc_2021_103248 crossref_primary_10_29137_umagd_348871 crossref_primary_10_1016_j_cogr_2021_02_001 crossref_primary_10_1016_j_sigpro_2016_07_026 crossref_primary_10_1002_ett_3612 crossref_primary_10_1016_j_bbe_2018_03_007 crossref_primary_10_3389_fnhum_2019_00052 crossref_primary_10_1049_iet_spr_2017_0140 crossref_primary_10_1016_j_yebeh_2024_109732 crossref_primary_10_1016_j_bspc_2021_103281 crossref_primary_10_1109_TNSRE_2022_3204540 crossref_primary_10_1016_j_isci_2020_101997 crossref_primary_10_1007_s13246_021_00970_y crossref_primary_10_1109_JBHI_2018_2871678 crossref_primary_10_1016_j_bspc_2021_102501 crossref_primary_10_1109_ACCESS_2018_2838559 crossref_primary_10_1142_S0129065720500197 crossref_primary_10_3389_fnhum_2021_643454 crossref_primary_10_1109_ACCESS_2023_3341419 crossref_primary_10_1016_j_eswa_2019_03_021 crossref_primary_10_1109_TNSRE_2023_3346955 crossref_primary_10_3390_bioengineering11100986 crossref_primary_10_3390_brainsci15010050 crossref_primary_10_3390_s19020219 crossref_primary_10_1080_17455030_2021_1971325 crossref_primary_10_1109_JBHI_2016_2589971 crossref_primary_10_1109_TNNLS_2024_3350085 crossref_primary_10_1007_s11042_022_13947_0 crossref_primary_10_1016_j_cmpb_2016_09_008 crossref_primary_10_1016_j_bspc_2024_106763 crossref_primary_10_1016_j_eswa_2015_05_002 crossref_primary_10_1016_j_bspc_2018_04_007 crossref_primary_10_1142_S012906571850003X |
Cites_doi | 10.1016/j.eswa.2007.02.009 10.14232/actacyb.20.1.2011.9 10.1145/1543834.1543860 10.1109/ICNC.2010.5583630 10.1103/PhysRevE.64.061907 10.1109/ICCSCE.2011.6190540 10.1887/0750306920 10.1007/978-3-642-88163-3 10.1155/2007/80510 10.1109/5.30749 10.1007/s11517-012-0967-8 10.1016/j.eswa.2011.07.008 10.1109/TITB.2009.2017939 10.1016/j.eswa.2006.02.005 10.1016/0013-4694(96)96001-0 10.1109/SYNASC.2013.27 10.1109/TBME.2007.891945 10.1161/01.CIR.101.23.e215 10.1016/S0013-4694(98)00043-1 10.1109/MeMeA.2012.6226656 10.1016/j.eswa.2010.08.009 10.1093/brain/awh149 10.1007/978-3-642-27549-4_12 10.1016/j.jneumeth.2005.04.013 10.1016/j.eswa.2009.09.051 10.1109/ICNN.1995.488968 10.1023/A:1012487302797 10.11601/ijates.v1i2-3.18 10.1007/s10916-005-6133-1 10.1016/S0165-0270(02)00340-0 10.1007/978-3-642-37846-1 10.1016/j.amc.2014.05.128 10.1109/TITB.2006.884369 10.1016/j.amc.2006.09.022 10.1016/j.jneumeth.2010.08.030 10.1109/BIBE.2011.13 10.1007/s10439-009-9795-x 10.1109/ICASSP.2014.6854723 10.1007/1-84628-178-4 10.1016/j.sigpro.2008.01.026 10.1109/ICBMI.2011.76 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1109/TBME.2014.2360101 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-2531 |
EndPage | 552 |
ExternalDocumentID | 25265603 10_1109_TBME_2014_2360101 6909003 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c387t-dcf725e3ccedae99500ed65b738f3edcd3132231ee3ce19d44a62cf1964e6aad3 |
IEDL.DBID | RIE |
ISSN | 0018-9294 1558-2531 |
IngestDate | Fri Jul 11 10:38:52 EDT 2025 Thu Apr 03 07:09:56 EDT 2025 Tue Jul 01 02:15:51 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Wed Aug 27 02:53:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Malmquist–Takenaka system time–frequency analysis Electroencephalography (EEG) rational functions (RFs) seizure classification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-dcf725e3ccedae99500ed65b738f3edcd3132231ee3ce19d44a62cf1964e6aad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25265603 |
PQID | 1652398861 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1652398861 pubmed_primary_25265603 crossref_citationtrail_10_1109_TBME_2014_2360101 crossref_primary_10_1109_TBME_2014_2360101 ieee_primary_6909003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Feb. 2015-2-00 2015-Feb 20150201 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-Feb. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on biomedical engineering |
PublicationTitleAbbrev | TBME |
PublicationTitleAlternate | IEEE Trans Biomed Eng |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref15 xie (ref43) 0 ref11 ref10 ref17 ref51 ref50 ref46 ref45 ref48 kennedy (ref23) 0; 4 ref47 fridli (ref16) 2011; 35 ref42 ref41 ref44 ref49 fridli (ref12) 2012; 37 ref8 ref7 kohonen (ref5) 1989 ref9 ref4 ref3 ref6 ref40 ref35 (ref14) 2014 ref34 ref37 ref36 ref30 lócsi (ref19) 2011; 20 ref2 ref1 ref39 coifman (ref31) 1992 ref38 goldberger (ref29) 2000; 101 guyon (ref33) 2002 ref24 mitra (ref18) 2011 ref20 ref21 ref28 ref27 soumelidis (ref32) 0 mallat (ref26) 2008 kovács (ref25) 0 tzallas (ref22) 0 |
References_xml | – ident: ref2 doi: 10.1016/j.eswa.2007.02.009 – volume: 20 start-page: 111 year: 2011 ident: ref19 article-title: Calculating non-equidistant discretizations generated by Blaschke products publication-title: Acta Cybernetica doi: 10.14232/actacyb.20.1.2011.9 – start-page: 1 year: 0 ident: ref43 article-title: V-LGBP: Volume based local Gabor binary patterns for face representation and recognition publication-title: Proc 19th Int Conf Pattern Recog – ident: ref41 doi: 10.1145/1543834.1543860 – ident: ref8 doi: 10.1109/ICNC.2010.5583630 – ident: ref15 doi: 10.1103/PhysRevE.64.061907 – ident: ref35 doi: 10.1109/ICCSCE.2011.6190540 – volume: 35 start-page: 95 year: 2011 ident: ref16 article-title: Biorthogonal systems to rational functions publication-title: Ann Univ Sci Budapest Sect Comp – ident: ref30 doi: 10.1887/0750306920 – volume: 37 start-page: 145 year: 2012 ident: ref12 article-title: Rational modeling of multi-lead QRS complexes in ECG signals publication-title: Ann Univ Sci Budapest Sect Comp – year: 1989 ident: ref5 publication-title: Self-Organization and Associative Memory doi: 10.1007/978-3-642-88163-3 – ident: ref45 doi: 10.1155/2007/80510 – ident: ref27 doi: 10.1109/5.30749 – ident: ref49 doi: 10.1007/s11517-012-0967-8 – ident: ref42 doi: 10.1016/j.eswa.2011.07.008 – ident: ref28 doi: 10.1109/TITB.2009.2017939 – ident: ref39 doi: 10.1016/j.eswa.2006.02.005 – ident: ref3 doi: 10.1016/0013-4694(96)96001-0 – ident: ref20 doi: 10.1109/SYNASC.2013.27 – ident: ref6 doi: 10.1109/TBME.2007.891945 – volume: 101 start-page: 215 year: 2000 ident: ref29 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref4 doi: 10.1016/S0013-4694(98)00043-1 – ident: ref11 doi: 10.1109/MeMeA.2012.6226656 – ident: ref50 doi: 10.1016/j.eswa.2010.08.009 – ident: ref51 doi: 10.1093/brain/awh149 – ident: ref10 doi: 10.1007/978-3-642-27549-4_12 – ident: ref34 doi: 10.1016/j.jneumeth.2005.04.013 – year: 0 ident: ref22 article-title: Automated epileptic seizure detection methods: A review study publication-title: Epilepsy-Histological Electroencephalographic and Psychological Aspects – ident: ref40 doi: 10.1016/j.eswa.2009.09.051 – volume: 4 start-page: 1942 year: 0 ident: ref23 article-title: Particle swarm optimization publication-title: Proc IEEE Int Conf Neural Netw doi: 10.1109/ICNN.1995.488968 – start-page: 389 year: 2002 ident: ref33 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learning doi: 10.1023/A:1012487302797 – year: 2014 ident: ref14 – year: 2008 ident: ref26 publication-title: A Wavelet Tour of Signal Processing The Sparse Way – ident: ref21 doi: 10.11601/ijates.v1i2-3.18 – ident: ref38 doi: 10.1007/s10916-005-6133-1 – start-page: 153 year: 1992 ident: ref31 article-title: Wavelet analysis and signal processing publication-title: Wavelets and Their Applications – start-page: 1 year: 0 ident: ref25 article-title: Hyperbolic particle swarm optimization with application in rational identification publication-title: Proc 21st Eur Signal Process Conf – ident: ref7 doi: 10.1016/S0165-0270(02)00340-0 – year: 0 ident: ref32 article-title: Frequency domain representation of signals in rational orthogonal bases publication-title: Proc IEEE 10th Mediterranean Conf Control Autom – ident: ref24 doi: 10.1007/978-3-642-37846-1 – ident: ref44 doi: 10.1016/j.amc.2014.05.128 – ident: ref37 doi: 10.1109/TITB.2006.884369 – ident: ref1 doi: 10.1016/j.amc.2006.09.022 – year: 2011 ident: ref18 publication-title: Digital Signal Processing A Computer-Based Approach – ident: ref48 doi: 10.1016/j.jneumeth.2010.08.030 – ident: ref47 doi: 10.1109/BIBE.2011.13 – ident: ref36 doi: 10.1007/s10439-009-9795-x – ident: ref13 doi: 10.1109/ICASSP.2014.6854723 – ident: ref17 doi: 10.1007/1-84628-178-4 – ident: ref46 doi: 10.1016/j.sigpro.2008.01.026 – ident: ref9 doi: 10.1109/ICBMI.2011.76 |
SSID | ssj0014846 |
Score | 2.5830739 |
Snippet | A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 541 |
SubjectTerms | Accuracy Algorithms Brain - physiopathology Diagnosis, Computer-Assisted - methods EEG Electroencephalography Electroencephalography - methods Epilepsy - diagnosis Epilepsy - physiopathology Feature extraction Fourier Analysis Fourier transforms Humans Malnquist-Takenaka system Rational functions Reproducibility of Results Seizure classification Sensitivity and Specificity Signal Processing, Computer-Assisted Time-frequency analysis |
Title | Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform |
URI | https://ieeexplore.ieee.org/document/6909003 https://www.ncbi.nlm.nih.gov/pubmed/25265603 https://www.proquest.com/docview/1652398861 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcoLQ8FigyEieEt4ljJ_YR2iwV0nKgW6m3yLEnagXardrNpb8ej-NECAHiFinjPDRj-xvPzDcA72QbYHKWOR4ULrjsKsmtUJ5b5522dEdTofDya3l6Lr9cqIsd-DDVwiBiTD7DOV3GWL7fuJ6Oyo6CJ2citee94LgNtVpTxEDqoSgny8MEFkamCGaemaPVp2VNSVxyLgryP6g7jCBa-HJslZW2o9hf5e9QM245i8ewHD92yDT5Pu-37dzd_cbj-L9_swePEvZkHwdjeQI7uN6Hh78wEu7D_WWKtR_AZX0dVoywojh2hld3_Q2y2EGTcouiOtmmY3X9mVEVCadTNrxlMQOBfUsnjOzkKqxKAZazs8sA8zlJssXQJY-tRsj8FM4X9er4lKe-DNwVutpy77pKKCycQ2_RGJVl6EvVVoXuCvTOEx1kwI0YRDA3XkpbCtcR9ReW1vriGeyuN2t8AUx10pQobGUrLa1oNdrWGyFQq9bnRT6DbFRP4xJpOfXO-NFE5yUzDSm3IeU2SbkzeD8NuR4YO_4lfECKmQSTTmbwdrSBJkw3iqHYNW762yYvFTEm6jIMfT4YxzR4tKmXf37oK3gQXq2GlO_XsLu96fEwIJpt-yaa8k9CXe-O |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqIvFxKNBSulDASJwQ3iaOndhHClkWaHqgW6m3yLEnatVqt2o3l_56PI4TIQSIW6TYkaM3tp89M28IeScaT5OTxDIPOGeiLQQzXDpmrLPK4BuFicLVcT4_Fd_O5NkG-TDmwgBACD6DKT4GX75b2Q6vyg78SU4Hac97EpNx-2yt0WcgVJ-Wk6R-CnMtog8zTfTB4rAqMYxLTHmGJxCsD8NRGD4fimXFDSlUWPk72QybzuwxqYbh9rEml9Nu3Uzt3W9Kjv_7P0_IVmSf9GNvLk_JBiy3yaNfNAm3yf0qett3yHl57dcMv6ZYegIXd90N0FBDE6OLAqB01dKy_EIxj4ThPRvc0hCDQH_EO0b6-cKvS56Y05NzT_QZtqSzvk4eXQyk-Rk5nZWLT3MWKzMwm6lizZxtCy4hsxacAa1lkoDLZVNkqs3AWYeCkJ45gm8CqXZCmJzbFsW_IDfGZbtkc7lawh6hshU6B24KUyhheKPANE5zDko2Ls3SCUkGeGobZcuxesZVHY4via4R3BrBrSO4E_J-7HLda3b8q_EOAjM2jJhMyNvBBmo_4dCLYpaw6m7rNJeomahy3_V5bxxj58GmXvz5o2_Ig_miOqqPvh5_f0ke-mHIPgB8n2yubzp45fnNunkdzPon5XLy1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+classification+of+EEG+time-series+using+rational+discrete+short-time+fourier+transform&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Samiee%2C+Kaveh&rft.au=Kov%C3%A1cs%2C+Pet%C3%A9r&rft.au=Gabbouj%2C+Moncef&rft.date=2015-02-01&rft.eissn=1558-2531&rft.volume=62&rft.issue=2&rft.spage=541&rft_id=info:doi/10.1109%2FTBME.2014.2360101&rft_id=info%3Apmid%2F25265603&rft.externalDocID=25265603 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |