Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion
•We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a casc...
Saved in:
Published in | Medical image analysis Vol. 74; p. 102207 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2021.102207 |
Cover
Loading…
Abstract | •We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a cascaded structure into multi-task learning, which improves the feature learning of different tasks.•We present the first work to leverage deep learning techniques in myocardial perfusion assessment to simultaneously obtain perfusion parameters and ischemic regions.
[Display omitted]
The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. |
---|---|
AbstractList | The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion.The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. •We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal encoder-decoder architecture based on pseudo-3D convolutions is proposed to capture patch-based spatio-temporal representations.•We introduce a cascaded structure into multi-task learning, which improves the feature learning of different tasks.•We present the first work to leverage deep learning techniques in myocardial perfusion assessment to simultaneously obtain perfusion parameters and ischemic regions. [Display omitted] The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion assessment is time-consuming and subjective. Although automated methods by threshold processing have been proposed, they cannot obtain an accurate perfusion assessment. Thus, there is a great clinical demand to obtain a rapid and accurate assessment of myocardial perfusion through a standard procedure using an automated algorithm. In this work, we present a spatio-temporal multi-task network cascade (ST-MNC) to provide an accurate and robust assessment of myocardial perfusion. The proposed network captures patch-based spatio-temporal representations for each pixel through a spatio-temporal encoder-decoder network. Then the multi-task network cascade uses spatio-temporal representations as shared features to predict various perfusion parameters and myocardial ischemic regions. Extensive experiments on CT images of 232 subjects demonstrate ST-MNC could produce a good approximation for perfusion parameters and an accurate classification for ischemic regions. These results show that our proposed method can provide a fast and accurate assessment of myocardial perfusion. |
ArticleNumber | 102207 |
Author | Xu, Lei Zhang, Heye Liu, Huafeng Chen, Jiaqi Zhang, Pengfei |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Chen fullname: Chen, Jiaqi organization: School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Pengfei surname: Zhang fullname: Zhang, Pengfei email: pengf-zhang@163.com organization: The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Shanodng, China – sequence: 3 givenname: Huafeng surname: Liu fullname: Liu, Huafeng organization: State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 4 givenname: Lei surname: Xu fullname: Xu, Lei organization: Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China – sequence: 5 givenname: Heye surname: Zhang fullname: Zhang, Heye email: zhangheye@mail.sysu.edu.cn organization: School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34487982$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1rHDEQhkWwie2zf0EgCNKk2Ys-9rNIEQ4nMRhS2GnSCN1oBDrvShtJ65B_b53PceEirjSI5x2G5z0jRz54JOQdZ2vOePtpt57QOL0WTPDyIwTr3pBTLlte9bWQR88zb07IWUo7xlhX1-wtOZF13XdDL07Jr5tZZxeqjNMcoh7ptIzZVVmnO-ox_wnxjoJOoA1SGyLVAEvUGalOCVOa0GcabEFiOQXo5pbOGO2SXPDn5NjqMeHF07siP79e3m6-V9c_vl1tvlxXIPsuV6bBQTQ1a3qrkbeGAbS2Ad4LySVywxjIAbu6tXLLuTYg9GBNLRsU7bY3Uq7Ix8PeOYbfC6asJpcAx1F7DEtSoukYZwMrTlbkwwt0F5boy3VKtKzlw9A8Uu-fqGVbFKs5uknHv-qftQLIAwAxpBTRPiOcqX03aqceu1H7btShm5IaXqTA5b18n6N24yvZz4csFpH3DqNK4NBDASNCVia4_-YfAD9aqf0 |
CitedBy_id | crossref_primary_10_1088_1361_6560_ac6cc2 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_1016_j_bspc_2022_104141 crossref_primary_10_1002_aisy_202400438 crossref_primary_10_1109_TBME_2024_3408636 |
Cites_doi | 10.1148/radiol.11110638 10.1161/STROKEAHA.117.019740 10.1161/01.STR.32.4.933 10.1002/nbm.2833 10.1007/s12350-008-9018-0 10.1016/j.media.2019.101589 10.1093/eurheartj/ehp304 10.1007/s10554-010-9703-3 10.3389/fneur.2019.00647 10.1109/JSAIT.2020.2983643 10.1097/RLI.0b013e3181dfa2f2 10.1161/01.CIR.0000072790.23090.41 10.1016/j.media.2016.10.004 10.1007/s10439-012-0591-7 10.1016/j.media.2019.101568 10.1016/j.media.2016.07.009 10.1109/42.650883 10.1007/s00259-018-3951-1 10.1016/S0140-6736(13)61953-4 10.1007/s11222-009-9153-8 10.1093/eurheartj/ehq500 10.1007/s00330-017-5257-2 10.1109/TPAMI.2016.2577031 10.1016/j.jcct.2016.05.005 10.1161/str.47.suppl_1.wp41 10.1016/j.acra.2013.07.004 10.1007/s12350-011-9509-2 10.1016/j.media.2018.08.008 10.1002/mrm.10213 10.1016/j.jacc.2010.02.061 10.1088/1361-6420/ab6d57 10.1109/TPAMI.2016.2644615 10.1109/TMI.2011.2109733 10.1118/1.1473135 10.1016/j.neunet.2019.11.017 10.1109/TPAMI.2015.2439281 10.1038/jcbfm.2015.144 10.1002/mrm.10643 10.1016/j.jacc.2014.05.069 10.1109/TMI.2010.2043536 10.1109/TMI.2012.2189890 10.3389/fneur.2018.00679 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2021.102207 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 34487982 10_1016_j_media_2021_102207 S1361841521002528 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c387t-d5e9254058fae16d0cc6f5c182313e1d00c39e746f3b11adc2a9fd435e26b8d33 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 06:59:41 EDT 2025 Sat Jul 26 03:25:43 EDT 2025 Wed Feb 19 02:27:29 EST 2025 Tue Jul 01 02:49:31 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 23 02:43:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Spatiotemporal representation Myocardial perfusion Multitask network cascade |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-d5e9254058fae16d0cc6f5c182313e1d00c39e746f3b11adc2a9fd435e26b8d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34487982 |
PQID | 2606199542 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2570109042 proquest_journals_2606199542 pubmed_primary_34487982 crossref_primary_10_1016_j_media_2021_102207 crossref_citationtrail_10_1016_j_media_2021_102207 elsevier_sciencedirect_doi_10_1016_j_media_2021_102207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Boutelier, Kudo, Pautot, Sasaki (bib0010) 2012; 31 Hachamovitch, Rozanski, Shaw, Stone, Thomson, Friedman, Hayes, Cohen, Germano, Berman (bib0028) 2011; 32 Dantas, Assuncao, Marques, Fahel, Nomura, Avila, Giorgi, Soares, Meneghetti, Parga (bib0015) 2018; 28 Jerosch-Herold, Swingen, Seethamraju (bib0036) 2002; 29 Pinto, Pereira, Meier, Alves, Wiest, Silva, Reyes (bib0054) 2018 Qiu, Yao, Mei (bib0055) 2017 Maier, Menze, von der Gablentz, Häni, Heinrich, Liebrand, Winzeck, Basit, Bentley, Chen (bib0046) 2017; 35 Hara, Kataoka, Satoh (bib0029) 2017 Held, Kops, Krause, Wells, Kikinis, Muller-Gartner (bib0032) 1997; 16 Tran, Bourdev, Fergus, Torresani, Paluri (bib0062) 2015 Vliegenthart, De Cecco, Wichmann, Meinel, Pelgrim, Tesche, Ebersberger, Pugliese, Bamberg, Choe (bib0063) 2016; 10 Slomka, Xu, Berman, Germano (bib0060) 2012; 19 Noh, Hong, Han (bib0051) 2015 Biglands, Ibraheem, Magee, Radjenovic, Plein, Greenwood (bib0008) 2018; 11 Maaten, Hinton (bib0045) 2008; 9 Mordini, Haddad, Hsu, Kellman, Lowrey, Aletras, Bandettini, Arai (bib0048) 2014; 7 Hachamovitch, Hayes, Friedman, Cohen, Berman (bib0027) 2003; 107 Donahue, Anne Hendricks, Guadarrama, Rohrbach, Venugopalan, Saenko, Darrell (bib0016) 2015 Long, Shelhamer, Darrell (bib0043) 2015 Peng, Jalali, Yuan (bib0053) 2020; 1 Chiribiri, Hautvast, Lockie, Schuster, Bigalke, Olivotti, Redwood, Breeuwer, Plein, Nagel (bib0012) 2013; 6 Xu, Howey, Ohorodnyk, Roth, Zhang, Li (bib0068) 2020; 59 He, Zhang, Ren, Sun (bib0030) 2016 Bastarrika, Ramos-Duran, Rosenblum, Kang, Rowe, Schoepf (bib0006) 2010; 45 Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (bib0019) 2016 Schmid (bib0059) 2011; 30 Badrinarayanan, Kendall, Cipolla (bib0004) 2017; 39 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin (bib0001) 2016 Nakamura, Kitagawa, Goto, Omori, Kurita, Yamada, Takafuji, Uno, Dohi, Sakuma (bib0049) 2019; 12 Ren, He, Girshick, Sun (bib0056) 2016; 39 Srivastava, Greff, Schmidhuber (bib0061) 2015 Fushiki (bib0023) 2011; 21 Patel, Antkowiak, Nandalur, West, Salerno, Arora, Christopher, Epstein, Kramer (bib0052) 2010; 56 Robben, Boers, Marquering, Langezaal, Roos, van Oostenbrugge, van Zwam, Dippel, Majoie, van der Lugt (bib0057) 2020; 59 Boink, Brune (bib0009) 2019 Lawrence, Lin (bib0040) 1989 Wu, Koroshetz, Østergaard, Buonanno, Copen, Gonzalez, Rordorf, Rosen, Schwamm, Weisskoff (bib0066) 2001; 32 Driessen, Raijmakers, Danad, Stuijfzand, Schumacher, Leipsic, Min, Knuuti, Lammertsma, van Rossum (bib0018) 2018; 45 Xiao, Liu, Liang, Stolte, Sanelli, Gupta, Ivanidze, Fang (bib0067) 2019; 10 Frindel, Rousseau, Berthezène, Wiart, Nighoghossian (bib0022) 2012 Ho, El-Saden, Scalzo, Bui, Arnold (bib0034) 2016; 47 Winzeck, Hakim, McKinley, Pinto, Alves, Silva, Pisov, Krivov, Belyaev, Monteiro (bib0065) 2018; 9 Dai, He, Sun (bib0013) 2016 Hess, Meier, Kaesmacher, Jung, Scalzo, Liebeskind, Wiest, McKinley (bib0033) 2018 Berman, Kang, Gransar, Gerlach, Friedman, Hayes, Thomson, Hachamovitch, Shaw, Slomka (bib0007) 2009; 16 Li, Schwab, Antholzer, Haltmeier (bib0041) 2020; 36 Liew, Ali, Do, Petranovic, Cury, Brady, Hoffmann, Ghoshhajra (bib0042) 2013; 20 Kamnitsas, Ledig, Newcombe, Simpson, Kane, Menon, Rueckert, Glocker (bib0037) 2017; 36 Bamberg, Becker, Schwarz, Marcus, Greif, von Ziegler, Blankstein, Hoffmann, Sommer, Hoffmann (bib0005) 2011; 260 Kemmling, Flottmann, Forkert, Minnerup, Heindel, Thomalla, Eckert, Knauth, Psychogios, Langner (bib0038) 2015; 35 Kendall, Gal, Cipolla (bib0039) 2018 Zhang, Gao, Xu, Yu, Wong, Liu, Zhuang, Shi (bib0070) 2018; 6 Dong, Loy, He, Tang (bib0017) 2015; 38 Calamante, Gadian, Connelly (bib0011) 2003; 50 Scalzo, Hao, Alger, Hu, Liebeskind (bib0058) 2012; 40 Andersen, Szymkowiak, Rasmussen, Hanson, Marstrand, Larsson, Hansen (bib0002) 2002; 48 Lubbers, Kuijpers, Bodewes, Kappert, Kerkhof, Van Ooijen, Oudkerk (bib0044) 2011; 27 Danad, Uusitalo, Kero, Saraste, Raijmakers, Lammertsma, Heymans, Kajander, Pietilä, James (bib0014) 2014; 64 Giacalone, Rasti, Debs, Frindel, Cho, Grenier, Rousseau (bib0026) 2018; 50 Hong, Noh, Han (bib0035) 2015 Nielsen, Hansen, Tietze, Mouridsen (bib0050) 2018; 49 Gaemperli, Husmann, Schepis, Koepfli, Valenta, Jenni, Alkadhi, Lüscher, Kaufmann (bib0024) 2009; 30 He, Orten, Do, Karl, Kambadakone, Sahani, Pien (bib0031) 2010; 29 Mao, Shen, Yang (bib0047) 2016 Zhang, Yang, Zhao, Zhang, Zhang, Li (bib0069) 2019 Baccouche, Mamalet, Wolf, Garcia, Baskurt (bib0003) 2012 Feigin, Forouzanfar, Krishnamurthi, Mensah, Connor, Bennett, Moran, Sacco, Anderson, Truelsen (bib0020) 2014; 383 Fieselmann, Kowarschik, Ganguly, Hornegger, Fahrig (bib0021) 2011; 2011 Gao, Wang, Sun, Wu, Bai, Yin, Liu, Zhang, de Albuquerque (bib0025) 2020; 123 Willats, Calamante (bib0064) 2013; 26 Gao (10.1016/j.media.2021.102207_bib0025) 2020; 123 Dantas (10.1016/j.media.2021.102207_bib0015) 2018; 28 Hara (10.1016/j.media.2021.102207_bib0029) 2017 Maaten (10.1016/j.media.2021.102207_bib0045) 2008; 9 Srivastava (10.1016/j.media.2021.102207_bib0061) 2015 Li (10.1016/j.media.2021.102207_bib0041) 2020; 36 Hachamovitch (10.1016/j.media.2021.102207_bib0027) 2003; 107 Robben (10.1016/j.media.2021.102207_bib0057) 2020; 59 Winzeck (10.1016/j.media.2021.102207_bib0065) 2018; 9 Driessen (10.1016/j.media.2021.102207_bib0018) 2018; 45 Scalzo (10.1016/j.media.2021.102207_bib0058) 2012; 40 Ren (10.1016/j.media.2021.102207_bib0056) 2016; 39 Hess (10.1016/j.media.2021.102207_bib0033) 2018 Baccouche (10.1016/j.media.2021.102207_bib0003) 2012 Gaemperli (10.1016/j.media.2021.102207_bib0024) 2009; 30 Frindel (10.1016/j.media.2021.102207_bib0022) 2012 Maier (10.1016/j.media.2021.102207_bib0046) 2017; 35 Kamnitsas (10.1016/j.media.2021.102207_bib0037) 2017; 36 Patel (10.1016/j.media.2021.102207_bib0052) 2010; 56 Kemmling (10.1016/j.media.2021.102207_bib0038) 2015; 35 Mao (10.1016/j.media.2021.102207_bib0047) 2016 Mordini (10.1016/j.media.2021.102207_bib0048) 2014; 7 He (10.1016/j.media.2021.102207_bib0030) 2016 Jerosch-Herold (10.1016/j.media.2021.102207_bib0036) 2002; 29 Calamante (10.1016/j.media.2021.102207_bib0011) 2003; 50 Giacalone (10.1016/j.media.2021.102207_bib0026) 2018; 50 Held (10.1016/j.media.2021.102207_bib0032) 1997; 16 Xiao (10.1016/j.media.2021.102207_bib0067) 2019; 10 Hachamovitch (10.1016/j.media.2021.102207_bib0028) 2011; 32 Slomka (10.1016/j.media.2021.102207_bib0060) 2012; 19 Bamberg (10.1016/j.media.2021.102207_bib0005) 2011; 260 Dai (10.1016/j.media.2021.102207_bib0013) 2016 Qiu (10.1016/j.media.2021.102207_bib0055) 2017 Zhang (10.1016/j.media.2021.102207_bib0069) 2019 Tran (10.1016/j.media.2021.102207_bib0062) 2015 Biglands (10.1016/j.media.2021.102207_bib0008) 2018; 11 Ho (10.1016/j.media.2021.102207_sbref0034) 2016; 47 Boutelier (10.1016/j.media.2021.102207_bib0010) 2012; 31 Feigin (10.1016/j.media.2021.102207_bib0020) 2014; 383 Berman (10.1016/j.media.2021.102207_bib0007) 2009; 16 Noh (10.1016/j.media.2021.102207_bib0051) 2015 Fushiki (10.1016/j.media.2021.102207_bib0023) 2011; 21 Danad (10.1016/j.media.2021.102207_bib0014) 2014; 64 Long (10.1016/j.media.2021.102207_bib0043) 2015 Boink (10.1016/j.media.2021.102207_sbref0009) 2019 Peng (10.1016/j.media.2021.102207_bib0053) 2020; 1 Xu (10.1016/j.media.2021.102207_bib0068) 2020; 59 Chiribiri (10.1016/j.media.2021.102207_bib0012) 2013; 6 Nakamura (10.1016/j.media.2021.102207_bib0049) 2019; 12 Drozdzal (10.1016/j.media.2021.102207_bib0019) 2016 Badrinarayanan (10.1016/j.media.2021.102207_bib0004) 2017; 39 Andersen (10.1016/j.media.2021.102207_bib0002) 2002; 48 Pinto (10.1016/j.media.2021.102207_bib0054) 2018 Abadi (10.1016/j.media.2021.102207_sbref0001) 2016 Bastarrika (10.1016/j.media.2021.102207_bib0006) 2010; 45 He (10.1016/j.media.2021.102207_bib0031) 2010; 29 Wu (10.1016/j.media.2021.102207_bib0066) 2001; 32 Hong (10.1016/j.media.2021.102207_bib0035) 2015 Dong (10.1016/j.media.2021.102207_bib0017) 2015; 38 Zhang (10.1016/j.media.2021.102207_bib0070) 2018; 6 Fieselmann (10.1016/j.media.2021.102207_bib0021) 2011; 2011 Lubbers (10.1016/j.media.2021.102207_bib0044) 2011; 27 Donahue (10.1016/j.media.2021.102207_bib0016) 2015 Nielsen (10.1016/j.media.2021.102207_bib0050) 2018; 49 Willats (10.1016/j.media.2021.102207_bib0064) 2013; 26 Kendall (10.1016/j.media.2021.102207_bib0039) 2018 Lawrence (10.1016/j.media.2021.102207_bib0040) 1989 Liew (10.1016/j.media.2021.102207_bib0042) 2013; 20 Schmid (10.1016/j.media.2021.102207_bib0059) 2011; 30 Vliegenthart (10.1016/j.media.2021.102207_bib0063) 2016; 10 |
References_xml | – start-page: 3150 year: 2016 end-page: 3158 ident: bib0013 article-title: Instance-aware semantic segmentation via multi-task network cascades publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 45 start-page: 1091 year: 2018 end-page: 1100 ident: bib0018 article-title: Automated spect analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease publication-title: Eur. J. Nucl. Med. Mol. Imaging – volume: 20 start-page: 1301 year: 2013 end-page: 1305 ident: bib0042 article-title: A novel analysis algorithm for potential quantitative assessment of myocardial computed tomography perfusion publication-title: Acad. Radiol. – start-page: 255 year: 1989 end-page: 268 ident: bib0040 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 48 start-page: 351 year: 2002 end-page: 361 ident: bib0002 article-title: Perfusion quantification using gaussian process deconvolution publication-title: Mag. Resonance Med. – volume: 49 start-page: 1394 year: 2018 end-page: 1401 ident: bib0050 article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning publication-title: Stroke – volume: 40 start-page: 2177 year: 2012 end-page: 2187 ident: bib0058 article-title: Regional prediction of tissue fate in acute ischemic stroke publication-title: Ann. Biomed. Eng. – start-page: 107 year: 2018 end-page: 115 ident: bib0054 article-title: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2012 ident: bib0022 article-title: Application d’une mesure de similarité locale pour la segmentation du système ventriculaire cérébral en irm de perfusion publication-title: Congrès inaugural de la Société Française de Résonance Magnétique en Biologie et Médecine (SFRMBM) – volume: 35 start-page: 250 year: 2017 end-page: 269 ident: bib0046 article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. – volume: 29 start-page: 886 year: 2002 end-page: 897 ident: bib0036 article-title: Myocardial blood flow quantification with MRI by model-independent deconvolution publication-title: Med. Phys. – volume: 35 start-page: 1397 year: 2015 end-page: 1405 ident: bib0038 article-title: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization publication-title: J. Cerebral Blood Flow Metabol. – volume: 260 start-page: 689 year: 2011 end-page: 698 ident: bib0005 article-title: Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic ct-based myocardial perfusion imaging publication-title: Radiology – volume: 45 start-page: 306 year: 2010 end-page: 313 ident: bib0006 article-title: Adenosine-stress dynamic myocardial ct perfusion imaging: initial clinical experience publication-title: Invest. Radiol. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0045 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 10 start-page: 647 year: 2019 ident: bib0067 article-title: Stir-net: deep spatial-temporal image restoration net for radiation reduction in ct perfusion publication-title: Front. Neurol. – volume: 50 start-page: 1237 year: 2003 end-page: 1247 ident: bib0011 article-title: Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using tikhonov regularization publication-title: Mag. Reson. Med. – volume: 36 start-page: 065005 year: 2020 ident: bib0041 article-title: Nett: solving inverse problems with deep neural networks publication-title: Inverse Probl. – volume: 59 start-page: 101589 year: 2020 ident: bib0057 article-title: Prediction of final infarct volume from native ct perfusion and treatment parameters using deep learning publication-title: Med. Image Anal. – volume: 383 start-page: 245 year: 2014 end-page: 255 ident: bib0020 article-title: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010 publication-title: Lancet – start-page: 3431 year: 2015 end-page: 3440 ident: bib0043 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 47 year: 2016 ident: bib0034 article-title: Abstract wp41: predicting acute ischemic stroke tissue fate using deep learning on source perfusion mri publication-title: Stroke – volume: 29 start-page: 1182 year: 2010 end-page: 1191 ident: bib0031 article-title: A spatio-temporal deconvolution method to improve perfusion ct quantification publication-title: IEEE Trans. Med. Imaging – volume: 123 start-page: 82 year: 2020 end-page: 93 ident: bib0025 article-title: Learning physical properties in complex visual scenes: an intelligent machine for perceiving blood flow dynamics from static ct angiography imaging publication-title: Neural Netw. – volume: 1 start-page: 312 year: 2020 end-page: 323 ident: bib0053 article-title: Solving inverse problems via auto-encoders publication-title: IEEE J. Select. Areas Inf.Theory – start-page: 4489 year: 2015 end-page: 4497 ident: bib0062 article-title: Learning spatiotemporal features with 3d convolutional networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: bib0070 article-title: A meshfree representation for cardiac medical image computing publication-title: IEEE J Transl Eng Health Med – start-page: 1 year: 2012 end-page: 12 ident: bib0003 article-title: Spatio-temporal convolutional sparse auto-encoder for sequence classification. publication-title: BMVC – volume: 21 start-page: 137 year: 2011 end-page: 146 ident: bib0023 article-title: Estimation of prediction error by using k-fold cross-validation publication-title: Stat. Comput. – volume: 16 start-page: 45 year: 2009 ident: bib0007 article-title: Quantitative assessment of myocardial perfusion abnormality on spect myocardial perfusion imaging is more reproducible than expert visual analysis publication-title: J. Nuclear Cardiol. – volume: 28 start-page: 2665 year: 2018 end-page: 2674 ident: bib0015 article-title: Myocardial perfusion in patients with suspected coronary artery disease: comparison between 320-MDCT and rubidium-82 pet publication-title: Eur. Radiol. – volume: 9 start-page: 679 year: 2018 ident: bib0065 article-title: Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri publication-title: Front. Neurol. – start-page: 2802 year: 2016 end-page: 2810 ident: bib0047 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Advances in Neural Information Processing Systems – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib0004 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 16 start-page: 878 year: 1997 end-page: 886 ident: bib0032 article-title: Markov random field segmentation of brain mr images publication-title: IEEE Trans. Med. Imaging – start-page: 2625 year: 2015 end-page: 2634 ident: bib0016 article-title: Long-term recurrent convolutional networks for visual recognition and description publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 64 start-page: 1464 year: 2014 end-page: 1475 ident: bib0014 article-title: Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15o] h2o pet imaging publication-title: J. Am. Coll. Cardiol. – volume: 10 start-page: 301 year: 2016 end-page: 308 ident: bib0063 article-title: Dynamic ct myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: insights from a multicenter registry publication-title: J. Cardiovasc. Comput. Tomogr. – volume: 2011 start-page: 14 year: 2011 ident: bib0021 article-title: Deconvolution-based ct and mr brain perfusion measurement: theoretical model revisited and practical implementation details publication-title: J. Biomed. Imaging – volume: 12 start-page: 1379 year: 2019 end-page: 1387 ident: bib0049 article-title: Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging publication-title: JACC – volume: 32 start-page: 1012 year: 2011 end-page: 1024 ident: bib0028 article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy publication-title: Eur. Heart J. – volume: 59 start-page: 101568 year: 2020 ident: bib0068 article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning publication-title: Med. Image Anal. – year: 2016 ident: bib0001 article-title: Tensorflow: large-scale machine learning on heterogeneous distributed systems – start-page: 447 year: 2018 end-page: 455 ident: bib0033 article-title: Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning publication-title: International MICCAI Brainlesion Workshop – start-page: 2377 year: 2015 end-page: 2385 ident: bib0061 article-title: Training very deep networks publication-title: Advances in Neural Information Processing Systems – start-page: 5533 year: 2017 end-page: 5541 ident: bib0055 article-title: Learning spatio-temporal representation with pseudo-3d residual networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 7482 year: 2018 end-page: 7491 ident: bib0039 article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 933 year: 2001 end-page: 942 ident: bib0066 article-title: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted mr imaging publication-title: Stroke – start-page: 3154 year: 2017 end-page: 3160 ident: bib0029 article-title: Learning spatio-temporal features with 3d residual networks for action recognition publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 107 start-page: 2900 year: 2003 end-page: 2907 ident: bib0027 article-title: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography publication-title: Circulation – year: 2019 ident: bib0009 article-title: Learned SVD: solving inverse problems via hybrid autoencoding – volume: 56 start-page: 561 year: 2010 end-page: 569 ident: bib0052 article-title: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis publication-title: J. Am. Coll. Cardiol. – volume: 50 start-page: 117 year: 2018 end-page: 126 ident: bib0026 article-title: Local spatio-temporal encoding of raw perfusion MRIfor the prediction of final lesion in stroke publication-title: Med. Image Anal. – start-page: 770 year: 2016 end-page: 778 ident: bib0030 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1495 year: 2015 end-page: 1503 ident: bib0035 article-title: Decoupled deep neural network for semi-supervised semantic segmentation publication-title: Advances in Neural Information Processing Systems – volume: 19 start-page: 338 year: 2012 end-page: 346 ident: bib0060 article-title: Quantitative analysis of perfusion studies: strengths and pitfalls publication-title: J. Nuclear Cardiol. – volume: 27 start-page: 557 year: 2011 end-page: 562 ident: bib0044 article-title: Inter-observer variability of visual analysis of ”stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria publication-title: Int. J. Cardiovasc. Imaging – volume: 30 start-page: 1305 year: 2011 end-page: 1313 ident: bib0059 article-title: Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI publication-title: IEEE Trans. Med. Imaging – start-page: 179 year: 2016 end-page: 187 ident: bib0019 article-title: The importance of skip connections in biomedical image segmentation publication-title: Deep Learning and Data Labeling for Medical Applications – start-page: 1520 year: 2015 end-page: 1528 ident: bib0051 article-title: Learning deconvolution network for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 11 start-page: 711 year: 2018 end-page: 718 ident: bib0008 article-title: Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a ce-marc substudy publication-title: JACC – volume: 7 start-page: 14 year: 2014 end-page: 22 ident: bib0048 article-title: Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment publication-title: JACC – volume: 6 start-page: 600 year: 2013 end-page: 609 ident: bib0012 article-title: Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus ffr publication-title: JACC – volume: 38 start-page: 295 year: 2015 end-page: 307 ident: bib0017 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach Intell. – start-page: 449 year: 2019 end-page: 457 ident: bib0069 article-title: Direct quantification for coronary artery stenosis using multiview learning publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 31 start-page: 1381 year: 2012 end-page: 1395 ident: bib0010 article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 913 year: 2013 end-page: 931 ident: bib0064 article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast mri publication-title: NMR Biomed. – volume: 30 start-page: 2921 year: 2009 end-page: 2929 ident: bib0024 article-title: Coronary ct angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? publication-title: Eur. Heart J. – volume: 36 start-page: 61 year: 2017 end-page: 78 ident: bib0037 article-title: Efficient multi-scale 3d cnn with fully connected CRFfor accurate brain lesion segmentation publication-title: Med. Image Anal. – volume: 39 start-page: 1137 year: 2016 end-page: 1149 ident: bib0056 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 260 start-page: 689 issue: 3 year: 2011 ident: 10.1016/j.media.2021.102207_bib0005 article-title: Detection of hemodynamically significant coronary artery stenosis: incremental diagnostic value of dynamic ct-based myocardial perfusion imaging publication-title: Radiology doi: 10.1148/radiol.11110638 – volume: 49 start-page: 1394 issue: 6 year: 2018 ident: 10.1016/j.media.2021.102207_bib0050 article-title: Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning publication-title: Stroke doi: 10.1161/STROKEAHA.117.019740 – volume: 32 start-page: 933 issue: 4 year: 2001 ident: 10.1016/j.media.2021.102207_bib0066 article-title: Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted mr imaging publication-title: Stroke doi: 10.1161/01.STR.32.4.933 – volume: 11 start-page: 711 issue: 5 year: 2018 ident: 10.1016/j.media.2021.102207_bib0008 article-title: Quantitative myocardial perfusion imaging versus visual analysis in diagnosing myocardial ischemia: a ce-marc substudy publication-title: JACC – volume: 26 start-page: 913 issue: 8 year: 2013 ident: 10.1016/j.media.2021.102207_bib0064 article-title: The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast mri publication-title: NMR Biomed. doi: 10.1002/nbm.2833 – year: 2019 ident: 10.1016/j.media.2021.102207_sbref0009 – start-page: 770 year: 2016 ident: 10.1016/j.media.2021.102207_bib0030 article-title: Deep residual learning for image recognition – volume: 16 start-page: 45 issue: 1 year: 2009 ident: 10.1016/j.media.2021.102207_bib0007 article-title: Quantitative assessment of myocardial perfusion abnormality on spect myocardial perfusion imaging is more reproducible than expert visual analysis publication-title: J. Nuclear Cardiol. doi: 10.1007/s12350-008-9018-0 – volume: 59 start-page: 101589 year: 2020 ident: 10.1016/j.media.2021.102207_bib0057 article-title: Prediction of final infarct volume from native ct perfusion and treatment parameters using deep learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101589 – volume: 30 start-page: 2921 issue: 23 year: 2009 ident: 10.1016/j.media.2021.102207_bib0024 article-title: Coronary ct angiography and myocardial perfusion imaging to detect flow-limiting stenoses: a potential gatekeeper for coronary revascularization? publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehp304 – volume: 27 start-page: 557 issue: 4 year: 2011 ident: 10.1016/j.media.2021.102207_bib0044 article-title: Inter-observer variability of visual analysis of ”stress”-only adenosine first-pass myocardial perfusion imaging in relation to clinical experience and reading criteria publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-010-9703-3 – start-page: 3150 year: 2016 ident: 10.1016/j.media.2021.102207_bib0013 article-title: Instance-aware semantic segmentation via multi-task network cascades – start-page: 2625 year: 2015 ident: 10.1016/j.media.2021.102207_bib0016 article-title: Long-term recurrent convolutional networks for visual recognition and description – volume: 10 start-page: 647 year: 2019 ident: 10.1016/j.media.2021.102207_bib0067 article-title: Stir-net: deep spatial-temporal image restoration net for radiation reduction in ct perfusion publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00647 – volume: 12 start-page: 1379 issue: 7 Part 2 year: 2019 ident: 10.1016/j.media.2021.102207_bib0049 article-title: Incremental prognostic value of myocardial blood flow quantified with stress dynamic computed tomography perfusion imaging publication-title: JACC – volume: 1 start-page: 312 issue: 1 year: 2020 ident: 10.1016/j.media.2021.102207_bib0053 article-title: Solving inverse problems via auto-encoders publication-title: IEEE J. Select. Areas Inf.Theory doi: 10.1109/JSAIT.2020.2983643 – volume: 45 start-page: 306 issue: 6 year: 2010 ident: 10.1016/j.media.2021.102207_bib0006 article-title: Adenosine-stress dynamic myocardial ct perfusion imaging: initial clinical experience publication-title: Invest. Radiol. doi: 10.1097/RLI.0b013e3181dfa2f2 – volume: 107 start-page: 2900 issue: 23 year: 2003 ident: 10.1016/j.media.2021.102207_bib0027 article-title: Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography publication-title: Circulation doi: 10.1161/01.CIR.0000072790.23090.41 – volume: 36 start-page: 61 year: 2017 ident: 10.1016/j.media.2021.102207_bib0037 article-title: Efficient multi-scale 3d cnn with fully connected CRFfor accurate brain lesion segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.004 – start-page: 107 year: 2018 ident: 10.1016/j.media.2021.102207_bib0054 article-title: Enhancing clinical MRI perfusion maps with data-driven maps of complementary nature for lesion outcome prediction – volume: 40 start-page: 2177 issue: 10 year: 2012 ident: 10.1016/j.media.2021.102207_bib0058 article-title: Regional prediction of tissue fate in acute ischemic stroke publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0591-7 – start-page: 2377 year: 2015 ident: 10.1016/j.media.2021.102207_bib0061 article-title: Training very deep networks – start-page: 5533 year: 2017 ident: 10.1016/j.media.2021.102207_bib0055 article-title: Learning spatio-temporal representation with pseudo-3d residual networks – year: 2016 ident: 10.1016/j.media.2021.102207_sbref0001 – volume: 59 start-page: 101568 year: 2020 ident: 10.1016/j.media.2021.102207_bib0068 article-title: Segmentation and quantification of infarction without contrast agents via spatiotemporal generative adversarial learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.101568 – start-page: 3154 year: 2017 ident: 10.1016/j.media.2021.102207_bib0029 article-title: Learning spatio-temporal features with 3d residual networks for action recognition – start-page: 179 year: 2016 ident: 10.1016/j.media.2021.102207_bib0019 article-title: The importance of skip connections in biomedical image segmentation – volume: 35 start-page: 250 year: 2017 ident: 10.1016/j.media.2021.102207_bib0046 article-title: Isles 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.07.009 – volume: 16 start-page: 878 issue: 6 year: 1997 ident: 10.1016/j.media.2021.102207_bib0032 article-title: Markov random field segmentation of brain mr images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.650883 – start-page: 1520 year: 2015 ident: 10.1016/j.media.2021.102207_bib0051 article-title: Learning deconvolution network for semantic segmentation – start-page: 7482 year: 2018 ident: 10.1016/j.media.2021.102207_bib0039 article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics – volume: 45 start-page: 1091 issue: 7 year: 2018 ident: 10.1016/j.media.2021.102207_bib0018 article-title: Automated spect analysis compared with expert visual scoring for the detection of FFR-defined coronary artery disease publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-018-3951-1 – volume: 383 start-page: 245 issue: 9913 year: 2014 ident: 10.1016/j.media.2021.102207_bib0020 article-title: Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010 publication-title: Lancet doi: 10.1016/S0140-6736(13)61953-4 – volume: 21 start-page: 137 issue: 2 year: 2011 ident: 10.1016/j.media.2021.102207_bib0023 article-title: Estimation of prediction error by using k-fold cross-validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – start-page: 1 year: 2012 ident: 10.1016/j.media.2021.102207_bib0003 article-title: Spatio-temporal convolutional sparse auto-encoder for sequence classification. – volume: 32 start-page: 1012 issue: 8 year: 2011 ident: 10.1016/j.media.2021.102207_bib0028 article-title: Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehq500 – start-page: 3431 year: 2015 ident: 10.1016/j.media.2021.102207_bib0043 article-title: Fully convolutional networks for semantic segmentation – volume: 28 start-page: 2665 issue: 6 year: 2018 ident: 10.1016/j.media.2021.102207_bib0015 article-title: Myocardial perfusion in patients with suspected coronary artery disease: comparison between 320-MDCT and rubidium-82 pet publication-title: Eur. Radiol. doi: 10.1007/s00330-017-5257-2 – volume: 39 start-page: 1137 issue: 6 year: 2016 ident: 10.1016/j.media.2021.102207_bib0056 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2577031 – volume: 10 start-page: 301 issue: 4 year: 2016 ident: 10.1016/j.media.2021.102207_bib0063 article-title: Dynamic ct myocardial perfusion imaging identifies early perfusion abnormalities in diabetes and hypertension: insights from a multicenter registry publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2016.05.005 – volume: 47 issue: suppl_1 year: 2016 ident: 10.1016/j.media.2021.102207_sbref0034 article-title: Abstract wp41: predicting acute ischemic stroke tissue fate using deep learning on source perfusion mri publication-title: Stroke doi: 10.1161/str.47.suppl_1.wp41 – volume: 20 start-page: 1301 issue: 10 year: 2013 ident: 10.1016/j.media.2021.102207_bib0042 article-title: A novel analysis algorithm for potential quantitative assessment of myocardial computed tomography perfusion publication-title: Acad. Radiol. doi: 10.1016/j.acra.2013.07.004 – volume: 19 start-page: 338 issue: 2 year: 2012 ident: 10.1016/j.media.2021.102207_bib0060 article-title: Quantitative analysis of perfusion studies: strengths and pitfalls publication-title: J. Nuclear Cardiol. doi: 10.1007/s12350-011-9509-2 – year: 2012 ident: 10.1016/j.media.2021.102207_bib0022 article-title: Application d’une mesure de similarité locale pour la segmentation du système ventriculaire cérébral en irm de perfusion – start-page: 4489 year: 2015 ident: 10.1016/j.media.2021.102207_bib0062 article-title: Learning spatiotemporal features with 3d convolutional networks – volume: 50 start-page: 117 year: 2018 ident: 10.1016/j.media.2021.102207_bib0026 article-title: Local spatio-temporal encoding of raw perfusion MRIfor the prediction of final lesion in stroke publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.08.008 – volume: 6 start-page: 1 year: 2018 ident: 10.1016/j.media.2021.102207_bib0070 article-title: A meshfree representation for cardiac medical image computing publication-title: IEEE J Transl Eng Health Med – volume: 48 start-page: 351 issue: 2 year: 2002 ident: 10.1016/j.media.2021.102207_bib0002 article-title: Perfusion quantification using gaussian process deconvolution publication-title: Mag. Resonance Med. doi: 10.1002/mrm.10213 – volume: 56 start-page: 561 issue: 7 year: 2010 ident: 10.1016/j.media.2021.102207_bib0052 article-title: Assessment of advanced coronary artery disease: advantages of quantitative cardiac magnetic resonance perfusion analysis publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2010.02.061 – start-page: 449 year: 2019 ident: 10.1016/j.media.2021.102207_bib0069 article-title: Direct quantification for coronary artery stenosis using multiview learning – volume: 36 start-page: 065005 issue: 6 year: 2020 ident: 10.1016/j.media.2021.102207_bib0041 article-title: Nett: solving inverse problems with deep neural networks publication-title: Inverse Probl. doi: 10.1088/1361-6420/ab6d57 – volume: 7 start-page: 14 issue: 1 year: 2014 ident: 10.1016/j.media.2021.102207_bib0048 article-title: Diagnostic accuracy of stress perfusion CMR in comparison with quantitative coronary angiography: fully quantitative, semiquantitative, and qualitative assessment publication-title: JACC – start-page: 2802 year: 2016 ident: 10.1016/j.media.2021.102207_bib0047 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.media.2021.102207_bib0004 article-title: Segnet: a deep convolutional encoder-decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – start-page: 1495 year: 2015 ident: 10.1016/j.media.2021.102207_bib0035 article-title: Decoupled deep neural network for semi-supervised semantic segmentation – start-page: 447 year: 2018 ident: 10.1016/j.media.2021.102207_bib0033 article-title: Synthetic perfusion maps: imaging perfusion deficits in DSC-MRI with deep learning – volume: 30 start-page: 1305 issue: 7 year: 2011 ident: 10.1016/j.media.2021.102207_bib0059 article-title: Voxel-based adaptive spatio-temporal modelling of perfusion cardiovascular MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2109733 – volume: 29 start-page: 886 issue: 5 year: 2002 ident: 10.1016/j.media.2021.102207_bib0036 article-title: Myocardial blood flow quantification with MRI by model-independent deconvolution publication-title: Med. Phys. doi: 10.1118/1.1473135 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.media.2021.102207_bib0045 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 123 start-page: 82 year: 2020 ident: 10.1016/j.media.2021.102207_bib0025 article-title: Learning physical properties in complex visual scenes: an intelligent machine for perceiving blood flow dynamics from static ct angiography imaging publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.11.017 – volume: 38 start-page: 295 issue: 2 year: 2015 ident: 10.1016/j.media.2021.102207_bib0017 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 35 start-page: 1397 issue: 9 year: 2015 ident: 10.1016/j.media.2021.102207_bib0038 article-title: Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization publication-title: J. Cerebral Blood Flow Metabol. doi: 10.1038/jcbfm.2015.144 – volume: 50 start-page: 1237 issue: 6 year: 2003 ident: 10.1016/j.media.2021.102207_bib0011 article-title: Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using tikhonov regularization publication-title: Mag. Reson. Med. doi: 10.1002/mrm.10643 – volume: 64 start-page: 1464 issue: 14 year: 2014 ident: 10.1016/j.media.2021.102207_bib0014 article-title: Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15o] h2o pet imaging publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2014.05.069 – volume: 29 start-page: 1182 issue: 5 year: 2010 ident: 10.1016/j.media.2021.102207_bib0031 article-title: A spatio-temporal deconvolution method to improve perfusion ct quantification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2043536 – volume: 6 start-page: 600 issue: 5 year: 2013 ident: 10.1016/j.media.2021.102207_bib0012 article-title: Assessment of coronary artery stenosis severity and location: quantitative analysis of transmural perfusion gradients by high-resolution MRI versus ffr publication-title: JACC – volume: 2011 start-page: 14 year: 2011 ident: 10.1016/j.media.2021.102207_bib0021 article-title: Deconvolution-based ct and mr brain perfusion measurement: theoretical model revisited and practical implementation details publication-title: J. Biomed. Imaging – start-page: 255 year: 1989 ident: 10.1016/j.media.2021.102207_bib0040 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 31 start-page: 1381 issue: 7 year: 2012 ident: 10.1016/j.media.2021.102207_bib0010 article-title: Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2189890 – volume: 9 start-page: 679 year: 2018 ident: 10.1016/j.media.2021.102207_bib0065 article-title: Isles 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral mri publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00679 |
SSID | ssj0007440 |
Score | 2.3736029 |
Snippet | •We provide a quantitative assessment of myocardial CT perfusion to achieve predictions of perfusion parameters and ischemic regions.•A spatio-temporal... The assessment of myocardial perfusion has become increasingly important in the early diagnosis of coronary artery disease. Currently, the process of perfusion... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102207 |
SubjectTerms | Algorithms Automation Cardiovascular disease Coders Computed tomography Coronary artery Coronary artery disease Encoders-Decoders Heart Heart diseases Humans Ischemia Multitask network cascade Myocardial perfusion Parameters Perfusion Representations Spatiotemporal representation Tomography, X-Ray Computed |
Title | Spatio-temporal multi-task network cascade for accurate assessment of cardiac CT perfusion |
URI | https://dx.doi.org/10.1016/j.media.2021.102207 https://www.ncbi.nlm.nih.gov/pubmed/34487982 https://www.proquest.com/docview/2606199542 https://www.proquest.com/docview/2570109042 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUJwQFBeW0plJI6Yje3EyR6XFWV5tJe2qOJiOWNbKlTZVXf32t-Ox3EWkKAHTlGSiWSNx56Z-JtvAF5L57F1WPGyVQUvqwJ5o1FxjdG9hFCqkAqFj0_0_Lz8dFFd7MBsqIUhWGXe-_s9Pe3W-ck4a3O8vLwcnwpFzUrI_5DjllTwS-x10abf3vyCeRABXl97JThJD8xDCeOVqjNikigFURhI6in7d-_0r-gzeaGjh_Agh49s2o_wEez4bg_u_0YquAd3j_Nx-WP4dprw0jzzT12xBB_ka7v6wboe_83Qrggiz2LwyizihqgjmN3ydbJFiCJkRchmZ2zpr8OGfrA9gfOj92ezOc_NFDiqpl5zV_mJpPCsCdYL7QpEHSoUdAyovHBFgWri61IH1QphHUo7CS4GU17qtnFKPYXdbtH558BE6wOirCVqV2pV2qJ2RAynvY3ZS4UjkIMSDWamcWp4cWUGSNl3kzRvSPOm1_wI3mw_WvZEG7eL62F2zB_2YqIruP3Dg2EuTV6uKxOTOk216qUcwavt67jQ6PTEdn6xiTJVnVCsJPOst4HtQFVMcutJI_f_d1Qv4B7d9TiZA9hdX2_8yxjtrNvDZM6HcGf68fP8JF4_vPvydfoTGKX-fQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVOJxQFBegQJG4oiVXdvr3RyriCqlTS5NpYqL5R3bUqHaRE3y__HselcgQQ9c12PJGo_nsf7mM8Bn4TzWDguuaplxVWTIK42Sa4zhJQQlQ9sovFjq-ZX6dl1cH8Cs74UhWGXy_Z1Pb711-jJJ2pxsbm4ml7mkx0oo_lDgFtUDOCR2KjWCw5Oz8_lycMjEgde1X-WcJvTkQy3Mq23QiHWiyInFQNCzsn8PUP9KQNtAdPoMnqYMkp10i3wOB745gie_8QoewcNFujF_Ad8vW8g0TxRUt6xFEPKd3f5kTQcBZ2i3hJJnMX9lFnFP7BHMDpSdbB2iCBkSstmKbfxd2NM_tpdwdfp1NZvz9J4CR1mVO-4KPxWUoVXB-ly7DFGHAnO6CZQ-d1mGcupLpYOs89w6FHYaXMynvNB15aR8BaNm3fg3wPLaB0RRCtROaalsVjrihtPexgKmwDGIXokGE9k4vXlxa3pU2Q_Tat6Q5k2n-TF8GSZtOq6N-8V1vzvmD5MxMRrcP_G430uTTuzWxLpOU7u6EmP4NAzHs0YXKLbx632UKcoWyEoyrzsbGBYqY51bTivx9n9X9REezVeLC3Nxtjx_B49ppIPNHMNod7f372Pys6s_JOP-BdgB_58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+multi-task+network+cascade+for+accurate+assessment+of+cardiac+CT+perfusion&rft.jtitle=Medical+image+analysis&rft.au=Chen%2C+Jiaqi&rft.au=Zhang%2C+Pengfei&rft.au=Liu%2C+Huafeng&rft.au=Xu%2C+Lei&rft.date=2021-12-01&rft.issn=1361-8415&rft.volume=74&rft.spage=102207&rft_id=info:doi/10.1016%2Fj.media.2021.102207&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2021_102207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |