Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI

•We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) me...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 75; p. 102279
Main Authors Wang, Nan, Yao, Dongren, Ma, Lizhuang, Liu, Mingxia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2021.102279

Cover

Loading…
Abstract •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) method to mitigate inter-site data heterogeneity and extract functional connectivity features, by learning both local cluster-shared features across sites for each group/category and global category-shared features within a specifici group (i.e., the ASD patient or healthy control group).•The proposed method helps to identify disease-associated functional connectivity abnormality from rs-fMRI data, so it has good interpretability. [Display omitted] Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
AbstractList •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly applied to other multi-site applications with resting-state functional MRI (rs-fMRI) data.•We design a nested singular value decomposition (SVD) method to mitigate inter-site data heterogeneity and extract functional connectivity features, by learning both local cluster-shared features across sites for each group/category and global category-shared features within a specifici group (i.e., the ASD patient or healthy control group).•The proposed method helps to identify disease-associated functional connectivity abnormality from rs-fMRI data, so it has good interpretability. [Display omitted] Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study neuropsychiatric disorders such as autism spectrum disorder (ASD). Existing studies usually suffer from (1) significant data heterogeneity caused by different scanners or studied populations in multiple sites, (2) curse of dimensionality caused by millions of voxels in each fMRI scan and a very limited number (tens or hundreds) of training samples, and (3) poor interpretability, which hinders the identification of reproducible disease biomarkers. To this end, we propose a Multi-site Clustering and Nested Feature Extraction (MC-NFE) method for fMRI-based ASD detection. Specifically, we first divide multi-site training data into ASD and healthy control (HC) groups. To model inter-site heterogeneity within each category, we use a similarity-driven multiview linear reconstruction model to learn latent representations and perform subject clustering within each group. We then design a nested singular value decomposition (SVD) method to mitigate inter-site heterogeneity and extract FC features by learning both local cluster-shared features across sites within each category and global category-shared features across ASD and HC groups, followed by a linear support vector machine (SVM) for ASD detection. Experimental results on 609 subjects with rs-fMRI from the ABIDE database with 21 imaging sites suggest that the proposed MC-NFE outperforms several state-of-the-art methods in ASD detection. The most discriminative FCs identified by the MC-NFE are mainly located in default mode network, salience network, and cerebellum region, which could be used as potential biomarkers for fMRI-based ASD analysis.
ArticleNumber 102279
Author Liu, Mingxia
Ma, Lizhuang
Wang, Nan
Yao, Dongren
Author_xml – sequence: 1
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
  organization: East China Normal University, Shanghai 200062, China
– sequence: 2
  givenname: Dongren
  surname: Yao
  fullname: Yao, Dongren
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 3
  givenname: Lizhuang
  surname: Ma
  fullname: Ma, Lizhuang
  email: lzma@sei.ecnu.edu.cn
  organization: East China Normal University, Shanghai 200062, China
– sequence: 4
  givenname: Mingxia
  surname: Liu
  fullname: Liu, Mingxia
  email: mxliu@med.unc.edu
  organization: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34731776$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrFTEUxoNU7EP_AkECbrqZax6TyczChRQfhRZBdB0yyYnmMpNc81D73ze3t3XRRSGQB7_vnJPvO0VHIQZA6DUlG0ro8G67WcF6vWGE0fbCmJyeoRPKB9qNPeNH_89UHKPTnLeEENn35AU65r3kVMrhBJXruhTfZV8Am6XmAsmHn1gHiwO0m8UOdKkJMPwrSZviY8AuJuwthOLdzR1di88rzjswJdUVW59jspDwX19-4dTqNKrLRbcm7vrb5Uv03Oklw6v7_Qz9-PTx-8WX7urr58uLD1ed4aMsnTayJ6NlIIaRWe1GTrTRM2PUSOYYgOiF1CN1dIJesBn4LCnMIDTXUlLBz9D5oe4uxd-1jaFWnw0siw4Qa1ZMTLwtPu3Rt4_QbawptOkUGzgRbBrGqVFv7qk6N_PVLvlVpxv14GcDpgNgUsw5gVPGt28305p5flGUqH12aqvuslP77NQhu6blj7QP5Z9WvT-ooBn5x0NS2XgIpoGpxaFs9E_qbwGwW7TC
CitedBy_id crossref_primary_10_3389_fnins_2023_1227491
crossref_primary_10_1016_j_neubiorev_2022_105021
crossref_primary_10_1109_JBHI_2023_3274531
crossref_primary_10_3389_fnins_2023_1252732
crossref_primary_10_3389_fnins_2022_1046268
crossref_primary_10_1007_s11571_022_09828_9
crossref_primary_10_1155_2022_8797604
crossref_primary_10_1016_j_mlwa_2022_100290
crossref_primary_10_1093_bib_bbad060
crossref_primary_10_3389_fneur_2022_922322
crossref_primary_10_1016_j_neunet_2024_106182
crossref_primary_10_1109_TBME_2024_3370415
crossref_primary_10_3390_brainsci12070883
crossref_primary_10_3389_fnhum_2022_918969
crossref_primary_10_1007_s10489_022_03891_9
crossref_primary_10_1016_j_neunet_2024_106945
crossref_primary_10_1109_TMI_2022_3201974
crossref_primary_10_1016_j_bspc_2024_106934
crossref_primary_10_3390_brainsci14080766
crossref_primary_10_1109_ACCESS_2025_3532302
crossref_primary_10_3390_app14177632
crossref_primary_10_3390_bioengineering10040397
crossref_primary_10_1016_j_eswa_2023_122253
crossref_primary_10_1080_08839514_2021_2004655
crossref_primary_10_1007_s00217_023_04377_9
crossref_primary_10_1007_s11571_024_10202_0
crossref_primary_10_3390_brainsci13111578
crossref_primary_10_1016_j_cmpb_2024_108065
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_ridd_2024_104701
crossref_primary_10_3390_diagnostics13203251
crossref_primary_10_1186_s12859_023_05495_7
crossref_primary_10_1016_j_compbiomed_2023_107667
crossref_primary_10_1016_j_compbiomed_2023_107184
crossref_primary_10_1016_j_eswa_2023_123035
crossref_primary_10_3390_s23249647
crossref_primary_10_4236_jamp_2023_117124
crossref_primary_10_1038_s41398_024_03024_5
crossref_primary_10_1002_ima_23110
crossref_primary_10_1140_epjs_s11734_022_00717_0
crossref_primary_10_1109_TETCI_2024_3377551
crossref_primary_10_1016_j_schres_2023_12_013
crossref_primary_10_1145_3654664
crossref_primary_10_1016_j_bspc_2025_107513
crossref_primary_10_1002_open_202200192
crossref_primary_10_1109_TIM_2023_3324338
crossref_primary_10_1016_j_compbiolchem_2024_108200
crossref_primary_10_1049_cit2_12340
crossref_primary_10_1007_s10278_025_01399_5
crossref_primary_10_1016_j_compbiomed_2022_106320
crossref_primary_10_1109_TMI_2023_3309874
crossref_primary_10_3389_fnins_2022_900330
crossref_primary_10_1016_j_neuroimage_2024_120755
Cites_doi 10.1016/j.neuroimage.2011.10.015
10.1523/JNEUROSCI.5413-09.2010
10.3389/fnhum.2018.00257
10.1002/hbm.22252
10.1016/j.neuroimage.2017.12.052
10.1016/j.media.2018.03.013
10.1016/j.neucom.2019.05.106
10.1089/brain.2017.0561
10.1111/cns.12499
10.1038/nature21369
10.1002/pmic.201700232
10.1016/j.tins.2007.12.005
10.1016/j.neuroimage.2009.04.069
10.1016/j.neuroimage.2005.06.070
10.1093/scan/nsv029
10.1016/j.jaac.2016.04.013
10.1371/journal.pone.0130140
10.3389/fnins.2018.00491
10.3389/fbioe.2019.00479
10.1016/j.media.2021.102063
10.1109/TBME.2019.2957921
10.1016/j.neuroimage.2019.06.012
10.1109/TBME.2013.2284195
10.1016/j.neuron.2014.07.016
10.1016/j.psychres.2019.03.001
10.1016/j.media.2019.101596
10.1038/mp.2013.78
10.1023/A:1012487302797
10.1002/hbm.460010207
10.3389/fnhum.2013.00599
10.1016/j.biopsych.2018.06.012
10.3389/fnins.2017.00460
10.3389/fnins.2015.00316
10.1016/j.neuroimage.2010.11.046
10.1016/j.neuroimage.2017.12.044
10.1016/j.neuroimage.2010.07.037
10.1109/TBME.2009.2032532
10.1016/j.neucom.2015.08.104
10.1016/j.neuroimage.2016.10.045
10.1109/TBME.2010.2080679
10.1016/j.nicl.2017.08.017
10.1109/TMI.2019.2933160
10.1371/journal.pone.0143126
10.1016/j.neubiorev.2011.10.008
10.1016/j.snb.2015.02.025
10.1109/TMI.2020.3017450
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2021.102279
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 34731776
10_1016_j_media_2021_102279
S1361841521003248
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-ac7408d2e5682daf830acab221c72f2ee5457a81f19e452be3b71ebe5a3a77153
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 12:27:19 EDT 2025
Sat Jul 26 03:24:47 EDT 2025
Wed Feb 19 02:27:34 EST 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
fMRI
Discriminative biomarker identification
Autism spectrum disorder
Language English
License Copyright © 2021 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-ac7408d2e5682daf830acab221c72f2ee5457a81f19e452be3b71ebe5a3a77153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34731776
PQID 2630529689
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2593593395
proquest_journals_2630529689
pubmed_primary_34731776
crossref_citationtrail_10_1016_j_media_2021_102279
crossref_primary_10_1016_j_media_2021_102279
elsevier_sciencedirect_doi_10_1016_j_media_2021_102279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Jie, Liu, Shen (bib0029) 2018; 47
Washington, Gordon, Brar, Warburton, Sawyer, Wolfe, Mease-Ference, Girton, Hailu, Mbwana (bib0064) 2014; 35
Yao, Liu, Wang, Lian, Wei, Sun, Sui, Shen (bib0069) 2019
Hazlett, Gu, Munsell, Kim, Styner, Wolff, Elison, Swanson, Zhu, Botteron (bib0025) 2017; 542
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib0037) 2018; 169
Wang, Lian, Yao, Zhang, Liu, Shen (bib0060) 2019; 67
Van der Maaten, Hinton (bib0041) 2008; 9
Vinjamuri, Sun, Chang, Lee, Sclabassi, Mao (bib0057) 2009; 57
Alaerts, Nayar, Kelly, Raithel, Milham, Di Martino (bib0002) 2015; 10
Jung, Mody, Saito, Tomoda, Okazawa, Wada, Kosaka (bib0031) 2015; 10
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib0001) 2017; 147
Philip, Dauvermann, Whalley, Baynham, Lawrie, Stanfield (bib0052) 2012; 36
Sundararajan, Taly, Yan (bib0054) 2017
Li, Parikh, He (bib0038) 2018; 12
Mak, Lee, Park (bib0043) 2019; 275
Shervashidze, Schweitzer, Leeuwen, Mehlhorn, Borgwardt (bib0053) 2011; 12
Li, Dvornek, Zhuang, Ventola, Duncan (bib0040) 2018
Jie, Zhang, Gao, Wang, Wee, Shen (bib0030) 2014; 61
Anirudh, Thiagarajan (bib0004) 2019
Bi, Liu, Jiang, Shu, Sun, Dai (bib0007) 2018; 12
Wang, Zhang, Huang, Yap, Shen, Liu (bib0061) 2019; 39
Mourao-Miranda, Bokde, Born, Hampel, Stetter (bib0048) 2005; 28
Cao, Kong, Zhang, Yu, Ragin (bib0008) 2016
Kalanderian, Nasrallah (bib0032) 2019; 18
Jiang, Zhao (bib0027) 2017
Wee, Yap, Shen (bib0065) 2016; 22
Green, Hernandez, Bookheimer, Dapretto (bib0021) 2016; 55
Chen, Kang, Wang (bib0010) 2015; 9
Wang, Huang, Liu, Zhang (bib0059) 2021; 71
Bach, Binder, Montavon, Klauschen, Müller, Samek (bib0006) 2015; 10
Chen, Hu (bib0009) 2018; 8
Menon (bib0044) 2018; 84
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (bib0026) 2018; 17
Dryburgh, McKenna, Rekik (bib0013) 2019
Guo, Fessler, Noll (bib0022) 2020; 39
Xiang, Wang, Tan, Wu, Liu (bib0067) 2020; 7
Mahendran, Vedaldi (bib0042) 2015
Zhao, Dai, Zhang, Ge, Liu (bib0070) 2019
Ecker, Marquand, Mourão Miranda, Johnston, Daly, Brammer, Maltezos, Murphy, Robertson, Williams (bib0015) 2010; 30
Khosla, Jamison, Kuceyeski, Sabuncu (bib0033) 2018
Kleinhans, Richards, Johnson, Weaver, Greenson, Dawson, Aylward (bib0035) 2011; 54
Georges, Rekik (bib0019) 2018
Parisot, Ktena, Ferrante, Lee, Moreno, Glocker, Rueckert (bib0051) 2017
Yan, Zhang (bib0068) 2015; 212
Zhuang, Dvornek, Li, Ventola, Duncan (bib0071) 2019
Jiao, Li, Fan (bib0028) 2020
Guyon, Weston, Barnhill, Vapnik (bib0024) 2002; 46
Choi (bib0011) 2017
Amaral, Schumann, Nordahl (bib0003) 2008; 31
Wee, Yap, Zhang, Denny, Browndyke, Potter, Welshbohmer, Wang, Shen (bib0066) 2012; 59
Padmanabhan, Lynch, Schaer, Menon (bib0050) 2017; 2
Wang, Yao, Zhao (bib0063) 2016; 184
Feczko, Balba, Miranda-Dominguez, Cordova, Karalunas, Irwin, Demeter, Hill, Langhorst, Painter (bib0017) 2018; 172
Guo, Dominick, Minai, Li, Erickson, Lu (bib0023) 2017; 11
Mhiri, Rekik (bib0045) 2020; 60
Wang, Kloth, Badura (bib0062) 2014; 83
Tao, Shyu (bib0056) 2019
Morris, Rekik (bib0047) 2017
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib0012) 2014; 19
Gönen, Alpaydın (bib0020) 2011; 12
El-Gazzar, Quaak Mirjam an d Cerliani, Bloem, van Wingen, Thomas (bib0016) 2019
Wang, Ramazzotti, De Sano, Zhu, Pierson, Batzoglou (bib0058) 2018; 18
Dvornek, Ventola, Pelphrey, Duncan (bib0014) 2017
Ktena, Parisot, Ferrante, Rajchl, Lee, Glocker, Rueckert (bib0036) 2017
Li, Zhong, Han, Ouyang, Li, Liu (bib0039) 2020; 390
Friston, Jezzard, Turner (bib0018) 1994; 1
Monk, Peltier, Wiggins, Weng, Carrasco, Risi, Lord (bib0046) 2009; 47
Tak, Yoon, Jang, Yoo, Jeong, Ye (bib0055) 2011; 55
Arribas, Calhoun, Adali (bib0005) 2010; 57
Khosla, Jamison, Kuceyeski, Sabuncu (bib0034) 2019; 199
Nielsen, Zielinski, Fletcher, Alexander, Lange, Bigler, Lainhart, Anderson (bib0049) 2013; 7
Wang (10.1016/j.media.2021.102279_bib0058) 2018; 18
Wee (10.1016/j.media.2021.102279_bib0066) 2012; 59
Yan (10.1016/j.media.2021.102279_bib0068) 2015; 212
Li (10.1016/j.media.2021.102279_bib0039) 2020; 390
Di Martino (10.1016/j.media.2021.102279_bib0012) 2014; 19
Kalanderian (10.1016/j.media.2021.102279_bib0032) 2019; 18
Alaerts (10.1016/j.media.2021.102279_bib0002) 2015; 10
Washington (10.1016/j.media.2021.102279_bib0064) 2014; 35
Bach (10.1016/j.media.2021.102279_bib0006) 2015; 10
Khosla (10.1016/j.media.2021.102279_bib0034) 2019; 199
Wang (10.1016/j.media.2021.102279_bib0062) 2014; 83
Yao (10.1016/j.media.2021.102279_bib0069) 2019
Mahendran (10.1016/j.media.2021.102279_bib0042) 2015
Friston (10.1016/j.media.2021.102279_bib0018) 1994; 1
Guo (10.1016/j.media.2021.102279_bib0022) 2020; 39
Bi (10.1016/j.media.2021.102279_bib0007) 2018; 12
Gönen (10.1016/j.media.2021.102279_bib0020) 2011; 12
Zhuang (10.1016/j.media.2021.102279_bib0071) 2019
Chen (10.1016/j.media.2021.102279_bib0009) 2018; 8
Jiang (10.1016/j.media.2021.102279_bib0027) 2017
Monk (10.1016/j.media.2021.102279_bib0046) 2009; 47
Cao (10.1016/j.media.2021.102279_bib0008) 2016
Ktena (10.1016/j.media.2021.102279_bib0037) 2018; 169
Heinsfeld (10.1016/j.media.2021.102279_bib0026) 2018; 17
Li (10.1016/j.media.2021.102279_bib0038) 2018; 12
Arribas (10.1016/j.media.2021.102279_bib0005) 2010; 57
Jie (10.1016/j.media.2021.102279_bib0029) 2018; 47
Sundararajan (10.1016/j.media.2021.102279_bib0054) 2017
Zhao (10.1016/j.media.2021.102279_bib0070) 2019
Padmanabhan (10.1016/j.media.2021.102279_bib0050) 2017; 2
El-Gazzar (10.1016/j.media.2021.102279_bib0016) 2019
Menon (10.1016/j.media.2021.102279_bib0044) 2018; 84
Ktena (10.1016/j.media.2021.102279_bib0036) 2017
Wang (10.1016/j.media.2021.102279_bib0063) 2016; 184
Anirudh (10.1016/j.media.2021.102279_bib0004) 2019
Hazlett (10.1016/j.media.2021.102279_bib0025) 2017; 542
Jiao (10.1016/j.media.2021.102279_bib0028) 2020
Philip (10.1016/j.media.2021.102279_bib0052) 2012; 36
Green (10.1016/j.media.2021.102279_bib0021) 2016; 55
Choi (10.1016/j.media.2021.102279_bib0011) 2017
Jung (10.1016/j.media.2021.102279_bib0031) 2015; 10
Xiang (10.1016/j.media.2021.102279_bib0067) 2020; 7
Mhiri (10.1016/j.media.2021.102279_bib0045) 2020; 60
Georges (10.1016/j.media.2021.102279_bib0019) 2018
Van der Maaten (10.1016/j.media.2021.102279_bib0041) 2008; 9
Vinjamuri (10.1016/j.media.2021.102279_bib0057) 2009; 57
Feczko (10.1016/j.media.2021.102279_bib0017) 2018; 172
Tak (10.1016/j.media.2021.102279_bib0055) 2011; 55
Nielsen (10.1016/j.media.2021.102279_bib0049) 2013; 7
Tao (10.1016/j.media.2021.102279_bib0056) 2019
Jie (10.1016/j.media.2021.102279_bib0030) 2014; 61
Wang (10.1016/j.media.2021.102279_bib0060) 2019; 67
Dryburgh (10.1016/j.media.2021.102279_bib0013) 2019
Wang (10.1016/j.media.2021.102279_bib0061) 2019; 39
Ecker (10.1016/j.media.2021.102279_bib0015) 2010; 30
Shervashidze (10.1016/j.media.2021.102279_bib0053) 2011; 12
Mourao-Miranda (10.1016/j.media.2021.102279_bib0048) 2005; 28
Guo (10.1016/j.media.2021.102279_bib0023) 2017; 11
Dvornek (10.1016/j.media.2021.102279_bib0014) 2017
Guyon (10.1016/j.media.2021.102279_bib0024) 2002; 46
Abraham (10.1016/j.media.2021.102279_bib0001) 2017; 147
Chen (10.1016/j.media.2021.102279_bib0010) 2015; 9
Li (10.1016/j.media.2021.102279_bib0040) 2018
Wang (10.1016/j.media.2021.102279_bib0059) 2021; 71
Khosla (10.1016/j.media.2021.102279_bib0033) 2018
Morris (10.1016/j.media.2021.102279_bib0047) 2017
Mak (10.1016/j.media.2021.102279_bib0043) 2019; 275
Amaral (10.1016/j.media.2021.102279_bib0003) 2008; 31
Wee (10.1016/j.media.2021.102279_bib0065) 2016; 22
Kleinhans (10.1016/j.media.2021.102279_bib0035) 2011; 54
Parisot (10.1016/j.media.2021.102279_bib0051) 2017
References_xml – volume: 55
  start-page: 618
  year: 2016
  end-page: 626
  ident: bib0021
  article-title: Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
– start-page: 95
  year: 2019
  end-page: 102
  ident: bib0016
  article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study
  publication-title: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging
– start-page: 641
  year: 2019
  end-page: 646
  ident: bib0056
  article-title: Sp-asdnet: Cnn-lstm based asd classification model using observer scanpaths
  publication-title: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)
– volume: 11
  start-page: 460
  year: 2017
  ident: bib0023
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Front Neurosci
– volume: 8
  start-page: 197
  year: 2018
  end-page: 204
  ident: bib0009
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect
– volume: 172
  start-page: 674
  year: 2018
  end-page: 688
  ident: bib0017
  article-title: Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm
  publication-title: Neuroimage
– volume: 10
  start-page: e0130140
  year: 2015
  ident: bib0006
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS ONE
– volume: 39
  start-page: 4357
  year: 2020
  end-page: 4368
  ident: bib0022
  article-title: High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction
  publication-title: IEEE Trans Med Imaging
– start-page: 177
  year: 2017
  end-page: 185
  ident: bib0051
  article-title: Spectral graph convolutions for population-based disease prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1576
  year: 2019
  end-page: 1580
  ident: bib0070
  article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– volume: 61
  start-page: 576
  year: 2014
  end-page: 589
  ident: bib0030
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 3319
  year: 2017
  end-page: 3328
  ident: bib0054
  article-title: Axiomatic attribution for deep networks
  publication-title: International Conference on Machine Learning
– volume: 59
  start-page: 2045
  year: 2012
  end-page: 2056
  ident: bib0066
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: Neuroimage
– volume: 12
  start-page: 257
  year: 2018
  ident: bib0007
  article-title: The diagnosis of autism spectrum disorder based on the random neural network cluster
  publication-title: Front Hum Neurosci
– volume: 12
  start-page: 491
  year: 2018
  ident: bib0038
  article-title: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes
  publication-title: Front Neurosci
– volume: 22
  start-page: 212
  year: 2016
  end-page: 219
  ident: bib0065
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neuroscience & Therapeutics
– volume: 57
  start-page: 284
  year: 2009
  end-page: 295
  ident: bib0057
  article-title: Dimensionality reduction in control and coordination of the human hand
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 3197
  year: 2019
  end-page: 3201
  ident: bib0004
  article-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification
  publication-title: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 212
  start-page: 353
  year: 2015
  end-page: 363
  ident: bib0068
  article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination
  publication-title: Sens. Actuators, B
– volume: 18
  start-page: 33
  year: 2019
  end-page: 38
  ident: bib0032
  article-title: Artificial intelligence in psychiatry
  publication-title: Curr Psychiatr
– volume: 10
  start-page: e0143126
  year: 2015
  ident: bib0031
  article-title: Sex differences in the default mode network with regard to autism spectrum traits: a resting state fMRI study
  publication-title: PLoS ONE
– start-page: 99
  year: 2018
  end-page: 106
  ident: bib0019
  article-title: Data-specific feature selection method identification for most reproducible connectomic feature discovery fingerprinting brain states
  publication-title: International Workshop on Connectomics in Neuroimaging
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: bib0026
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical
– volume: 47
  start-page: 764
  year: 2009
  end-page: 772
  ident: bib0046
  article-title: Abnormalities of intrinsic functional connectivity in autism spectrum disorders
  publication-title: Neuroimage
– start-page: 362
  year: 2017
  end-page: 370
  ident: bib0014
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: International Workshop on Machine Learning in Medical Imaging
– start-page: 12
  year: 2017
  end-page: 20
  ident: bib0047
  article-title: Autism spectrum disorder diagnosis using sparse graph Embedding of morphological brain networks
  publication-title: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics
– volume: 39
  start-page: 644
  year: 2019
  end-page: 655
  ident: bib0061
  article-title: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation
  publication-title: IEEE Trans Med Imaging
– volume: 30
  start-page: 10612
  year: 2010
  end-page: 10623
  ident: bib0015
  article-title: Describing the brain in autism in five dimensionsmagnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
  publication-title: J. Neurosci.
– year: 2017
  ident: bib0011
  article-title: Functional connectivity patterns of autism spectrum disorder identified by deep feature learning
  publication-title: arXiv preprint arXiv:1707.07932
– volume: 84
  start-page: 236
  year: 2018
  end-page: 238
  ident: bib0044
  article-title: The triple network model, insight, and large-scale brain organization in autism
  publication-title: Biol. Psychiatry
– start-page: 70
  year: 2019
  end-page: 78
  ident: bib0069
  article-title: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI
  publication-title: International Workshop on Graph Learning in Medical Imaging
– start-page: 469
  year: 2017
  end-page: 477
  ident: bib0036
  article-title: Distance metric learning using graph convolutional networks: Application to functional brain networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 542
  start-page: 348
  year: 2017
  end-page: 351
  ident: bib0025
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib0012
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
– volume: 18
  start-page: 1700232
  year: 2018
  ident: bib0058
  article-title: SIMLR: A tool for large-scale genomic analyses by multi-kernel learning
  publication-title: Proteomics
– volume: 12
  start-page: 2539
  year: 2011
  end-page: 2561
  ident: bib0053
  article-title: Weisfeiler-lehman graph kernels
  publication-title: Journal of Machine Learning Research
– volume: 55
  start-page: 176
  year: 2011
  end-page: 184
  ident: bib0055
  article-title: Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements
  publication-title: Neuroimage
– start-page: 709
  year: 2016
  end-page: 714
  ident: bib0008
  article-title: Mining brain networks using multiple side views for neurological disorder identification
  publication-title: ICDM
– volume: 12
  start-page: 2211
  year: 2011
  end-page: 2268
  ident: bib0020
  article-title: Multiple kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0041
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: bib0063
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– volume: 10
  start-page: 1413
  year: 2015
  end-page: 1423
  ident: bib0002
  article-title: Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders
  publication-title: Soc Cogn Affect Neurosci
– volume: 1
  start-page: 153
  year: 1994
  end-page: 171
  ident: bib0018
  article-title: Analysis of functional MRI time-series
  publication-title: Hum Brain Mapp
– volume: 71
  start-page: 102063
  year: 2021
  ident: bib0059
  article-title: Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI
  publication-title: Med Image Anal
– volume: 275
  start-page: 53
  year: 2019
  end-page: 60
  ident: bib0043
  article-title: Applications of machine learning in addiction studies: a systematic review
  publication-title: Psychiatry Res
– volume: 47
  start-page: 81
  year: 2018
  end-page: 94
  ident: bib0029
  article-title: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease
  publication-title: Med Image Anal
– volume: 2
  start-page: 476
  year: 2017
  end-page: 486
  ident: bib0050
  article-title: The default mode network in autism
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– volume: 36
  start-page: 901
  year: 2012
  end-page: 942
  ident: bib0052
  article-title: A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders
  publication-title: Neuroscience & Biobehavioral Reviews
– volume: 35
  start-page: 1284
  year: 2014
  end-page: 1296
  ident: bib0064
  article-title: Dysmaturation of the default mode network in autism
  publication-title: Hum Brain Mapp
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: bib0001
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
– volume: 83
  start-page: 518
  year: 2014
  end-page: 532
  ident: bib0062
  article-title: The cerebellum, sensitive periods, and autism
  publication-title: Neuron
– start-page: 137
  year: 2018
  end-page: 145
  ident: bib0033
  article-title: 3D convolutional neural networks for classification of functional connectomes
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
– volume: 67
  start-page: 2241
  year: 2019
  end-page: 2252
  ident: bib0060
  article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 57
  start-page: 2850
  year: 2010
  end-page: 2860
  ident: bib0005
  article-title: Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 316
  year: 2015
  ident: bib0010
  article-title: An empirical bayes normalization method for connectivity metrics in resting state fMRI
  publication-title: Front Neurosci
– volume: 7
  start-page: 479
  year: 2020
  ident: bib0067
  article-title: Schizophrenia identification using multi-view graph measures of functional brain networks
  publication-title: Front Bioeng Biotechnol
– start-page: 206
  year: 2018
  end-page: 214
  ident: bib0040
  article-title: Brain biomarker interpretation in ASD using deep learning and fMRI
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1331
  year: 2020
  end-page: 1334
  ident: bib0028
  article-title: Improving diagnosis of autism spectrum disorder and disentangling its heterogeneous functional connectivity patterns using capsule networks
  publication-title: IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– start-page: 3267
  year: 2017
  end-page: 3276
  ident: bib0027
  article-title: Learning visual attention to identify people with autism spectrum disorder
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 390
  start-page: 226
  year: 2020
  end-page: 238
  ident: bib0039
  article-title: Classifying ASD children with LSTM based on raw videos
  publication-title: Neurocomputing
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib0013
  article-title: Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder
  publication-title: Brain Imaging Behav
– volume: 169
  start-page: 431
  year: 2018
  end-page: 442
  ident: bib0037
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
– volume: 7
  start-page: 599
  year: 2013
  ident: bib0049
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front Hum Neurosci
– start-page: 700
  year: 2019
  end-page: 708
  ident: bib0071
  article-title: Invertible network for classification and biomarker selection for ASD
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 5188
  year: 2015
  end-page: 5196
  ident: bib0042
  article-title: Understanding deep image representations by inverting them
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 31
  start-page: 137
  year: 2008
  end-page: 145
  ident: bib0003
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
– volume: 60
  start-page: 101596
  year: 2020
  ident: bib0045
  article-title: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism
  publication-title: Med Image Anal
– volume: 28
  start-page: 980
  year: 2005
  end-page: 995
  ident: bib0048
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: Neuroimage
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib0024
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
– volume: 199
  start-page: 651
  year: 2019
  end-page: 662
  ident: bib0034
  article-title: Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
– volume: 54
  start-page: 697
  year: 2011
  end-page: 704
  ident: bib0035
  article-title: FMRI evidence of neural abnormalities in the subcortical face processing system in ASD
  publication-title: Neuroimage
– volume: 59
  start-page: 2045
  issue: 3
  year: 2012
  ident: 10.1016/j.media.2021.102279_bib0066
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.015
– volume: 30
  start-page: 10612
  issue: 32
  year: 2010
  ident: 10.1016/j.media.2021.102279_bib0015
  article-title: Describing the brain in autism in five dimensionsmagnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5413-09.2010
– volume: 12
  start-page: 2211
  year: 2011
  ident: 10.1016/j.media.2021.102279_bib0020
  article-title: Multiple kernel learning algorithms
  publication-title: Journal of Machine Learning Research
– volume: 12
  start-page: 257
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0007
  article-title: The diagnosis of autism spectrum disorder based on the random neural network cluster
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2018.00257
– volume: 35
  start-page: 1284
  issue: 4
  year: 2014
  ident: 10.1016/j.media.2021.102279_bib0064
  article-title: Dysmaturation of the default mode network in autism
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.22252
– volume: 169
  start-page: 431
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0037
  article-title: Metric learning with spectral graph convolutions on brain connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.052
– volume: 47
  start-page: 81
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0029
  article-title: Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.03.013
– start-page: 70
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0069
  article-title: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI
– start-page: 99
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0019
  article-title: Data-specific feature selection method identification for most reproducible connectomic feature discovery fingerprinting brain states
– volume: 390
  start-page: 226
  year: 2020
  ident: 10.1016/j.media.2021.102279_bib0039
  article-title: Classifying ASD children with LSTM based on raw videos
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.106
– start-page: 3319
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0054
  article-title: Axiomatic attribution for deep networks
– start-page: 709
  year: 2016
  ident: 10.1016/j.media.2021.102279_bib0008
  article-title: Mining brain networks using multiple side views for neurological disorder identification
– volume: 8
  start-page: 197
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0009
  article-title: Individual identification using the functional brain fingerprint detected by the recurrent neural network
  publication-title: Brain Connect
  doi: 10.1089/brain.2017.0561
– volume: 22
  start-page: 212
  issue: 3
  year: 2016
  ident: 10.1016/j.media.2021.102279_bib0065
  article-title: Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks
  publication-title: CNS Neuroscience & Therapeutics
  doi: 10.1111/cns.12499
– volume: 542
  start-page: 348
  issue: 7641
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0025
  article-title: Early brain development in infants at high risk for autism spectrum disorder
  publication-title: Nature
  doi: 10.1038/nature21369
– volume: 18
  start-page: 1700232
  issue: 2
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0058
  article-title: SIMLR: A tool for large-scale genomic analyses by multi-kernel learning
  publication-title: Proteomics
  doi: 10.1002/pmic.201700232
– start-page: 5188
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0042
  article-title: Understanding deep image representations by inverting them
– volume: 31
  start-page: 137
  issue: 3
  year: 2008
  ident: 10.1016/j.media.2021.102279_bib0003
  article-title: Neuroanatomy of autism
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2007.12.005
– volume: 47
  start-page: 764
  issue: 2
  year: 2009
  ident: 10.1016/j.media.2021.102279_bib0046
  article-title: Abnormalities of intrinsic functional connectivity in autism spectrum disorders
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.04.069
– volume: 12
  start-page: 2539
  issue: 3
  year: 2011
  ident: 10.1016/j.media.2021.102279_bib0053
  article-title: Weisfeiler-lehman graph kernels
  publication-title: Journal of Machine Learning Research
– start-page: 1
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0013
  article-title: Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder
  publication-title: Brain Imaging Behav
– volume: 28
  start-page: 980
  issue: 4
  year: 2005
  ident: 10.1016/j.media.2021.102279_bib0048
  article-title: Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.070
– volume: 10
  start-page: 1413
  issue: 10
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0002
  article-title: Age-related changes in intrinsic function of the superior temporal sulcus in autism spectrum disorders
  publication-title: Soc Cogn Affect Neurosci
  doi: 10.1093/scan/nsv029
– volume: 55
  start-page: 618
  issue: 7
  year: 2016
  ident: 10.1016/j.media.2021.102279_bib0021
  article-title: Salience network connectivity in autism is related to brain and behavioral markers of sensory overresponsivity
  publication-title: Journal of the American Academy of Child & Adolescent Psychiatry
  doi: 10.1016/j.jaac.2016.04.013
– volume: 10
  start-page: e0130140
  issue: 7
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0006
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0130140
– volume: 12
  start-page: 491
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0038
  article-title: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00491
– volume: 7
  start-page: 479
  year: 2020
  ident: 10.1016/j.media.2021.102279_bib0067
  article-title: Schizophrenia identification using multi-view graph measures of functional brain networks
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2019.00479
– volume: 71
  start-page: 102063
  year: 2021
  ident: 10.1016/j.media.2021.102279_bib0059
  article-title: Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102063
– start-page: 1576
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0070
  article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling
– volume: 67
  start-page: 2241
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0060
  article-title: Spatial-temporal dependency modeling and network hub detection for functional MRI analysis via convolutional-recurrent network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2957921
– volume: 199
  start-page: 651
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0034
  article-title: Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.06.012
– start-page: 362
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0014
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
– volume: 61
  start-page: 576
  issue: 2
  year: 2014
  ident: 10.1016/j.media.2021.102279_bib0030
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2284195
– start-page: 177
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0051
  article-title: Spectral graph convolutions for population-based disease prediction
– volume: 83
  start-page: 518
  issue: 3
  year: 2014
  ident: 10.1016/j.media.2021.102279_bib0062
  article-title: The cerebellum, sensitive periods, and autism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.07.016
– start-page: 95
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0016
  article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study
– volume: 275
  start-page: 53
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0043
  article-title: Applications of machine learning in addiction studies: a systematic review
  publication-title: Psychiatry Res
  doi: 10.1016/j.psychres.2019.03.001
– year: 2017
  ident: 10.1016/j.media.2021.102279_bib0011
  article-title: Functional connectivity patterns of autism spectrum disorder identified by deep feature learning
  publication-title: arXiv preprint arXiv:1707.07932
– start-page: 137
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0033
  article-title: 3D convolutional neural networks for classification of functional connectomes
– volume: 60
  start-page: 101596
  year: 2020
  ident: 10.1016/j.media.2021.102279_bib0045
  article-title: Joint functional brain network atlas estimation and feature selection for neurological disorder diagnosis with application to autism
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2019.101596
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 10.1016/j.media.2021.102279_bib0012
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: 46
  start-page: 389
  issue: 1
  year: 2002
  ident: 10.1016/j.media.2021.102279_bib0024
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– volume: 1
  start-page: 153
  issue: 2
  year: 1994
  ident: 10.1016/j.media.2021.102279_bib0018
  article-title: Analysis of functional MRI time-series
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.460010207
– start-page: 12
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0047
  article-title: Autism spectrum disorder diagnosis using sparse graph Embedding of morphological brain networks
– volume: 7
  start-page: 599
  year: 2013
  ident: 10.1016/j.media.2021.102279_bib0049
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front Hum Neurosci
  doi: 10.3389/fnhum.2013.00599
– volume: 84
  start-page: 236
  issue: 4
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0044
  article-title: The triple network model, insight, and large-scale brain organization in autism
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2018.06.012
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.media.2021.102279_bib0041
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 460
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0023
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2017.00460
– volume: 9
  start-page: 316
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0010
  article-title: An empirical bayes normalization method for connectivity metrics in resting state fMRI
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2015.00316
– start-page: 3197
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0004
  article-title: Bootstrapping graph convolutional neural networks for autism spectrum disorder classification
– volume: 55
  start-page: 176
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2021.102279_bib0055
  article-title: Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.046
– volume: 172
  start-page: 674
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0017
  article-title: Subtyping cognitive profiles in autism spectrum disorder using a functional random forest algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.12.044
– volume: 54
  start-page: 697
  issue: 1
  year: 2011
  ident: 10.1016/j.media.2021.102279_bib0035
  article-title: FMRI evidence of neural abnormalities in the subcortical face processing system in ASD
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.037
– start-page: 206
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0040
  article-title: Brain biomarker interpretation in ASD using deep learning and fMRI
– volume: 57
  start-page: 284
  issue: 2
  year: 2009
  ident: 10.1016/j.media.2021.102279_bib0057
  article-title: Dimensionality reduction in control and coordination of the human hand
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2032532
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.media.2021.102279_bib0063
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– start-page: 641
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0056
  article-title: Sp-asdnet: Cnn-lstm based asd classification model using observer scanpaths
– start-page: 700
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0071
  article-title: Invertible network for classification and biomarker selection for ASD
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0001
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 57
  start-page: 2850
  issue: 12
  year: 2010
  ident: 10.1016/j.media.2021.102279_bib0005
  article-title: Automatic bayesian classification of healthy controls, bipolar disorder, and schizophrenia using intrinsic connectivity maps from fMRI data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2080679
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.media.2021.102279_bib0026
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.08.017
– start-page: 3267
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0027
  article-title: Learning visual attention to identify people with autism spectrum disorder
– volume: 2
  start-page: 476
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0050
  article-title: The default mode network in autism
  publication-title: Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
– volume: 39
  start-page: 644
  issue: 3
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0061
  article-title: Identifying autism spectrum disorder with multi-site fMRI via low-rank domain adaptation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2933160
– volume: 18
  start-page: 33
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2021.102279_bib0032
  article-title: Artificial intelligence in psychiatry
  publication-title: Curr Psychiatr
– start-page: 1331
  year: 2020
  ident: 10.1016/j.media.2021.102279_bib0028
  article-title: Improving diagnosis of autism spectrum disorder and disentangling its heterogeneous functional connectivity patterns using capsule networks
– volume: 10
  start-page: e0143126
  issue: 11
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0031
  article-title: Sex differences in the default mode network with regard to autism spectrum traits: a resting state fMRI study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0143126
– volume: 36
  start-page: 901
  issue: 2
  year: 2012
  ident: 10.1016/j.media.2021.102279_bib0052
  article-title: A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders
  publication-title: Neuroscience & Biobehavioral Reviews
  doi: 10.1016/j.neubiorev.2011.10.008
– volume: 212
  start-page: 353
  year: 2015
  ident: 10.1016/j.media.2021.102279_bib0068
  article-title: Feature selection and analysis on correlated gas sensor data with recursive feature elimination
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.02.025
– volume: 39
  start-page: 4357
  issue: 12
  year: 2020
  ident: 10.1016/j.media.2021.102279_bib0022
  article-title: High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3017450
– start-page: 469
  year: 2017
  ident: 10.1016/j.media.2021.102279_bib0036
  article-title: Distance metric learning using graph convolutional networks: Application to functional brain networks
SSID ssj0007440
Score 2.5531003
Snippet •We propose a general framework to model inter-site heterogeneity for functional connectivity based brain disease identification, and it can be directly...
Brain functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been widely employed to study...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102279
SubjectTerms Autism
Autism spectrum disorder
Autism Spectrum Disorder - diagnostic imaging
Biomarkers
Brain - diagnostic imaging
Brain Mapping
Cerebellum
Cluster Analysis
Clustering
Discriminative biomarker identification
Feature extraction
fMRI
Functional connectivity
Functional magnetic resonance imaging
Heterogeneity
Humans
Magnetic Resonance Imaging
Medical imaging
Mental disorders
Neural networks
Neuroimaging
Population studies
Singular value decomposition
Support vector machines
Training
Title Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
URI https://dx.doi.org/10.1016/j.media.2021.102279
https://www.ncbi.nlm.nih.gov/pubmed/34731776
https://www.proquest.com/docview/2630529689
https://www.proquest.com/docview/2593593395
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0hKqH2ULXQj20pciWOdXdjO3Fy3KLSBbocaKm4WY4_pK0gIGCv_e2dcZyllVoOXBIlmUhWZjJ-tuc9A-z6iWtcHQUvWjwopxuO1xOO2N7XCgFDTCzX-XE1O1WHZ-XZGuwNXBgqq8y5v8_pKVvnO-P8NcdXi8X4WyFpsxLqfzAyhSLCr1Kaovzjr7syDxLA67lXBSfrQXko1XgldgYOEkVBEgaC6rn-3Tv9D32mXmj_GTzN8JFN-xY-h7XQbcKTP0QFN2FjnpfLt6Cn13JaIGbufEmaCGjCbOdZl-Y5WQxJ2JNhir7uKQ4MUSxbJPpuokAxi6F5c8ESJfN6ecF81utkNIXLaGsPtOKJmMTi_OTgBZzuf_6-N-N5mwXuZK1vuXVaTWovQlnVwttYy4l1thWicFpEEQKCLG3rIhZNUKVog2x1gb4vrbRaY8Z8CevdZRdeA2sbG2WpovOIUlqNA3UVvCIVtTZo78IIxPB5jcsa5LQVxrkZis1-muQTQz4xvU9G8GH10lUvwXG_eTX4zfwVSQY7iftf3B68bPKPfGNEJWkttKrx8fvVY_wFaV3FduFyiTYl0ZulbMoRvOqjY9VQqTQiNF29eWir3sJjQYyLNOuzDevo6fAOcdBtu5MCfQceTQ-OZsd4_vLp64_pb2qWCZE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SDfTjUNL0a9ukVaHHil1LsiUfQ0jYbbJ7aBPITciyBFsSJyTZ_98ZWV5aaHPIxWBLAqEZjZ41ek8AX9upr72JghcNPpTXNcf3KUds3xqFgCEmlutiWc3O1feL8mILDgcuDB2rzLG_j-kpWucvkzyak5vVavKzkHRZCa0_6JlCmSewTepU5Qi2D-Yns-UmIJMGXk-_Kjg1GMSH0jGvRNDA_0RRkIqBoCNd_16g_gdA00J0vAMvM4JkB30nX8FW6HbhxR-6grvwdJEz5q-hZ9hyyhEzf7kmWQSswlzXsi5tdbIYkrYnwyh927McGAJZtkoM3sSCYg698-6KJVbm7fqKtVmyk9EuLqPbPbAWT9wkFhc_5m_g_Pjo7HDG800L3Euj77nzWk1NK0JZGdG6aOTUedcIUXgtoggBcZZ2pohFHVQpmiAbXaD5Syed1hg038Kou-7Ce2BN7aIsVfQtApVG47-6Cq0iIbUm6NaHMYhheK3PMuR0G8alHc6b_bLJJpZsYnubjOHbptFNr8LxcPVqsJv9y5ksrhMPN9wbrGzzXL6zopKUDq0MFn_ZFOMspNSK68L1GuuUxHCWsi7H8K73jk1HpdII0nT14bG9-gzPZmeLU3s6X558hOeCCBhpE2gPRmj1sI-w6L75lN3-NyYzCrM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-site+clustering+and+nested+feature+extraction+for+identifying+autism+spectrum+disorder+with+resting-state+fMRI&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Nan&rft.au=Yao%2C+Dongren&rft.au=Ma%2C+Lizhuang&rft.au=Liu%2C+Mingxia&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=75&rft.spage=1&rft_id=info:doi/10.1016%2Fj.media.2021.102279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon