Comparative Learning for Cross-Subject Finger Movement Recognition in Three Arm Postures via Data Glove
Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without continuous therapist supervision. Inter-subject variability, stemming from differences in hand size, joint flexibility, and movement speed lim...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without continuous therapist supervision. Inter-subject variability, stemming from differences in hand size, joint flexibility, and movement speed limit the generalization of data-glove models. We present CLAPISA, a contrastive-learning framework that embeds a Siamese network into a CNN-LSTM spatiotemporal pipeline for cross-subject gesture recognition. Training employs a 1: 2 positive-to-negative pairing strategy and an empirically optimized margin of 1.0, enabling the network to form subject-invariant, rehabilitation-relevant embeddings. Evaluated on a bending-sensor dataset containing twenty young adults, CLAPISA attains an average accuracy of 96.71 % under leave-one-subject-out cross-validation outperforming five baseline models and reducing errors for the most challenging subjects by up to 12.3 %. Although current validation is limited to a young cohort, the framework's data efficiency and subject-invariant design indicate strong potential for extension to elderly and neurologically impaired populations, our next work will be to collect such data for further verification. |
---|---|
AbstractList | Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without continuous therapist supervision. Inter-subject variability, stemming from differences in hand size, joint flexibility, and movement speed limit the generalization of data-glove models. We present CLAPISA, a contrastive-learning framework that embeds a Siamese network into a CNN-LSTM spatiotemporal pipeline for cross-subject gesture recognition. Training employs a 1: 2 positive-to-negative pairing strategy and an empirically optimized margin of 1.0, enabling the network to form subject-invariant, rehabilitation-relevant embeddings. Evaluated on a bending-sensor dataset containing twenty young adults, CLAPISA attains an average accuracy of 96.71 % under leave-one-subject-out cross-validation outperforming five baseline models and reducing errors for the most challenging subjects by up to 12.3 %. Although current validation is limited to a young cohort, the framework's data efficiency and subject-invariant design indicate strong potential for extension to elderly and neurologically impaired populations, our next work will be to collect such data for further verification. Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without continuous therapist supervision. Inter-subject variability, stemming from differences in hand size, joint flexibility, and movement speed limit the generalization of data-glove models. We present CLAPISA, a contrastive-learning framework that embeds a Siamese network into a CNN-LSTM spatiotemporal pipeline for cross-subject gesture recognition. Training employs a 1: 2 positive-to-negative pairing strategy and an empirically optimized margin of 1.0, enabling the network to form subject-invariant, rehabilitation-relevant embeddings. Evaluated on a bending-sensor dataset containing twenty young adults, CLAPISA attains an average accuracy of 96.71 % under leave-one-subject-out cross-validation outperforming five baseline models and reducing errors for the most challenging subjects by up to 12.3 %. Although current validation is limited to a young cohort, the framework's data efficiency and subject-invariant design indicate strong potential for extension to elderly and neurologically impaired populations, our next work will be to collect such data for further verification.Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without continuous therapist supervision. Inter-subject variability, stemming from differences in hand size, joint flexibility, and movement speed limit the generalization of data-glove models. We present CLAPISA, a contrastive-learning framework that embeds a Siamese network into a CNN-LSTM spatiotemporal pipeline for cross-subject gesture recognition. Training employs a 1: 2 positive-to-negative pairing strategy and an empirically optimized margin of 1.0, enabling the network to form subject-invariant, rehabilitation-relevant embeddings. Evaluated on a bending-sensor dataset containing twenty young adults, CLAPISA attains an average accuracy of 96.71 % under leave-one-subject-out cross-validation outperforming five baseline models and reducing errors for the most challenging subjects by up to 12.3 %. Although current validation is limited to a young cohort, the framework's data efficiency and subject-invariant design indicate strong potential for extension to elderly and neurologically impaired populations, our next work will be to collect such data for further verification. |
Author | Yu, Annie Zeng, Fengmeng Jiang, Lei |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0009-0007-7825-6814 surname: Jiang fullname: Jiang, Lei email: jianglei2@nbu.edu.cn organization: College of Science and Technology, Laboratory of Intelligent Home Appliances, Ningbo University, Ningbo, China – sequence: 2 givenname: Fengmeng surname: Zeng fullname: Zeng, Fengmeng email: zfmeng@zstu.edu.cn organization: Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou, China – sequence: 3 givenname: Annie surname: Yu fullname: Yu, Annie email: annie.tw.yu@polyu.edu.hk organization: School of Fashion and Textiles, Hong Kong Polytechnic University, Hongkong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40569808$$D View this record in MEDLINE/PubMed |
BookMark | eNpFUcmOEzEQtdAgZoEfQAj5yKWD116Oo8zCSGHRTDhbZaccHHW3g90dib-nexKGUy16i6reJTnrY4-EvOdswTlrPq-_PT3eLgQTeiF1LSWTr8gF17oumODsbO6lKpQU7Jxc5rxjjFelrt6Qc8V02dSsviDbZez2kGAIB6QrhNSHfkt9THSZYs7F02h36AZ6N60x0a_xgB32A31EF7d9GELsaejp-ldCpNepoz9iHsaEmR4C0BsYgN63E-ktee2hzfjuVK_Iz7vb9fJLsfp-_7C8XhVO1tVQWKtrX3GvtQeF1itbOq65g1I74bHUU6krVMJJazd2mgA5Trc0jgFrmLwiD0fdTYSd2afQQfpjIgTzvIhpayANwbVopOQ1cKfFpKYq8KCdV35jwTXcyUZPWp-OWvsUf4-YB9OF7LBtocc4ZiOFUKVshJptP56go-1w82L879ETQBwBbn5rQv8C4czMaZrnNM2cpjmlOZE-HEkBEf8TONOirpn8C8V5m5Q |
CODEN | ITNSB3 |
Cites_doi | 10.1038/s41598-023-36490-w 10.5555/3524938.3525087 10.1038/s41597-022-01484-2 10.1109/CVPR.2015.7298683 10.1016/S1474-4422(09)70150-4 10.1109/TNSRE.2019.2896269 10.1109/ICORR.2019.8779533 10.1145/2968219.2971403 10.1016/j.clinbiomech.2005.01.002 10.1038/s41598-019-44896-8 10.1016/j.compbiomed.2018.08.020 10.1109/TNSRE.2022.3156387 10.1155/2017/5090454 10.1109/JSEN.2022.3167696 10.1016/j.engappai.2023.107251 10.1016/j.neunet.2018.07.011 10.1109/ICNLP55136.2022.00079 10.20965/jaciii.2022.p0113 10.1109/ROBIO.2018.8664807 10.1109/SoSE50414.2020.9130489 10.1016/j.mejo.2018.01.014 10.1109/TSMCC.2008.923862 10.1109/ICIP49359.2023.10222870 10.1109/CcS49175.2020.9231515 10.1109/CVPRW.2016.153 10.1016/j.cmpb.2016.02.012 10.1016/j.bbe.2022.02.005 10.1007/s40846-019-00491-w 10.35940/ijrte.D6801.118419 10.1109/JSEN.2020.3014276 10.1109/WiSPNET48689.2020.9198521 10.1109/LRA.2021.3089999 10.1109/IJCB54206.2022.10008005 10.1109/ICCC57788.2023.10233557 10.1109/TRO.2012.2226386 10.32604/cmc.2022.019586 10.3390/s22041321 10.1109/IJCNN60899.2024.10650863 10.1177/1545968319868716 10.1109/TBME.2022.3140269 10.1007/s11633-022-1386-4 10.3233/NRE-172412 10.1109/ICCVW60793.2023.00024 10.1016/S0021-9290(02)00229-4 10.1016/j.eswa.2023.121055 10.1109/ACCESS.2023.3235368 10.1109/TNSRE.2016.2626800 10.1109/JSEN.2020.3011825 10.1109/LRA.2022.3169448 10.1016/0021-9290(94)90023-X |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1109/TNSRE.2025.3583303 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_3318a1c5242c47afa5cf4fdbac91c395 40569808 10_1109_TNSRE_2025_3583303 11052880 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GrantInformation_xml | – fundername: The Key Laboratory of Intelligent Textile and Flexible Interconnection grantid: YB16 – fundername: China Postdoctoral Science Foundation; The China Postdoctoral Science Foundation grantid: 2024M750518 funderid: 10.13039/501100002858 |
GroupedDBID | --- -~X 0R~ 29I 4.4 5GY 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS ESBDL F5P GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF LAI O9- OCL OK1 P2P RIA RIE RNS 53G 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 M43 RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c387t-bb58f71f55fa4ebf4b6c151ca65c2fe655c287e42c3bbdb5c2ae1e6989c0a0903 |
IEDL.DBID | DOA |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:27:36 EDT 2025 Fri Jul 11 16:58:51 EDT 2025 Sat Aug 02 01:40:57 EDT 2025 Thu Jul 10 07:49:10 EDT 2025 Wed Aug 27 02:14:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-bb58f71f55fa4ebf4b6c151ca65c2fe655c287e42c3bbdb5c2ae1e6989c0a0903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0007-7825-6814 0000-0002-3413-1880 |
OpenAccessLink | https://doaj.org/article/3318a1c5242c47afa5cf4fdbac91c395 |
PMID | 40569808 |
PQID | 3224639240 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | ieee_primary_11052880 crossref_primary_10_1109_TNSRE_2025_3583303 pubmed_primary_40569808 doaj_primary_oai_doaj_org_article_3318a1c5242c47afa5cf4fdbac91c395 proquest_miscellaneous_3224639240 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 Ariesta (ref6) 2018; 26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref32 doi: 10.1038/s41598-023-36490-w – ident: ref37 doi: 10.5555/3524938.3525087 – ident: ref45 doi: 10.1038/s41597-022-01484-2 – ident: ref50 doi: 10.1109/CVPR.2015.7298683 – ident: ref2 doi: 10.1016/S1474-4422(09)70150-4 – ident: ref34 doi: 10.1109/TNSRE.2019.2896269 – ident: ref22 doi: 10.1109/ICORR.2019.8779533 – ident: ref15 doi: 10.1145/2968219.2971403 – ident: ref19 doi: 10.1016/j.clinbiomech.2005.01.002 – ident: ref16 doi: 10.1038/s41598-019-44896-8 – ident: ref10 doi: 10.1016/j.compbiomed.2018.08.020 – ident: ref9 doi: 10.1109/TNSRE.2022.3156387 – ident: ref8 doi: 10.1155/2017/5090454 – ident: ref13 doi: 10.1109/JSEN.2022.3167696 – ident: ref46 doi: 10.1016/j.engappai.2023.107251 – ident: ref47 doi: 10.1016/j.neunet.2018.07.011 – ident: ref40 doi: 10.1109/ICNLP55136.2022.00079 – ident: ref25 doi: 10.20965/jaciii.2022.p0113 – ident: ref24 doi: 10.1109/ROBIO.2018.8664807 – ident: ref17 doi: 10.1109/SoSE50414.2020.9130489 – ident: ref1 doi: 10.1016/j.mejo.2018.01.014 – ident: ref12 doi: 10.1109/TSMCC.2008.923862 – ident: ref42 doi: 10.1109/ICIP49359.2023.10222870 – ident: ref26 doi: 10.1109/CcS49175.2020.9231515 – ident: ref51 doi: 10.1109/CVPRW.2016.153 – ident: ref5 doi: 10.1016/j.cmpb.2016.02.012 – ident: ref28 doi: 10.1016/j.bbe.2022.02.005 – ident: ref21 doi: 10.1007/s40846-019-00491-w – ident: ref23 doi: 10.35940/ijrte.D6801.118419 – ident: ref27 doi: 10.1109/JSEN.2020.3014276 – ident: ref38 doi: 10.1109/WiSPNET48689.2020.9198521 – ident: ref31 doi: 10.1109/LRA.2021.3089999 – ident: ref43 doi: 10.1109/IJCB54206.2022.10008005 – ident: ref44 doi: 10.1109/ICCC57788.2023.10233557 – ident: ref33 doi: 10.1109/TRO.2012.2226386 – volume: 26 start-page: 1659 issue: 4 year: 2018 ident: ref6 article-title: A survey of hand gesture recognition methods in sign language recognition publication-title: Pertanika J. Sci. Technol. – ident: ref30 doi: 10.32604/cmc.2022.019586 – ident: ref35 doi: 10.3390/s22041321 – ident: ref48 doi: 10.1109/IJCNN60899.2024.10650863 – ident: ref4 doi: 10.1177/1545968319868716 – ident: ref11 doi: 10.1109/TBME.2022.3140269 – ident: ref41 doi: 10.1007/s11633-022-1386-4 – ident: ref3 doi: 10.3233/NRE-172412 – ident: ref39 doi: 10.1109/ICCVW60793.2023.00024 – ident: ref20 doi: 10.1016/S0021-9290(02)00229-4 – ident: ref36 doi: 10.1016/j.eswa.2023.121055 – ident: ref49 doi: 10.1109/ACCESS.2023.3235368 – ident: ref7 doi: 10.1109/TNSRE.2016.2626800 – ident: ref14 doi: 10.1109/JSEN.2020.3011825 – ident: ref29 doi: 10.1109/LRA.2022.3169448 – ident: ref18 doi: 10.1016/0021-9290(94)90023-X |
SSID | ssj0017657 |
Score | 2.4386022 |
Snippet | Reliable recognition of therapeutic hand and finger movements is a prerequisite for effective home-based rehabilitation, where patients must exercise without... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Adaptation models Adult Algorithms Arm - physiology Biomedical monitoring comparative learning Contrastive learning cross-subject data glove Data gloves Data models Feature extraction Female finger movement recognition Fingers - physiology Gesture recognition Gestures Hands Humans Indexes Machine Learning Male Movement - physiology Neural Networks, Computer Pattern Recognition, Automated - methods Posture - physiology Reproducibility of Results Siamese network Young Adult |
SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1ygQIEtDxkJuKBss37kcYSlqwqpe1i2Um-WH-OqQiSoJBz49cw4ybYgVeKUh5zY1oztb8aebxh7W_gaZ8YAmYLcZ0oGkdWy8llhoy4jyAApZ-TZujg9V18u9MUYrJ5iYQAgHT6DOd2mvfzQ-p5cZce4VGmBCrfH9tByG4K1dlsGZZFoPXEEK6xT5FOETF4fb9dfNydoCwo9lxRllFP2HEQqRV1RWslbC1Li7R8TrdyNOdPas3rI1lOrhyMn3-Z95-b-9z-Ejv_drQP2YESh_OOgNo_YPWges3e3GYf5dqAb4O_55i8y7yfscnnDGM5HftZLjuCXL6mHGc5F5Nzhq-Qx5GdtoiTv-GY6q9Q2_KrBCq4BsAnfOSUM7tHs57-uLP9sO8vTydJDdr462S5PszFfQ-ZlVXaZc7qK5SJqHa0CF5UrPAIKbwvtRYRC46UqQQkvnQsOnywsgDJY-tySv-gp22_aBp4zDgGBp7Ci0lYoD2VVawH404BwzQa3mLEPk9DMj4GWwyRzJq9NkrYhaZtR2jP2ieS6K0mU2ukFisGMI9RInN3swmvELF6VNlrto4rBWdRmL2s9Y4ckupvqRqnN2JtJTQwOTdpvsQ20_U8jiawP8afCMs8G_dl9PWnf0R1_fcHuUw8GZ89Ltt9d9_AK4U_nXie1_wMbaAB7 priority: 102 providerName: IEEE |
Title | Comparative Learning for Cross-Subject Finger Movement Recognition in Three Arm Postures via Data Glove |
URI | https://ieeexplore.ieee.org/document/11052880 https://www.ncbi.nlm.nih.gov/pubmed/40569808 https://www.proquest.com/docview/3224639240 https://doaj.org/article/3318a1c5242c47afa5cf4fdbac91c395 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwviTXnJSMCCAqkfeYxQWlVI7VCKxGbZzhkxkCJI-f2cnaSFAbEwRYmc-Oy7-L7z4ztCzhKb48hYQCQgtpHgBYtyntko0U6mDngBIWfkaJwMH8X9k3z6lurL7wmr6YHrjrvmaHS6ayW6EitS7bS0TrjCaKzE8jywl6LPa4OpZv0gTQLHJ_7OAgVgcXtcJs6vp-OHSR8DQyavuD9y1KbLalxSYO5vUq38jjqD9xlskPUGNtKbWtxNsgLlFjn_ThFMpzU_AL2gkx_s29vkubek-KYNoeozRbRKe16gCAcPPxtDB2GKj45mgUO8opN2c9GspC8lVvAOgCK8Up_hd45xOv180fROV5qGraA75HHQn_aGUZNgIbI8S6vIGJm5tOukdFqAccIkFhGA1Ym0zEEi8ZKlgD3PjSkM3mnogk85aWPtJ3h2yWo5K2GfUCgQKTLNMqmZsJBmuWSAHy0QX-nCdDvksu1j9VbzaKgQf8S5ChpRXiOq0UiH3Ho1LEp6DuzwAC1DNZah_rKMDtnxSlxWh1CS4XDVIaetVhX-S36BRJcwm38o7tn1EDAKLLNXq3vxNgJbbHicHfyHaIdkzTe3nso5IqvV-xyOEdxU5iTY8Uk4h_gFTNP2eA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOcCFZ4HlaSTggrLNOnYeR1i6WqC7h2Ur9Wb5Ma4qRIJKwoFfz9hJtgWpEqc85MS2Zmx_Hs98A_A6txXNjA4TgalNROZ4UmWlTXLtZeExcxhzRq7W-fJYfD6RJ0OweoyFQcTofIbTcBvP8l1ju2AqO6ClSnJSuOtwgxZ-yftwrd2hQZFHYk8aw4Jq5ekYI5NWB9v1180h7Qa5nGYhzigN-XMIq-RVGRJLXlqSInP_kGrlatQZV5_FHViP7e6dTr5Nu9ZM7e9_KB3_u2N34faAQ9n7XnHuwTWs78Oby5zDbNsTDrC3bPMXnfcDOJ1fcIazgaH1lBH8ZfPQw4Rmo2DeYYtoM2SrJpKSt2wzeis1NTurqYJzRGrCdxZSBne08We_zjT7qFvNom_pPhwvDrfzZTJkbEhsVhZtYowsfTHzUnot0HhhckuQwupcWu4xl3QpCxTcZsY4Q08aZxhyWNpUB4vRQ9irmxofA0NH0JNrXkrNhcWirCRH-qkjwKadmU3g3Sg09aMn5lBxQ5NWKkpbBWmrQdoT-BDkuisZSLXjCxKDGsaoymh-0zMrCbVYUWivpfXCO6NJn21WyQnsB9FdVDdIbQKvRjVRNDjDiYuusel-qizQ9RECFVTmUa8_u69H7XtyxV9fws3ldnWkjj6tvzyFW6E3vennGey15x0-JzDUmhdxCPwBoDADxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Learning+for+Cross-Subject+Finger+Movement+Recognition+in+Three+Arm+Postures+via+Data+Glove&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Jiang%2C+Lei&rft.au=Zeng%2C+Fengmeng&rft.au=Yu%2C+Annie&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=2531&rft_id=info:doi/10.1109%2FTNSRE.2025.3583303&rft_id=info%3Apmid%2F40569808&rft.externalDocID=40569808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |