Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform

A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency represent...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 62; no. 2; pp. 541 - 552
Main Authors Samiee, Kaveh, Kovacs, Peter, Gabbouj, Moncef
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2015
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2014.2360101

Cover

Loading…
Abstract A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.
AbstractList A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.
A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic discharges from nonstationary patterns occurring during seizures. The proposed approach is based on an adaptive and localized time-frequency representation of EEG signals by means of rational functions. The corresponding rational discrete short-time Fourier transform (DSTFT) is a novel feature extraction technique for epileptic EEG data. A multilayer perceptron classifier is fed by the coefficients of the rational DSTFT in order to separate seizure epochs from seizure-free epochs. The effectiveness of the proposed method is compared with several state-of-art feature extraction algorithms used in offline epileptic seizure detection. The results of the comparative evaluations show that the proposed method outperforms competing techniques in terms of classification accuracy. In addition, it provides a compact representation of EEG time-series.
Author Samiee, Kaveh
Kovacs, Peter
Gabbouj, Moncef
Author_xml – sequence: 1
  givenname: Kaveh
  surname: Samiee
  fullname: Samiee, Kaveh
  email: kaveh.samiee@tut.fi
  organization: Department of Signal Processing, Tampere University of Technology, Tampere, Finland
– sequence: 2
  givenname: Peter
  surname: Kovacs
  fullname: Kovacs, Peter
  email: kovika@inf.elte.hu
  organization: Department of Numerical Analysis, Eötvös Loránd University, Budapest, Hungary
– sequence: 3
  givenname: Moncef
  surname: Gabbouj
  fullname: Gabbouj, Moncef
  email: moncef.gabbouj@tut.fi
  organization: Department of Signal Processing, Tampere University of Technology, Tampere, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25265603$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPGzEQhS1ERQLtD6gqIR972dRjr531saSbgESFRMLZcryzxdXuOti7B_j1bEjg0ENPo9F872lm3jk57UKHhHwFNgNg-sfm6nc54wzyGReKAYMTMgUpi4xLAadkyhgUmeY6n5DzlP6ObV7k6oxMuORKKiam5LHc-QZ3vXd0jf5liEgXjU3J197Z3oeOhpqW5YpufIvZGqPHRB-S7_7Q-7e5begvn1zEHun6McQ-25N0GYYRjXQTbZfqENvP5FNtm4RfjvWCPCzLzeI6u71b3Sx-3mZOFPM-q1w95xKFc1hZ1FoyhpWS27koaoGVqwQIzgXgiCDoKs-t4q4GrXJU1lbignw_-O5ieBow9aYd18OmsR2GIRlQkgtdFApG9PKIDtsWK7OLvrXx2bx_ZwTmB8DFkFLE2jjfv13dR-sbA8zsczD7HMw-B3PMYVTCP8p38_9pvh00HhE_eKWZZuMur3-Ek64
CODEN IEBEAX
CitedBy_id crossref_primary_10_3233_IDT_190043
crossref_primary_10_1016_j_robot_2024_104899
crossref_primary_10_4218_etrij_2018_0118
crossref_primary_10_1109_ACCESS_2019_2951376
crossref_primary_10_1016_j_compbiomed_2021_104338
crossref_primary_10_1016_j_bspc_2021_102492
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_32604_cmc_2022_029073
crossref_primary_10_1109_ACCESS_2021_3105917
crossref_primary_10_1088_1742_6596_2070_1_012145
crossref_primary_10_1016_j_medengphy_2024_104213
crossref_primary_10_1109_TCYB_2020_2974776
crossref_primary_10_1109_ACCESS_2019_2915602
crossref_primary_10_1063_5_0062242
crossref_primary_10_1007_s11571_016_9408_y
crossref_primary_10_3390_s18061720
crossref_primary_10_1007_s42979_024_03510_z
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_29109_gujsc_1119624
crossref_primary_10_1109_TNSRE_2020_2966290
crossref_primary_10_32604_cmc_2024_055910
crossref_primary_10_1109_ACCESS_2019_2943881
crossref_primary_10_1007_s11042_019_7359_0
crossref_primary_10_1016_j_bbe_2021_02_003
crossref_primary_10_1016_j_bspc_2019_101777
crossref_primary_10_1016_j_bspc_2021_103450
crossref_primary_10_1109_TNSRE_2023_3342331
crossref_primary_10_1002_eng2_12812
crossref_primary_10_1109_ACCESS_2021_3126065
crossref_primary_10_1186_s40779_025_00598_z
crossref_primary_10_1016_j_eswa_2024_125585
crossref_primary_10_1109_TNSRE_2017_2697920
crossref_primary_10_1016_j_eswa_2017_08_012
crossref_primary_10_1002_cpe_5622
crossref_primary_10_1016_j_eswa_2024_123755
crossref_primary_10_3390_app7040385
crossref_primary_10_1109_ACCESS_2021_3081767
crossref_primary_10_1016_j_bspc_2018_03_004
crossref_primary_10_1016_j_knosys_2016_11_023
crossref_primary_10_1145_3675402
crossref_primary_10_1016_j_compbiomed_2020_104033
crossref_primary_10_1016_j_bspc_2018_12_019
crossref_primary_10_1016_j_eswa_2018_03_022
crossref_primary_10_1016_j_physa_2020_124161
crossref_primary_10_1088_1742_6596_1456_1_012017
crossref_primary_10_1109_ACCESS_2020_3002095
crossref_primary_10_3390_computers8040084
crossref_primary_10_1109_ACCESS_2021_3089358
crossref_primary_10_1016_j_bspc_2022_103774
crossref_primary_10_1016_j_ymssp_2018_07_039
crossref_primary_10_1142_S0219519419400050
crossref_primary_10_1186_s40708_018_0084_z
crossref_primary_10_2139_ssrn_4065237
crossref_primary_10_1109_ACCESS_2019_2915610
crossref_primary_10_1016_j_bspc_2022_103645
crossref_primary_10_1007_s41870_023_01657_1
crossref_primary_10_1016_j_procs_2019_12_123
crossref_primary_10_1016_j_bspc_2020_102086
crossref_primary_10_1016_j_bspc_2021_102935
crossref_primary_10_1186_s12883_017_0977_0
crossref_primary_10_1007_s10044_024_01221_y
crossref_primary_10_1016_j_clinph_2018_10_010
crossref_primary_10_1016_j_cmpb_2016_08_013
crossref_primary_10_1109_TKDE_2022_3186963
crossref_primary_10_1016_j_neucom_2019_12_010
crossref_primary_10_3233_IDT_200091
crossref_primary_10_3389_fphys_2023_1227952
crossref_primary_10_1109_TNSRE_2019_2915621
crossref_primary_10_1515_bmt_2022_0098
crossref_primary_10_1109_JTEHM_2021_3090214
crossref_primary_10_1109_ACCESS_2017_2706318
crossref_primary_10_1007_s13755_019_0069_1
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1016_j_vlsi_2023_03_011
crossref_primary_10_1109_TIM_2021_3102689
crossref_primary_10_1016_j_compbiomed_2021_104708
crossref_primary_10_1016_j_asoc_2021_107639
crossref_primary_10_3390_app9235215
crossref_primary_10_1007_s12652_021_03189_7
crossref_primary_10_1016_j_jneumeth_2018_11_014
crossref_primary_10_3389_frai_2023_1156269
crossref_primary_10_1515_bmt_2018_0246
crossref_primary_10_1016_j_apacoust_2020_107607
crossref_primary_10_1016_j_eswa_2021_115175
crossref_primary_10_3390_math11071606
crossref_primary_10_1049_iet_smt_2016_0443
crossref_primary_10_1186_s13634_020_00681_8
crossref_primary_10_1080_10255842_2024_2431886
crossref_primary_10_1155_2021_6651445
crossref_primary_10_3389_fnhum_2024_1336157
crossref_primary_10_1016_j_bspc_2020_101977
crossref_primary_10_32604_cmc_2021_018239
crossref_primary_10_1016_j_bspc_2019_101569
crossref_primary_10_1049_iet_ipr_2018_5697
crossref_primary_10_32604_cmc_2021_015524
crossref_primary_10_1007_s11071_022_08118_7
crossref_primary_10_1016_j_cmpb_2021_106034
crossref_primary_10_1016_j_eswa_2022_116783
crossref_primary_10_1080_10255842_2023_2271603
crossref_primary_10_1016_j_bspc_2020_102034
crossref_primary_10_1007_s41870_023_01213_x
crossref_primary_10_2139_ssrn_4142417
crossref_primary_10_1109_TCDS_2022_3232121
crossref_primary_10_1007_s11042_022_13180_9
crossref_primary_10_1142_S0219519417400036
crossref_primary_10_1016_j_compbiomed_2022_106053
crossref_primary_10_1016_j_asoc_2022_109552
crossref_primary_10_1016_j_neucom_2024_129174
crossref_primary_10_1016_j_apacoust_2021_108098
crossref_primary_10_1038_s41598_024_52551_0
crossref_primary_10_1049_ccs_2020_0011
crossref_primary_10_1016_j_eswa_2018_04_021
crossref_primary_10_1109_TBME_2016_2631620
crossref_primary_10_1016_j_chaos_2021_110939
crossref_primary_10_1007_s13246_018_0694_z
crossref_primary_10_1007_s11571_018_9477_1
crossref_primary_10_24237_djes_2024_17304
crossref_primary_10_1007_s11042_019_08440_0
crossref_primary_10_1080_02522667_2022_2036352
crossref_primary_10_3389_fnins_2024_1436619
crossref_primary_10_1109_TSP_2019_2961234
crossref_primary_10_1007_s11045_018_0628_7
crossref_primary_10_1007_s00500_018_3487_0
crossref_primary_10_1016_j_imu_2020_100325
crossref_primary_10_1007_s00521_020_05675_z
crossref_primary_10_1016_j_bspc_2019_101702
crossref_primary_10_1142_S0129065721500544
crossref_primary_10_3390_app8091528
crossref_primary_10_3389_fnhum_2022_895761
crossref_primary_10_1142_S0219467825500135
crossref_primary_10_1109_JETCAS_2018_2842761
crossref_primary_10_1109_ACCESS_2024_3401568
crossref_primary_10_1109_JSEN_2025_3532456
crossref_primary_10_4015_S1016237221500241
crossref_primary_10_1016_j_patrec_2017_03_023
crossref_primary_10_1016_j_eswa_2024_125621
crossref_primary_10_1007_s11277_020_07742_z
crossref_primary_10_17482_uumfd_754577
crossref_primary_10_1016_j_bspc_2020_101966
crossref_primary_10_1088_1741_2552_ab909d
crossref_primary_10_1109_ACCESS_2020_3009665
crossref_primary_10_1016_j_knosys_2019_105333
crossref_primary_10_1016_j_neucom_2018_03_074
crossref_primary_10_1088_1674_1056_acdfbf
crossref_primary_10_1038_s41598_023_41537_z
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1007_s12652_020_01722_8
crossref_primary_10_1109_RBME_2021_3055956
crossref_primary_10_4103_0028_3886_317233
crossref_primary_10_3390_s23208609
crossref_primary_10_1080_21681163_2023_2250872
crossref_primary_10_1142_S0129065718500107
crossref_primary_10_1109_TNSRE_2022_3156931
crossref_primary_10_1088_1361_6579_ac2c5b
crossref_primary_10_1155_2017_2948742
crossref_primary_10_4015_S1016237218500370
crossref_primary_10_1016_j_bbe_2023_04_003
crossref_primary_10_1088_1742_6596_1846_1_012054
crossref_primary_10_1007_s12652_019_01613_7
crossref_primary_10_1109_JBHI_2017_2654479
crossref_primary_10_21541_apjes_569553
crossref_primary_10_1016_j_bspc_2024_106824
crossref_primary_10_1109_TNSRE_2023_3337802
crossref_primary_10_1109_ACCESS_2020_3011877
crossref_primary_10_1109_TCYB_2022_3169327
crossref_primary_10_1007_s12530_023_09488_y
crossref_primary_10_1007_s10462_019_09755_y
crossref_primary_10_1515_bmt_2018_0012
crossref_primary_10_1109_TNSRE_2021_3103210
crossref_primary_10_1016_j_cmpb_2020_105899
crossref_primary_10_1007_s11042_022_12702_9
crossref_primary_10_1186_s13634_018_0568_2
crossref_primary_10_11648_j_mma_20240903_13
crossref_primary_10_1016_j_bbe_2022_02_004
crossref_primary_10_1016_j_eswa_2020_113676
crossref_primary_10_1016_j_eswa_2019_112895
crossref_primary_10_1007_s13246_020_00901_3
crossref_primary_10_1088_1361_6579_ab3e2e
crossref_primary_10_1016_j_neuri_2023_100139
crossref_primary_10_1016_j_compbiomed_2022_106086
crossref_primary_10_1016_j_ymssp_2024_111785
crossref_primary_10_1007_s00221_020_05815_w
crossref_primary_10_3390_s24113360
crossref_primary_10_1016_j_bspc_2024_107066
crossref_primary_10_1007_s00034_022_02282_2
crossref_primary_10_1515_bmt_2019_0001
crossref_primary_10_3389_fncom_2024_1340251
crossref_primary_10_1016_j_bspc_2023_105165
crossref_primary_10_1007_s12652_022_03737_9
crossref_primary_10_1109_ACCESS_2021_3139850
crossref_primary_10_1109_TITS_2019_2918438
crossref_primary_10_1016_j_bspc_2021_103138
crossref_primary_10_1016_j_bspc_2021_102723
crossref_primary_10_1016_j_bspc_2017_08_013
crossref_primary_10_1016_j_eswa_2023_121359
crossref_primary_10_1109_LSP_2019_2953870
crossref_primary_10_1016_j_bspc_2021_102728
crossref_primary_10_31590_ejosat_1145969
crossref_primary_10_1016_j_trb_2023_05_005
crossref_primary_10_1109_TNSRE_2021_3129467
crossref_primary_10_1088_1741_2552_aca82c
crossref_primary_10_3390_s20195645
crossref_primary_10_1159_000512985
crossref_primary_10_1049_iet_smt_2018_5358
crossref_primary_10_1109_ACCESS_2018_2887354
crossref_primary_10_3390_s24010077
crossref_primary_10_1016_j_cam_2018_07_046
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1016_j_bspc_2020_101921
crossref_primary_10_1016_j_knosys_2018_07_019
crossref_primary_10_1109_JSEN_2022_3172133
crossref_primary_10_1016_j_bspc_2022_104520
crossref_primary_10_1142_S0219519419400074
crossref_primary_10_1016_j_bspc_2017_08_023
crossref_primary_10_1016_j_measurement_2022_111948
crossref_primary_10_1016_j_bspc_2021_103248
crossref_primary_10_29137_umagd_348871
crossref_primary_10_1016_j_cogr_2021_02_001
crossref_primary_10_1016_j_sigpro_2016_07_026
crossref_primary_10_1002_ett_3612
crossref_primary_10_1016_j_bbe_2018_03_007
crossref_primary_10_3389_fnhum_2019_00052
crossref_primary_10_1049_iet_spr_2017_0140
crossref_primary_10_1016_j_yebeh_2024_109732
crossref_primary_10_1016_j_bspc_2021_103281
crossref_primary_10_1109_TNSRE_2022_3204540
crossref_primary_10_1016_j_isci_2020_101997
crossref_primary_10_1007_s13246_021_00970_y
crossref_primary_10_1109_JBHI_2018_2871678
crossref_primary_10_1016_j_bspc_2021_102501
crossref_primary_10_1109_ACCESS_2018_2838559
crossref_primary_10_1142_S0129065720500197
crossref_primary_10_3389_fnhum_2021_643454
crossref_primary_10_1109_ACCESS_2023_3341419
crossref_primary_10_1016_j_eswa_2019_03_021
crossref_primary_10_1109_TNSRE_2023_3346955
crossref_primary_10_3390_bioengineering11100986
crossref_primary_10_3390_brainsci15010050
crossref_primary_10_3390_s19020219
crossref_primary_10_1080_17455030_2021_1971325
crossref_primary_10_1109_JBHI_2016_2589971
crossref_primary_10_1109_TNNLS_2024_3350085
crossref_primary_10_1007_s11042_022_13947_0
crossref_primary_10_1016_j_cmpb_2016_09_008
crossref_primary_10_1016_j_bspc_2024_106763
crossref_primary_10_1016_j_eswa_2015_05_002
crossref_primary_10_1016_j_bspc_2018_04_007
crossref_primary_10_1142_S012906571850003X
Cites_doi 10.1016/j.eswa.2007.02.009
10.14232/actacyb.20.1.2011.9
10.1145/1543834.1543860
10.1109/ICNC.2010.5583630
10.1103/PhysRevE.64.061907
10.1109/ICCSCE.2011.6190540
10.1887/0750306920
10.1007/978-3-642-88163-3
10.1155/2007/80510
10.1109/5.30749
10.1007/s11517-012-0967-8
10.1016/j.eswa.2011.07.008
10.1109/TITB.2009.2017939
10.1016/j.eswa.2006.02.005
10.1016/0013-4694(96)96001-0
10.1109/SYNASC.2013.27
10.1109/TBME.2007.891945
10.1161/01.CIR.101.23.e215
10.1016/S0013-4694(98)00043-1
10.1109/MeMeA.2012.6226656
10.1016/j.eswa.2010.08.009
10.1093/brain/awh149
10.1007/978-3-642-27549-4_12
10.1016/j.jneumeth.2005.04.013
10.1016/j.eswa.2009.09.051
10.1109/ICNN.1995.488968
10.1023/A:1012487302797
10.11601/ijates.v1i2-3.18
10.1007/s10916-005-6133-1
10.1016/S0165-0270(02)00340-0
10.1007/978-3-642-37846-1
10.1016/j.amc.2014.05.128
10.1109/TITB.2006.884369
10.1016/j.amc.2006.09.022
10.1016/j.jneumeth.2010.08.030
10.1109/BIBE.2011.13
10.1007/s10439-009-9795-x
10.1109/ICASSP.2014.6854723
10.1007/1-84628-178-4
10.1016/j.sigpro.2008.01.026
10.1109/ICBMI.2011.76
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2014.2360101
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 552
ExternalDocumentID 25265603
10_1109_TBME_2014_2360101
6909003
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c387t-dcf725e3ccedae99500ed65b738f3edcd3132231ee3ce19d44a62cf1964e6aad3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Fri Jul 11 10:38:52 EDT 2025
Thu Apr 03 07:09:56 EDT 2025
Tue Jul 01 02:15:51 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Wed Aug 27 02:53:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Malmquist–Takenaka system
time–frequency analysis
Electroencephalography (EEG)
rational functions (RFs)
seizure classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-dcf725e3ccedae99500ed65b738f3edcd3132231ee3ce19d44a62cf1964e6aad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25265603
PQID 1652398861
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1652398861
pubmed_primary_25265603
crossref_citationtrail_10_1109_TBME_2014_2360101
crossref_primary_10_1109_TBME_2014_2360101
ieee_primary_6909003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Feb.
2015-2-00
2015-Feb
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
xie (ref43) 0
ref11
ref10
ref17
ref51
ref50
ref46
ref45
ref48
kennedy (ref23) 0; 4
ref47
fridli (ref16) 2011; 35
ref42
ref41
ref44
ref49
fridli (ref12) 2012; 37
ref8
ref7
kohonen (ref5) 1989
ref9
ref4
ref3
ref6
ref40
ref35
(ref14) 2014
ref34
ref37
ref36
ref30
lócsi (ref19) 2011; 20
ref2
ref1
ref39
coifman (ref31) 1992
ref38
goldberger (ref29) 2000; 101
guyon (ref33) 2002
ref24
mitra (ref18) 2011
ref20
ref21
ref28
ref27
soumelidis (ref32) 0
mallat (ref26) 2008
kovács (ref25) 0
tzallas (ref22) 0
References_xml – ident: ref2
  doi: 10.1016/j.eswa.2007.02.009
– volume: 20
  start-page: 111
  year: 2011
  ident: ref19
  article-title: Calculating non-equidistant discretizations generated by Blaschke products
  publication-title: Acta Cybernetica
  doi: 10.14232/actacyb.20.1.2011.9
– start-page: 1
  year: 0
  ident: ref43
  article-title: V-LGBP: Volume based local Gabor binary patterns for face representation and recognition
  publication-title: Proc 19th Int Conf Pattern Recog
– ident: ref41
  doi: 10.1145/1543834.1543860
– ident: ref8
  doi: 10.1109/ICNC.2010.5583630
– ident: ref15
  doi: 10.1103/PhysRevE.64.061907
– ident: ref35
  doi: 10.1109/ICCSCE.2011.6190540
– volume: 35
  start-page: 95
  year: 2011
  ident: ref16
  article-title: Biorthogonal systems to rational functions
  publication-title: Ann Univ Sci Budapest Sect Comp
– ident: ref30
  doi: 10.1887/0750306920
– volume: 37
  start-page: 145
  year: 2012
  ident: ref12
  article-title: Rational modeling of multi-lead QRS complexes in ECG signals
  publication-title: Ann Univ Sci Budapest Sect Comp
– year: 1989
  ident: ref5
  publication-title: Self-Organization and Associative Memory
  doi: 10.1007/978-3-642-88163-3
– ident: ref45
  doi: 10.1155/2007/80510
– ident: ref27
  doi: 10.1109/5.30749
– ident: ref49
  doi: 10.1007/s11517-012-0967-8
– ident: ref42
  doi: 10.1016/j.eswa.2011.07.008
– ident: ref28
  doi: 10.1109/TITB.2009.2017939
– ident: ref39
  doi: 10.1016/j.eswa.2006.02.005
– ident: ref3
  doi: 10.1016/0013-4694(96)96001-0
– ident: ref20
  doi: 10.1109/SYNASC.2013.27
– ident: ref6
  doi: 10.1109/TBME.2007.891945
– volume: 101
  start-page: 215
  year: 2000
  ident: ref29
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref4
  doi: 10.1016/S0013-4694(98)00043-1
– ident: ref11
  doi: 10.1109/MeMeA.2012.6226656
– ident: ref50
  doi: 10.1016/j.eswa.2010.08.009
– ident: ref51
  doi: 10.1093/brain/awh149
– ident: ref10
  doi: 10.1007/978-3-642-27549-4_12
– ident: ref34
  doi: 10.1016/j.jneumeth.2005.04.013
– year: 0
  ident: ref22
  article-title: Automated epileptic seizure detection methods: A review study
  publication-title: Epilepsy-Histological Electroencephalographic and Psychological Aspects
– ident: ref40
  doi: 10.1016/j.eswa.2009.09.051
– volume: 4
  start-page: 1942
  year: 0
  ident: ref23
  article-title: Particle swarm optimization
  publication-title: Proc IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1995.488968
– start-page: 389
  year: 2002
  ident: ref33
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learning
  doi: 10.1023/A:1012487302797
– year: 2014
  ident: ref14
– year: 2008
  ident: ref26
  publication-title: A Wavelet Tour of Signal Processing The Sparse Way
– ident: ref21
  doi: 10.11601/ijates.v1i2-3.18
– ident: ref38
  doi: 10.1007/s10916-005-6133-1
– start-page: 153
  year: 1992
  ident: ref31
  article-title: Wavelet analysis and signal processing
  publication-title: Wavelets and Their Applications
– start-page: 1
  year: 0
  ident: ref25
  article-title: Hyperbolic particle swarm optimization with application in rational identification
  publication-title: Proc 21st Eur Signal Process Conf
– ident: ref7
  doi: 10.1016/S0165-0270(02)00340-0
– year: 0
  ident: ref32
  article-title: Frequency domain representation of signals in rational orthogonal bases
  publication-title: Proc IEEE 10th Mediterranean Conf Control Autom
– ident: ref24
  doi: 10.1007/978-3-642-37846-1
– ident: ref44
  doi: 10.1016/j.amc.2014.05.128
– ident: ref37
  doi: 10.1109/TITB.2006.884369
– ident: ref1
  doi: 10.1016/j.amc.2006.09.022
– year: 2011
  ident: ref18
  publication-title: Digital Signal Processing A Computer-Based Approach
– ident: ref48
  doi: 10.1016/j.jneumeth.2010.08.030
– ident: ref47
  doi: 10.1109/BIBE.2011.13
– ident: ref36
  doi: 10.1007/s10439-009-9795-x
– ident: ref13
  doi: 10.1109/ICASSP.2014.6854723
– ident: ref17
  doi: 10.1007/1-84628-178-4
– ident: ref46
  doi: 10.1016/j.sigpro.2008.01.026
– ident: ref9
  doi: 10.1109/ICBMI.2011.76
SSID ssj0014846
Score 2.5830739
Snippet A system for epileptic seizure detection in electroencephalography (EEG) is described in this paper. One of the challenges is to distinguish rhythmic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 541
SubjectTerms Accuracy
Algorithms
Brain - physiopathology
Diagnosis, Computer-Assisted - methods
EEG
Electroencephalography
Electroencephalography - methods
Epilepsy - diagnosis
Epilepsy - physiopathology
Feature extraction
Fourier Analysis
Fourier transforms
Humans
Malnquist-Takenaka system
Rational functions
Reproducibility of Results
Seizure classification
Sensitivity and Specificity
Signal Processing, Computer-Assisted
Time-frequency analysis
Title Epileptic Seizure Classification of EEG Time-Series Using Rational Discrete Short-Time Fourier Transform
URI https://ieeexplore.ieee.org/document/6909003
https://www.ncbi.nlm.nih.gov/pubmed/25265603
https://www.proquest.com/docview/1652398861
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VHhAcoLQ8FigyEieEt4ljJ_YR2iwV0nKgW6m3yLEnagXardrNpb8ej-NECAHiFinjPDRj-xvPzDcA72QbYHKWOR4ULrjsKsmtUJ5b5522dEdTofDya3l6Lr9cqIsd-DDVwiBiTD7DOV3GWL7fuJ6Oyo6CJ2citee94LgNtVpTxEDqoSgny8MEFkamCGaemaPVp2VNSVxyLgryP6g7jCBa-HJslZW2o9hf5e9QM245i8ewHD92yDT5Pu-37dzd_cbj-L9_swePEvZkHwdjeQI7uN6Hh78wEu7D_WWKtR_AZX0dVoywojh2hld3_Q2y2EGTcouiOtmmY3X9mVEVCadTNrxlMQOBfUsnjOzkKqxKAZazs8sA8zlJssXQJY-tRsj8FM4X9er4lKe-DNwVutpy77pKKCycQ2_RGJVl6EvVVoXuCvTOEx1kwI0YRDA3XkpbCtcR9ReW1vriGeyuN2t8AUx10pQobGUrLa1oNdrWGyFQq9bnRT6DbFRP4xJpOfXO-NFE5yUzDSm3IeU2SbkzeD8NuR4YO_4lfECKmQSTTmbwdrSBJkw3iqHYNW762yYvFTEm6jIMfT4YxzR4tKmXf37oK3gQXq2GlO_XsLu96fEwIJpt-yaa8k9CXe-O
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqIvFxKNBSulDASJwQ3iaOndhHClkWaHqgW6m3yLEnatVqt2o3l_56PI4TIQSIW6TYkaM3tp89M28IeScaT5OTxDIPOGeiLQQzXDpmrLPK4BuFicLVcT4_Fd_O5NkG-TDmwgBACD6DKT4GX75b2Q6vyg78SU4Hac97EpNx-2yt0WcgVJ-Wk6R-CnMtog8zTfTB4rAqMYxLTHmGJxCsD8NRGD4fimXFDSlUWPk72QybzuwxqYbh9rEml9Nu3Uzt3W9Kjv_7P0_IVmSf9GNvLk_JBiy3yaNfNAm3yf0qett3yHl57dcMv6ZYegIXd90N0FBDE6OLAqB01dKy_EIxj4ThPRvc0hCDQH_EO0b6-cKvS56Y05NzT_QZtqSzvk4eXQyk-Rk5nZWLT3MWKzMwm6lizZxtCy4hsxacAa1lkoDLZVNkqs3AWYeCkJ45gm8CqXZCmJzbFsW_IDfGZbtkc7lawh6hshU6B24KUyhheKPANE5zDko2Ls3SCUkGeGobZcuxesZVHY4via4R3BrBrSO4E_J-7HLda3b8q_EOAjM2jJhMyNvBBmo_4dCLYpaw6m7rNJeomahy3_V5bxxj58GmXvz5o2_Ig_miOqqPvh5_f0ke-mHIPgB8n2yubzp45fnNunkdzPon5XLy1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epileptic+seizure+classification+of+EEG+time-series+using+rational+discrete+short-time+fourier+transform&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Samiee%2C+Kaveh&rft.au=Kov%C3%A1cs%2C+Pet%C3%A9r&rft.au=Gabbouj%2C+Moncef&rft.date=2015-02-01&rft.eissn=1558-2531&rft.volume=62&rft.issue=2&rft.spage=541&rft_id=info:doi/10.1109%2FTBME.2014.2360101&rft_id=info%3Apmid%2F25265603&rft.externalDocID=25265603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon