Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this no...
Saved in:
Published in | Journal of neurophysiology Vol. 110; no. 3; pp. 577 - 586 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system. |
---|---|
AbstractList | Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system.Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds (Kujawa and Liberman 2009), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system. Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system. Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear thresholds ( Kujawa and Liberman 2009 ), as measured by gross neural potentials such as the auditory brainstem response (ABR). To address this nominal paradox, we recorded responses from single auditory nerve fibers in guinea pigs exposed to this type of neuropathic noise (4- to 8-kHz octave band at 106 dB SPL for 2 h). Two weeks postexposure, ABR thresholds had recovered to normal, while suprathreshold ABR amplitudes were reduced. Both thresholds and amplitudes of distortion-product otoacoustic emissions fully recovered, suggesting recovery of hair cell function. Loss of up to 30% of auditory-nerve synapses on inner hair cells was confirmed by confocal analysis of the cochlear sensory epithelium immunostained for pre- and postsynaptic markers. In single fiber recordings, at 2 wk postexposure, frequency tuning, dynamic range, postonset adaptation, first-spike latency and its variance, and other basic properties of auditory nerve response were all completely normal in the remaining fibers. The only physiological abnormality was a change in population statistics suggesting a selective loss of fibers with low- and medium-spontaneous rates. Selective loss of these high-threshold fibers would explain how ABR thresholds can recover despite such significant noise-induced neuropathy. A selective loss of high-threshold fibers may contribute to the problems of hearing in noisy environments that characterize the aging auditory system. |
Author | Liberman, M. Charles Kujawa, Sharon G. Furman, Adam C. |
Author_xml | – sequence: 1 givenname: Adam C. surname: Furman fullname: Furman, Adam C. organization: Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts;, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts – sequence: 2 givenname: Sharon G. surname: Kujawa fullname: Kujawa, Sharon G. organization: Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts;, Department of Audiology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; and, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts – sequence: 3 givenname: M. Charles surname: Liberman fullname: Liberman, M. Charles organization: Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts;, Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts;, Harvard Program in Speech and Hearing Bioscience and Technology, Boston, Massachusetts |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23596328$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1vEzEQxS3UiqaFI1fkI5cN_oy9l0qoghapai_t2bK9Y-JoYwfb26r_PRtSKqjEaayZn98b-52io5QTIPSBkiWlkn3epCUhdCWWjFD-Bi3mHuuo7PURWhAynzlR6gSd1rohhChJ2Ft0wrjsV5zpBbq7ybFCF9MweRiwz349gi04wVTyzrb1E44VVxjBt_gAOOSCQ3RQKn6MbY3H_IjrLqdmE-Sp4mIb1HfoONixwvvneobuv329u7jqrm8vv198ue4816p1g-jtSkk_DG72ZsoFwYNzTnvtqLaKB6m581QFZoO2QjJJhNB9UL0nijJ-hs4PurvJbWHwkFqxo9mVuLXlyWQbzb-TFNfmR34wXAnW92IW-PQsUPLPCWoz21g9jOPhNYYKqiQXQtEZ_fi314vJn6-cge4A-JJrLRBeEErMPiqzSeZ3VGYf1czzV7yPzbaY96vG8T-3fgF-xpl0 |
CitedBy_id | crossref_primary_10_1523_JNEUROSCI_4923_13_2014 crossref_primary_10_1242_dev_177188 crossref_primary_10_3389_fncel_2024_1465216 crossref_primary_10_1016_j_heares_2017_11_004 crossref_primary_10_1016_j_neuroscience_2018_12_019 crossref_primary_10_1038_s41598_017_04941_w crossref_primary_10_1038_s42003_022_03691_4 crossref_primary_10_3389_fnsyn_2021_680621 crossref_primary_10_1016_j_heares_2020_107950 crossref_primary_10_1007_s00441_015_2168_x crossref_primary_10_1007_s10162_015_0550_8 crossref_primary_10_1038_s41434_018_0012_0 crossref_primary_10_3389_fncir_2015_00075 crossref_primary_10_1016_j_neuroscience_2014_05_067 crossref_primary_10_1055_s_0042_1758530 crossref_primary_10_1121_1_4928305 crossref_primary_10_3390_biology13060416 crossref_primary_10_1172_JCI155094 crossref_primary_10_1016_j_neuroscience_2018_12_007 crossref_primary_10_1055_s_0041_1740362 crossref_primary_10_1016_j_heares_2020_107960 crossref_primary_10_1038_s41598_019_51724_6 crossref_primary_10_1177_00034894221075422 crossref_primary_10_1080_14992027_2016_1256504 crossref_primary_10_1152_jn_00016_2020 crossref_primary_10_1007_s10162_018_00690_3 crossref_primary_10_1096_fj_201701041RRR crossref_primary_10_1016_j_heares_2016_10_028 crossref_primary_10_1155_2016_6143164 crossref_primary_10_1152_jn_00184_2013 crossref_primary_10_1080_14992027_2018_1534010 crossref_primary_10_1016_j_heares_2020_107933 crossref_primary_10_4295_audiology_62_235 crossref_primary_10_1016_j_heares_2019_07_001 crossref_primary_10_1073_pnas_2217033120 crossref_primary_10_1121_10_0036054 crossref_primary_10_1016_j_heares_2016_10_015 crossref_primary_10_3389_fnsyn_2021_678575 crossref_primary_10_1002_syn_22087 crossref_primary_10_1016_j_heares_2016_10_018 crossref_primary_10_7554_eLife_51419 crossref_primary_10_3389_fnins_2017_00465 crossref_primary_10_1097_AUD_0000000000000711 crossref_primary_10_1177_2331216516657466 crossref_primary_10_1080_14992027_2024_2391986 crossref_primary_10_3390_life11040301 crossref_primary_10_15252_emmm_202013391 crossref_primary_10_1121_1_4984031 crossref_primary_10_1124_mol_117_108548 crossref_primary_10_3390_diagnostics12040802 crossref_primary_10_1016_j_neuroscience_2020_02_038 crossref_primary_10_1177_2331216518758109 crossref_primary_10_1038_s41598_017_04899_9 crossref_primary_10_1523_ENEURO_0182_24_2024 crossref_primary_10_3389_fnmol_2024_1379743 crossref_primary_10_1016_j_isci_2022_104997 crossref_primary_10_1016_j_freeradbiomed_2017_04_343 crossref_primary_10_3389_fcell_2021_720902 crossref_primary_10_1038_s41598_023_46859_6 crossref_primary_10_3950_jibiinkoka_124_715 crossref_primary_10_3950_jibiinkotokeibu_125_10_1431 crossref_primary_10_4103_nah_NAH_81_20 crossref_primary_10_1038_s41467_024_54700_5 crossref_primary_10_1177_2331216520972860 crossref_primary_10_1523_JNEUROSCI_4460_15_2016 crossref_primary_10_1016_j_heares_2017_12_018 crossref_primary_10_1121_10_0017789 crossref_primary_10_5582_irdr_2019_01073 crossref_primary_10_3390_ijms24010291 crossref_primary_10_1016_j_exger_2020_111078 crossref_primary_10_1523_JNEUROSCI_1747_21_2021 crossref_primary_10_1121_10_0009802 crossref_primary_10_3389_fncir_2022_856926 crossref_primary_10_3390_antiox13020149 crossref_primary_10_1016_j_exger_2016_08_011 crossref_primary_10_1007_s10162_021_00827_x crossref_primary_10_1523_ENEURO_0363_17_2017 crossref_primary_10_1002_lio2_134 crossref_primary_10_3390_ijms222212208 crossref_primary_10_1016_j_heares_2022_108456 crossref_primary_10_1121_1_5132711 crossref_primary_10_1371_journal_pone_0142341 crossref_primary_10_1523_JNEUROSCI_2104_20_2020 crossref_primary_10_5607_en_2018_27_5_397 crossref_primary_10_12659_MSM_897929 crossref_primary_10_1002_jbio_201900145 crossref_primary_10_3389_fnint_2023_1236661 crossref_primary_10_1371_journal_pone_0189157 crossref_primary_10_3389_fnins_2022_1000304 crossref_primary_10_1097_AUD_0000000000001504 crossref_primary_10_3390_brainsci12020142 crossref_primary_10_4103_nah_NAH_67_20 crossref_primary_10_1121_1_5030920 crossref_primary_10_1177_23312165241239541 crossref_primary_10_1002_jnr_24426 crossref_primary_10_1016_j_heares_2024_108967 crossref_primary_10_1016_j_heares_2022_108569 crossref_primary_10_1016_j_neuroscience_2023_01_037 crossref_primary_10_1016_j_heares_2024_108963 crossref_primary_10_1016_j_heares_2022_108568 crossref_primary_10_3390_audiolres13060085 crossref_primary_10_1109_TNSRE_2018_2863740 crossref_primary_10_1097_AUD_0000000000000543 crossref_primary_10_1097_AUD_0000000000000544 crossref_primary_10_1097_AUD_0000000000000987 crossref_primary_10_1044_2022_AJA_22_00117 crossref_primary_10_1055_s_0042_1756164 crossref_primary_10_1016_j_neurobiolaging_2018_08_023 crossref_primary_10_1055_s_0042_1756160 crossref_primary_10_1017_S002221512100459X crossref_primary_10_1016_j_heares_2021_108396 crossref_primary_10_1093_brain_awv270 crossref_primary_10_1016_j_heares_2021_108279 crossref_primary_10_1016_j_heares_2019_01_017 crossref_primary_10_1016_j_heares_2019_01_018 crossref_primary_10_1016_j_heares_2019_01_019 crossref_primary_10_3389_fnins_2017_00304 crossref_primary_10_1121_10_0017973 crossref_primary_10_3389_fnins_2014_00110 crossref_primary_10_1007_s10162_018_0671_y crossref_primary_10_1007_s12070_021_02373_7 crossref_primary_10_1111_ejn_13846 crossref_primary_10_1371_journal_pone_0292676 crossref_primary_10_3389_fnins_2014_00112 crossref_primary_10_1097_AUD_0000000000001609 crossref_primary_10_1016_j_neurobiolaging_2021_08_019 crossref_primary_10_1093_molbev_msz077 crossref_primary_10_1016_j_neuroscience_2015_12_005 crossref_primary_10_1016_j_heares_2018_04_011 crossref_primary_10_3389_fcell_2018_00114 crossref_primary_10_1007_s10162_015_0539_3 crossref_primary_10_3389_fnins_2021_659011 crossref_primary_10_3390_cells11071097 crossref_primary_10_1016_j_heares_2018_11_008 crossref_primary_10_1016_j_isci_2022_104803 crossref_primary_10_1016_j_heares_2022_108533 crossref_primary_10_3390_biology13060371 crossref_primary_10_4236_aar_2021_102002 crossref_primary_10_1016_j_heares_2023_108935 crossref_primary_10_1152_jn_00677_2018 crossref_primary_10_3349_ymj_2021_62_7_615 crossref_primary_10_1016_j_heares_2016_11_010 crossref_primary_10_1016_j_neuroscience_2018_09_008 crossref_primary_10_1016_j_heares_2024_109050 crossref_primary_10_1016_j_heares_2020_108099 crossref_primary_10_1007_s10162_016_0584_6 crossref_primary_10_1016_j_otc_2020_03_008 crossref_primary_10_3389_fneur_2023_1104574 crossref_primary_10_1159_000380749 crossref_primary_10_3389_fnagi_2022_890010 crossref_primary_10_1097_MAO_0000000000003279 crossref_primary_10_1044_2017_JSLHR_H_17_0080 crossref_primary_10_1038_s41598_019_53353_5 crossref_primary_10_1016_j_neuroscience_2019_01_020 crossref_primary_10_1038_s41467_018_06033_3 crossref_primary_10_1016_j_heares_2024_109166 crossref_primary_10_1044_2021_JSLHR_21_00064 crossref_primary_10_1016_j_heares_2020_108068 crossref_primary_10_1038_s41467_022_30455_9 crossref_primary_10_1044_2024_AJA_24_00010 crossref_primary_10_3389_fnagi_2020_00083 crossref_primary_10_1007_s00405_021_07232_3 crossref_primary_10_1523_JNEUROSCI_1187_16_2016 crossref_primary_10_1097_MAO_0000000000001069 crossref_primary_10_1097_MAO_0000000000004456 crossref_primary_10_3389_fnagi_2015_00063 crossref_primary_10_3390_ijerph17238963 crossref_primary_10_7554_eLife_01341 crossref_primary_10_1016_j_ajhg_2022_04_010 crossref_primary_10_1016_j_celrep_2020_108551 crossref_primary_10_3389_fnins_2019_00730 crossref_primary_10_15252_emmm_201809396 crossref_primary_10_1097_MAO_0000000000001191 crossref_primary_10_1038_s42003_020_01532_w crossref_primary_10_1016_j_heares_2020_108079 crossref_primary_10_1016_j_bcp_2015_06_011 crossref_primary_10_1152_jn_00446_2013 crossref_primary_10_3389_fncel_2024_1523978 crossref_primary_10_1016_j_heares_2024_109033 crossref_primary_10_1080_14992027_2016_1255359 crossref_primary_10_1007_s00106_013_2807_z crossref_primary_10_3389_fnins_2018_00866 crossref_primary_10_1016_j_heares_2022_108663 crossref_primary_10_1038_srep15960 crossref_primary_10_1016_j_heares_2015_02_009 crossref_primary_10_1096_fj_202300457RR crossref_primary_10_3389_fnins_2022_915211 crossref_primary_10_3390_brainsci13060968 crossref_primary_10_1121_1_5132709 crossref_primary_10_3389_fnins_2022_893542 crossref_primary_10_1121_1_5132707 crossref_primary_10_1016_j_pharmthera_2019_05_003 crossref_primary_10_1121_1_5132708 crossref_primary_10_1038_s41598_018_28924_7 crossref_primary_10_1121_10_0016853 crossref_primary_10_1016_j_pneurobio_2013_08_002 crossref_primary_10_47795_DQYG1107 crossref_primary_10_1097_AUD_0000000000000804 crossref_primary_10_3389_fnins_2016_00621 crossref_primary_10_1016_j_heares_2013_12_004 crossref_primary_10_1016_j_febslet_2015_08_030 crossref_primary_10_1121_10_0005846 crossref_primary_10_1016_j_physbeh_2019_112620 crossref_primary_10_1121_10_0006811 crossref_primary_10_3389_fnsys_2018_00059 crossref_primary_10_1038_s41598_019_39119_z crossref_primary_10_1016_j_heares_2021_108333 crossref_primary_10_1016_j_heares_2021_108215 crossref_primary_10_1155_2021_9919977 crossref_primary_10_17430_jhs_190258 crossref_primary_10_1371_journal_pone_0125160 crossref_primary_10_1016_j_physbeh_2015_03_005 crossref_primary_10_1097_JCMA_0000000000001005 crossref_primary_10_3390_brainsci10100756 crossref_primary_10_1044_2019_PERS_SIG8_2019_0006 crossref_primary_10_1016_j_omtm_2022_07_012 crossref_primary_10_3389_fnagi_2015_00004 crossref_primary_10_1007_s00441_015_2177_9 crossref_primary_10_1016_j_heares_2020_108057 crossref_primary_10_1371_journal_pcbi_1008499 crossref_primary_10_1016_j_heares_2017_04_016 crossref_primary_10_1016_j_heares_2022_108603 crossref_primary_10_3389_fncel_2021_684706 crossref_primary_10_23736_S2724_6302_23_02496_9 crossref_primary_10_4295_audiology_66_101 crossref_primary_10_3390_ijms22168807 crossref_primary_10_1016_j_heares_2017_10_007 crossref_primary_10_1186_s13020_023_00825_6 crossref_primary_10_1523_JNEUROSCI_5138_14_2015 crossref_primary_10_3389_fnagi_2022_877588 crossref_primary_10_7554_eLife_55378 crossref_primary_10_1016_j_neuroscience_2018_09_012 crossref_primary_10_1097_AUD_0000000000000905 crossref_primary_10_1121_10_0001346 crossref_primary_10_1097_AUD_0000000000000906 crossref_primary_10_1016_j_heares_2020_108027 crossref_primary_10_1109_TASLP_2023_3282093 crossref_primary_10_1121_1_5125008 crossref_primary_10_1038_nrneurol_2016_12 crossref_primary_10_1038_s41598_024_74661_5 crossref_primary_10_1038_nrneurol_2016_10 crossref_primary_10_1016_j_heares_2020_108021 crossref_primary_10_1016_j_heares_2021_108310 crossref_primary_10_1093_milmed_usaf055 crossref_primary_10_1177_2331216514550621 crossref_primary_10_1007_s10565_021_09596_y crossref_primary_10_15252_embj_2020106010 crossref_primary_10_1250_ast_41_83 crossref_primary_10_1007_s11517_015_1251_5 crossref_primary_10_1016_j_heares_2015_01_005 crossref_primary_10_1177_2331216516686768 crossref_primary_10_1016_j_neuroscience_2018_09_026 crossref_primary_10_1016_j_neuropharm_2021_108707 crossref_primary_10_3389_fncel_2017_00361 crossref_primary_10_1038_s41598_020_66715_1 crossref_primary_10_1016_j_heares_2016_03_011 crossref_primary_10_1016_j_heares_2024_109077 crossref_primary_10_1016_j_neuroscience_2019_02_031 crossref_primary_10_1016_j_heares_2022_108621 crossref_primary_10_1002_syn_21925 crossref_primary_10_1080_14992027_2016_1236417 crossref_primary_10_1152_jn_00948_2014 crossref_primary_10_1007_s00106_019_0660_4 crossref_primary_10_1016_j_heares_2023_108927 crossref_primary_10_1080_21695717_2021_1876494 crossref_primary_10_4103_nah_nah_3_22 crossref_primary_10_1016_j_neuroscience_2020_03_023 crossref_primary_10_1073_pnas_2000760117 crossref_primary_10_3389_fnins_2023_1253574 crossref_primary_10_1016_j_heares_2018_06_003 crossref_primary_10_1121_10_0010317 crossref_primary_10_3389_fnins_2024_1425226 crossref_primary_10_1038_srep27109 crossref_primary_10_1016_j_neuroimage_2019_116239 crossref_primary_10_1016_j_heares_2015_11_004 crossref_primary_10_1038_s41598_023_46741_5 crossref_primary_10_1177_2331216519839615 crossref_primary_10_1016_j_neuroscience_2019_11_051 crossref_primary_10_1038_s41598_017_06600_6 crossref_primary_10_1111_ejn_12486 crossref_primary_10_1177_2331216520988406 crossref_primary_10_1007_s00441_014_1992_8 crossref_primary_10_1038_s41598_022_13023_5 crossref_primary_10_1055_s_0043_1763296 crossref_primary_10_3389_fnins_2022_945277 crossref_primary_10_1016_j_amjoto_2023_104067 crossref_primary_10_1097_AUD_0000000000001263 crossref_primary_10_1097_AUD_0000000000001147 crossref_primary_10_21849_cacd_2020_00255 crossref_primary_10_1038_srep25056 crossref_primary_10_1073_pnas_1914247117 crossref_primary_10_1152_jn_00081_2021 crossref_primary_10_1523_JNEUROSCI_3214_14_2015 crossref_primary_10_1523_JNEUROSCI_3915_14_2015 crossref_primary_10_1016_j_heares_2019_03_016 crossref_primary_10_3390_brainsci10100710 crossref_primary_10_1016_j_heares_2018_01_005 crossref_primary_10_1177_2331216517737417 crossref_primary_10_1016_j_heares_2019_03_014 crossref_primary_10_1523_JNEUROSCI_2867_16_2017 crossref_primary_10_1016_j_heares_2020_108132 crossref_primary_10_1038_s41598_020_76553_w crossref_primary_10_1016_j_clinph_2024_06_005 crossref_primary_10_1250_ast_41_59 crossref_primary_10_1007_s00438_017_1320_6 crossref_primary_10_3390_diagnostics13050934 crossref_primary_10_1016_j_heares_2021_108309 crossref_primary_10_1097_AUD_0000000000001158 crossref_primary_10_1152_jn_00402_2021 crossref_primary_10_1016_j_neulet_2019_05_022 crossref_primary_10_3389_fncir_2021_785603 crossref_primary_10_1177_2331216516662003 crossref_primary_10_1016_j_heares_2020_108109 crossref_primary_10_1242_dev_176750 crossref_primary_10_1121_10_0014815 crossref_primary_10_1044_2018_JSLHR_H_18_0245 crossref_primary_10_1016_j_heares_2014_09_005 crossref_primary_10_1016_j_heares_2018_01_014 crossref_primary_10_1121_10_0007484 crossref_primary_10_1371_journal_pone_0150415 crossref_primary_10_1055_s_0044_1790277 crossref_primary_10_3389_fnsyn_2021_740368 crossref_primary_10_3389_fnsys_2020_00025 crossref_primary_10_1016_j_neuroscience_2019_03_036 crossref_primary_10_1111_ene_70083 crossref_primary_10_1016_S1639_870X_16_81842_5 crossref_primary_10_3389_fnins_2023_1296458 crossref_primary_10_1121_10_0014829 crossref_primary_10_3390_ijms22010003 crossref_primary_10_1097_AUD_0000000000001009 crossref_primary_10_1016_j_devcel_2023_01_008 crossref_primary_10_1016_j_neuroscience_2019_03_021 crossref_primary_10_1016_j_heares_2020_108117 crossref_primary_10_4295_audiology_64_217 crossref_primary_10_3389_fnins_2022_799787 crossref_primary_10_7554_eLife_48914 crossref_primary_10_1097_AUD_0000000000000164 crossref_primary_10_1016_j_heares_2021_108408 crossref_primary_10_1121_10_0034423 crossref_primary_10_1055_a_1399_9540 crossref_primary_10_4103_jose_JOSE_2_22 crossref_primary_10_1523_JNEUROSCI_1273_22_2023 crossref_primary_10_1007_s11062_018_9691_9 crossref_primary_10_1016_j_heares_2015_04_008 crossref_primary_10_1177_23312165221117081 crossref_primary_10_1121_1_5134465 crossref_primary_10_3389_fnins_2020_588448 crossref_primary_10_1007_s10162_015_0510_3 crossref_primary_10_1523_JNEUROSCI_3238_20_2021 crossref_primary_10_1097_JBR_0000000000000039 crossref_primary_10_1044_2019_JSLHR_19_00293 crossref_primary_10_1111_ejn_16534 crossref_primary_10_1177_2331216516672186 crossref_primary_10_1016_j_heares_2016_12_002 crossref_primary_10_1038_mtm_2016_52 crossref_primary_10_1038_s41598_019_45964_9 crossref_primary_10_12688_f1000research_11310_1 crossref_primary_10_1177_23312165231225545 crossref_primary_10_1016_j_heares_2015_04_004 crossref_primary_10_1044_2020_AJA_19_00065 crossref_primary_10_23736_S2724_6302_21_02391_4 crossref_primary_10_1016_j_heares_2016_06_017 crossref_primary_10_1016_j_heares_2016_12_008 crossref_primary_10_1016_j_heares_2016_12_009 crossref_primary_10_1016_j_mehy_2023_111112 crossref_primary_10_1016_j_banm_2023_03_024 crossref_primary_10_1523_JNEUROSCI_2529_13_2013 crossref_primary_10_3389_fneur_2015_00105 crossref_primary_10_1172_jci_insight_182138 crossref_primary_10_3390_ijms25052738 crossref_primary_10_1038_s41598_021_83115_1 crossref_primary_10_1016_j_cub_2020_09_053 crossref_primary_10_3389_fnins_2016_00597 crossref_primary_10_1371_journal_pone_0287400 crossref_primary_10_3389_fnins_2016_00231 crossref_primary_10_1016_j_ijdevneu_2014_06_002 crossref_primary_10_1121_10_0002961 crossref_primary_10_1121_1_5132291 crossref_primary_10_1121_10_0009238 crossref_primary_10_1016_j_heares_2016_12_010 crossref_primary_10_1152_jn_00472_2016 crossref_primary_10_1016_j_heares_2015_10_004 crossref_primary_10_1121_1_4966113 crossref_primary_10_1016_j_heares_2016_12_015 crossref_primary_10_1007_s00106_019_0640_8 crossref_primary_10_1016_j_heares_2015_04_011 crossref_primary_10_1121_10_0007046 crossref_primary_10_1016_j_mcn_2021_103692 crossref_primary_10_1097_MAO_0000000000000451 crossref_primary_10_1016_j_celrep_2021_109758 crossref_primary_10_3389_fpubh_2023_1140500 crossref_primary_10_1016_j_heares_2017_07_006 crossref_primary_10_1371_journal_pone_0162726 crossref_primary_10_1177_23312165231224597 crossref_primary_10_1016_j_heares_2024_109005 crossref_primary_10_1097_AUD_0000000000001161 crossref_primary_10_1038_s41684_022_01017_9 crossref_primary_10_1097_AUD_0000000000000193 crossref_primary_10_1113_JP282262 crossref_primary_10_1044_2022_AJA_21_00226 crossref_primary_10_1121_10_0011510 crossref_primary_10_1016_j_ymthe_2021_07_013 crossref_primary_10_3390_ijerph17176336 crossref_primary_10_1073_pnas_1605737113 crossref_primary_10_7554_eLife_07242 crossref_primary_10_1016_j_heares_2016_05_004 crossref_primary_10_1016_j_isci_2024_108825 crossref_primary_10_1016_j_heares_2016_05_006 crossref_primary_10_1007_s12070_021_02797_1 crossref_primary_10_3389_fnins_2022_935371 crossref_primary_10_1016_j_heares_2018_10_006 crossref_primary_10_1038_srep24907 crossref_primary_10_4274_cjms_2021_2021_51 crossref_primary_10_1152_jn_00548_2014 crossref_primary_10_1113_JP284452 crossref_primary_10_1016_j_neuroscience_2018_07_027 crossref_primary_10_1097_AUD_0000000000001175 crossref_primary_10_3389_fnagi_2022_869338 crossref_primary_10_1152_jn_00595_2018 crossref_primary_10_1007_s13534_019_00114_y crossref_primary_10_1038_srep25200 crossref_primary_10_1016_j_tins_2019_03_006 crossref_primary_10_1121_10_0006572 crossref_primary_10_1016_j_heares_2018_03_008 crossref_primary_10_1152_jn_00620_2020 crossref_primary_10_4295_audiology_61_177 crossref_primary_10_3389_fnhum_2016_00530 crossref_primary_10_1016_j_heares_2014_03_004 crossref_primary_10_1097_MAO_0000000000001407 crossref_primary_10_7717_peerj_2252 crossref_primary_10_1002_advs_202410776 crossref_primary_10_1371_journal_pone_0243903 crossref_primary_10_1016_j_jneuroim_2018_06_019 crossref_primary_10_1097_AUD_0000000000000457 crossref_primary_10_1146_annurev_psych_122216_011635 crossref_primary_10_1044_2021_AJA_21_00133 crossref_primary_10_1016_j_heares_2019_05_008 crossref_primary_10_1121_1_5009603 crossref_primary_10_1101_cshperspect_a035493 crossref_primary_10_1016_j_neurobiolaging_2016_05_001 crossref_primary_10_3389_fnmol_2020_00087 crossref_primary_10_3389_fneur_2016_00133 crossref_primary_10_1016_j_heares_2019_05_001 crossref_primary_10_3389_fnins_2021_778197 crossref_primary_10_1016_j_heares_2016_07_019 crossref_primary_10_1016_j_brainres_2015_02_012 crossref_primary_10_1097_MAO_0000000000002867 crossref_primary_10_3389_fnins_2020_596670 crossref_primary_10_1016_j_joto_2018_05_001 crossref_primary_10_1044_2023_JSLHR_23_00234 crossref_primary_10_1016_j_cub_2020_09_046 crossref_primary_10_1097_AUD_0000000000000787 crossref_primary_10_1016_j_heares_2018_03_028 crossref_primary_10_1113_JP281014 crossref_primary_10_1152_jn_00292_2013 crossref_primary_10_1016_j_heares_2017_01_016 crossref_primary_10_1016_j_heares_2018_03_021 crossref_primary_10_1121_1_5100620 crossref_primary_10_1044_persp3_SIG6_28 crossref_primary_10_3389_fncel_2021_699978 crossref_primary_10_1016_j_neuroscience_2018_07_053 crossref_primary_10_1073_pnas_1812029116 crossref_primary_10_1016_j_freeradbiomed_2019_02_022 crossref_primary_10_1016_j_heares_2019_02_015 crossref_primary_10_1016_j_heares_2019_02_016 crossref_primary_10_1097_MOO_0000000000000824 crossref_primary_10_1044_2020_AJA_20_00056 crossref_primary_10_1038_srep30821 crossref_primary_10_1016_j_neuroscience_2019_12_049 crossref_primary_10_1007_s00106_016_0258_z crossref_primary_10_1152_jn_00638_2017 crossref_primary_10_15252_embr_201643689 crossref_primary_10_1016_j_heares_2017_01_003 crossref_primary_10_1080_13543784_2023_2242253 crossref_primary_10_1016_j_tins_2018_01_008 crossref_primary_10_1121_10_0021884 crossref_primary_10_1002_jnr_24439 crossref_primary_10_51445_sja_auditio_vol8_2024_103 crossref_primary_10_1016_j_neuroscience_2019_11_004 crossref_primary_10_1121_1_4947430 crossref_primary_10_4295_audiology_61_145 crossref_primary_10_1016_j_neuroscience_2014_07_025 crossref_primary_10_3390_jcm14020360 crossref_primary_10_1002_lary_26540 crossref_primary_10_3389_fnmol_2018_00077 crossref_primary_10_1097_AUD_0000000000000370 crossref_primary_10_1097_MAO_0000000000001849 crossref_primary_10_1121_1_5131344 crossref_primary_10_1121_1_5132553 crossref_primary_10_1152_jn_00342_2021 crossref_primary_10_1016_j_neulet_2021_135705 crossref_primary_10_1016_j_jneumeth_2016_08_005 crossref_primary_10_1523_JNEUROSCI_3250_14_2015 crossref_primary_10_1044_2023_JSLHR_23_00266 crossref_primary_10_1016_j_jneumeth_2020_108937 crossref_primary_10_1016_j_neuroscience_2015_09_023 crossref_primary_10_1016_j_neuroscience_2018_12_048 crossref_primary_10_3389_fncel_2022_851500 crossref_primary_10_1038_s41467_018_06777_y crossref_primary_10_1038_s41551_021_00829_3 crossref_primary_10_1016_j_joto_2023_05_002 crossref_primary_10_1007_s10162_019_00721_7 crossref_primary_10_1016_S1632_3475_16_82192_X crossref_primary_10_3389_fnins_2016_00199 crossref_primary_10_1152_jn_00738_2013 crossref_primary_10_1152_jn_00427_2022 crossref_primary_10_1159_000518962 crossref_primary_10_1007_s10162_018_0669_5 crossref_primary_10_3389_fnins_2018_00125 crossref_primary_10_1124_pharmrev_124_001195 crossref_primary_10_1242_bio_038547 crossref_primary_10_1016_j_cell_2018_07_007 crossref_primary_10_1016_j_heares_2018_02_001 crossref_primary_10_1016_j_cell_2018_07_008 crossref_primary_10_1038_s41598_019_45385_8 crossref_primary_10_1121_10_0017328 crossref_primary_10_1007_s00405_024_08699_6 crossref_primary_10_1007_s10162_017_0620_1 crossref_primary_10_1097_AUD_0000000000000388 crossref_primary_10_3390_antiox10121880 crossref_primary_10_1523_JNEUROSCI_1783_13_2013 crossref_primary_10_1044_2024_LSHSS_23_00165 crossref_primary_10_1097_AUD_0000000000000228 crossref_primary_10_1016_j_heares_2020_107979 crossref_primary_10_1523_JNEUROSCI_2784_18_2019 crossref_primary_10_1155_2021_6667531 crossref_primary_10_1515_revneuro_2020_0002 crossref_primary_10_1016_j_toxlet_2023_12_007 crossref_primary_10_1097_MOO_0000000000000748 crossref_primary_10_1177_2331216519877301 crossref_primary_10_1016_j_neulet_2014_08_040 crossref_primary_10_1007_s10162_014_0462_z crossref_primary_10_1113_JP280256 crossref_primary_10_1007_s10162_020_00754_3 crossref_primary_10_1016_j_heares_2020_107982 crossref_primary_10_1113_JP280018 crossref_primary_10_1044_2022_JSLHR_22_00461 crossref_primary_10_1016_j_neurobiolaging_2017_09_034 crossref_primary_10_1016_j_heares_2017_09_010 crossref_primary_10_1121_10_0019880 crossref_primary_10_3109_0954898X_2016_1162338 crossref_primary_10_1038_nrd4533 crossref_primary_10_1121_1_5122794 crossref_primary_10_1080_14992027_2023_2240012 crossref_primary_10_1292_jvms_23_0477 crossref_primary_10_3389_fnins_2017_00157 |
Cites_doi | 10.1121/1.381736 10.1113/jphysiol.2004.069559 10.1016/0378-5955(90)90120-E 10.1002/(SICI)1096-9861(19970505)381:2<188::AID-CNE6>3.0.CO;2-# 10.1002/cne.903010309 10.1016/0378-5955(84)90032-7 10.1523/JNEUROSCI.0389-10.2010 10.1121/1.387994 10.1002/cne.903130205 10.1016/0378-5955(88)90105-0 10.1080/14992020500377089 10.1007/s10162-012-0344-1 10.1016/0378-5955(88)90061-5 10.1016/j.heares.2006.07.014 10.1523/JNEUROSCI.3389-10.2011 10.1007/s10162-011-0277-0 10.1126/science.7079757 10.1523/JNEUROSCI.2156-11.2011 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 10.1152/jn.1996.76.4.2799 10.1016/0378-5955(95)00178-6 10.1523/JNEUROSCI.2845-09.2009 10.1523/JNEUROSCI.1996-07.2007 10.1016/j.ceca.2010.01.003 10.3109/00016489309135819 10.1523/JNEUROSCI.23-36-11296.2003 10.1016/0378-5955(80)90007-6 10.1152/jn.1984.51.6.1326 10.1016/0378-5955(83)90031-X 10.3109/00016486909125448 10.1016/0378-5955(84)90024-8 10.1016/0378-5955(89)90115-9 10.1152/jn.00574.2004 10.1121/1.388677 10.1002/cne.22644 |
ContentType | Journal Article |
Copyright | Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
Copyright_xml | – notice: Copyright © 2013 the American Physiological Society 2013 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00164.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 586 |
ExternalDocumentID | PMC3742994 23596328 10_1152_jn_00164_2013 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: R01 DC-08577 – fundername: NIDCD NIH HHS grantid: P30 DC005209 – fundername: NIDCD NIH HHS grantid: R01 DC000188 – fundername: NIDCD NIH HHS grantid: R01 DC008577 – fundername: NIDCD NIH HHS grantid: P30 DC-05029 – fundername: NIDCD NIH HHS grantid: R01 DC-00188 – fundername: NIDCD NIH HHS grantid: T32 DC000038 – fundername: NIDCD NIH HHS grantid: T32 DC-00038 |
GroupedDBID | --- -DZ -~X .55 0VX 18M 29L 2WC 39C 4.4 41~ 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK .GJ 1CY 1Z7 3O- 8M5 AI. C1A CGR CUY CVF ECM EIF MVM NEJ NPM OHT UQL VH1 XJT XOL ZGI ZXP ZY4 7X8 5PM |
ID | FETCH-LOGICAL-c387t-d49a675cddbced27bf43fbbb8c8b18a73f583bc17f2af8a452504489f79c07123 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 18:21:18 EDT 2025 Fri Jul 11 04:07:18 EDT 2025 Wed May 21 12:14:25 EDT 2025 Tue Jul 01 04:09:00 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | auditory nerve excitotoxicity noise-induced hearing loss |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-d49a675cddbced27bf43fbbb8c8b18a73f583bc17f2af8a452504489f79c07123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1152/jn.00164.2013 |
PMID | 23596328 |
PQID | 1417534471 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3742994 proquest_miscellaneous_1417534471 pubmed_primary_23596328 crossref_primary_10_1152_jn_00164_2013 crossref_citationtrail_10_1152_jn_00164_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2013 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B18 B1 B2 B3 B4 B5 B6 B7 B8 Liberman MC (B19) 1978; 358 B9 Liberman MC (B20) 1982 23636727 - J Neurophysiol. 2013 Aug;110(3):575-6. doi: 10.1152/jn.00292.2013. |
References_xml | – ident: B11 doi: 10.1121/1.381736 – ident: B4 doi: 10.1113/jphysiol.2004.069559 – start-page: 105 volume-title: New Perspectives on Noise-Induced Hearing Loss year: 1982 ident: B20 – ident: B38 doi: 10.1016/0378-5955(90)90120-E – ident: B36 doi: 10.1002/(SICI)1096-9861(19970505)381:2<188::AID-CNE6>3.0.CO;2-# – ident: B18 doi: 10.1002/cne.903010309 – ident: B37 doi: 10.1016/0378-5955(84)90032-7 – ident: B3 doi: 10.1523/JNEUROSCI.0389-10.2010 – ident: B1 doi: 10.1121/1.387994 – ident: B12 doi: 10.1002/cne.903130205 – ident: B15 doi: 10.1016/0378-5955(88)90105-0 – ident: B31 doi: 10.1080/14992020500377089 – ident: B7 doi: 10.1007/s10162-012-0344-1 – ident: B2 doi: 10.1016/0378-5955(88)90061-5 – ident: B33 doi: 10.1016/j.heares.2006.07.014 – ident: B10 doi: 10.1523/JNEUROSCI.3389-10.2011 – ident: B21 doi: 10.1007/s10162-011-0277-0 – ident: B16 doi: 10.1126/science.7079757 – volume: 358 start-page: 1 year: 1978 ident: B19 publication-title: Acta Otolaryngol – ident: B28 doi: 10.1523/JNEUROSCI.2156-11.2011 – ident: B23 doi: 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 – ident: B30 doi: 10.1152/jn.1996.76.4.2799 – ident: B22 doi: 10.1016/0378-5955(95)00178-6 – ident: B8 – ident: B9 doi: 10.1523/JNEUROSCI.2845-09.2009 – ident: B25 doi: 10.1523/JNEUROSCI.1996-07.2007 – ident: B34 doi: 10.1016/j.ceca.2010.01.003 – ident: B26 doi: 10.3109/00016489309135819 – ident: B6 doi: 10.1523/JNEUROSCI.23-36-11296.2003 – ident: B14 doi: 10.1016/0378-5955(80)90007-6 – ident: B5 doi: 10.1152/jn.1984.51.6.1326 – ident: B27 doi: 10.1016/0378-5955(83)90031-X – ident: B32 doi: 10.3109/00016486909125448 – ident: B17 doi: 10.1016/0378-5955(84)90024-8 – ident: B29 doi: 10.1016/0378-5955(89)90115-9 – ident: B35 doi: 10.1152/jn.00574.2004 – ident: B13 doi: 10.1121/1.388677 – ident: B24 doi: 10.1002/cne.22644 – reference: 23636727 - J Neurophysiol. 2013 Aug;110(3):575-6. doi: 10.1152/jn.00292.2013. |
SSID | ssj0007502 |
Score | 2.6013236 |
Snippet | Acoustic overexposure can cause a permanent loss of auditory nerve fibers without destroying cochlear sensory cells, despite complete recovery of cochlear... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 577 |
SubjectTerms | Animals Cochlea - pathology Cochlear Nerve - pathology Cochlear Nerve - physiopathology Female Guinea Pigs Hair Cells, Auditory - pathology Hearing Loss, Noise-Induced - pathology Hearing Loss, Noise-Induced - physiopathology Vestibulocochlear Nerve Diseases - pathology Vestibulocochlear Nerve Diseases - physiopathology |
Title | Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23596328 https://www.proquest.com/docview/1417534471 https://pubmed.ncbi.nlm.nih.gov/PMC3742994 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc29rKXaRv76MaQJ028dOna2ImdxwqB0BBok4rEW2Q7sWgFKaKpEPvruXOcLz4kxkvUOrHT9Hc53_nOvyPkh1ITpqyVgRE2BAdF5IFSOgnGJuRGwYwUZxjRPTqOD07479PotF3TdbtLSj0y_x7cV_IcVKENcMVdsv-BbDMoNMBnwBeOgDAcn4Tx8XK-ygPwqtcYxQfVdoZFIIaOoxJLDd9gufKVq3RTs3tbzBDxW9rOl9dDzJAF-zDHTFhkjVg9Yq1WYyKovXX4_fWVX0KdZupiuDtqQ0MLde0MU6SERuqO5pRLUvG9jkZ1wL-7_IClIGS9_NDZDjD2tVhyr0WhDewk2VOzPn113nXDndKM6s7Vt4oa-75qj5AqdlGMHCsYJuWxdg6r4_Z3prYm4dC5OlGYLorUdU-x-0vyKgTnArXj4d-WYx5sqJZjHh6sZmaNwl-9u_ctmXvuyd0s247ZMntL3ngE6bQSnnfkRV68J5vTQpXLixu6Q_80kG6SWU-eaC1PtJUnOl_RRp4oyBOt5ImiPFGQJ9qRJ-rk6QM52d-b7R4EvupGYJgUZZDxRIEXabJMw71CoS1nVmstjdQTqQSzkWTaTODdVlYqFxcHHz-xIjFgr4bsI9kolkX-mdCYMZ6Ps7GaGAFuLldRLGxueGZkFsuED8jP-h9Mjaekx8oo5-mDeA3ITnP5ZcXF8tiF32s4UtCWGAKrHhwcXWSm5WCRDcinCp5mqJBFMBuFckBED7jmAmRi758p5meOkZ0JNOv4l6f-wK_kdfsubZGN8mqdfwPjttTbThZvASXvp04 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise-induced+cochlear+neuropathy+is+selective+for+fibers+with+low+spontaneous+rates&rft.jtitle=Journal+of+neurophysiology&rft.au=Furman%2C+Adam+C.&rft.au=Kujawa%2C+Sharon+G.&rft.au=Liberman%2C+M.+Charles&rft.date=2013-08-01&rft.issn=0022-3077&rft.eissn=1522-1598&rft.volume=110&rft.issue=3&rft.spage=577&rft.epage=586&rft_id=info:doi/10.1152%2Fjn.00164.2013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_jn_00164_2013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |