Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates

Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this no...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 110; no. 3; pp. 577 - 586
Main Authors Furman, Adam C., Kujawa, Sharon G., Liberman, M. Charles
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
AbstractList Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.
Author Liberman, M. Charles
Kujawa, Sharon G.
Furman, Adam C.
Author_xml – sequence: 1
  givenname: Adam C.
  surname: Furman
  fullname: Furman, Adam C.
  organization: Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts;, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
– sequence: 2
  givenname: Sharon G.
  surname: Kujawa
  fullname: Kujawa, Sharon G.
  organization: Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts;, Department of Audiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; and, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
– sequence: 3
  givenname: M. Charles
  surname: Liberman
  fullname: Liberman, M. Charles
  organization: Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts;, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts;, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23596328$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vEzEQxS3UiqaFI1fkI5cN_oy9l0qoghapai_t2bK9Y-JoYwfb26r_PRtSKqjEaayZn98b-52io5QTIPSBkiWlkn3epCUhdCWWjFD-Bi3mHuuo7PURWhAynzlR6gSd1rohhChJ2Ft0wrjsV5zpBbq7ybFCF9MweRiwz349gi04wVTyzrb1E44VVxjBt_gAOOSCQ3RQKn6MbY3H_IjrLqdmE-Sp4mIb1HfoONixwvvneobuv329u7jqrm8vv198ue4816p1g-jtSkk_DG72ZsoFwYNzTnvtqLaKB6m581QFZoO2QjJJhNB9UL0nijJ-hs4PurvJbWHwkFqxo9mVuLXlyWQbzb-TFNfmR34wXAnW92IW-PQsUPLPCWoz21g9jOPhNYYKqiQXQtEZ_fi314vJn6-cge4A-JJrLRBeEErMPiqzSeZ3VGYf1czzV7yPzbaY96vG8T-3fgF-xpl0
CitedBy_id crossref_primary_10_1523_JNEUROSCI_4923_13_2014
crossref_primary_10_1242_dev_177188
crossref_primary_10_3389_fncel_2024_1465216
crossref_primary_10_1016_j_heares_2017_11_004
crossref_primary_10_1016_j_neuroscience_2018_12_019
crossref_primary_10_1038_s41598_017_04941_w
crossref_primary_10_1038_s42003_022_03691_4
crossref_primary_10_3389_fnsyn_2021_680621
crossref_primary_10_1016_j_heares_2020_107950
crossref_primary_10_1007_s00441_015_2168_x
crossref_primary_10_1007_s10162_015_0550_8
crossref_primary_10_1038_s41434_018_0012_0
crossref_primary_10_3389_fncir_2015_00075
crossref_primary_10_1016_j_neuroscience_2014_05_067
crossref_primary_10_1055_s_0042_1758530
crossref_primary_10_1121_1_4928305
crossref_primary_10_3390_biology13060416
crossref_primary_10_1172_JCI155094
crossref_primary_10_1016_j_neuroscience_2018_12_007
crossref_primary_10_1055_s_0041_1740362
crossref_primary_10_1016_j_heares_2020_107960
crossref_primary_10_1038_s41598_019_51724_6
crossref_primary_10_1177_00034894221075422
crossref_primary_10_1080_14992027_2016_1256504
crossref_primary_10_1152_jn_00016_2020
crossref_primary_10_1007_s10162_018_00690_3
crossref_primary_10_1096_fj_201701041RRR
crossref_primary_10_1016_j_heares_2016_10_028
crossref_primary_10_1155_2016_6143164
crossref_primary_10_1152_jn_00184_2013
crossref_primary_10_1080_14992027_2018_1534010
crossref_primary_10_1016_j_heares_2020_107933
crossref_primary_10_4295_audiology_62_235
crossref_primary_10_1016_j_heares_2019_07_001
crossref_primary_10_1073_pnas_2217033120
crossref_primary_10_1121_10_0036054
crossref_primary_10_1016_j_heares_2016_10_015
crossref_primary_10_3389_fnsyn_2021_678575
crossref_primary_10_1002_syn_22087
crossref_primary_10_1016_j_heares_2016_10_018
crossref_primary_10_7554_eLife_51419
crossref_primary_10_3389_fnins_2017_00465
crossref_primary_10_1097_AUD_0000000000000711
crossref_primary_10_1177_2331216516657466
crossref_primary_10_1080_14992027_2024_2391986
crossref_primary_10_3390_life11040301
crossref_primary_10_15252_emmm_202013391
crossref_primary_10_1121_1_4984031
crossref_primary_10_1124_mol_117_108548
crossref_primary_10_3390_diagnostics12040802
crossref_primary_10_1016_j_neuroscience_2020_02_038
crossref_primary_10_1177_2331216518758109
crossref_primary_10_1038_s41598_017_04899_9
crossref_primary_10_1523_ENEURO_0182_24_2024
crossref_primary_10_3389_fnmol_2024_1379743
crossref_primary_10_1016_j_isci_2022_104997
crossref_primary_10_1016_j_freeradbiomed_2017_04_343
crossref_primary_10_3389_fcell_2021_720902
crossref_primary_10_1038_s41598_023_46859_6
crossref_primary_10_3950_jibiinkoka_124_715
crossref_primary_10_3950_jibiinkotokeibu_125_10_1431
crossref_primary_10_4103_nah_NAH_81_20
crossref_primary_10_1038_s41467_024_54700_5
crossref_primary_10_1177_2331216520972860
crossref_primary_10_1523_JNEUROSCI_4460_15_2016
crossref_primary_10_1016_j_heares_2017_12_018
crossref_primary_10_1121_10_0017789
crossref_primary_10_5582_irdr_2019_01073
crossref_primary_10_3390_ijms24010291
crossref_primary_10_1016_j_exger_2020_111078
crossref_primary_10_1523_JNEUROSCI_1747_21_2021
crossref_primary_10_1121_10_0009802
crossref_primary_10_3389_fncir_2022_856926
crossref_primary_10_3390_antiox13020149
crossref_primary_10_1016_j_exger_2016_08_011
crossref_primary_10_1007_s10162_021_00827_x
crossref_primary_10_1523_ENEURO_0363_17_2017
crossref_primary_10_1002_lio2_134
crossref_primary_10_3390_ijms222212208
crossref_primary_10_1016_j_heares_2022_108456
crossref_primary_10_1121_1_5132711
crossref_primary_10_1371_journal_pone_0142341
crossref_primary_10_1523_JNEUROSCI_2104_20_2020
crossref_primary_10_5607_en_2018_27_5_397
crossref_primary_10_12659_MSM_897929
crossref_primary_10_1002_jbio_201900145
crossref_primary_10_3389_fnint_2023_1236661
crossref_primary_10_1371_journal_pone_0189157
crossref_primary_10_3389_fnins_2022_1000304
crossref_primary_10_1097_AUD_0000000000001504
crossref_primary_10_3390_brainsci12020142
crossref_primary_10_4103_nah_NAH_67_20
crossref_primary_10_1121_1_5030920
crossref_primary_10_1177_23312165241239541
crossref_primary_10_1002_jnr_24426
crossref_primary_10_1016_j_heares_2024_108967
crossref_primary_10_1016_j_heares_2022_108569
crossref_primary_10_1016_j_neuroscience_2023_01_037
crossref_primary_10_1016_j_heares_2024_108963
crossref_primary_10_1016_j_heares_2022_108568
crossref_primary_10_3390_audiolres13060085
crossref_primary_10_1109_TNSRE_2018_2863740
crossref_primary_10_1097_AUD_0000000000000543
crossref_primary_10_1097_AUD_0000000000000544
crossref_primary_10_1097_AUD_0000000000000987
crossref_primary_10_1044_2022_AJA_22_00117
crossref_primary_10_1055_s_0042_1756164
crossref_primary_10_1016_j_neurobiolaging_2018_08_023
crossref_primary_10_1055_s_0042_1756160
crossref_primary_10_1017_S002221512100459X
crossref_primary_10_1016_j_heares_2021_108396
crossref_primary_10_1093_brain_awv270
crossref_primary_10_1016_j_heares_2021_108279
crossref_primary_10_1016_j_heares_2019_01_017
crossref_primary_10_1016_j_heares_2019_01_018
crossref_primary_10_1016_j_heares_2019_01_019
crossref_primary_10_3389_fnins_2017_00304
crossref_primary_10_1121_10_0017973
crossref_primary_10_3389_fnins_2014_00110
crossref_primary_10_1007_s10162_018_0671_y
crossref_primary_10_1007_s12070_021_02373_7
crossref_primary_10_1111_ejn_13846
crossref_primary_10_1371_journal_pone_0292676
crossref_primary_10_3389_fnins_2014_00112
crossref_primary_10_1097_AUD_0000000000001609
crossref_primary_10_1016_j_neurobiolaging_2021_08_019
crossref_primary_10_1093_molbev_msz077
crossref_primary_10_1016_j_neuroscience_2015_12_005
crossref_primary_10_1016_j_heares_2018_04_011
crossref_primary_10_3389_fcell_2018_00114
crossref_primary_10_1007_s10162_015_0539_3
crossref_primary_10_3389_fnins_2021_659011
crossref_primary_10_3390_cells11071097
crossref_primary_10_1016_j_heares_2018_11_008
crossref_primary_10_1016_j_isci_2022_104803
crossref_primary_10_1016_j_heares_2022_108533
crossref_primary_10_3390_biology13060371
crossref_primary_10_4236_aar_2021_102002
crossref_primary_10_1016_j_heares_2023_108935
crossref_primary_10_1152_jn_00677_2018
crossref_primary_10_3349_ymj_2021_62_7_615
crossref_primary_10_1016_j_heares_2016_11_010
crossref_primary_10_1016_j_neuroscience_2018_09_008
crossref_primary_10_1016_j_heares_2024_109050
crossref_primary_10_1016_j_heares_2020_108099
crossref_primary_10_1007_s10162_016_0584_6
crossref_primary_10_1016_j_otc_2020_03_008
crossref_primary_10_3389_fneur_2023_1104574
crossref_primary_10_1159_000380749
crossref_primary_10_3389_fnagi_2022_890010
crossref_primary_10_1097_MAO_0000000000003279
crossref_primary_10_1044_2017_JSLHR_H_17_0080
crossref_primary_10_1038_s41598_019_53353_5
crossref_primary_10_1016_j_neuroscience_2019_01_020
crossref_primary_10_1038_s41467_018_06033_3
crossref_primary_10_1016_j_heares_2024_109166
crossref_primary_10_1044_2021_JSLHR_21_00064
crossref_primary_10_1016_j_heares_2020_108068
crossref_primary_10_1038_s41467_022_30455_9
crossref_primary_10_1044_2024_AJA_24_00010
crossref_primary_10_3389_fnagi_2020_00083
crossref_primary_10_1007_s00405_021_07232_3
crossref_primary_10_1523_JNEUROSCI_1187_16_2016
crossref_primary_10_1097_MAO_0000000000001069
crossref_primary_10_1097_MAO_0000000000004456
crossref_primary_10_3389_fnagi_2015_00063
crossref_primary_10_3390_ijerph17238963
crossref_primary_10_7554_eLife_01341
crossref_primary_10_1016_j_ajhg_2022_04_010
crossref_primary_10_1016_j_celrep_2020_108551
crossref_primary_10_3389_fnins_2019_00730
crossref_primary_10_15252_emmm_201809396
crossref_primary_10_1097_MAO_0000000000001191
crossref_primary_10_1038_s42003_020_01532_w
crossref_primary_10_1016_j_heares_2020_108079
crossref_primary_10_1016_j_bcp_2015_06_011
crossref_primary_10_1152_jn_00446_2013
crossref_primary_10_3389_fncel_2024_1523978
crossref_primary_10_1016_j_heares_2024_109033
crossref_primary_10_1080_14992027_2016_1255359
crossref_primary_10_1007_s00106_013_2807_z
crossref_primary_10_3389_fnins_2018_00866
crossref_primary_10_1016_j_heares_2022_108663
crossref_primary_10_1038_srep15960
crossref_primary_10_1016_j_heares_2015_02_009
crossref_primary_10_1096_fj_202300457RR
crossref_primary_10_3389_fnins_2022_915211
crossref_primary_10_3390_brainsci13060968
crossref_primary_10_1121_1_5132709
crossref_primary_10_3389_fnins_2022_893542
crossref_primary_10_1121_1_5132707
crossref_primary_10_1016_j_pharmthera_2019_05_003
crossref_primary_10_1121_1_5132708
crossref_primary_10_1038_s41598_018_28924_7
crossref_primary_10_1121_10_0016853
crossref_primary_10_1016_j_pneurobio_2013_08_002
crossref_primary_10_47795_DQYG1107
crossref_primary_10_1097_AUD_0000000000000804
crossref_primary_10_3389_fnins_2016_00621
crossref_primary_10_1016_j_heares_2013_12_004
crossref_primary_10_1016_j_febslet_2015_08_030
crossref_primary_10_1121_10_0005846
crossref_primary_10_1016_j_physbeh_2019_112620
crossref_primary_10_1121_10_0006811
crossref_primary_10_3389_fnsys_2018_00059
crossref_primary_10_1038_s41598_019_39119_z
crossref_primary_10_1016_j_heares_2021_108333
crossref_primary_10_1016_j_heares_2021_108215
crossref_primary_10_1155_2021_9919977
crossref_primary_10_17430_jhs_190258
crossref_primary_10_1371_journal_pone_0125160
crossref_primary_10_1016_j_physbeh_2015_03_005
crossref_primary_10_1097_JCMA_0000000000001005
crossref_primary_10_3390_brainsci10100756
crossref_primary_10_1044_2019_PERS_SIG8_2019_0006
crossref_primary_10_1016_j_omtm_2022_07_012
crossref_primary_10_3389_fnagi_2015_00004
crossref_primary_10_1007_s00441_015_2177_9
crossref_primary_10_1016_j_heares_2020_108057
crossref_primary_10_1371_journal_pcbi_1008499
crossref_primary_10_1016_j_heares_2017_04_016
crossref_primary_10_1016_j_heares_2022_108603
crossref_primary_10_3389_fncel_2021_684706
crossref_primary_10_23736_S2724_6302_23_02496_9
crossref_primary_10_4295_audiology_66_101
crossref_primary_10_3390_ijms22168807
crossref_primary_10_1016_j_heares_2017_10_007
crossref_primary_10_1186_s13020_023_00825_6
crossref_primary_10_1523_JNEUROSCI_5138_14_2015
crossref_primary_10_3389_fnagi_2022_877588
crossref_primary_10_7554_eLife_55378
crossref_primary_10_1016_j_neuroscience_2018_09_012
crossref_primary_10_1097_AUD_0000000000000905
crossref_primary_10_1121_10_0001346
crossref_primary_10_1097_AUD_0000000000000906
crossref_primary_10_1016_j_heares_2020_108027
crossref_primary_10_1109_TASLP_2023_3282093
crossref_primary_10_1121_1_5125008
crossref_primary_10_1038_nrneurol_2016_12
crossref_primary_10_1038_s41598_024_74661_5
crossref_primary_10_1038_nrneurol_2016_10
crossref_primary_10_1016_j_heares_2020_108021
crossref_primary_10_1016_j_heares_2021_108310
crossref_primary_10_1093_milmed_usaf055
crossref_primary_10_1177_2331216514550621
crossref_primary_10_1007_s10565_021_09596_y
crossref_primary_10_15252_embj_2020106010
crossref_primary_10_1250_ast_41_83
crossref_primary_10_1007_s11517_015_1251_5
crossref_primary_10_1016_j_heares_2015_01_005
crossref_primary_10_1177_2331216516686768
crossref_primary_10_1016_j_neuroscience_2018_09_026
crossref_primary_10_1016_j_neuropharm_2021_108707
crossref_primary_10_3389_fncel_2017_00361
crossref_primary_10_1038_s41598_020_66715_1
crossref_primary_10_1016_j_heares_2016_03_011
crossref_primary_10_1016_j_heares_2024_109077
crossref_primary_10_1016_j_neuroscience_2019_02_031
crossref_primary_10_1016_j_heares_2022_108621
crossref_primary_10_1002_syn_21925
crossref_primary_10_1080_14992027_2016_1236417
crossref_primary_10_1152_jn_00948_2014
crossref_primary_10_1007_s00106_019_0660_4
crossref_primary_10_1016_j_heares_2023_108927
crossref_primary_10_1080_21695717_2021_1876494
crossref_primary_10_4103_nah_nah_3_22
crossref_primary_10_1016_j_neuroscience_2020_03_023
crossref_primary_10_1073_pnas_2000760117
crossref_primary_10_3389_fnins_2023_1253574
crossref_primary_10_1016_j_heares_2018_06_003
crossref_primary_10_1121_10_0010317
crossref_primary_10_3389_fnins_2024_1425226
crossref_primary_10_1038_srep27109
crossref_primary_10_1016_j_neuroimage_2019_116239
crossref_primary_10_1016_j_heares_2015_11_004
crossref_primary_10_1038_s41598_023_46741_5
crossref_primary_10_1177_2331216519839615
crossref_primary_10_1016_j_neuroscience_2019_11_051
crossref_primary_10_1038_s41598_017_06600_6
crossref_primary_10_1111_ejn_12486
crossref_primary_10_1177_2331216520988406
crossref_primary_10_1007_s00441_014_1992_8
crossref_primary_10_1038_s41598_022_13023_5
crossref_primary_10_1055_s_0043_1763296
crossref_primary_10_3389_fnins_2022_945277
crossref_primary_10_1016_j_amjoto_2023_104067
crossref_primary_10_1097_AUD_0000000000001263
crossref_primary_10_1097_AUD_0000000000001147
crossref_primary_10_21849_cacd_2020_00255
crossref_primary_10_1038_srep25056
crossref_primary_10_1073_pnas_1914247117
crossref_primary_10_1152_jn_00081_2021
crossref_primary_10_1523_JNEUROSCI_3214_14_2015
crossref_primary_10_1523_JNEUROSCI_3915_14_2015
crossref_primary_10_1016_j_heares_2019_03_016
crossref_primary_10_3390_brainsci10100710
crossref_primary_10_1016_j_heares_2018_01_005
crossref_primary_10_1177_2331216517737417
crossref_primary_10_1016_j_heares_2019_03_014
crossref_primary_10_1523_JNEUROSCI_2867_16_2017
crossref_primary_10_1016_j_heares_2020_108132
crossref_primary_10_1038_s41598_020_76553_w
crossref_primary_10_1016_j_clinph_2024_06_005
crossref_primary_10_1250_ast_41_59
crossref_primary_10_1007_s00438_017_1320_6
crossref_primary_10_3390_diagnostics13050934
crossref_primary_10_1016_j_heares_2021_108309
crossref_primary_10_1097_AUD_0000000000001158
crossref_primary_10_1152_jn_00402_2021
crossref_primary_10_1016_j_neulet_2019_05_022
crossref_primary_10_3389_fncir_2021_785603
crossref_primary_10_1177_2331216516662003
crossref_primary_10_1016_j_heares_2020_108109
crossref_primary_10_1242_dev_176750
crossref_primary_10_1121_10_0014815
crossref_primary_10_1044_2018_JSLHR_H_18_0245
crossref_primary_10_1016_j_heares_2014_09_005
crossref_primary_10_1016_j_heares_2018_01_014
crossref_primary_10_1121_10_0007484
crossref_primary_10_1371_journal_pone_0150415
crossref_primary_10_1055_s_0044_1790277
crossref_primary_10_3389_fnsyn_2021_740368
crossref_primary_10_3389_fnsys_2020_00025
crossref_primary_10_1016_j_neuroscience_2019_03_036
crossref_primary_10_1111_ene_70083
crossref_primary_10_1016_S1639_870X_16_81842_5
crossref_primary_10_3389_fnins_2023_1296458
crossref_primary_10_1121_10_0014829
crossref_primary_10_3390_ijms22010003
crossref_primary_10_1097_AUD_0000000000001009
crossref_primary_10_1016_j_devcel_2023_01_008
crossref_primary_10_1016_j_neuroscience_2019_03_021
crossref_primary_10_1016_j_heares_2020_108117
crossref_primary_10_4295_audiology_64_217
crossref_primary_10_3389_fnins_2022_799787
crossref_primary_10_7554_eLife_48914
crossref_primary_10_1097_AUD_0000000000000164
crossref_primary_10_1016_j_heares_2021_108408
crossref_primary_10_1121_10_0034423
crossref_primary_10_1055_a_1399_9540
crossref_primary_10_4103_jose_JOSE_2_22
crossref_primary_10_1523_JNEUROSCI_1273_22_2023
crossref_primary_10_1007_s11062_018_9691_9
crossref_primary_10_1016_j_heares_2015_04_008
crossref_primary_10_1177_23312165221117081
crossref_primary_10_1121_1_5134465
crossref_primary_10_3389_fnins_2020_588448
crossref_primary_10_1007_s10162_015_0510_3
crossref_primary_10_1523_JNEUROSCI_3238_20_2021
crossref_primary_10_1097_JBR_0000000000000039
crossref_primary_10_1044_2019_JSLHR_19_00293
crossref_primary_10_1111_ejn_16534
crossref_primary_10_1177_2331216516672186
crossref_primary_10_1016_j_heares_2016_12_002
crossref_primary_10_1038_mtm_2016_52
crossref_primary_10_1038_s41598_019_45964_9
crossref_primary_10_12688_f1000research_11310_1
crossref_primary_10_1177_23312165231225545
crossref_primary_10_1016_j_heares_2015_04_004
crossref_primary_10_1044_2020_AJA_19_00065
crossref_primary_10_23736_S2724_6302_21_02391_4
crossref_primary_10_1016_j_heares_2016_06_017
crossref_primary_10_1016_j_heares_2016_12_008
crossref_primary_10_1016_j_heares_2016_12_009
crossref_primary_10_1016_j_mehy_2023_111112
crossref_primary_10_1016_j_banm_2023_03_024
crossref_primary_10_1523_JNEUROSCI_2529_13_2013
crossref_primary_10_3389_fneur_2015_00105
crossref_primary_10_1172_jci_insight_182138
crossref_primary_10_3390_ijms25052738
crossref_primary_10_1038_s41598_021_83115_1
crossref_primary_10_1016_j_cub_2020_09_053
crossref_primary_10_3389_fnins_2016_00597
crossref_primary_10_1371_journal_pone_0287400
crossref_primary_10_3389_fnins_2016_00231
crossref_primary_10_1016_j_ijdevneu_2014_06_002
crossref_primary_10_1121_10_0002961
crossref_primary_10_1121_1_5132291
crossref_primary_10_1121_10_0009238
crossref_primary_10_1016_j_heares_2016_12_010
crossref_primary_10_1152_jn_00472_2016
crossref_primary_10_1016_j_heares_2015_10_004
crossref_primary_10_1121_1_4966113
crossref_primary_10_1016_j_heares_2016_12_015
crossref_primary_10_1007_s00106_019_0640_8
crossref_primary_10_1016_j_heares_2015_04_011
crossref_primary_10_1121_10_0007046
crossref_primary_10_1016_j_mcn_2021_103692
crossref_primary_10_1097_MAO_0000000000000451
crossref_primary_10_1016_j_celrep_2021_109758
crossref_primary_10_3389_fpubh_2023_1140500
crossref_primary_10_1016_j_heares_2017_07_006
crossref_primary_10_1371_journal_pone_0162726
crossref_primary_10_1177_23312165231224597
crossref_primary_10_1016_j_heares_2024_109005
crossref_primary_10_1097_AUD_0000000000001161
crossref_primary_10_1038_s41684_022_01017_9
crossref_primary_10_1097_AUD_0000000000000193
crossref_primary_10_1113_JP282262
crossref_primary_10_1044_2022_AJA_21_00226
crossref_primary_10_1121_10_0011510
crossref_primary_10_1016_j_ymthe_2021_07_013
crossref_primary_10_3390_ijerph17176336
crossref_primary_10_1073_pnas_1605737113
crossref_primary_10_7554_eLife_07242
crossref_primary_10_1016_j_heares_2016_05_004
crossref_primary_10_1016_j_isci_2024_108825
crossref_primary_10_1016_j_heares_2016_05_006
crossref_primary_10_1007_s12070_021_02797_1
crossref_primary_10_3389_fnins_2022_935371
crossref_primary_10_1016_j_heares_2018_10_006
crossref_primary_10_1038_srep24907
crossref_primary_10_4274_cjms_2021_2021_51
crossref_primary_10_1152_jn_00548_2014
crossref_primary_10_1113_JP284452
crossref_primary_10_1016_j_neuroscience_2018_07_027
crossref_primary_10_1097_AUD_0000000000001175
crossref_primary_10_3389_fnagi_2022_869338
crossref_primary_10_1152_jn_00595_2018
crossref_primary_10_1007_s13534_019_00114_y
crossref_primary_10_1038_srep25200
crossref_primary_10_1016_j_tins_2019_03_006
crossref_primary_10_1121_10_0006572
crossref_primary_10_1016_j_heares_2018_03_008
crossref_primary_10_1152_jn_00620_2020
crossref_primary_10_4295_audiology_61_177
crossref_primary_10_3389_fnhum_2016_00530
crossref_primary_10_1016_j_heares_2014_03_004
crossref_primary_10_1097_MAO_0000000000001407
crossref_primary_10_7717_peerj_2252
crossref_primary_10_1002_advs_202410776
crossref_primary_10_1371_journal_pone_0243903
crossref_primary_10_1016_j_jneuroim_2018_06_019
crossref_primary_10_1097_AUD_0000000000000457
crossref_primary_10_1146_annurev_psych_122216_011635
crossref_primary_10_1044_2021_AJA_21_00133
crossref_primary_10_1016_j_heares_2019_05_008
crossref_primary_10_1121_1_5009603
crossref_primary_10_1101_cshperspect_a035493
crossref_primary_10_1016_j_neurobiolaging_2016_05_001
crossref_primary_10_3389_fnmol_2020_00087
crossref_primary_10_3389_fneur_2016_00133
crossref_primary_10_1016_j_heares_2019_05_001
crossref_primary_10_3389_fnins_2021_778197
crossref_primary_10_1016_j_heares_2016_07_019
crossref_primary_10_1016_j_brainres_2015_02_012
crossref_primary_10_1097_MAO_0000000000002867
crossref_primary_10_3389_fnins_2020_596670
crossref_primary_10_1016_j_joto_2018_05_001
crossref_primary_10_1044_2023_JSLHR_23_00234
crossref_primary_10_1016_j_cub_2020_09_046
crossref_primary_10_1097_AUD_0000000000000787
crossref_primary_10_1016_j_heares_2018_03_028
crossref_primary_10_1113_JP281014
crossref_primary_10_1152_jn_00292_2013
crossref_primary_10_1016_j_heares_2017_01_016
crossref_primary_10_1016_j_heares_2018_03_021
crossref_primary_10_1121_1_5100620
crossref_primary_10_1044_persp3_SIG6_28
crossref_primary_10_3389_fncel_2021_699978
crossref_primary_10_1016_j_neuroscience_2018_07_053
crossref_primary_10_1073_pnas_1812029116
crossref_primary_10_1016_j_freeradbiomed_2019_02_022
crossref_primary_10_1016_j_heares_2019_02_015
crossref_primary_10_1016_j_heares_2019_02_016
crossref_primary_10_1097_MOO_0000000000000824
crossref_primary_10_1044_2020_AJA_20_00056
crossref_primary_10_1038_srep30821
crossref_primary_10_1016_j_neuroscience_2019_12_049
crossref_primary_10_1007_s00106_016_0258_z
crossref_primary_10_1152_jn_00638_2017
crossref_primary_10_15252_embr_201643689
crossref_primary_10_1016_j_heares_2017_01_003
crossref_primary_10_1080_13543784_2023_2242253
crossref_primary_10_1016_j_tins_2018_01_008
crossref_primary_10_1121_10_0021884
crossref_primary_10_1002_jnr_24439
crossref_primary_10_51445_sja_auditio_vol8_2024_103
crossref_primary_10_1016_j_neuroscience_2019_11_004
crossref_primary_10_1121_1_4947430
crossref_primary_10_4295_audiology_61_145
crossref_primary_10_1016_j_neuroscience_2014_07_025
crossref_primary_10_3390_jcm14020360
crossref_primary_10_1002_lary_26540
crossref_primary_10_3389_fnmol_2018_00077
crossref_primary_10_1097_AUD_0000000000000370
crossref_primary_10_1097_MAO_0000000000001849
crossref_primary_10_1121_1_5131344
crossref_primary_10_1121_1_5132553
crossref_primary_10_1152_jn_00342_2021
crossref_primary_10_1016_j_neulet_2021_135705
crossref_primary_10_1016_j_jneumeth_2016_08_005
crossref_primary_10_1523_JNEUROSCI_3250_14_2015
crossref_primary_10_1044_2023_JSLHR_23_00266
crossref_primary_10_1016_j_jneumeth_2020_108937
crossref_primary_10_1016_j_neuroscience_2015_09_023
crossref_primary_10_1016_j_neuroscience_2018_12_048
crossref_primary_10_3389_fncel_2022_851500
crossref_primary_10_1038_s41467_018_06777_y
crossref_primary_10_1038_s41551_021_00829_3
crossref_primary_10_1016_j_joto_2023_05_002
crossref_primary_10_1007_s10162_019_00721_7
crossref_primary_10_1016_S1632_3475_16_82192_X
crossref_primary_10_3389_fnins_2016_00199
crossref_primary_10_1152_jn_00738_2013
crossref_primary_10_1152_jn_00427_2022
crossref_primary_10_1159_000518962
crossref_primary_10_1007_s10162_018_0669_5
crossref_primary_10_3389_fnins_2018_00125
crossref_primary_10_1124_pharmrev_124_001195
crossref_primary_10_1242_bio_038547
crossref_primary_10_1016_j_cell_2018_07_007
crossref_primary_10_1016_j_heares_2018_02_001
crossref_primary_10_1016_j_cell_2018_07_008
crossref_primary_10_1038_s41598_019_45385_8
crossref_primary_10_1121_10_0017328
crossref_primary_10_1007_s00405_024_08699_6
crossref_primary_10_1007_s10162_017_0620_1
crossref_primary_10_1097_AUD_0000000000000388
crossref_primary_10_3390_antiox10121880
crossref_primary_10_1523_JNEUROSCI_1783_13_2013
crossref_primary_10_1044_2024_LSHSS_23_00165
crossref_primary_10_1097_AUD_0000000000000228
crossref_primary_10_1016_j_heares_2020_107979
crossref_primary_10_1523_JNEUROSCI_2784_18_2019
crossref_primary_10_1155_2021_6667531
crossref_primary_10_1515_revneuro_2020_0002
crossref_primary_10_1016_j_toxlet_2023_12_007
crossref_primary_10_1097_MOO_0000000000000748
crossref_primary_10_1177_2331216519877301
crossref_primary_10_1016_j_neulet_2014_08_040
crossref_primary_10_1007_s10162_014_0462_z
crossref_primary_10_1113_JP280256
crossref_primary_10_1007_s10162_020_00754_3
crossref_primary_10_1016_j_heares_2020_107982
crossref_primary_10_1113_JP280018
crossref_primary_10_1044_2022_JSLHR_22_00461
crossref_primary_10_1016_j_neurobiolaging_2017_09_034
crossref_primary_10_1016_j_heares_2017_09_010
crossref_primary_10_1121_10_0019880
crossref_primary_10_3109_0954898X_2016_1162338
crossref_primary_10_1038_nrd4533
crossref_primary_10_1121_1_5122794
crossref_primary_10_1080_14992027_2023_2240012
crossref_primary_10_1292_jvms_23_0477
crossref_primary_10_3389_fnins_2017_00157
Cites_doi 10.1121/1.381736
10.1113/jphysiol.2004.069559
10.1016/0378-5955(90)90120-E
10.1002/(SICI)1096-9861(19970505)381:2<188::AID-CNE6>3.0.CO;2-#
10.1002/cne.903010309
10.1016/0378-5955(84)90032-7
10.1523/JNEUROSCI.0389-10.2010
10.1121/1.387994
10.1002/cne.903130205
10.1016/0378-5955(88)90105-0
10.1080/14992020500377089
10.1007/s10162-012-0344-1
10.1016/0378-5955(88)90061-5
10.1016/j.heares.2006.07.014
10.1523/JNEUROSCI.3389-10.2011
10.1007/s10162-011-0277-0
10.1126/science.7079757
10.1523/JNEUROSCI.2156-11.2011
10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6
10.1152/jn.1996.76.4.2799
10.1016/0378-5955(95)00178-6
10.1523/JNEUROSCI.2845-09.2009
10.1523/JNEUROSCI.1996-07.2007
10.1016/j.ceca.2010.01.003
10.3109/00016489309135819
10.1523/JNEUROSCI.23-36-11296.2003
10.1016/0378-5955(80)90007-6
10.1152/jn.1984.51.6.1326
10.1016/0378-5955(83)90031-X
10.3109/00016486909125448
10.1016/0378-5955(84)90024-8
10.1016/0378-5955(89)90115-9
10.1152/jn.00574.2004
10.1121/1.388677
10.1002/cne.22644
ContentType Journal Article
Copyright Copyright © 2013 the American Physiological Society 2013 American Physiological Society
Copyright_xml – notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00164.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 586
ExternalDocumentID PMC3742994
23596328
10_1152_jn_00164_2013
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: R01 DC-08577
– fundername: NIDCD NIH HHS
  grantid: P30 DC005209
– fundername: NIDCD NIH HHS
  grantid: R01 DC000188
– fundername: NIDCD NIH HHS
  grantid: R01 DC008577
– fundername: NIDCD NIH HHS
  grantid: P30 DC-05029
– fundername: NIDCD NIH HHS
  grantid: R01 DC-00188
– fundername: NIDCD NIH HHS
  grantid: T32 DC000038
– fundername: NIDCD NIH HHS
  grantid: T32 DC-00038
GroupedDBID ---
-DZ
-~X
.55
0VX
18M
29L
2WC
39C
4.4
41~
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
.GJ
1CY
1Z7
3O-
8M5
AI.
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NEJ
NPM
OHT
UQL
VH1
XJT
XOL
ZGI
ZXP
ZY4
7X8
5PM
ID FETCH-LOGICAL-c387t-d49a675cddbced27bf43fbbb8c8b18a73f583bc17f2af8a452504489f79c07123
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 18:21:18 EDT 2025
Fri Jul 11 04:07:18 EDT 2025
Wed May 21 12:14:25 EDT 2025
Tue Jul 01 04:09:00 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords auditory nerve
excitotoxicity
noise-induced hearing loss
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-d49a675cddbced27bf43fbbb8c8b18a73f583bc17f2af8a452504489f79c07123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1152/jn.00164.2013
PMID 23596328
PQID 1417534471
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742994
proquest_miscellaneous_1417534471
pubmed_primary_23596328
crossref_primary_10_1152_jn_00164_2013
crossref_citationtrail_10_1152_jn_00164_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2013
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B18
B1
B2
B3
B4
B5
B6
B7
B8
Liberman MC (B19) 1978; 358
B9
Liberman MC (B20) 1982
23636727 - J Neurophysiol. 2013 Aug;110(3):575-6. doi: 10.1152/jn.00292.2013.
References_xml – ident: B11
  doi: 10.1121/1.381736
– ident: B4
  doi: 10.1113/jphysiol.2004.069559
– start-page: 105
  volume-title: New Perspectives on Noise-Induced Hearing Loss
  year: 1982
  ident: B20
– ident: B38
  doi: 10.1016/0378-5955(90)90120-E
– ident: B36
  doi: 10.1002/(SICI)1096-9861(19970505)381:2<188::AID-CNE6>3.0.CO;2-#
– ident: B18
  doi: 10.1002/cne.903010309
– ident: B37
  doi: 10.1016/0378-5955(84)90032-7
– ident: B3
  doi: 10.1523/JNEUROSCI.0389-10.2010
– ident: B1
  doi: 10.1121/1.387994
– ident: B12
  doi: 10.1002/cne.903130205
– ident: B15
  doi: 10.1016/0378-5955(88)90105-0
– ident: B31
  doi: 10.1080/14992020500377089
– ident: B7
  doi: 10.1007/s10162-012-0344-1
– ident: B2
  doi: 10.1016/0378-5955(88)90061-5
– ident: B33
  doi: 10.1016/j.heares.2006.07.014
– ident: B10
  doi: 10.1523/JNEUROSCI.3389-10.2011
– ident: B21
  doi: 10.1007/s10162-011-0277-0
– ident: B16
  doi: 10.1126/science.7079757
– volume: 358
  start-page: 1
  year: 1978
  ident: B19
  publication-title: Acta Otolaryngol
– ident: B28
  doi: 10.1523/JNEUROSCI.2156-11.2011
– ident: B23
  doi: 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6
– ident: B30
  doi: 10.1152/jn.1996.76.4.2799
– ident: B22
  doi: 10.1016/0378-5955(95)00178-6
– ident: B8
– ident: B9
  doi: 10.1523/JNEUROSCI.2845-09.2009
– ident: B25
  doi: 10.1523/JNEUROSCI.1996-07.2007
– ident: B34
  doi: 10.1016/j.ceca.2010.01.003
– ident: B26
  doi: 10.3109/00016489309135819
– ident: B6
  doi: 10.1523/JNEUROSCI.23-36-11296.2003
– ident: B14
  doi: 10.1016/0378-5955(80)90007-6
– ident: B5
  doi: 10.1152/jn.1984.51.6.1326
– ident: B27
  doi: 10.1016/0378-5955(83)90031-X
– ident: B32
  doi: 10.3109/00016486909125448
– ident: B17
  doi: 10.1016/0378-5955(84)90024-8
– ident: B29
  doi: 10.1016/0378-5955(89)90115-9
– ident: B35
  doi: 10.1152/jn.00574.2004
– ident: B13
  doi: 10.1121/1.388677
– ident: B24
  doi: 10.1002/cne.22644
– reference: 23636727 - J Neurophysiol. 2013 Aug;110(3):575-6. doi: 10.1152/jn.00292.2013.
SSID ssj0007502
Score 2.6013236
Snippet Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 577
SubjectTerms Animals
Cochlea - pathology
Cochlear Nerve - pathology
Cochlear Nerve - physiopathology
Female
Guinea Pigs
Hair Cells, Auditory - pathology
Hearing Loss, Noise-Induced - pathology
Hearing Loss, Noise-Induced - physiopathology
Vestibulocochlear Nerve Diseases - pathology
Vestibulocochlear Nerve Diseases - physiopathology
Title Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
URI https://www.ncbi.nlm.nih.gov/pubmed/23596328
https://www.proquest.com/docview/1417534471
https://pubmed.ncbi.nlm.nih.gov/PMC3742994
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc29rKXaRv76MaQJ028dOna2ImdxwqB0BBok4rEW2Q7sWgFKaKpEPvruXOcLz4kxkvUOrHT9Hc53_nOvyPkh1ITpqyVgRE2BAdF5IFSOgnGJuRGwYwUZxjRPTqOD07479PotF3TdbtLSj0y_x7cV_IcVKENcMVdsv-BbDMoNMBnwBeOgDAcn4Tx8XK-ygPwqtcYxQfVdoZFIIaOoxJLDd9gufKVq3RTs3tbzBDxW9rOl9dDzJAF-zDHTFhkjVg9Yq1WYyKovXX4_fWVX0KdZupiuDtqQ0MLde0MU6SERuqO5pRLUvG9jkZ1wL-7_IClIGS9_NDZDjD2tVhyr0WhDewk2VOzPn113nXDndKM6s7Vt4oa-75qj5AqdlGMHCsYJuWxdg6r4_Z3prYm4dC5OlGYLorUdU-x-0vyKgTnArXj4d-WYx5sqJZjHh6sZmaNwl-9u_ctmXvuyd0s247ZMntL3ngE6bQSnnfkRV68J5vTQpXLixu6Q_80kG6SWU-eaC1PtJUnOl_RRp4oyBOt5ImiPFGQJ9qRJ-rk6QM52d-b7R4EvupGYJgUZZDxRIEXabJMw71CoS1nVmstjdQTqQSzkWTaTODdVlYqFxcHHz-xIjFgr4bsI9kolkX-mdCYMZ6Ps7GaGAFuLldRLGxueGZkFsuED8jP-h9Mjaekx8oo5-mDeA3ITnP5ZcXF8tiF32s4UtCWGAKrHhwcXWSm5WCRDcinCp5mqJBFMBuFckBED7jmAmRi758p5meOkZ0JNOv4l6f-wK_kdfsubZGN8mqdfwPjttTbThZvASXvp04
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise-induced+cochlear+neuropathy+is+selective+for+fibers+with+low+spontaneous+rates&rft.jtitle=Journal+of+neurophysiology&rft.au=Furman%2C+Adam+C.&rft.au=Kujawa%2C+Sharon+G.&rft.au=Liberman%2C+M.+Charles&rft.date=2013-08-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=110&rft.issue=3&rft.spage=577&rft.epage=586&rft_id=info:doi/10.1152%2Fjn.00164.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00164_2013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon