Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
•We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) me...
Saved in:
Published in | Medical image analysis Vol. 75; p. 102279 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2021.102279 |
Cover
Loading…
Abstract | •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) method to mitigate inter-site data heterogeneity and extract functional connectivity features, by learning both local cluster-shared features across sites for each group/category and global category-shared features within a specifici group (i.e., the ASD patient or healthy control group).•The proposed method helps to identify disease-associated functional connectivity abnormality from rs-fMRI data, so it has good interpretability.
[Display omitted]
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis. |
---|---|
AbstractList | •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) method to mitigate inter-site data heterogeneity and extract functional connectivity features, by learning both local cluster-shared features across sites for each group/category and global category-shared features within a specifici group (i.e., the ASD patient or healthy control group).•The proposed method helps to identify disease-associated functional connectivity abnormality from rs-fMRI data, so it has good interpretability.
[Display omitted]
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis. Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis. Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis. |
ArticleNumber | 102279 |
Author | Liu, Mingxia Ma, Lizhuang Wang, Nan Yao, Dongren |
Author_xml | – sequence: 1 givenname: Nan surname: Wang fullname: Wang, Nan organization: East China Normal University, Shanghai 200062, China – sequence: 2 givenname: Dongren surname: Yao fullname: Yao, Dongren organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Lizhuang surname: Ma fullname: Ma, Lizhuang email: lzma@sei.ecnu.edu.cn organization: East China Normal University, Shanghai 200062, China – sequence: 4 givenname: Mingxia surname: Liu fullname: Liu, Mingxia email: mxliu@med.unc.edu organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34731776$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctrFTEUxoNU7EP_AkECbrqZax6TyczChRQfhRZBdB0yyYnmMpNc81D73ze3t3XRRSGQB7_vnJPvO0VHIQZA6DUlG0ro8G67WcF6vWGE0fbCmJyeoRPKB9qNPeNH_89UHKPTnLeEENn35AU65r3kVMrhBJXruhTfZV8Am6XmAsmHn1gHiwO0m8UOdKkJMPwrSZviY8AuJuwthOLdzR1di88rzjswJdUVW59jspDwX19-4dTqNKrLRbcm7vrb5Uv03Oklw6v7_Qz9-PTx-8WX7urr58uLD1ed4aMsnTayJ6NlIIaRWe1GTrTRM2PUSOYYgOiF1CN1dIJesBn4LCnMIDTXUlLBz9D5oe4uxd-1jaFWnw0siw4Qa1ZMTLwtPu3Rt4_QbawptOkUGzgRbBrGqVFv7qk6N_PVLvlVpxv14GcDpgNgUsw5gVPGt28305p5flGUqH12aqvuslP77NQhu6blj7QP5Z9WvT-ooBn5x0NS2XgIpoGpxaFs9E_qbwGwW7TC |
CitedBy_id | crossref_primary_10_3389_fnins_2023_1227491 crossref_primary_10_1016_j_neubiorev_2022_105021 crossref_primary_10_1109_JBHI_2023_3274531 crossref_primary_10_3389_fnins_2023_1252732 crossref_primary_10_3389_fnins_2022_1046268 crossref_primary_10_1007_s11571_022_09828_9 crossref_primary_10_1155_2022_8797604 crossref_primary_10_1016_j_mlwa_2022_100290 crossref_primary_10_1093_bib_bbad060 crossref_primary_10_3389_fneur_2022_922322 crossref_primary_10_1016_j_neunet_2024_106182 crossref_primary_10_1109_TBME_2024_3370415 crossref_primary_10_3390_brainsci12070883 crossref_primary_10_3389_fnhum_2022_918969 crossref_primary_10_1007_s10489_022_03891_9 crossref_primary_10_1016_j_neunet_2024_106945 crossref_primary_10_1109_TMI_2022_3201974 crossref_primary_10_1016_j_bspc_2024_106934 crossref_primary_10_3390_brainsci14080766 crossref_primary_10_1109_ACCESS_2025_3532302 crossref_primary_10_3390_app14177632 crossref_primary_10_3390_bioengineering10040397 crossref_primary_10_1016_j_eswa_2023_122253 crossref_primary_10_1080_08839514_2021_2004655 crossref_primary_10_1007_s00217_023_04377_9 crossref_primary_10_1007_s11571_024_10202_0 crossref_primary_10_3390_brainsci13111578 crossref_primary_10_1016_j_cmpb_2024_108065 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_ridd_2024_104701 crossref_primary_10_3390_diagnostics13203251 crossref_primary_10_1186_s12859_023_05495_7 crossref_primary_10_1016_j_compbiomed_2023_107667 crossref_primary_10_1016_j_compbiomed_2023_107184 crossref_primary_10_1016_j_eswa_2023_123035 crossref_primary_10_3390_s23249647 crossref_primary_10_4236_jamp_2023_117124 crossref_primary_10_1038_s41398_024_03024_5 crossref_primary_10_1002_ima_23110 crossref_primary_10_1140_epjs_s11734_022_00717_0 crossref_primary_10_1109_TETCI_2024_3377551 crossref_primary_10_1016_j_schres_2023_12_013 crossref_primary_10_1145_3654664 crossref_primary_10_1016_j_bspc_2025_107513 crossref_primary_10_1002_open_202200192 crossref_primary_10_1109_TIM_2023_3324338 crossref_primary_10_1016_j_compbiolchem_2024_108200 crossref_primary_10_1049_cit2_12340 crossref_primary_10_1007_s10278_025_01399_5 crossref_primary_10_1016_j_compbiomed_2022_106320 crossref_primary_10_1109_TMI_2023_3309874 crossref_primary_10_3389_fnins_2022_900330 crossref_primary_10_1016_j_neuroimage_2024_120755 |
Cites_doi | 10.1016/j.neuroimage.2011.10.015 10.1523/JNEUROSCI.5413-09.2010 10.3389/fnhum.2018.00257 10.1002/hbm.22252 10.1016/j.neuroimage.2017.12.052 10.1016/j.media.2018.03.013 10.1016/j.neucom.2019.05.106 10.1089/brain.2017.0561 10.1111/cns.12499 10.1038/nature21369 10.1002/pmic.201700232 10.1016/j.tins.2007.12.005 10.1016/j.neuroimage.2009.04.069 10.1016/j.neuroimage.2005.06.070 10.1093/scan/nsv029 10.1016/j.jaac.2016.04.013 10.1371/journal.pone.0130140 10.3389/fnins.2018.00491 10.3389/fbioe.2019.00479 10.1016/j.media.2021.102063 10.1109/TBME.2019.2957921 10.1016/j.neuroimage.2019.06.012 10.1109/TBME.2013.2284195 10.1016/j.neuron.2014.07.016 10.1016/j.psychres.2019.03.001 10.1016/j.media.2019.101596 10.1038/mp.2013.78 10.1023/A:1012487302797 10.1002/hbm.460010207 10.3389/fnhum.2013.00599 10.1016/j.biopsych.2018.06.012 10.3389/fnins.2017.00460 10.3389/fnins.2015.00316 10.1016/j.neuroimage.2010.11.046 10.1016/j.neuroimage.2017.12.044 10.1016/j.neuroimage.2010.07.037 10.1109/TBME.2009.2032532 10.1016/j.neucom.2015.08.104 10.1016/j.neuroimage.2016.10.045 10.1109/TBME.2010.2080679 10.1016/j.nicl.2017.08.017 10.1109/TMI.2019.2933160 10.1371/journal.pone.0143126 10.1016/j.neubiorev.2011.10.008 10.1016/j.snb.2015.02.025 10.1109/TMI.2020.3017450 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2021.102279 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 34731776 10_1016_j_media_2021_102279 S1361841521003248 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c387t-ac7408d2e5682daf830acab221c72f2ee5457a81f19e452be3b71ebe5a3a77153 |
IEDL.DBID | .~1 |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Jul 11 12:27:19 EDT 2025 Sat Jul 26 03:24:47 EDT 2025 Wed Feb 19 02:27:34 EST 2025 Tue Jul 01 02:49:31 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Fri Feb 23 02:39:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity fMRI Discriminative biomarker identification Autism spectrum disorder |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-ac7408d2e5682daf830acab221c72f2ee5457a81f19e452be3b71ebe5a3a77153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34731776 |
PQID | 2630529689 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2593593395 proquest_journals_2630529689 pubmed_primary_34731776 crossref_citationtrail_10_1016_j_media_2021_102279 crossref_primary_10_1016_j_media_2021_102279 elsevier_sciencedirect_doi_10_1016_j_media_2021_102279 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Jie, Liu, Shen (bib0029) 2018; 47 Washington, Gordon, Brar, Warburton, Sawyer, Wolfe, Mease-Ference, Girton, Hailu, Mbwana (bib0064) 2014; 35 Yao, Liu, Wang, Lian, Wei, Sun, Sui, Shen (bib0069) 2019 Hazlett, Gu, Munsell, Kim, Styner, Wolff, Elison, Swanson, Zhu, Botteron (bib0025) 2017; 542 Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib0037) 2018; 169 Wang, Lian, Yao, Zhang, Liu, Shen (bib0060) 2019; 67 Van der Maaten, Hinton (bib0041) 2008; 9 Vinjamuri, Sun, Chang, Lee, Sclabassi, Mao (bib0057) 2009; 57 Alaerts, Nayar, Kelly, Raithel, Milham, Di Martino (bib0002) 2015; 10 Jung, Mody, Saito, Tomoda, Okazawa, Wada, Kosaka (bib0031) 2015; 10 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib0001) 2017; 147 Philip, Dauvermann, Whalley, Baynham, Lawrie, Stanfield (bib0052) 2012; 36 Sundararajan, Taly, Yan (bib0054) 2017 Li, Parikh, He (bib0038) 2018; 12 Mak, Lee, Park (bib0043) 2019; 275 Shervashidze, Schweitzer, Leeuwen, Mehlhorn, Borgwardt (bib0053) 2011; 12 Li, Dvornek, Zhuang, Ventola, Duncan (bib0040) 2018 Jie, Zhang, Gao, Wang, Wee, Shen (bib0030) 2014; 61 Anirudh, Thiagarajan (bib0004) 2019 Bi, Liu, Jiang, Shu, Sun, Dai (bib0007) 2018; 12 Wang, Zhang, Huang, Yap, Shen, Liu (bib0061) 2019; 39 Mourao-Miranda, Bokde, Born, Hampel, Stetter (bib0048) 2005; 28 Cao, Kong, Zhang, Yu, Ragin (bib0008) 2016 Kalanderian, Nasrallah (bib0032) 2019; 18 Jiang, Zhao (bib0027) 2017 Wee, Yap, Shen (bib0065) 2016; 22 Green, Hernandez, Bookheimer, Dapretto (bib0021) 2016; 55 Chen, Kang, Wang (bib0010) 2015; 9 Wang, Huang, Liu, Zhang (bib0059) 2021; 71 Bach, Binder, Montavon, Klauschen, Müller, Samek (bib0006) 2015; 10 Chen, Hu (bib0009) 2018; 8 Menon (bib0044) 2018; 84 Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (bib0026) 2018; 17 Dryburgh, McKenna, Rekik (bib0013) 2019 Guo, Fessler, Noll (bib0022) 2020; 39 Xiang, Wang, Tan, Wu, Liu (bib0067) 2020; 7 Mahendran, Vedaldi (bib0042) 2015 Zhao, Dai, Zhang, Ge, Liu (bib0070) 2019 Ecker, Marquand, Mourão Miranda, Johnston, Daly, Brammer, Maltezos, Murphy, Robertson, Williams (bib0015) 2010; 30 Khosla, Jamison, Kuceyeski, Sabuncu (bib0033) 2018 Kleinhans, Richards, Johnson, Weaver, Greenson, Dawson, Aylward (bib0035) 2011; 54 Georges, Rekik (bib0019) 2018 Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (bib0051) 2017 Yan, Zhang (bib0068) 2015; 212 Zhuang, Dvornek, Li, Ventola, Duncan (bib0071) 2019 Jiao, Li, Fan (bib0028) 2020 Guyon, Weston, Barnhill, Vapnik (bib0024) 2002; 46 Choi (bib0011) 2017 Amaral, Schumann, Nordahl (bib0003) 2008; 31 Wee, Yap, Zhang, Denny, Browndyke, Potter, Welshbohmer, Wang, Shen (bib0066) 2012; 59 Padmanabhan, Lynch, Schaer, Menon (bib0050) 2017; 2 Wang, Yao, Zhao (bib0063) 2016; 184 Feczko, Balba, Miranda-Dominguez, Cordova, Karalunas, Irwin, Demeter, Hill, Langhorst, Painter (bib0017) 2018; 172 Guo, Dominick, Minai, Li, Erickson, Lu (bib0023) 2017; 11 Mhiri, Rekik (bib0045) 2020; 60 Wang, Kloth, Badura (bib0062) 2014; 83 Tao, Shyu (bib0056) 2019 Morris, Rekik (bib0047) 2017 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib0012) 2014; 19 Gönen, Alpaydın (bib0020) 2011; 12 El-Gazzar, Quaak Mirjam an d Cerliani, Bloem, van Wingen, Thomas (bib0016) 2019 Wang, Ramazzotti, De Sano, Zhu, Pierson, Batzoglou (bib0058) 2018; 18 Dvornek, Ventola, Pelphrey, Duncan (bib0014) 2017 Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib0036) 2017 Li, Zhong, Han, Ouyang, Li, Liu (bib0039) 2020; 390 Friston, Jezzard, Turner (bib0018) 1994; 1 Monk, Peltier, Wiggins, Weng, Carrasco, Risi, Lord (bib0046) 2009; 47 Tak, Yoon, Jang, Yoo, Jeong, Ye (bib0055) 2011; 55 Arribas, Calhoun, Adali (bib0005) 2010; 57 Khosla, Jamison, Kuceyeski, Sabuncu (bib0034) 2019; 199 Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (bib0049) 2013; 7 Wang (10.1016/j.media.2021.102279_bib0058) 2018; 18 Wee (10.1016/j.media.2021.102279_bib0066) 2012; 59 Yan (10.1016/j.media.2021.102279_bib0068) 2015; 212 Li (10.1016/j.media.2021.102279_bib0039) 2020; 390 Di Martino (10.1016/j.media.2021.102279_bib0012) 2014; 19 Kalanderian (10.1016/j.media.2021.102279_bib0032) 2019; 18 Alaerts (10.1016/j.media.2021.102279_bib0002) 2015; 10 Washington (10.1016/j.media.2021.102279_bib0064) 2014; 35 Bach (10.1016/j.media.2021.102279_bib0006) 2015; 10 Khosla (10.1016/j.media.2021.102279_bib0034) 2019; 199 Wang (10.1016/j.media.2021.102279_bib0062) 2014; 83 Yao (10.1016/j.media.2021.102279_bib0069) 2019 Mahendran (10.1016/j.media.2021.102279_bib0042) 2015 Friston (10.1016/j.media.2021.102279_bib0018) 1994; 1 Guo (10.1016/j.media.2021.102279_bib0022) 2020; 39 Bi (10.1016/j.media.2021.102279_bib0007) 2018; 12 Gönen (10.1016/j.media.2021.102279_bib0020) 2011; 12 Zhuang (10.1016/j.media.2021.102279_bib0071) 2019 Chen (10.1016/j.media.2021.102279_bib0009) 2018; 8 Jiang (10.1016/j.media.2021.102279_bib0027) 2017 Monk (10.1016/j.media.2021.102279_bib0046) 2009; 47 Cao (10.1016/j.media.2021.102279_bib0008) 2016 Ktena (10.1016/j.media.2021.102279_bib0037) 2018; 169 Heinsfeld (10.1016/j.media.2021.102279_bib0026) 2018; 17 Li (10.1016/j.media.2021.102279_bib0038) 2018; 12 Arribas (10.1016/j.media.2021.102279_bib0005) 2010; 57 Jie (10.1016/j.media.2021.102279_bib0029) 2018; 47 Sundararajan (10.1016/j.media.2021.102279_bib0054) 2017 Zhao (10.1016/j.media.2021.102279_bib0070) 2019 Padmanabhan (10.1016/j.media.2021.102279_bib0050) 2017; 2 El-Gazzar (10.1016/j.media.2021.102279_bib0016) 2019 Menon (10.1016/j.media.2021.102279_bib0044) 2018; 84 Ktena (10.1016/j.media.2021.102279_bib0036) 2017 Wang (10.1016/j.media.2021.102279_bib0063) 2016; 184 Anirudh (10.1016/j.media.2021.102279_bib0004) 2019 Hazlett (10.1016/j.media.2021.102279_bib0025) 2017; 542 Jiao (10.1016/j.media.2021.102279_bib0028) 2020 Philip (10.1016/j.media.2021.102279_bib0052) 2012; 36 Green (10.1016/j.media.2021.102279_bib0021) 2016; 55 Choi (10.1016/j.media.2021.102279_bib0011) 2017 Jung (10.1016/j.media.2021.102279_bib0031) 2015; 10 Xiang (10.1016/j.media.2021.102279_bib0067) 2020; 7 Mhiri (10.1016/j.media.2021.102279_bib0045) 2020; 60 Georges (10.1016/j.media.2021.102279_bib0019) 2018 Van der Maaten (10.1016/j.media.2021.102279_bib0041) 2008; 9 Vinjamuri (10.1016/j.media.2021.102279_bib0057) 2009; 57 Feczko (10.1016/j.media.2021.102279_bib0017) 2018; 172 Tak (10.1016/j.media.2021.102279_bib0055) 2011; 55 Nielsen (10.1016/j.media.2021.102279_bib0049) 2013; 7 Tao (10.1016/j.media.2021.102279_bib0056) 2019 Jie (10.1016/j.media.2021.102279_bib0030) 2014; 61 Wang (10.1016/j.media.2021.102279_bib0060) 2019; 67 Dryburgh (10.1016/j.media.2021.102279_bib0013) 2019 Wang (10.1016/j.media.2021.102279_bib0061) 2019; 39 Ecker (10.1016/j.media.2021.102279_bib0015) 2010; 30 Shervashidze (10.1016/j.media.2021.102279_bib0053) 2011; 12 Mourao-Miranda (10.1016/j.media.2021.102279_bib0048) 2005; 28 Guo (10.1016/j.media.2021.102279_bib0023) 2017; 11 Dvornek (10.1016/j.media.2021.102279_bib0014) 2017 Guyon (10.1016/j.media.2021.102279_bib0024) 2002; 46 Abraham (10.1016/j.media.2021.102279_bib0001) 2017; 147 Chen (10.1016/j.media.2021.102279_bib0010) 2015; 9 Li (10.1016/j.media.2021.102279_bib0040) 2018 Wang (10.1016/j.media.2021.102279_bib0059) 2021; 71 Khosla (10.1016/j.media.2021.102279_bib0033) 2018 Morris (10.1016/j.media.2021.102279_bib0047) 2017 Mak (10.1016/j.media.2021.102279_bib0043) 2019; 275 Amaral (10.1016/j.media.2021.102279_bib0003) 2008; 31 Wee (10.1016/j.media.2021.102279_bib0065) 2016; 22 Kleinhans (10.1016/j.media.2021.102279_bib0035) 2011; 54 Parisot (10.1016/j.media.2021.102279_bib0051) 2017 |
References_xml | – volume: 55 start-page: 618 year: 2016 end-page: 626 ident: bib0021 article-title: Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity publication-title: Journal of the American Academy of Child & Adolescent Psychiatry – start-page: 95 year: 2019 end-page: 102 ident: bib0016 article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study publication-title: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging – start-page: 641 year: 2019 end-page: 646 ident: bib0056 article-title: Sp-asdnet: Cnn-lstm based asd classification model using observer scanpaths publication-title: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) – volume: 11 start-page: 460 year: 2017 ident: bib0023 article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method publication-title: Front Neurosci – volume: 8 start-page: 197 year: 2018 end-page: 204 ident: bib0009 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect – volume: 172 start-page: 674 year: 2018 end-page: 688 ident: bib0017 article-title: Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm publication-title: Neuroimage – volume: 10 start-page: e0130140 year: 2015 ident: bib0006 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS ONE – volume: 39 start-page: 4357 year: 2020 end-page: 4368 ident: bib0022 article-title: High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction publication-title: IEEE Trans Med Imaging – start-page: 177 year: 2017 end-page: 185 ident: bib0051 article-title: Spectral graph convolutions for population-based disease prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1576 year: 2019 end-page: 1580 ident: bib0070 article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – volume: 61 start-page: 576 year: 2014 end-page: 589 ident: bib0030 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. – start-page: 3319 year: 2017 end-page: 3328 ident: bib0054 article-title: Axiomatic attribution for deep networks publication-title: International Conference on Machine Learning – volume: 59 start-page: 2045 year: 2012 end-page: 2056 ident: bib0066 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: Neuroimage – volume: 12 start-page: 257 year: 2018 ident: bib0007 article-title: The diagnosis of autism spectrum disorder based on the random neural network cluster publication-title: Front Hum Neurosci – volume: 12 start-page: 491 year: 2018 ident: bib0038 article-title: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes publication-title: Front Neurosci – volume: 22 start-page: 212 year: 2016 end-page: 219 ident: bib0065 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neuroscience & Therapeutics – volume: 57 start-page: 284 year: 2009 end-page: 295 ident: bib0057 article-title: Dimensionality reduction in control and coordination of the human hand publication-title: IEEE Trans. Biomed. Eng. – start-page: 3197 year: 2019 end-page: 3201 ident: bib0004 article-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 212 start-page: 353 year: 2015 end-page: 363 ident: bib0068 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators, B – volume: 18 start-page: 33 year: 2019 end-page: 38 ident: bib0032 article-title: Artificial intelligence in psychiatry publication-title: Curr Psychiatr – volume: 10 start-page: e0143126 year: 2015 ident: bib0031 article-title: Sex differences in the default mode network with regard to autism spectrum traits: a resting state fMRI study publication-title: PLoS ONE – start-page: 99 year: 2018 end-page: 106 ident: bib0019 article-title: Data-specific feature selection method identification for most reproducible connectomic feature discovery fingerprinting brain states publication-title: International Workshop on Connectomics in Neuroimaging – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: bib0026 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clinical – volume: 47 start-page: 764 year: 2009 end-page: 772 ident: bib0046 article-title: Abnormalities of intrinsic functional connectivity in autism spectrum disorders publication-title: Neuroimage – start-page: 362 year: 2017 end-page: 370 ident: bib0014 article-title: Identifying autism from resting-state fMRI using long short-term memory networks publication-title: International Workshop on Machine Learning in Medical Imaging – start-page: 12 year: 2017 end-page: 20 ident: bib0047 article-title: Autism spectrum disorder diagnosis using sparse graph Embedding of morphological brain networks publication-title: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics – volume: 39 start-page: 644 year: 2019 end-page: 655 ident: bib0061 article-title: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation publication-title: IEEE Trans Med Imaging – volume: 30 start-page: 10612 year: 2010 end-page: 10623 ident: bib0015 article-title: Describing the brain in autism in five dimensionsmagnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach publication-title: J. Neurosci. – year: 2017 ident: bib0011 article-title: Functional connectivity patterns of autism spectrum disorder identified by deep feature learning publication-title: arXiv preprint arXiv:1707.07932 – volume: 84 start-page: 236 year: 2018 end-page: 238 ident: bib0044 article-title: The triple network model, insight, and large-scale brain organization in autism publication-title: Biol. Psychiatry – start-page: 70 year: 2019 end-page: 78 ident: bib0069 article-title: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI publication-title: International Workshop on Graph Learning in Medical Imaging – start-page: 469 year: 2017 end-page: 477 ident: bib0036 article-title: Distance metric learning using graph convolutional networks: Application to functional brain networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 542 start-page: 348 year: 2017 end-page: 351 ident: bib0025 article-title: Early brain development in infants at high risk for autism spectrum disorder publication-title: Nature – volume: 19 start-page: 659 year: 2014 end-page: 667 ident: bib0012 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry – volume: 18 start-page: 1700232 year: 2018 ident: bib0058 article-title: SIMLR: A tool for large-scale genomic analyses by multi-kernel learning publication-title: Proteomics – volume: 12 start-page: 2539 year: 2011 end-page: 2561 ident: bib0053 article-title: Weisfeiler-lehman graph kernels publication-title: Journal of Machine Learning Research – volume: 55 start-page: 176 year: 2011 end-page: 184 ident: bib0055 article-title: Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements publication-title: Neuroimage – start-page: 709 year: 2016 end-page: 714 ident: bib0008 article-title: Mining brain networks using multiple side views for neurological disorder identification publication-title: ICDM – volume: 12 start-page: 2211 year: 2011 end-page: 2268 ident: bib0020 article-title: Multiple kernel learning algorithms publication-title: Journal of Machine Learning Research – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: bib0041 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 184 start-page: 232 year: 2016 end-page: 242 ident: bib0063 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing – volume: 10 start-page: 1413 year: 2015 end-page: 1423 ident: bib0002 article-title: Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders publication-title: Soc Cogn Affect Neurosci – volume: 1 start-page: 153 year: 1994 end-page: 171 ident: bib0018 article-title: Analysis of functional MRI time-series publication-title: Hum Brain Mapp – volume: 71 start-page: 102063 year: 2021 ident: bib0059 article-title: Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI publication-title: Med Image Anal – volume: 275 start-page: 53 year: 2019 end-page: 60 ident: bib0043 article-title: Applications of machine learning in addiction studies: a systematic review publication-title: Psychiatry Res – volume: 47 start-page: 81 year: 2018 end-page: 94 ident: bib0029 article-title: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease publication-title: Med Image Anal – volume: 2 start-page: 476 year: 2017 end-page: 486 ident: bib0050 article-title: The default mode network in autism publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging – volume: 36 start-page: 901 year: 2012 end-page: 942 ident: bib0052 article-title: A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders publication-title: Neuroscience & Biobehavioral Reviews – volume: 35 start-page: 1284 year: 2014 end-page: 1296 ident: bib0064 article-title: Dysmaturation of the default mode network in autism publication-title: Hum Brain Mapp – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: bib0001 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage – volume: 83 start-page: 518 year: 2014 end-page: 532 ident: bib0062 article-title: The cerebellum, sensitive periods, and autism publication-title: Neuron – start-page: 137 year: 2018 end-page: 145 ident: bib0033 article-title: 3D convolutional neural networks for classification of functional connectomes publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support – volume: 67 start-page: 2241 year: 2019 end-page: 2252 ident: bib0060 article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network publication-title: IEEE Trans. Biomed. Eng. – volume: 57 start-page: 2850 year: 2010 end-page: 2860 ident: bib0005 article-title: Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 316 year: 2015 ident: bib0010 article-title: An empirical bayes normalization method for connectivity metrics in resting state fMRI publication-title: Front Neurosci – volume: 7 start-page: 479 year: 2020 ident: bib0067 article-title: Schizophrenia identification using multi-view graph measures of functional brain networks publication-title: Front Bioeng Biotechnol – start-page: 206 year: 2018 end-page: 214 ident: bib0040 article-title: Brain biomarker interpretation in ASD using deep learning and fMRI publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1331 year: 2020 end-page: 1334 ident: bib0028 article-title: Improving diagnosis of autism spectrum disorder and disentangling its heterogeneous functional connectivity patterns using capsule networks publication-title: IEEE 17th International Symposium on Biomedical Imaging (ISBI) – start-page: 3267 year: 2017 end-page: 3276 ident: bib0027 article-title: Learning visual attention to identify people with autism spectrum disorder publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 390 start-page: 226 year: 2020 end-page: 238 ident: bib0039 article-title: Classifying ASD children with LSTM based on raw videos publication-title: Neurocomputing – start-page: 1 year: 2019 end-page: 10 ident: bib0013 article-title: Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder publication-title: Brain Imaging Behav – volume: 169 start-page: 431 year: 2018 end-page: 442 ident: bib0037 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage – volume: 7 start-page: 599 year: 2013 ident: bib0049 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front Hum Neurosci – start-page: 700 year: 2019 end-page: 708 ident: bib0071 article-title: Invertible network for classification and biomarker selection for ASD publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 5188 year: 2015 end-page: 5196 ident: bib0042 article-title: Understanding deep image representations by inverting them publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 31 start-page: 137 year: 2008 end-page: 145 ident: bib0003 article-title: Neuroanatomy of autism publication-title: Trends Neurosci. – volume: 60 start-page: 101596 year: 2020 ident: bib0045 article-title: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism publication-title: Med Image Anal – volume: 28 start-page: 980 year: 2005 end-page: 995 ident: bib0048 article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data publication-title: Neuroimage – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib0024 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn – volume: 199 start-page: 651 year: 2019 end-page: 662 ident: bib0034 article-title: Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage – volume: 54 start-page: 697 year: 2011 end-page: 704 ident: bib0035 article-title: FMRI evidence of neural abnormalities in the subcortical face processing system in ASD publication-title: Neuroimage – volume: 59 start-page: 2045 issue: 3 year: 2012 ident: 10.1016/j.media.2021.102279_bib0066 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.015 – volume: 30 start-page: 10612 issue: 32 year: 2010 ident: 10.1016/j.media.2021.102279_bib0015 article-title: Describing the brain in autism in five dimensionsmagnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5413-09.2010 – volume: 12 start-page: 2211 year: 2011 ident: 10.1016/j.media.2021.102279_bib0020 article-title: Multiple kernel learning algorithms publication-title: Journal of Machine Learning Research – volume: 12 start-page: 257 year: 2018 ident: 10.1016/j.media.2021.102279_bib0007 article-title: The diagnosis of autism spectrum disorder based on the random neural network cluster publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2018.00257 – volume: 35 start-page: 1284 issue: 4 year: 2014 ident: 10.1016/j.media.2021.102279_bib0064 article-title: Dysmaturation of the default mode network in autism publication-title: Hum Brain Mapp doi: 10.1002/hbm.22252 – volume: 169 start-page: 431 year: 2018 ident: 10.1016/j.media.2021.102279_bib0037 article-title: Metric learning with spectral graph convolutions on brain connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.052 – volume: 47 start-page: 81 year: 2018 ident: 10.1016/j.media.2021.102279_bib0029 article-title: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease publication-title: Med Image Anal doi: 10.1016/j.media.2018.03.013 – start-page: 70 year: 2019 ident: 10.1016/j.media.2021.102279_bib0069 article-title: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI – start-page: 99 year: 2018 ident: 10.1016/j.media.2021.102279_bib0019 article-title: Data-specific feature selection method identification for most reproducible connectomic feature discovery fingerprinting brain states – volume: 390 start-page: 226 year: 2020 ident: 10.1016/j.media.2021.102279_bib0039 article-title: Classifying ASD children with LSTM based on raw videos publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.106 – start-page: 3319 year: 2017 ident: 10.1016/j.media.2021.102279_bib0054 article-title: Axiomatic attribution for deep networks – start-page: 709 year: 2016 ident: 10.1016/j.media.2021.102279_bib0008 article-title: Mining brain networks using multiple side views for neurological disorder identification – volume: 8 start-page: 197 issue: 4 year: 2018 ident: 10.1016/j.media.2021.102279_bib0009 article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network publication-title: Brain Connect doi: 10.1089/brain.2017.0561 – volume: 22 start-page: 212 issue: 3 year: 2016 ident: 10.1016/j.media.2021.102279_bib0065 article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks publication-title: CNS Neuroscience & Therapeutics doi: 10.1111/cns.12499 – volume: 542 start-page: 348 issue: 7641 year: 2017 ident: 10.1016/j.media.2021.102279_bib0025 article-title: Early brain development in infants at high risk for autism spectrum disorder publication-title: Nature doi: 10.1038/nature21369 – volume: 18 start-page: 1700232 issue: 2 year: 2018 ident: 10.1016/j.media.2021.102279_bib0058 article-title: SIMLR: A tool for large-scale genomic analyses by multi-kernel learning publication-title: Proteomics doi: 10.1002/pmic.201700232 – start-page: 5188 year: 2015 ident: 10.1016/j.media.2021.102279_bib0042 article-title: Understanding deep image representations by inverting them – volume: 31 start-page: 137 issue: 3 year: 2008 ident: 10.1016/j.media.2021.102279_bib0003 article-title: Neuroanatomy of autism publication-title: Trends Neurosci. doi: 10.1016/j.tins.2007.12.005 – volume: 47 start-page: 764 issue: 2 year: 2009 ident: 10.1016/j.media.2021.102279_bib0046 article-title: Abnormalities of intrinsic functional connectivity in autism spectrum disorders publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.069 – volume: 12 start-page: 2539 issue: 3 year: 2011 ident: 10.1016/j.media.2021.102279_bib0053 article-title: Weisfeiler-lehman graph kernels publication-title: Journal of Machine Learning Research – start-page: 1 year: 2019 ident: 10.1016/j.media.2021.102279_bib0013 article-title: Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder publication-title: Brain Imaging Behav – volume: 28 start-page: 980 issue: 4 year: 2005 ident: 10.1016/j.media.2021.102279_bib0048 article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.070 – volume: 10 start-page: 1413 issue: 10 year: 2015 ident: 10.1016/j.media.2021.102279_bib0002 article-title: Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders publication-title: Soc Cogn Affect Neurosci doi: 10.1093/scan/nsv029 – volume: 55 start-page: 618 issue: 7 year: 2016 ident: 10.1016/j.media.2021.102279_bib0021 article-title: Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity publication-title: Journal of the American Academy of Child & Adolescent Psychiatry doi: 10.1016/j.jaac.2016.04.013 – volume: 10 start-page: e0130140 issue: 7 year: 2015 ident: 10.1016/j.media.2021.102279_bib0006 article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation publication-title: PLoS ONE doi: 10.1371/journal.pone.0130140 – volume: 12 start-page: 491 year: 2018 ident: 10.1016/j.media.2021.102279_bib0038 article-title: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes publication-title: Front Neurosci doi: 10.3389/fnins.2018.00491 – volume: 7 start-page: 479 year: 2020 ident: 10.1016/j.media.2021.102279_bib0067 article-title: Schizophrenia identification using multi-view graph measures of functional brain networks publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2019.00479 – volume: 71 start-page: 102063 year: 2021 ident: 10.1016/j.media.2021.102279_bib0059 article-title: Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI publication-title: Med Image Anal doi: 10.1016/j.media.2021.102063 – start-page: 1576 year: 2019 ident: 10.1016/j.media.2021.102279_bib0070 article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling – volume: 67 start-page: 2241 issue: 8 year: 2019 ident: 10.1016/j.media.2021.102279_bib0060 article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2957921 – volume: 199 start-page: 651 year: 2019 ident: 10.1016/j.media.2021.102279_bib0034 article-title: Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.06.012 – start-page: 362 year: 2017 ident: 10.1016/j.media.2021.102279_bib0014 article-title: Identifying autism from resting-state fMRI using long short-term memory networks – volume: 61 start-page: 576 issue: 2 year: 2014 ident: 10.1016/j.media.2021.102279_bib0030 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2284195 – start-page: 177 year: 2017 ident: 10.1016/j.media.2021.102279_bib0051 article-title: Spectral graph convolutions for population-based disease prediction – volume: 83 start-page: 518 issue: 3 year: 2014 ident: 10.1016/j.media.2021.102279_bib0062 article-title: The cerebellum, sensitive periods, and autism publication-title: Neuron doi: 10.1016/j.neuron.2014.07.016 – start-page: 95 year: 2019 ident: 10.1016/j.media.2021.102279_bib0016 article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study – volume: 275 start-page: 53 year: 2019 ident: 10.1016/j.media.2021.102279_bib0043 article-title: Applications of machine learning in addiction studies: a systematic review publication-title: Psychiatry Res doi: 10.1016/j.psychres.2019.03.001 – year: 2017 ident: 10.1016/j.media.2021.102279_bib0011 article-title: Functional connectivity patterns of autism spectrum disorder identified by deep feature learning publication-title: arXiv preprint arXiv:1707.07932 – start-page: 137 year: 2018 ident: 10.1016/j.media.2021.102279_bib0033 article-title: 3D convolutional neural networks for classification of functional connectomes – volume: 60 start-page: 101596 year: 2020 ident: 10.1016/j.media.2021.102279_bib0045 article-title: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism publication-title: Med Image Anal doi: 10.1016/j.media.2019.101596 – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.media.2021.102279_bib0012 article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatry doi: 10.1038/mp.2013.78 – volume: 46 start-page: 389 issue: 1 year: 2002 ident: 10.1016/j.media.2021.102279_bib0024 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach Learn doi: 10.1023/A:1012487302797 – volume: 1 start-page: 153 issue: 2 year: 1994 ident: 10.1016/j.media.2021.102279_bib0018 article-title: Analysis of functional MRI time-series publication-title: Hum Brain Mapp doi: 10.1002/hbm.460010207 – start-page: 12 year: 2017 ident: 10.1016/j.media.2021.102279_bib0047 article-title: Autism spectrum disorder diagnosis using sparse graph Embedding of morphological brain networks – volume: 7 start-page: 599 year: 2013 ident: 10.1016/j.media.2021.102279_bib0049 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front Hum Neurosci doi: 10.3389/fnhum.2013.00599 – volume: 84 start-page: 236 issue: 4 year: 2018 ident: 10.1016/j.media.2021.102279_bib0044 article-title: The triple network model, insight, and large-scale brain organization in autism publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2018.06.012 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.media.2021.102279_bib0041 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – volume: 11 start-page: 460 year: 2017 ident: 10.1016/j.media.2021.102279_bib0023 article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method publication-title: Front Neurosci doi: 10.3389/fnins.2017.00460 – volume: 9 start-page: 316 year: 2015 ident: 10.1016/j.media.2021.102279_bib0010 article-title: An empirical bayes normalization method for connectivity metrics in resting state fMRI publication-title: Front Neurosci doi: 10.3389/fnins.2015.00316 – start-page: 3197 year: 2019 ident: 10.1016/j.media.2021.102279_bib0004 article-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification – volume: 55 start-page: 176 issue: 1 year: 2011 ident: 10.1016/j.media.2021.102279_bib0055 article-title: Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.046 – volume: 172 start-page: 674 year: 2018 ident: 10.1016/j.media.2021.102279_bib0017 article-title: Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.12.044 – volume: 54 start-page: 697 issue: 1 year: 2011 ident: 10.1016/j.media.2021.102279_bib0035 article-title: FMRI evidence of neural abnormalities in the subcortical face processing system in ASD publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.037 – start-page: 206 year: 2018 ident: 10.1016/j.media.2021.102279_bib0040 article-title: Brain biomarker interpretation in ASD using deep learning and fMRI – volume: 57 start-page: 284 issue: 2 year: 2009 ident: 10.1016/j.media.2021.102279_bib0057 article-title: Dimensionality reduction in control and coordination of the human hand publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2032532 – volume: 184 start-page: 232 year: 2016 ident: 10.1016/j.media.2021.102279_bib0063 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – start-page: 641 year: 2019 ident: 10.1016/j.media.2021.102279_bib0056 article-title: Sp-asdnet: Cnn-lstm based asd classification model using observer scanpaths – start-page: 700 year: 2019 ident: 10.1016/j.media.2021.102279_bib0071 article-title: Invertible network for classification and biomarker selection for ASD – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.media.2021.102279_bib0001 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 57 start-page: 2850 issue: 12 year: 2010 ident: 10.1016/j.media.2021.102279_bib0005 article-title: Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2080679 – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.media.2021.102279_bib0026 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.08.017 – start-page: 3267 year: 2017 ident: 10.1016/j.media.2021.102279_bib0027 article-title: Learning visual attention to identify people with autism spectrum disorder – volume: 2 start-page: 476 issue: 6 year: 2017 ident: 10.1016/j.media.2021.102279_bib0050 article-title: The default mode network in autism publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging – volume: 39 start-page: 644 issue: 3 year: 2019 ident: 10.1016/j.media.2021.102279_bib0061 article-title: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2933160 – volume: 18 start-page: 33 issue: 8 year: 2019 ident: 10.1016/j.media.2021.102279_bib0032 article-title: Artificial intelligence in psychiatry publication-title: Curr Psychiatr – start-page: 1331 year: 2020 ident: 10.1016/j.media.2021.102279_bib0028 article-title: Improving diagnosis of autism spectrum disorder and disentangling its heterogeneous functional connectivity patterns using capsule networks – volume: 10 start-page: e0143126 issue: 11 year: 2015 ident: 10.1016/j.media.2021.102279_bib0031 article-title: Sex differences in the default mode network with regard to autism spectrum traits: a resting state fMRI study publication-title: PLoS ONE doi: 10.1371/journal.pone.0143126 – volume: 36 start-page: 901 issue: 2 year: 2012 ident: 10.1016/j.media.2021.102279_bib0052 article-title: A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders publication-title: Neuroscience & Biobehavioral Reviews doi: 10.1016/j.neubiorev.2011.10.008 – volume: 212 start-page: 353 year: 2015 ident: 10.1016/j.media.2021.102279_bib0068 article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.02.025 – volume: 39 start-page: 4357 issue: 12 year: 2020 ident: 10.1016/j.media.2021.102279_bib0022 article-title: High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.3017450 – start-page: 469 year: 2017 ident: 10.1016/j.media.2021.102279_bib0036 article-title: Distance metric learning using graph convolutional networks: Application to functional brain networks |
SSID | ssj0007440 |
Score | 2.5531003 |
Snippet | •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly... Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102279 |
SubjectTerms | Autism Autism spectrum disorder Autism Spectrum Disorder - diagnostic imaging Biomarkers Brain - diagnostic imaging Brain Mapping Cerebellum Cluster Analysis Clustering Discriminative biomarker identification Feature extraction fMRI Functional connectivity Functional magnetic resonance imaging Heterogeneity Humans Magnetic Resonance Imaging Medical imaging Mental disorders Neural networks Neuroimaging Population studies Singular value decomposition Support vector machines Training |
Title | Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI |
URI | https://dx.doi.org/10.1016/j.media.2021.102279 https://www.ncbi.nlm.nih.gov/pubmed/34731776 https://www.proquest.com/docview/2630529689 https://www.proquest.com/docview/2593593395 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKqH2ULXQj20pciWOdXdjO3Fy3KLSBbocaKm4WY4_pK0gIGCv_e2dcZyllVoOXBIlmUhWZjJ-tuc9A-z6iWtcHQUvWjwopxuO1xOO2N7XCgFDTCzX-XE1O1WHZ-XZGuwNXBgqq8y5v8_pKVvnO-P8NcdXi8X4WyFpsxLqfzAyhSLCr1Kaovzjr7syDxLA67lXBSfrQXko1XgldgYOEkVBEgaC6rn-3Tv9D32mXmj_GTzN8JFN-xY-h7XQbcKTP0QFN2FjnpfLt6Cn13JaIGbufEmaCGjCbOdZl-Y5WQxJ2JNhir7uKQ4MUSxbJPpuokAxi6F5c8ESJfN6ecF81utkNIXLaGsPtOKJmMTi_OTgBZzuf_6-N-N5mwXuZK1vuXVaTWovQlnVwttYy4l1thWicFpEEQKCLG3rIhZNUKVog2x1gb4vrbRaY8Z8CevdZRdeA2sbG2WpovOIUlqNA3UVvCIVtTZo78IIxPB5jcsa5LQVxrkZis1-muQTQz4xvU9G8GH10lUvwXG_eTX4zfwVSQY7iftf3B68bPKPfGNEJWkttKrx8fvVY_wFaV3FduFyiTYl0ZulbMoRvOqjY9VQqTQiNF29eWir3sJjQYyLNOuzDevo6fAOcdBtu5MCfQceTQ-OZsd4_vLp64_pb2qWCZE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SDfTjUNL0a9ukVaHHil1LsiUfQ0jYbbJ7aBPITciyBFsSJyTZ_98ZWV5aaHPIxWBLAqEZjZ41ek8AX9upr72JghcNPpTXNcf3KUds3xqFgCEmlutiWc3O1feL8mILDgcuDB2rzLG_j-kpWucvkzyak5vVavKzkHRZCa0_6JlCmSewTepU5Qi2D-Yns-UmIJMGXk-_Kjg1GMSH0jGvRNDA_0RRkIqBoCNd_16g_gdA00J0vAMvM4JkB30nX8FW6HbhxR-6grvwdJEz5q-hZ9hyyhEzf7kmWQSswlzXsi5tdbIYkrYnwyh927McGAJZtkoM3sSCYg698-6KJVbm7fqKtVmyk9EuLqPbPbAWT9wkFhc_5m_g_Pjo7HDG800L3Euj77nzWk1NK0JZGdG6aOTUedcIUXgtoggBcZZ2pohFHVQpmiAbXaD5Syed1hg038Kou-7Ce2BN7aIsVfQtApVG47-6Cq0iIbUm6NaHMYhheK3PMuR0G8alHc6b_bLJJpZsYnubjOHbptFNr8LxcPVqsJv9y5ksrhMPN9wbrGzzXL6zopKUDq0MFn_ZFOMspNSK68L1GuuUxHCWsi7H8K73jk1HpdII0nT14bG9-gzPZmeLU3s6X558hOeCCBhpE2gPRmj1sI-w6L75lN3-NyYzCrM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-site+clustering+and+nested+feature+extraction+for+identifying+autism+spectrum+disorder+with+resting-state+fMRI&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Nan&rft.au=Yao%2C+Dongren&rft.au=Ma%2C+Lizhuang&rft.au=Liu%2C+Mingxia&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=75&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2021.102279&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |