Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion

•We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a casc...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 74; p. 102207
Main Authors Chen, Jiaqi, Zhang, Pengfei, Liu, Huafeng, Xu, Lei, Zhang, Heye
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2021.102207

Cover

Loading…
Abstract •We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a cascaded structure into multi-task learning, which improves the feature learning of different tasks.•We present the first work to leverage deep learning techniques in myocardial perfusion assessment to simultaneously obtain perfusion parameters and ischemic regions. [Display omitted] The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.
AbstractList The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.
•We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a cascaded structure into multi-task learning, which improves the feature learning of different tasks.•We present the first work to leverage deep learning techniques in myocardial perfusion assessment to simultaneously obtain perfusion parameters and ischemic regions. [Display omitted] The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.
ArticleNumber 102207
Author Xu, Lei
Zhang, Heye
Liu, Huafeng
Chen, Jiaqi
Zhang, Pengfei
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Chen
  fullname: Chen, Jiaqi
  organization: School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
– sequence: 2
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  email: pengf-zhang@163.com
  organization: The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shanodng, China
– sequence: 3
  givenname: Huafeng
  surname: Liu
  fullname: Liu, Huafeng
  organization: State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 4
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
– sequence: 5
  givenname: Heye
  surname: Zhang
  fullname: Zhang, Heye
  email: zhangheye@mail.sysu.edu.cn
  organization: School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34487982$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1rHDEQhkWwie2zf0EgCNKk2Ys-9rNIEQ4nMRhS2GnSCN1oBDrvShtJ65B_b53PceEirjSI5x2G5z0jRz54JOQdZ2vOePtpt57QOL0WTPDyIwTr3pBTLlte9bWQR88zb07IWUo7xlhX1-wtOZF13XdDL07Jr5tZZxeqjNMcoh7ptIzZVVmnO-ox_wnxjoJOoA1SGyLVAEvUGalOCVOa0GcabEFiOQXo5pbOGO2SXPDn5NjqMeHF07siP79e3m6-V9c_vl1tvlxXIPsuV6bBQTQ1a3qrkbeGAbS2Ad4LySVywxjIAbu6tXLLuTYg9GBNLRsU7bY3Uq7Ix8PeOYbfC6asJpcAx1F7DEtSoukYZwMrTlbkwwt0F5boy3VKtKzlw9A8Uu-fqGVbFKs5uknHv-qftQLIAwAxpBTRPiOcqX03aqceu1H7btShm5IaXqTA5b18n6N24yvZz4csFpH3DqNK4NBDASNCVia4_-YfAD9aqf0
CitedBy_id crossref_primary_10_1088_1361_6560_ac6cc2
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_1016_j_bspc_2022_104141
crossref_primary_10_1002_aisy_202400438
crossref_primary_10_1109_TBME_2024_3408636
Cites_doi 10.1148/radiol.11110638
10.1161/STROKEAHA.117.019740
10.1161/01.STR.32.4.933
10.1002/nbm.2833
10.1007/s12350-008-9018-0
10.1016/j.media.2019.101589
10.1093/eurheartj/ehp304
10.1007/s10554-010-9703-3
10.3389/fneur.2019.00647
10.1109/JSAIT.2020.2983643
10.1097/RLI.0b013e3181dfa2f2
10.1161/01.CIR.0000072790.23090.41
10.1016/j.media.2016.10.004
10.1007/s10439-012-0591-7
10.1016/j.media.2019.101568
10.1016/j.media.2016.07.009
10.1109/42.650883
10.1007/s00259-018-3951-1
10.1016/S0140-6736(13)61953-4
10.1007/s11222-009-9153-8
10.1093/eurheartj/ehq500
10.1007/s00330-017-5257-2
10.1109/TPAMI.2016.2577031
10.1016/j.jcct.2016.05.005
10.1161/str.47.suppl_1.wp41
10.1016/j.acra.2013.07.004
10.1007/s12350-011-9509-2
10.1016/j.media.2018.08.008
10.1002/mrm.10213
10.1016/j.jacc.2010.02.061
10.1088/1361-6420/ab6d57
10.1109/TPAMI.2016.2644615
10.1109/TMI.2011.2109733
10.1118/1.1473135
10.1016/j.neunet.2019.11.017
10.1109/TPAMI.2015.2439281
10.1038/jcbfm.2015.144
10.1002/mrm.10643
10.1016/j.jacc.2014.05.069
10.1109/TMI.2010.2043536
10.1109/TMI.2012.2189890
10.3389/fneur.2018.00679
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2021.102207
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 34487982
10_1016_j_media_2021_102207
S1361841521002528
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-d5e9254058fae16d0cc6f5c182313e1d00c39e746f3b11adc2a9fd435e26b8d33
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 06:59:41 EDT 2025
Sat Jul 26 03:25:43 EDT 2025
Wed Feb 19 02:27:29 EST 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Fri Feb 23 02:43:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatiotemporal representation
Myocardial perfusion
Multitask network cascade
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-d5e9254058fae16d0cc6f5c182313e1d00c39e746f3b11adc2a9fd435e26b8d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34487982
PQID 2606199542
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2570109042
proquest_journals_2606199542
pubmed_primary_34487982
crossref_primary_10_1016_j_media_2021_102207
crossref_citationtrail_10_1016_j_media_2021_102207
elsevier_sciencedirect_doi_10_1016_j_media_2021_102207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Boutelier, Kudo, Pautot, Sasaki (bib0010) 2012; 31
Hachamovitch, Rozanski, Shaw, Stone, Thomson, Friedman, Hayes, Cohen, Germano, Berman (bib0028) 2011; 32
Dantas, Assuncao, Marques, Fahel, Nomura, Avila, Giorgi, Soares, Meneghetti, Parga (bib0015) 2018; 28
Jerosch-Herold, Swingen, Seethamraju (bib0036) 2002; 29
Pinto, Pereira, Meier, Alves, Wiest, Silva, Reyes (bib0054) 2018
Qiu, Yao, Mei (bib0055) 2017
Maier, Menze, von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen (bib0046) 2017; 35
Hara, Kataoka, Satoh (bib0029) 2017
Held, Kops, Krause, Wells, Kikinis, Muller-Gartner (bib0032) 1997; 16
Tran, Bourdev, Fergus, Torresani, Paluri (bib0062) 2015
Vliegenthart, De Cecco, Wichmann, Meinel, Pelgrim, Tesche, Ebersberger, Pugliese, Bamberg, Choe (bib0063) 2016; 10
Slomka, Xu, Berman, Germano (bib0060) 2012; 19
Noh, Hong, Han (bib0051) 2015
Biglands, Ibraheem, Magee, Radjenovic, Plein, Greenwood (bib0008) 2018; 11
Maaten, Hinton (bib0045) 2008; 9
Mordini, Haddad, Hsu, Kellman, Lowrey, Aletras, Bandettini, Arai (bib0048) 2014; 7
Hachamovitch, Hayes, Friedman, Cohen, Berman (bib0027) 2003; 107
Donahue, Anne Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell (bib0016) 2015
Long, Shelhamer, Darrell (bib0043) 2015
Peng, Jalali, Yuan (bib0053) 2020; 1
Chiribiri, Hautvast, Lockie, Schuster, Bigalke, Olivotti, Redwood, Breeuwer, Plein, Nagel (bib0012) 2013; 6
Xu, Howey, Ohorodnyk, Roth, Zhang, Li (bib0068) 2020; 59
He, Zhang, Ren, Sun (bib0030) 2016
Bastarrika, Ramos-Duran, Rosenblum, Kang, Rowe, Schoepf (bib0006) 2010; 45
Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (bib0019) 2016
Schmid (bib0059) 2011; 30
Badrinarayanan, Kendall, Cipolla (bib0004) 2017; 39
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib0001) 2016
Nakamura, Kitagawa, Goto, Omori, Kurita, Yamada, Takafuji, Uno, Dohi, Sakuma (bib0049) 2019; 12
Ren, He, Girshick, Sun (bib0056) 2016; 39
Srivastava, Greff, Schmidhuber (bib0061) 2015
Fushiki (bib0023) 2011; 21
Patel, Antkowiak, Nandalur, West, Salerno, Arora, Christopher, Epstein, Kramer (bib0052) 2010; 56
Robben, Boers, Marquering, Langezaal, Roos, van Oostenbrugge, van Zwam, Dippel, Majoie, van der Lugt (bib0057) 2020; 59
Boink, Brune (bib0009) 2019
Lawrence, Lin (bib0040) 1989
Wu, Koroshetz, Østergaard, Buonanno, Copen, Gonzalez, Rordorf, Rosen, Schwamm, Weisskoff (bib0066) 2001; 32
Driessen, Raijmakers, Danad, Stuijfzand, Schumacher, Leipsic, Min, Knuuti, Lammertsma, van Rossum (bib0018) 2018; 45
Xiao, Liu, Liang, Stolte, Sanelli, Gupta, Ivanidze, Fang (bib0067) 2019; 10
Frindel, Rousseau, Berthezène, Wiart, Nighoghossian (bib0022) 2012
Ho, El-Saden, Scalzo, Bui, Arnold (bib0034) 2016; 47
Winzeck, Hakim, McKinley, Pinto, Alves, Silva, Pisov, Krivov, Belyaev, Monteiro (bib0065) 2018; 9
Dai, He, Sun (bib0013) 2016
Hess, Meier, Kaesmacher, Jung, Scalzo, Liebeskind, Wiest, McKinley (bib0033) 2018
Berman, Kang, Gransar, Gerlach, Friedman, Hayes, Thomson, Hachamovitch, Shaw, Slomka (bib0007) 2009; 16
Li, Schwab, Antholzer, Haltmeier (bib0041) 2020; 36
Liew, Ali, Do, Petranovic, Cury, Brady, Hoffmann, Ghoshhajra (bib0042) 2013; 20
Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0037) 2017; 36
Bamberg, Becker, Schwarz, Marcus, Greif, von Ziegler, Blankstein, Hoffmann, Sommer, Hoffmann (bib0005) 2011; 260
Kemmling, Flottmann, Forkert, Minnerup, Heindel, Thomalla, Eckert, Knauth, Psychogios, Langner (bib0038) 2015; 35
Kendall, Gal, Cipolla (bib0039) 2018
Zhang, Gao, Xu, Yu, Wong, Liu, Zhuang, Shi (bib0070) 2018; 6
Dong, Loy, He, Tang (bib0017) 2015; 38
Calamante, Gadian, Connelly (bib0011) 2003; 50
Scalzo, Hao, Alger, Hu, Liebeskind (bib0058) 2012; 40
Andersen, Szymkowiak, Rasmussen, Hanson, Marstrand, Larsson, Hansen (bib0002) 2002; 48
Lubbers, Kuijpers, Bodewes, Kappert, Kerkhof, Van Ooijen, Oudkerk (bib0044) 2011; 27
Danad, Uusitalo, Kero, Saraste, Raijmakers, Lammertsma, Heymans, Kajander, Pietilä, James (bib0014) 2014; 64
Giacalone, Rasti, Debs, Frindel, Cho, Grenier, Rousseau (bib0026) 2018; 50
Hong, Noh, Han (bib0035) 2015
Nielsen, Hansen, Tietze, Mouridsen (bib0050) 2018; 49
Gaemperli, Husmann, Schepis, Koepfli, Valenta, Jenni, Alkadhi, Lüscher, Kaufmann (bib0024) 2009; 30
He, Orten, Do, Karl, Kambadakone, Sahani, Pien (bib0031) 2010; 29
Mao, Shen, Yang (bib0047) 2016
Zhang, Yang, Zhao, Zhang, Zhang, Li (bib0069) 2019
Baccouche, Mamalet, Wolf, Garcia, Baskurt (bib0003) 2012
Feigin, Forouzanfar, Krishnamurthi, Mensah, Connor, Bennett, Moran, Sacco, Anderson, Truelsen (bib0020) 2014; 383
Fieselmann, Kowarschik, Ganguly, Hornegger, Fahrig (bib0021) 2011; 2011
Gao, Wang, Sun, Wu, Bai, Yin, Liu, Zhang, de Albuquerque (bib0025) 2020; 123
Willats, Calamante (bib0064) 2013; 26
Gao (10.1016/j.media.2021.102207_bib0025) 2020; 123
Dantas (10.1016/j.media.2021.102207_bib0015) 2018; 28
Hara (10.1016/j.media.2021.102207_bib0029) 2017
Maaten (10.1016/j.media.2021.102207_bib0045) 2008; 9
Srivastava (10.1016/j.media.2021.102207_bib0061) 2015
Li (10.1016/j.media.2021.102207_bib0041) 2020; 36
Hachamovitch (10.1016/j.media.2021.102207_bib0027) 2003; 107
Robben (10.1016/j.media.2021.102207_bib0057) 2020; 59
Winzeck (10.1016/j.media.2021.102207_bib0065) 2018; 9
Driessen (10.1016/j.media.2021.102207_bib0018) 2018; 45
Scalzo (10.1016/j.media.2021.102207_bib0058) 2012; 40
Ren (10.1016/j.media.2021.102207_bib0056) 2016; 39
Hess (10.1016/j.media.2021.102207_bib0033) 2018
Baccouche (10.1016/j.media.2021.102207_bib0003) 2012
Gaemperli (10.1016/j.media.2021.102207_bib0024) 2009; 30
Frindel (10.1016/j.media.2021.102207_bib0022) 2012
Maier (10.1016/j.media.2021.102207_bib0046) 2017; 35
Kamnitsas (10.1016/j.media.2021.102207_bib0037) 2017; 36
Patel (10.1016/j.media.2021.102207_bib0052) 2010; 56
Kemmling (10.1016/j.media.2021.102207_bib0038) 2015; 35
Mao (10.1016/j.media.2021.102207_bib0047) 2016
Mordini (10.1016/j.media.2021.102207_bib0048) 2014; 7
He (10.1016/j.media.2021.102207_bib0030) 2016
Jerosch-Herold (10.1016/j.media.2021.102207_bib0036) 2002; 29
Calamante (10.1016/j.media.2021.102207_bib0011) 2003; 50
Giacalone (10.1016/j.media.2021.102207_bib0026) 2018; 50
Held (10.1016/j.media.2021.102207_bib0032) 1997; 16
Xiao (10.1016/j.media.2021.102207_bib0067) 2019; 10
Hachamovitch (10.1016/j.media.2021.102207_bib0028) 2011; 32
Slomka (10.1016/j.media.2021.102207_bib0060) 2012; 19
Bamberg (10.1016/j.media.2021.102207_bib0005) 2011; 260
Dai (10.1016/j.media.2021.102207_bib0013) 2016
Qiu (10.1016/j.media.2021.102207_bib0055) 2017
Zhang (10.1016/j.media.2021.102207_bib0069) 2019
Tran (10.1016/j.media.2021.102207_bib0062) 2015
Biglands (10.1016/j.media.2021.102207_bib0008) 2018; 11
Ho (10.1016/j.media.2021.102207_sbref0034) 2016; 47
Boutelier (10.1016/j.media.2021.102207_bib0010) 2012; 31
Feigin (10.1016/j.media.2021.102207_bib0020) 2014; 383
Berman (10.1016/j.media.2021.102207_bib0007) 2009; 16
Noh (10.1016/j.media.2021.102207_bib0051) 2015
Fushiki (10.1016/j.media.2021.102207_bib0023) 2011; 21
Danad (10.1016/j.media.2021.102207_bib0014) 2014; 64
Long (10.1016/j.media.2021.102207_bib0043) 2015
Boink (10.1016/j.media.2021.102207_sbref0009) 2019
Peng (10.1016/j.media.2021.102207_bib0053) 2020; 1
Xu (10.1016/j.media.2021.102207_bib0068) 2020; 59
Chiribiri (10.1016/j.media.2021.102207_bib0012) 2013; 6
Nakamura (10.1016/j.media.2021.102207_bib0049) 2019; 12
Drozdzal (10.1016/j.media.2021.102207_bib0019) 2016
Badrinarayanan (10.1016/j.media.2021.102207_bib0004) 2017; 39
Andersen (10.1016/j.media.2021.102207_bib0002) 2002; 48
Pinto (10.1016/j.media.2021.102207_bib0054) 2018
Abadi (10.1016/j.media.2021.102207_sbref0001) 2016
Bastarrika (10.1016/j.media.2021.102207_bib0006) 2010; 45
He (10.1016/j.media.2021.102207_bib0031) 2010; 29
Wu (10.1016/j.media.2021.102207_bib0066) 2001; 32
Hong (10.1016/j.media.2021.102207_bib0035) 2015
Dong (10.1016/j.media.2021.102207_bib0017) 2015; 38
Zhang (10.1016/j.media.2021.102207_bib0070) 2018; 6
Fieselmann (10.1016/j.media.2021.102207_bib0021) 2011; 2011
Lubbers (10.1016/j.media.2021.102207_bib0044) 2011; 27
Donahue (10.1016/j.media.2021.102207_bib0016) 2015
Nielsen (10.1016/j.media.2021.102207_bib0050) 2018; 49
Willats (10.1016/j.media.2021.102207_bib0064) 2013; 26
Kendall (10.1016/j.media.2021.102207_bib0039) 2018
Lawrence (10.1016/j.media.2021.102207_bib0040) 1989
Liew (10.1016/j.media.2021.102207_bib0042) 2013; 20
Schmid (10.1016/j.media.2021.102207_bib0059) 2011; 30
Vliegenthart (10.1016/j.media.2021.102207_bib0063) 2016; 10
References_xml – start-page: 3150
  year: 2016
  end-page: 3158
  ident: bib0013
  article-title: Instance-aware semantic segmentation via multi-task network cascades
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 45
  start-page: 1091
  year: 2018
  end-page: 1100
  ident: bib0018
  article-title: Automated spect analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 20
  start-page: 1301
  year: 2013
  end-page: 1305
  ident: bib0042
  article-title: A novel analysis algorithm for potential quantitative assessment of myocardial computed tomography perfusion
  publication-title: Acad. Radiol.
– start-page: 255
  year: 1989
  end-page: 268
  ident: bib0040
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 48
  start-page: 351
  year: 2002
  end-page: 361
  ident: bib0002
  article-title: Perfusion quantification using gaussian process deconvolution
  publication-title: Mag. Resonance Med.
– volume: 49
  start-page: 1394
  year: 2018
  end-page: 1401
  ident: bib0050
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
– volume: 40
  start-page: 2177
  year: 2012
  end-page: 2187
  ident: bib0058
  article-title: Regional prediction of tissue fate in acute ischemic stroke
  publication-title: Ann. Biomed. Eng.
– start-page: 107
  year: 2018
  end-page: 115
  ident: bib0054
  article-title: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2012
  ident: bib0022
  article-title: Application d’une mesure de similarité locale pour la segmentation du système ventriculaire cérébral en irm de perfusion
  publication-title: Congrès inaugural de la Société Française de Résonance Magnétique en Biologie et Médecine (SFRMBM)
– volume: 35
  start-page: 250
  year: 2017
  end-page: 269
  ident: bib0046
  article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
– volume: 29
  start-page: 886
  year: 2002
  end-page: 897
  ident: bib0036
  article-title: Myocardial blood flow quantification with MRI by model-independent deconvolution
  publication-title: Med. Phys.
– volume: 35
  start-page: 1397
  year: 2015
  end-page: 1405
  ident: bib0038
  article-title: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization
  publication-title: J. Cerebral Blood Flow Metabol.
– volume: 260
  start-page: 689
  year: 2011
  end-page: 698
  ident: bib0005
  article-title: Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic ct-based myocardial perfusion imaging
  publication-title: Radiology
– volume: 45
  start-page: 306
  year: 2010
  end-page: 313
  ident: bib0006
  article-title: Adenosine-stress dynamic myocardial ct perfusion imaging: initial clinical experience
  publication-title: Invest. Radiol.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0045
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 647
  year: 2019
  ident: bib0067
  article-title: Stir-net: deep spatial-temporal image restoration net for radiation reduction in ct perfusion
  publication-title: Front. Neurol.
– volume: 50
  start-page: 1237
  year: 2003
  end-page: 1247
  ident: bib0011
  article-title: Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using tikhonov regularization
  publication-title: Mag. Reson. Med.
– volume: 36
  start-page: 065005
  year: 2020
  ident: bib0041
  article-title: Nett: solving inverse problems with deep neural networks
  publication-title: Inverse Probl.
– volume: 59
  start-page: 101589
  year: 2020
  ident: bib0057
  article-title: Prediction of final infarct volume from native ct perfusion and treatment parameters using deep learning
  publication-title: Med. Image Anal.
– volume: 383
  start-page: 245
  year: 2014
  end-page: 255
  ident: bib0020
  article-title: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010
  publication-title: Lancet
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0043
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 47
  year: 2016
  ident: bib0034
  article-title: Abstract wp41: predicting acute ischemic stroke tissue fate using deep learning on source perfusion mri
  publication-title: Stroke
– volume: 29
  start-page: 1182
  year: 2010
  end-page: 1191
  ident: bib0031
  article-title: A spatio-temporal deconvolution method to improve perfusion ct quantification
  publication-title: IEEE Trans. Med. Imaging
– volume: 123
  start-page: 82
  year: 2020
  end-page: 93
  ident: bib0025
  article-title: Learning physical properties in complex visual scenes: an intelligent machine for perceiving blood flow dynamics from static ct angiography imaging
  publication-title: Neural Netw.
– volume: 1
  start-page: 312
  year: 2020
  end-page: 323
  ident: bib0053
  article-title: Solving inverse problems via auto-encoders
  publication-title: IEEE J. Select. Areas Inf.Theory
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0062
  article-title: Learning spatiotemporal features with 3d convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0070
  article-title: A meshfree representation for cardiac medical image computing
  publication-title: IEEE J Transl Eng Health Med
– start-page: 1
  year: 2012
  end-page: 12
  ident: bib0003
  article-title: Spatio-temporal convolutional sparse auto-encoder for sequence classification.
  publication-title: BMVC
– volume: 21
  start-page: 137
  year: 2011
  end-page: 146
  ident: bib0023
  article-title: Estimation of prediction error by using k-fold cross-validation
  publication-title: Stat. Comput.
– volume: 16
  start-page: 45
  year: 2009
  ident: bib0007
  article-title: Quantitative assessment of myocardial perfusion abnormality on spect myocardial perfusion imaging is more reproducible than expert visual analysis
  publication-title: J. Nuclear Cardiol.
– volume: 28
  start-page: 2665
  year: 2018
  end-page: 2674
  ident: bib0015
  article-title: Myocardial perfusion in patients with suspected coronary artery disease: comparison between 320-MDCT and rubidium-82 pet
  publication-title: Eur. Radiol.
– volume: 9
  start-page: 679
  year: 2018
  ident: bib0065
  article-title: Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri
  publication-title: Front. Neurol.
– start-page: 2802
  year: 2016
  end-page: 2810
  ident: bib0047
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Advances in Neural Information Processing Systems
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0004
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 878
  year: 1997
  end-page: 886
  ident: bib0032
  article-title: Markov random field segmentation of brain mr images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2625
  year: 2015
  end-page: 2634
  ident: bib0016
  article-title: Long-term recurrent convolutional networks for visual recognition and description
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 64
  start-page: 1464
  year: 2014
  end-page: 1475
  ident: bib0014
  article-title: Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15o] h2o pet imaging
  publication-title: J. Am. Coll. Cardiol.
– volume: 10
  start-page: 301
  year: 2016
  end-page: 308
  ident: bib0063
  article-title: Dynamic ct myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: insights from a multicenter registry
  publication-title: J. Cardiovasc. Comput. Tomogr.
– volume: 2011
  start-page: 14
  year: 2011
  ident: bib0021
  article-title: Deconvolution-based ct and mr brain perfusion measurement: theoretical model revisited and practical implementation details
  publication-title: J. Biomed. Imaging
– volume: 12
  start-page: 1379
  year: 2019
  end-page: 1387
  ident: bib0049
  article-title: Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging
  publication-title: JACC
– volume: 32
  start-page: 1012
  year: 2011
  end-page: 1024
  ident: bib0028
  article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
  publication-title: Eur. Heart J.
– volume: 59
  start-page: 101568
  year: 2020
  ident: bib0068
  article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
  publication-title: Med. Image Anal.
– year: 2016
  ident: bib0001
  article-title: Tensorflow: large-scale machine learning on heterogeneous distributed systems
– start-page: 447
  year: 2018
  end-page: 455
  ident: bib0033
  article-title: Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning
  publication-title: International MICCAI Brainlesion Workshop
– start-page: 2377
  year: 2015
  end-page: 2385
  ident: bib0061
  article-title: Training very deep networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 5533
  year: 2017
  end-page: 5541
  ident: bib0055
  article-title: Learning spatio-temporal representation with pseudo-3d residual networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 7482
  year: 2018
  end-page: 7491
  ident: bib0039
  article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 933
  year: 2001
  end-page: 942
  ident: bib0066
  article-title: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted mr imaging
  publication-title: Stroke
– start-page: 3154
  year: 2017
  end-page: 3160
  ident: bib0029
  article-title: Learning spatio-temporal features with 3d residual networks for action recognition
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 107
  start-page: 2900
  year: 2003
  end-page: 2907
  ident: bib0027
  article-title: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography
  publication-title: Circulation
– year: 2019
  ident: bib0009
  article-title: Learned SVD: solving inverse problems via hybrid autoencoding
– volume: 56
  start-page: 561
  year: 2010
  end-page: 569
  ident: bib0052
  article-title: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis
  publication-title: J. Am. Coll. Cardiol.
– volume: 50
  start-page: 117
  year: 2018
  end-page: 126
  ident: bib0026
  article-title: Local spatio-temporal encoding of raw perfusion MRIfor the prediction of final lesion in stroke
  publication-title: Med. Image Anal.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0030
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1495
  year: 2015
  end-page: 1503
  ident: bib0035
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
  publication-title: Advances in Neural Information Processing Systems
– volume: 19
  start-page: 338
  year: 2012
  end-page: 346
  ident: bib0060
  article-title: Quantitative analysis of perfusion studies: strengths and pitfalls
  publication-title: J. Nuclear Cardiol.
– volume: 27
  start-page: 557
  year: 2011
  end-page: 562
  ident: bib0044
  article-title: Inter-observer variability of visual analysis of ”stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria
  publication-title: Int. J. Cardiovasc. Imaging
– volume: 30
  start-page: 1305
  year: 2011
  end-page: 1313
  ident: bib0059
  article-title: Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI
  publication-title: IEEE Trans. Med. Imaging
– start-page: 179
  year: 2016
  end-page: 187
  ident: bib0019
  article-title: The importance of skip connections in biomedical image segmentation
  publication-title: Deep Learning and Data Labeling for Medical Applications
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0051
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 11
  start-page: 711
  year: 2018
  end-page: 718
  ident: bib0008
  article-title: Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a ce-marc substudy
  publication-title: JACC
– volume: 7
  start-page: 14
  year: 2014
  end-page: 22
  ident: bib0048
  article-title: Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment
  publication-title: JACC
– volume: 6
  start-page: 600
  year: 2013
  end-page: 609
  ident: bib0012
  article-title: Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus ffr
  publication-title: JACC
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: bib0017
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach Intell.
– start-page: 449
  year: 2019
  end-page: 457
  ident: bib0069
  article-title: Direct quantification for coronary artery stenosis using multiview learning
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 31
  start-page: 1381
  year: 2012
  end-page: 1395
  ident: bib0010
  article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 913
  year: 2013
  end-page: 931
  ident: bib0064
  article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast mri
  publication-title: NMR Biomed.
– volume: 30
  start-page: 2921
  year: 2009
  end-page: 2929
  ident: bib0024
  article-title: Coronary ct angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization?
  publication-title: Eur. Heart J.
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: bib0037
  article-title: Efficient multi-scale 3d cnn with fully connected CRFfor accurate brain lesion segmentation
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1137
  year: 2016
  end-page: 1149
  ident: bib0056
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 260
  start-page: 689
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0005
  article-title: Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic ct-based myocardial perfusion imaging
  publication-title: Radiology
  doi: 10.1148/radiol.11110638
– volume: 49
  start-page: 1394
  issue: 6
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0050
  article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019740
– volume: 32
  start-page: 933
  issue: 4
  year: 2001
  ident: 10.1016/j.media.2021.102207_bib0066
  article-title: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted mr imaging
  publication-title: Stroke
  doi: 10.1161/01.STR.32.4.933
– volume: 11
  start-page: 711
  issue: 5
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0008
  article-title: Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a ce-marc substudy
  publication-title: JACC
– volume: 26
  start-page: 913
  issue: 8
  year: 2013
  ident: 10.1016/j.media.2021.102207_bib0064
  article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast mri
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2833
– year: 2019
  ident: 10.1016/j.media.2021.102207_sbref0009
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0030
  article-title: Deep residual learning for image recognition
– volume: 16
  start-page: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2021.102207_bib0007
  article-title: Quantitative assessment of myocardial perfusion abnormality on spect myocardial perfusion imaging is more reproducible than expert visual analysis
  publication-title: J. Nuclear Cardiol.
  doi: 10.1007/s12350-008-9018-0
– volume: 59
  start-page: 101589
  year: 2020
  ident: 10.1016/j.media.2021.102207_bib0057
  article-title: Prediction of final infarct volume from native ct perfusion and treatment parameters using deep learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101589
– volume: 30
  start-page: 2921
  issue: 23
  year: 2009
  ident: 10.1016/j.media.2021.102207_bib0024
  article-title: Coronary ct angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization?
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehp304
– volume: 27
  start-page: 557
  issue: 4
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0044
  article-title: Inter-observer variability of visual analysis of ”stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-010-9703-3
– start-page: 3150
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0013
  article-title: Instance-aware semantic segmentation via multi-task network cascades
– start-page: 2625
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0016
  article-title: Long-term recurrent convolutional networks for visual recognition and description
– volume: 10
  start-page: 647
  year: 2019
  ident: 10.1016/j.media.2021.102207_bib0067
  article-title: Stir-net: deep spatial-temporal image restoration net for radiation reduction in ct perfusion
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00647
– volume: 12
  start-page: 1379
  issue: 7 Part 2
  year: 2019
  ident: 10.1016/j.media.2021.102207_bib0049
  article-title: Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging
  publication-title: JACC
– volume: 1
  start-page: 312
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2021.102207_bib0053
  article-title: Solving inverse problems via auto-encoders
  publication-title: IEEE J. Select. Areas Inf.Theory
  doi: 10.1109/JSAIT.2020.2983643
– volume: 45
  start-page: 306
  issue: 6
  year: 2010
  ident: 10.1016/j.media.2021.102207_bib0006
  article-title: Adenosine-stress dynamic myocardial ct perfusion imaging: initial clinical experience
  publication-title: Invest. Radiol.
  doi: 10.1097/RLI.0b013e3181dfa2f2
– volume: 107
  start-page: 2900
  issue: 23
  year: 2003
  ident: 10.1016/j.media.2021.102207_bib0027
  article-title: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000072790.23090.41
– volume: 36
  start-page: 61
  year: 2017
  ident: 10.1016/j.media.2021.102207_bib0037
  article-title: Efficient multi-scale 3d cnn with fully connected CRFfor accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– start-page: 107
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0054
  article-title: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction
– volume: 40
  start-page: 2177
  issue: 10
  year: 2012
  ident: 10.1016/j.media.2021.102207_bib0058
  article-title: Regional prediction of tissue fate in acute ischemic stroke
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0591-7
– start-page: 2377
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0061
  article-title: Training very deep networks
– start-page: 5533
  year: 2017
  ident: 10.1016/j.media.2021.102207_bib0055
  article-title: Learning spatio-temporal representation with pseudo-3d residual networks
– year: 2016
  ident: 10.1016/j.media.2021.102207_sbref0001
– volume: 59
  start-page: 101568
  year: 2020
  ident: 10.1016/j.media.2021.102207_bib0068
  article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.101568
– start-page: 3154
  year: 2017
  ident: 10.1016/j.media.2021.102207_bib0029
  article-title: Learning spatio-temporal features with 3d residual networks for action recognition
– start-page: 179
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0019
  article-title: The importance of skip connections in biomedical image segmentation
– volume: 35
  start-page: 250
  year: 2017
  ident: 10.1016/j.media.2021.102207_bib0046
  article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.009
– volume: 16
  start-page: 878
  issue: 6
  year: 1997
  ident: 10.1016/j.media.2021.102207_bib0032
  article-title: Markov random field segmentation of brain mr images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.650883
– start-page: 1520
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0051
  article-title: Learning deconvolution network for semantic segmentation
– start-page: 7482
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0039
  article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
– volume: 45
  start-page: 1091
  issue: 7
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0018
  article-title: Automated spect analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-018-3951-1
– volume: 383
  start-page: 245
  issue: 9913
  year: 2014
  ident: 10.1016/j.media.2021.102207_bib0020
  article-title: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)61953-4
– volume: 21
  start-page: 137
  issue: 2
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0023
  article-title: Estimation of prediction error by using k-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– start-page: 1
  year: 2012
  ident: 10.1016/j.media.2021.102207_bib0003
  article-title: Spatio-temporal convolutional sparse auto-encoder for sequence classification.
– volume: 32
  start-page: 1012
  issue: 8
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0028
  article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehq500
– start-page: 3431
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0043
  article-title: Fully convolutional networks for semantic segmentation
– volume: 28
  start-page: 2665
  issue: 6
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0015
  article-title: Myocardial perfusion in patients with suspected coronary artery disease: comparison between 320-MDCT and rubidium-82 pet
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-5257-2
– volume: 39
  start-page: 1137
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0056
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 10
  start-page: 301
  issue: 4
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0063
  article-title: Dynamic ct myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: insights from a multicenter registry
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2016.05.005
– volume: 47
  issue: suppl_1
  year: 2016
  ident: 10.1016/j.media.2021.102207_sbref0034
  article-title: Abstract wp41: predicting acute ischemic stroke tissue fate using deep learning on source perfusion mri
  publication-title: Stroke
  doi: 10.1161/str.47.suppl_1.wp41
– volume: 20
  start-page: 1301
  issue: 10
  year: 2013
  ident: 10.1016/j.media.2021.102207_bib0042
  article-title: A novel analysis algorithm for potential quantitative assessment of myocardial computed tomography perfusion
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2013.07.004
– volume: 19
  start-page: 338
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2021.102207_bib0060
  article-title: Quantitative analysis of perfusion studies: strengths and pitfalls
  publication-title: J. Nuclear Cardiol.
  doi: 10.1007/s12350-011-9509-2
– year: 2012
  ident: 10.1016/j.media.2021.102207_bib0022
  article-title: Application d’une mesure de similarité locale pour la segmentation du système ventriculaire cérébral en irm de perfusion
– start-page: 4489
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0062
  article-title: Learning spatiotemporal features with 3d convolutional networks
– volume: 50
  start-page: 117
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0026
  article-title: Local spatio-temporal encoding of raw perfusion MRIfor the prediction of final lesion in stroke
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.08.008
– volume: 6
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0070
  article-title: A meshfree representation for cardiac medical image computing
  publication-title: IEEE J Transl Eng Health Med
– volume: 48
  start-page: 351
  issue: 2
  year: 2002
  ident: 10.1016/j.media.2021.102207_bib0002
  article-title: Perfusion quantification using gaussian process deconvolution
  publication-title: Mag. Resonance Med.
  doi: 10.1002/mrm.10213
– volume: 56
  start-page: 561
  issue: 7
  year: 2010
  ident: 10.1016/j.media.2021.102207_bib0052
  article-title: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2010.02.061
– start-page: 449
  year: 2019
  ident: 10.1016/j.media.2021.102207_bib0069
  article-title: Direct quantification for coronary artery stenosis using multiview learning
– volume: 36
  start-page: 065005
  issue: 6
  year: 2020
  ident: 10.1016/j.media.2021.102207_bib0041
  article-title: Nett: solving inverse problems with deep neural networks
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ab6d57
– volume: 7
  start-page: 14
  issue: 1
  year: 2014
  ident: 10.1016/j.media.2021.102207_bib0048
  article-title: Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment
  publication-title: JACC
– start-page: 2802
  year: 2016
  ident: 10.1016/j.media.2021.102207_bib0047
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.media.2021.102207_bib0004
  article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 1495
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0035
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
– start-page: 447
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0033
  article-title: Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning
– volume: 30
  start-page: 1305
  issue: 7
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0059
  article-title: Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2109733
– volume: 29
  start-page: 886
  issue: 5
  year: 2002
  ident: 10.1016/j.media.2021.102207_bib0036
  article-title: Myocardial blood flow quantification with MRI by model-independent deconvolution
  publication-title: Med. Phys.
  doi: 10.1118/1.1473135
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.media.2021.102207_bib0045
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 123
  start-page: 82
  year: 2020
  ident: 10.1016/j.media.2021.102207_bib0025
  article-title: Learning physical properties in complex visual scenes: an intelligent machine for perceiving blood flow dynamics from static ct angiography imaging
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.11.017
– volume: 38
  start-page: 295
  issue: 2
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0017
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach Intell.
  doi: 10.1109/TPAMI.2015.2439281
– volume: 35
  start-page: 1397
  issue: 9
  year: 2015
  ident: 10.1016/j.media.2021.102207_bib0038
  article-title: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization
  publication-title: J. Cerebral Blood Flow Metabol.
  doi: 10.1038/jcbfm.2015.144
– volume: 50
  start-page: 1237
  issue: 6
  year: 2003
  ident: 10.1016/j.media.2021.102207_bib0011
  article-title: Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using tikhonov regularization
  publication-title: Mag. Reson. Med.
  doi: 10.1002/mrm.10643
– volume: 64
  start-page: 1464
  issue: 14
  year: 2014
  ident: 10.1016/j.media.2021.102207_bib0014
  article-title: Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15o] h2o pet imaging
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2014.05.069
– volume: 29
  start-page: 1182
  issue: 5
  year: 2010
  ident: 10.1016/j.media.2021.102207_bib0031
  article-title: A spatio-temporal deconvolution method to improve perfusion ct quantification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2043536
– volume: 6
  start-page: 600
  issue: 5
  year: 2013
  ident: 10.1016/j.media.2021.102207_bib0012
  article-title: Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus ffr
  publication-title: JACC
– volume: 2011
  start-page: 14
  year: 2011
  ident: 10.1016/j.media.2021.102207_bib0021
  article-title: Deconvolution-based ct and mr brain perfusion measurement: theoretical model revisited and practical implementation details
  publication-title: J. Biomed. Imaging
– start-page: 255
  year: 1989
  ident: 10.1016/j.media.2021.102207_bib0040
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 31
  start-page: 1381
  issue: 7
  year: 2012
  ident: 10.1016/j.media.2021.102207_bib0010
  article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2189890
– volume: 9
  start-page: 679
  year: 2018
  ident: 10.1016/j.media.2021.102207_bib0065
  article-title: Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00679
SSID ssj0007440
Score 2.3736029
Snippet •We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal...
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102207
SubjectTerms Algorithms
Automation
Cardiovascular disease
Coders
Computed tomography
Coronary artery
Coronary artery disease
Encoders-Decoders
Heart
Heart diseases
Humans
Ischemia
Multitask network cascade
Myocardial perfusion
Parameters
Perfusion
Representations
Spatiotemporal representation
Tomography, X-Ray Computed
Title Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion
URI https://dx.doi.org/10.1016/j.media.2021.102207
https://www.ncbi.nlm.nih.gov/pubmed/34487982
https://www.proquest.com/docview/2606199542
https://www.proquest.com/docview/2570109042
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6Yje3EyR6XFWV5tJe2qOJiOWNbKlTZVXf32t-Ox3EWkKAHTlGSiWSNx56Z-JtvAF5L57F1WPGyVQUvqwJ5o1FxjdG9hFCqkAqFj0_0_Lz8dFFd7MBsqIUhWGXe-_s9Pe3W-ck4a3O8vLwcnwpFzUrI_5DjllTwS-x10abf3vyCeRABXl97JThJD8xDCeOVqjNikigFURhI6in7d-_0r-gzeaGjh_Agh49s2o_wEez4bg_u_0YquAd3j_Nx-WP4dprw0jzzT12xBB_ka7v6wboe_83Qrggiz2LwyizihqgjmN3ydbJFiCJkRchmZ2zpr8OGfrA9gfOj92ezOc_NFDiqpl5zV_mJpPCsCdYL7QpEHSoUdAyovHBFgWri61IH1QphHUo7CS4GU17qtnFKPYXdbtH558BE6wOirCVqV2pV2qJ2RAynvY3ZS4UjkIMSDWamcWp4cWUGSNl3kzRvSPOm1_wI3mw_WvZEG7eL62F2zB_2YqIruP3Dg2EuTV6uKxOTOk216qUcwavt67jQ6PTEdn6xiTJVnVCsJPOst4HtQFVMcutJI_f_d1Qv4B7d9TiZA9hdX2_8yxjtrNvDZM6HcGf68fP8JF4_vPvydfoTGKX-fQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVOJxQFBegQJG4oiVXdvr3RyriCqlTS5NpYqL5R3bUqHaRE3y__HselcgQQ9c12PJGo_nsf7mM8Bn4TzWDguuaplxVWTIK42Sa4zhJQQlQ9sovFjq-ZX6dl1cH8Cs74UhWGXy_Z1Pb711-jJJ2pxsbm4ml7mkx0oo_lDgFtUDOCR2KjWCw5Oz8_lycMjEgde1X-WcJvTkQy3Mq23QiHWiyInFQNCzsn8PUP9KQNtAdPoMnqYMkp10i3wOB745gie_8QoewcNFujF_Ad8vW8g0TxRUt6xFEPKd3f5kTQcBZ2i3hJJnMX9lFnFP7BHMDpSdbB2iCBkSstmKbfxd2NM_tpdwdfp1NZvz9J4CR1mVO-4KPxWUoVXB-ly7DFGHAnO6CZQ-d1mGcupLpYOs89w6FHYaXMynvNB15aR8BaNm3fg3wPLaB0RRCtROaalsVjrihtPexgKmwDGIXokGE9k4vXlxa3pU2Q_Tat6Q5k2n-TF8GSZtOq6N-8V1vzvmD5MxMRrcP_G430uTTuzWxLpOU7u6EmP4NAzHs0YXKLbx632UKcoWyEoyrzsbGBYqY51bTivx9n9X9REezVeLC3Nxtjx_B49ppIPNHMNod7f372Pys6s_JOP-BdgB_58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+multi-task+network+cascade+for+accurate+assessment+of+cardiac+CT+perfusion&rft.jtitle=Medical+image+analysis&rft.au=Chen%2C+Jiaqi&rft.au=Zhang%2C+Pengfei&rft.au=Liu%2C+Huafeng&rft.au=Xu%2C+Lei&rft.date=2021-12-01&rft.issn=1361-8415&rft.volume=74&rft.spage=102207&rft_id=info:doi/10.1016%2Fj.media.2021.102207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2021_102207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon