Concrete thermal failure criteria, test method, and mechanism: A review
•Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direc...
Saved in:
Published in | Construction & building materials Vol. 283; p. 122762 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direct tensile strength/strain are required.
The thermal cracking of massive concrete, especially for the dam concrete, due to the complex temperature histories and restraint conditions jeopardizes the structure's safety and durability. Suitable failure criterion is one of the critical factors for preventing thermal cracking. The eligible failure criterion depends on the full understanding of the failure mechanism, which further relies on convincing experimental techniques. Though the mechanisms and experimental techniques of thermal cracking have been extensively studied, their relations to failure criteria are rarely established. Thus this state-of-the-art review focuses on the thermal failure criteria, related to mechanisms and temperature stress test (TST) methods. The TST researches show the restrained concrete exhibits lower failure stress than its direct tensile strength tested by the free specimen, while has a larger failure strain than its tensile strain capacity, leading to disqualification of the conventional tensile strength/strain capacity criterion. The development of a multiple TST machine system enables the establishment and verification of a Stress-Strain combined criterion. Meanwhile, more verifications experiments considering the material compositions, temperature histories, restrained degrees, loading durations should be conducted. Moreover, the three-dimensional failure criteria and TST methods are suggested for future research. |
---|---|
AbstractList | •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direct tensile strength/strain are required.
The thermal cracking of massive concrete, especially for the dam concrete, due to the complex temperature histories and restraint conditions jeopardizes the structure's safety and durability. Suitable failure criterion is one of the critical factors for preventing thermal cracking. The eligible failure criterion depends on the full understanding of the failure mechanism, which further relies on convincing experimental techniques. Though the mechanisms and experimental techniques of thermal cracking have been extensively studied, their relations to failure criteria are rarely established. Thus this state-of-the-art review focuses on the thermal failure criteria, related to mechanisms and temperature stress test (TST) methods. The TST researches show the restrained concrete exhibits lower failure stress than its direct tensile strength tested by the free specimen, while has a larger failure strain than its tensile strain capacity, leading to disqualification of the conventional tensile strength/strain capacity criterion. The development of a multiple TST machine system enables the establishment and verification of a Stress-Strain combined criterion. Meanwhile, more verifications experiments considering the material compositions, temperature histories, restrained degrees, loading durations should be conducted. Moreover, the three-dimensional failure criteria and TST methods are suggested for future research. |
ArticleNumber | 122762 |
Author | Li, Qingbin Wang, Juan Zhu, He Hu, Yu Ma, Rui |
Author_xml | – sequence: 1 givenname: He orcidid: 0000-0003-1503-6076 surname: Zhu fullname: Zhu, He email: zhuhe14@tsinghua.org.cn organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Yu surname: Hu fullname: Hu, Yu email: yu-hu@tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Rui surname: Ma fullname: Ma, Rui email: marui14@tsinghua.org.cn organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Juan surname: Wang fullname: Wang, Juan email: wangjuan@zzu.edu.cn organization: School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China – sequence: 5 givenname: Qingbin surname: Li fullname: Li, Qingbin email: qingbinli@tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China |
BookMark | eNqNkE9LwzAYh4NMcJt-h3hf65t0SVsvMopOYeBFzyF_3rKMNZU0U_z2dsyDeNrpfS-_B55nRiahD0jILYOcAZN3u9z2wRz83nU65Rw4yxnnpeQXZMqqss5AcDkhU6gFZCBZdUVmw7ADAMkln5J10wcbMSFNW4yd3tNW-_0hIrXRJ4xeL2jCIdEO07Z3C6qDG3-71cEP3T1d0YifHr-uyWWr9wPe_N45eX96fGues83r-qVZbTJbVGXKdAnaFmC4EYLVRljLeMsFLmVbIlYFjga1WTrtynEAUDgwBpdcSFNZIWQxJ_WJa2M_DBFb9RF9p-O3YqCORdRO_SmijkXUqci4ffi3tT7p5PuQ4ih9FqE5EXBUHLWjGqzHYNH5iDYp1_szKD99S4d4 |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2023_130737 crossref_primary_10_3390_math12071078 crossref_primary_10_1155_2024_6662963 crossref_primary_10_1016_j_cemconres_2021_106580 crossref_primary_10_3390_app11199338 crossref_primary_10_1007_s11831_022_09822_8 crossref_primary_10_1016_j_cemconres_2023_107298 crossref_primary_10_1016_j_conbuildmat_2022_127169 crossref_primary_10_1088_1402_4896_ad1ad5 crossref_primary_10_1016_j_cemconcomp_2024_105798 crossref_primary_10_1016_j_cscm_2023_e02209 crossref_primary_10_3390_iic1010002 crossref_primary_10_1016_j_est_2025_115917 crossref_primary_10_1080_15732479_2023_2200755 crossref_primary_10_1016_j_fmre_2024_08_005 crossref_primary_10_1016_j_jobe_2023_107811 crossref_primary_10_1520_JTE20220421 crossref_primary_10_1016_j_cemconcomp_2023_105051 crossref_primary_10_1016_j_cemconres_2022_107045 crossref_primary_10_1111_mice_13156 crossref_primary_10_1016_j_cscm_2023_e02144 crossref_primary_10_1617_s11527_023_02200_1 crossref_primary_10_1016_j_conbuildmat_2022_128463 crossref_primary_10_1016_j_dibe_2024_100356 crossref_primary_10_1016_j_cemconcomp_2022_104825 crossref_primary_10_1016_j_cscm_2023_e01926 crossref_primary_10_3390_app15063213 crossref_primary_10_1016_j_conbuildmat_2023_131382 crossref_primary_10_1016_j_conbuildmat_2023_134752 crossref_primary_10_1038_s41598_024_58891_1 crossref_primary_10_1016_j_jobe_2022_105588 |
Cites_doi | 10.1016/j.cemconcomp.2012.04.004 10.1617/2351580052.034 10.1016/j.conbuildmat.2017.12.216 10.1016/j.conbuildmat.2016.10.055 10.1016/j.conbuildmat.2019.07.167 10.1016/j.cemconres.2009.01.016 10.1680/jmacr.18.00106 10.1016/j.cemconres.2019.105970 10.1016/j.conbuildmat.2016.02.211 10.1016/j.conbuildmat.2017.05.064 10.1061/(ASCE)MT.1943-5533.0003090 10.1016/j.cemconres.2010.02.014 10.1016/j.conbuildmat.2017.05.081 10.1617/s11527-012-9962-7 10.1016/S0008-8846(01)00691-3 10.3151/jact.17.319 10.1061/(ASCE)MT.1943-5533.0000469 10.1016/j.cemconcomp.2017.07.023 10.3141/2113-10 10.3390/app10134451 10.1016/j.conbuildmat.2018.10.125 10.1016/j.conbuildmat.2018.07.121 10.1016/j.conbuildmat.2018.10.066 10.1061/(ASCE)MT.1943-5533.0000671 10.1617/s11527-010-9663-z 10.1016/j.engstruct.2020.110519 10.1007/978-3-030-39738-8_6 10.1016/j.conbuildmat.2013.03.056 10.1617/s11527-006-9086-z 10.1155/2019/9071034 10.1016/j.conbuildmat.2019.116840 10.3141/2164-08 10.1016/j.engfracmech.2018.05.040 10.1016/j.cemconcomp.2019.103508 10.1007/BF02479556 10.1016/j.conbuildmat.2017.04.056 10.1016/j.cemconres.2021.106580 10.1016/j.cemconcomp.2020.103868 10.1061/(ASCE)0899-1561(2004)16:1(35) 10.1016/j.conbuildmat.2015.11.039 10.1177/1369433216660012 10.1007/BF02482107 10.1061/(ASCE)CF.1943-5509.0001356 10.1680/jmacr.18.00038 10.1016/j.conbuildmat.2012.07.111 10.1016/j.cemconcomp.2019.01.003 10.1016/j.cemconres.2005.11.017 10.1016/j.cemconres.2003.12.011 10.1016/j.conbuildmat.2020.119805 10.1061/(ASCE)0733-9399(1998)124:7(765) 10.1016/S0008-8846(01)00601-9 10.1016/j.cemconres.2008.05.001 10.1061/(ASCE)MT.1943-5533.0000947 10.1061/9780784479346.086 10.1016/j.cemconres.2010.03.021 10.1016/j.cemconcomp.2019.04.019 10.1016/j.cemconcomp.2017.07.006 10.1111/str.12343 10.1016/j.cemconres.2006.11.005 10.1016/S0008-8846(00)00399-9 10.1016/j.engstruct.2015.08.025 10.1016/S0008-8846(02)00842-6 10.1016/j.cemconcomp.2012.08.010 10.1016/j.cemconres.2019.05.015 10.1007/BF02473015 10.1016/j.conbuildmat.2016.07.104 10.1680/macr.2001.53.1.25 10.1016/j.conbuildmat.2020.118704 10.1016/j.conbuildmat.2019.116890 10.1016/S0008-8846(01)00471-9 10.1016/j.conbuildmat.2019.117146 10.1007/BF02473424 10.1016/j.conbuildmat.2015.08.093 10.1016/j.conbuildmat.2020.118318 10.1016/S0008-8846(02)00743-3 10.1016/j.conbuildmat.2012.04.101 10.1007/BF02486341 10.1016/j.conbuildmat.2013.08.061 10.1016/j.cemconres.2008.12.008 10.1016/S0008-8846(98)00164-1 10.3390/ma10040419 10.1016/j.cemconcomp.2017.02.010 10.1016/j.cemconcomp.2019.01.014 10.3390/ma11071079 10.1061/(ASCE)MT.1943-5533.0003120 10.1080/19648189.2011.9693365 10.1016/j.cemconres.2017.02.018 10.1155/2014/671795 10.1016/S0958-9465(03)00067-2 10.1016/j.cemconcomp.2006.02.007 10.1016/j.cemconcomp.2019.02.018 10.1016/j.conbuildmat.2018.11.127 10.1111/str.12172 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.conbuildmat.2021.122762 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0526 |
ExternalDocumentID | 10_1016_j_conbuildmat_2021_122762 S0950061821005225 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RIG RNS SET SEW SMS SSH VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c387t-a70ac30b2b5519b5cc12f25e46f7ee83e2029b4dad7c38003d0bbe4256b8c5563 |
IEDL.DBID | .~1 |
ISSN | 0950-0618 |
IngestDate | Tue Jul 01 04:33:17 EDT 2025 Thu Apr 24 23:06:20 EDT 2025 Fri Feb 23 02:39:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Concrete Failure criterion Creep Temperature stress test machine (TSTM) Early age Thermal cracking |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-a70ac30b2b5519b5cc12f25e46f7ee83e2029b4dad7c38003d0bbe4256b8c5563 |
ORCID | 0000-0003-1503-6076 |
ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2021_122762 crossref_citationtrail_10_1016_j_conbuildmat_2021_122762 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_122762 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-10 |
PublicationDateYYYYMMDD | 2021-05-10 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Construction & building materials |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Delsaute, Staquet (b0565) 2019; 17 Maruyama, Lura (b0260) 2019; 123 Wiegrink, Marikunte, Shah (b0270) 1996; 93 Riding, Poole, Schindler, Juenger, Folliard (b0140) 2014; 26 Riding, Poole, Schindler, Juenger, Folliard (b0310) 2008; 105 Kovler, Bentur (b0210) 2009; 106 Atrushi (b0285) 2003 Crawford, Gudimettla, Tanesi (b0350) 2010; 2164 H. Zhu, Y. Hu, Q. Li, Stress-and-strain based failure criterion for concrete, Shuili Fadian Xuebao/J. Hydroelectr. Eng. 37 (2018). 10.11660/slfdxb.20181201. Klemczak, Żmij (b0130) 2019; 226 Zhu, Zhang, Wang, Wang, Li (b0250) 2021 Loser, Münch, Lura (b0345) 2010; 40 Zhu, Zhang, Wang, Wu, Li (b0060) 2020; 259 Khan, Xu, Castel, Gilbert (b0585) 2019; 71 Wei, Hansen (b0135) 2013; 49 Riding, Poole, Schindler, Juenger, Folliard (b0035) 2009; 106 Khan, Castel, Gilbert (b0215) 2017; 149 Klausen (b0235) 2016 Li, O’Moore, Dux, Lura, Dao (b0165) 2020 Al-Gburi (b0320) 2015 Weiss, Yang, Shah (b0245) 1998; 124 Wu, Farzadnia, Shi, Zhang, Wang (b0240) 2017; 149 Tao, Weizu (b0300) 2006; 36 Bofang (b0050) 2013 M. Brown, G. Sellers, K.J. Folliard, D.W. Fowler, Restrained shrinkage cracking of concrete bridge decks: State-of-the-Art Review, 2001. Hu, Liang, Li, Zuo (b0070) 2017; 20 Federal Highway Administration, Portland Cement Concrete Pavements Research, 2016. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/thermal.cfm. Manzoni, Vidal, Sellier, Bourbon, Camps (b0515) 2020; 107 Wei, Guo, Liang (b0200) 2016; 127 Wibke, Harald (b0535) 2021; 10 Velay-Lizancos, Martinez-Lage, Azenha, Vázquez-Burgo (b0495) 2016; 124 Amin, Kim, Lee, Kim (b0275) 2009; 39 Simos, Fallier, Joos, Johnson, Soueid (b0040) 2020; 212 Zhu, Yu, Li (b0065) 2021; 115 D.S. Atrushi, Tensile and compressive creep of young concrete: testing and modelling, Fakultet for ingeniørvitenskap og teknologi, 2003. Zhu, Li, Hu, Ma (b0190) 2018; 11 P.K. Mehta, P.J.M. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014. Darquennes, Staquet, Espion (b0465) 2011; 15 Zhu, Li, Hu (b0085) 2017; 10 Mi, Hu, Li, Gao, Yin (b0150) 2019; 196 Bentur, Kovler (b0570) 2003; 36 Shi, Ouyang, Zhang, Huang (b0600) 2014; 2014 Delsaute, Boulay, Granja, Carette, Azenha, Dumoulin, Karaiskos, Deraemaeker, Staquet (b0400) 2016; 52 Delsaute, Torrenti, Staquet (b0205) 2017; 83 Breitenbücher (b0280) 1990; 23 SL744-2016, Specification for load design of hydraulic structures, Ministry of Water Resources of China, Beijing, China, 2016. Klausen, Kanstad, Bjøntegaard, Sellevold (b0470) 2017; 95 De Schutter, Taerwe (b0410) 1996; 29 Liu, Huang, Wang, Xin, Liu (b0315) 2019; 229 Lura, Van Breugel, Maruyama (b0630) 2001; 31 Yeon, Choi, Won (b0360) 2009; 2113 Escalante-García, Sharp (b0500) 2001; 31 B.B. J.-P. Charron J. Marchand, M. Pigeon, Test Device for Studying the Early-Age Stresses and Strains in Concrete, ACI Symp. Publ. 220 (n.d.). 10.14359/13153. Altoubat, Lange (b0110) 2001; 98 Bažant, Jirásek (b0185) 2018 Ji, Kanstad, Bjøntegaard, Sellevold, Kanstad, Bjøntegaard, Sellevold (b0460) 2013; 46 Østergaard, Lange, Altoubat, Stang (b0195) 2001; 31 Aili, Vandamme, Torrenti, Masson (b0540) 2020; 129 Knoppik-Wróbel, Klemczak (b0295) 2015; 102 Khan, Xu, Castel, Gilbert, Babaee (b0520) 2019; 229 Markandeya, Shanahan, Gunatilake, Riding, Zayed (b0680) 2018; 164 Zahabizadeh, Edalat-Behbahani, Granja, Gomes, Faria, Azenha (b0340) 2019; 98 Wu, Shi, He, Wang (b0055) 2017; 79 An, Yang, Li, Hu, Yang (b0490) 2020; 10 Mi, Hu, Li, Zhu (b0510) 2018; 199 Saeed, Rahman, Baluch, Tooti (b0045) 2020; 34 Pane, Hansen (b0545) 2008; 38 R. Springenschmid, B. R, M. M, Development of the Cracking Frame and The Temperature-Stress Testing Machine, in: Therm. Crack. Concr. Early Ages, Munich, 1994: pp. 137–144. Du Béton (b0380) 2010 Shen, Wang, Liu, Zhao, Jiang (b0640) 2018; 187 A.B.E. Klausen, T. Kanstad, Ø. Bjøntegaard, Early age crack assessment of concrete structures: Experimental and theoretical approaches, in: M.T. HASHOLT (Ed.), Nord. Concr. Res. Proc. XXIII Nord. Concr. Res. Symp., NORSK BETONGFORENING, Postboks 2312, Solli, Oslo: Norsk Betongforening, 2017: pp. 317–320. De Schutter (b0170) 2004; 26 Wei, Liang, Guo, Hansen (b0415) 2017; 83 Shen, Jiang, Shen, Yao, Jiang (b0105) 2015; 99 Azenha, Magalhães, Faria, Cunha (b0435) 2010; 40 Yaoying, Yong, Yu, Lei (b0525) 2020; 32 Xin, Zhang, Liu, Wang, Wu (b0145) 2018; 192 Li, Liang, Hu, Zuo (b0020) 2014; 2014 Zhu (b0030) 2018 Wei, Hansen (b0175) 2013; 25 L. Liu, J. Ouyang, F. Li, J. Xin, D. Huang, S. Gao, materials Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine, (n.d.). 10.3390/ma11101822. Yuan, Wan (b0530) 2002; 32 Nasir, Al-Amoudi, Al-Gahtani, Maslehuddin (b0505) 2016; 112 Mounanga, Bouasker, Pertue, Perronnet, Khelidj (b0655) 2011; 44 K. Van Breugel, S.J. Lokhorst, Stress-based crack criterion as a basis for the prevention of through cracks in concrete structures at early-ages, in: Int. RILEM Conf. Early Age Crack. Cem. Syst. Kovler, K., Bentur, A., Eds, 2003, pp. 229–236. Hedlund (b0670) 2000 Klausen, Kanstad (b0255) 2020 Khan, Castel, Gilbert (b0305) 2017; 114 Igarashi, Bentur, Kovler (b0480) 2000; 30 K.A. Estensen, K. Terje, B. Øyvind, Updated Temperature-Stress Testing Machine (TSTM): Introductory Tests, Calculations, Verification, and Investigation of Variable Fly Ash Content, CONCREEP 10. (2021) 724–732. doi:10.1061/9780784479346.086. Shen, Wang, Li, Yao, Jiang (b0555) 2020; 72 B. Delsaute, S. Staquet, Testing Concrete Since Setting Time Under Free and Restrained Conditions, in: Adv. Tech. Test. Cem. Mater., Springer, 2020: pp. 177–209. Shen, Jiang, Shen, Yao, Jiang (b0660) 2016; 103 Wyrzykowski, Lura (b0370) 2013; 35 ASTM (b0330) 2018 Xin, Zhang, Liu, Wang, Wu (b0080) 2020; 231 Azenha, Ramos, Aguilar, Granja (b0440) 2012; 34 Krauß, Hariri (b0425) 2006; 28 Zhu, Li, Ma, Yang, Hu, Zhang (b0120) 2020; 249 J. Enzell, M. Tollsten, Thermal cracking of a concrete arch dam due to seasonal temperature variations, (2017) 111. Fairbairn, Azenha (b0010) 2018 B. E., S.A. K., B.R. W., Early-Age Cracking Tendency and Ultimate Degree of Hydration of Internally Cured Concrete, J. Mater. Civ. Eng. 24 (2012) 1025–1033. 10.1061/(ASCE)MT.1943-5533.0000469. Chu, Lee, Amin, Jang, Kim (b0580) 2013; 45 ASTM (b0390) 2014 A.T. and A.K. Schindler, Early-Age Cracking of Lightweight Mass Concrete, ACI Mater. J. 117 (n.d.). 10.14359/51719082. Liang, Wei (b0485) 2019; 97 Briffaut, Benboudjema, Torrenti, Nahas (b0475) 2012; 36 C. Boulay, S. Staquet, M. Azenha, A. Deraemaeker, M. Crespini, J. Carette, J. Granja, B. Delsaute, A. Dumoulin, G. Karaiskos, Monitoring elastic properties of concrete since very early age by means of cyclic loadings, ultrasonic measurements, natural resonant frequency of componant frequency of composite beam (EMM-ARM) and with smart aggregates, in: Proc. 8th Int. Conf. Fract. Mech. Concr. Concr. Struct. Fram., Toledo, Spain, 2013. Kim, Moon, Eo (b0160) 1998; 28 Van Den Abeele, Desadeleer, De Schutter, Wevers (b0430) 2009; 39 AASHTO (b0325) 2011 H. Zhu, Y. Hu, Q. Li, M. Zhang, Determination of concrete elastic modulus in early age for temperature stress testing under the effect of restraint, in: S. Staquet, D. Aggelis (Eds.), Proc. 2nd Int. RILEM/COST Conf. Early Age Crack. Serv. Cem. Mater. Struct., RILEM Publications SARL, Brussels, 2017: pp. 603–608. https://www.rilem.net/publication/publication/529?id_papier=12726. Kanavaris, Azenha, Schlicke, Kovler (b0230) 2020; 56 Yeon, Choi, Won (b0365) 2013; 38 Kovler (b0090) 1994; 27 Khan, Xu, Khan, Castel, Gilbert (b0095) 2020; 32 Kim, Jeon, Kim (b0575) 2002; 32 Lu, Swaddiwudhipong, Wee (b0685) 2001; 53 D. Cusson, T. Hoogeveen, Measuring early-age coefficient of thermal expansion in high-performance concrete, in: Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig., RILEM Publications SARL, 2006: pp. 321–330. Yang, Yi, Lee (b0405) 2004; 16 Zhimin Li, Recommendations for Scientific Breakthroughs of Chinese Universities in 2020, Science Vol 370, Issue 6523, Dec.18 2020. Klausen, Kanstad, Bjøntegaard (b0155) 2019; 2019 Zhu, Hu, Li, Ma (b0075) 2020; 244 Nguyen, Nguyen, Lura, Dao (b0220) 2019; 102 S.A.A. and D.A. Lange, Grip-Specimen Interaction in Uniaxial Restrained Test, ACI Symp. Publ. 206 (n.d.). 10.14359/12253. Shen, Jiang, Wang, Shen, Jiang (b0115) 2017; 146 Zhao, Wang, Lange, Zhou, Wang, Zhu (b0560) 2019; 99 Han, Kim (b0395) 2004; 34 Cusson, Hoogeveen (b0635) 2007; 37 Sellevold, Bjøntegaard (b0335) 2006; 39 S. Staquet, B. Delsaute, A. Darquennes, B. Espio, Design of a revisited TSTM system for testing concrete since setting time under free and restraint conditions, in: F. Toutlemonde, J.M. Torrenti (Eds.), Concrack3–Rilem-JCI Int. Work. Crack Control Mass Concr. Relat. Issues Concern. Early-Age Concr. Struct., RILEM Publications SARL, Paris, France, 2012: pp. 99–110. T. Chariton, B. Kim, W.J. Weiss, Using passive acoustic energy to quantify cracking in volumetrically restrained cementitious systems, in: Am. Soc. Civ. Eng. Mech. Div. 15th ASCE EMD Conf. New York, 2002. Shen, Liu, Li, Sun, Wang (b0675) 2019; 196 Pane, Hansen (b0180) 2002; 35 E.K. Attiogbe, W.J. Weiss, H.T. See, A look at the stress rate versus time of cracking relationship observed in the restrained ring test, in: Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL Bagneux, France, 2004. American Concrete Institute 207, Report on thermal and volume change effects on cracking of mass concrete, Farmington Hills, MI, 2007. R.B. and A. Bentur, Free and Restrained Shrinkage of Normal and High-Strength Concretes, ACI Mater. J. 92 (n.d.). 10.14359/9771. Ø. Bjøntegaard, E.J. Sellevold, The temperature-stress testing machine (TSTM): Capabilities and limitations, in: J. Weiss, K. Kovler, J. Marchand, S. Mindess (Eds.), Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL, Evanston, Illinois, 2004. 10.1016/j.conbuildmat.2021.122762_b0610 Shen (10.1016/j.conbuildmat.2021.122762_b0675) 2019; 196 10.1016/j.conbuildmat.2021.122762_b0455 Yaoying (10.1016/j.conbuildmat.2021.122762_b0525) 2020; 32 Zhu (10.1016/j.conbuildmat.2021.122762_b0120) 2020; 249 10.1016/j.conbuildmat.2021.122762_b0615 Saeed (10.1016/j.conbuildmat.2021.122762_b0045) 2020; 34 Altoubat (10.1016/j.conbuildmat.2021.122762_b0110) 2001; 98 Khan (10.1016/j.conbuildmat.2021.122762_b0095) 2020; 32 Loser (10.1016/j.conbuildmat.2021.122762_b0345) 2010; 40 Simos (10.1016/j.conbuildmat.2021.122762_b0040) 2020; 212 Van Den Abeele (10.1016/j.conbuildmat.2021.122762_b0430) 2009; 39 10.1016/j.conbuildmat.2021.122762_b0100 Khan (10.1016/j.conbuildmat.2021.122762_b0585) 2019; 71 Kovler (10.1016/j.conbuildmat.2021.122762_b0210) 2009; 106 10.1016/j.conbuildmat.2021.122762_b0445 Kovler (10.1016/j.conbuildmat.2021.122762_b0090) 1994; 27 10.1016/j.conbuildmat.2021.122762_b0605 Li (10.1016/j.conbuildmat.2021.122762_b0165) 2020 Liu (10.1016/j.conbuildmat.2021.122762_b0315) 2019; 229 10.1016/j.conbuildmat.2021.122762_b0290 An (10.1016/j.conbuildmat.2021.122762_b0490) 2020; 10 Breitenbücher (10.1016/j.conbuildmat.2021.122762_b0280) 1990; 23 10.1016/j.conbuildmat.2021.122762_b0690 Manzoni (10.1016/j.conbuildmat.2021.122762_b0515) 2020; 107 10.1016/j.conbuildmat.2021.122762_b0450 ASTM (10.1016/j.conbuildmat.2021.122762_b0330) 2018 Han (10.1016/j.conbuildmat.2021.122762_b0395) 2004; 34 Zhao (10.1016/j.conbuildmat.2021.122762_b0560) 2019; 99 Pane (10.1016/j.conbuildmat.2021.122762_b0180) 2002; 35 Yeon (10.1016/j.conbuildmat.2021.122762_b0360) 2009; 2113 Klausen (10.1016/j.conbuildmat.2021.122762_b0235) 2016 Zhu (10.1016/j.conbuildmat.2021.122762_b0190) 2018; 11 Krauß (10.1016/j.conbuildmat.2021.122762_b0425) 2006; 28 Klausen (10.1016/j.conbuildmat.2021.122762_b0155) 2019; 2019 Shen (10.1016/j.conbuildmat.2021.122762_b0660) 2016; 103 Li (10.1016/j.conbuildmat.2021.122762_b0020) 2014; 2014 Crawford (10.1016/j.conbuildmat.2021.122762_b0350) 2010; 2164 Wu (10.1016/j.conbuildmat.2021.122762_b0055) 2017; 79 Wei (10.1016/j.conbuildmat.2021.122762_b0200) 2016; 127 Nasir (10.1016/j.conbuildmat.2021.122762_b0505) 2016; 112 Kanavaris (10.1016/j.conbuildmat.2021.122762_b0230) 2020; 56 Yeon (10.1016/j.conbuildmat.2021.122762_b0365) 2013; 38 Kim (10.1016/j.conbuildmat.2021.122762_b0575) 2002; 32 Zhu (10.1016/j.conbuildmat.2021.122762_b0060) 2020; 259 Klausen (10.1016/j.conbuildmat.2021.122762_b0255) 2020 Delsaute (10.1016/j.conbuildmat.2021.122762_b0565) 2019; 17 Shen (10.1016/j.conbuildmat.2021.122762_b0115) 2017; 146 Khan (10.1016/j.conbuildmat.2021.122762_b0305) 2017; 114 Liang (10.1016/j.conbuildmat.2021.122762_b0485) 2019; 97 Shi (10.1016/j.conbuildmat.2021.122762_b0600) 2014; 2014 Chu (10.1016/j.conbuildmat.2021.122762_b0580) 2013; 45 Mi (10.1016/j.conbuildmat.2021.122762_b0150) 2019; 196 Wei (10.1016/j.conbuildmat.2021.122762_b0415) 2017; 83 10.1016/j.conbuildmat.2021.122762_b0665 Escalante-García (10.1016/j.conbuildmat.2021.122762_b0500) 2001; 31 Cusson (10.1016/j.conbuildmat.2021.122762_b0635) 2007; 37 Hedlund (10.1016/j.conbuildmat.2021.122762_b0670) 2000 Zhu (10.1016/j.conbuildmat.2021.122762_b0250) 2021 Darquennes (10.1016/j.conbuildmat.2021.122762_b0465) 2011; 15 AASHTO (10.1016/j.conbuildmat.2021.122762_b0325) 2011 Bentur (10.1016/j.conbuildmat.2021.122762_b0570) 2003; 36 Knoppik-Wróbel (10.1016/j.conbuildmat.2021.122762_b0295) 2015; 102 Zhu (10.1016/j.conbuildmat.2021.122762_b0030) 2018 Azenha (10.1016/j.conbuildmat.2021.122762_b0435) 2010; 40 Du Béton (10.1016/j.conbuildmat.2021.122762_b0380) 2010 10.1016/j.conbuildmat.2021.122762_b0550 10.1016/j.conbuildmat.2021.122762_b0015 Mounanga (10.1016/j.conbuildmat.2021.122762_b0655) 2011; 44 Fairbairn (10.1016/j.conbuildmat.2021.122762_b0010) 2018 Khan (10.1016/j.conbuildmat.2021.122762_b0520) 2019; 229 Shen (10.1016/j.conbuildmat.2021.122762_b0105) 2015; 99 Mi (10.1016/j.conbuildmat.2021.122762_b0510) 2018; 199 Sellevold (10.1016/j.conbuildmat.2021.122762_b0335) 2006; 39 Aili (10.1016/j.conbuildmat.2021.122762_b0540) 2020; 129 Hu (10.1016/j.conbuildmat.2021.122762_b0070) 2017; 20 Riding (10.1016/j.conbuildmat.2021.122762_b0035) 2009; 106 Ji (10.1016/j.conbuildmat.2021.122762_b0460) 2013; 46 Bažant (10.1016/j.conbuildmat.2021.122762_b0185) 2018 Zhu (10.1016/j.conbuildmat.2021.122762_b0085) 2017; 10 Maruyama (10.1016/j.conbuildmat.2021.122762_b0260) 2019; 123 Amin (10.1016/j.conbuildmat.2021.122762_b0275) 2009; 39 Klausen (10.1016/j.conbuildmat.2021.122762_b0470) 2017; 95 Riding (10.1016/j.conbuildmat.2021.122762_b0310) 2008; 105 Østergaard (10.1016/j.conbuildmat.2021.122762_b0195) 2001; 31 10.1016/j.conbuildmat.2021.122762_b0265 10.1016/j.conbuildmat.2021.122762_b0385 10.1016/j.conbuildmat.2021.122762_b0025 10.1016/j.conbuildmat.2021.122762_b0420 10.1016/j.conbuildmat.2021.122762_b0005 10.1016/j.conbuildmat.2021.122762_b0125 10.1016/j.conbuildmat.2021.122762_b0645 Klemczak (10.1016/j.conbuildmat.2021.122762_b0130) 2019; 226 Weiss (10.1016/j.conbuildmat.2021.122762_b0245) 1998; 124 Velay-Lizancos (10.1016/j.conbuildmat.2021.122762_b0495) 2016; 124 Azenha (10.1016/j.conbuildmat.2021.122762_b0440) 2012; 34 De Schutter (10.1016/j.conbuildmat.2021.122762_b0170) 2004; 26 Shen (10.1016/j.conbuildmat.2021.122762_b0640) 2018; 187 Delsaute (10.1016/j.conbuildmat.2021.122762_b0400) 2016; 52 Zhu (10.1016/j.conbuildmat.2021.122762_b0075) 2020; 244 Bofang (10.1016/j.conbuildmat.2021.122762_b0050) 2013 Khan (10.1016/j.conbuildmat.2021.122762_b0215) 2017; 149 Yuan (10.1016/j.conbuildmat.2021.122762_b0530) 2002; 32 Al-Gburi (10.1016/j.conbuildmat.2021.122762_b0320) 2015 Lura (10.1016/j.conbuildmat.2021.122762_b0630) 2001; 31 10.1016/j.conbuildmat.2021.122762_b0375 10.1016/j.conbuildmat.2021.122762_b0650 ASTM (10.1016/j.conbuildmat.2021.122762_b0390) 2014 Kim (10.1016/j.conbuildmat.2021.122762_b0160) 1998; 28 Riding (10.1016/j.conbuildmat.2021.122762_b0140) 2014; 26 Xin (10.1016/j.conbuildmat.2021.122762_b0080) 2020; 231 Shen (10.1016/j.conbuildmat.2021.122762_b0555) 2020; 72 Briffaut (10.1016/j.conbuildmat.2021.122762_b0475) 2012; 36 Nguyen (10.1016/j.conbuildmat.2021.122762_b0220) 2019; 102 Wyrzykowski (10.1016/j.conbuildmat.2021.122762_b0370) 2013; 35 Pane (10.1016/j.conbuildmat.2021.122762_b0545) 2008; 38 Markandeya (10.1016/j.conbuildmat.2021.122762_b0680) 2018; 164 Igarashi (10.1016/j.conbuildmat.2021.122762_b0480) 2000; 30 Delsaute (10.1016/j.conbuildmat.2021.122762_b0205) 2017; 83 10.1016/j.conbuildmat.2021.122762_b0225 10.1016/j.conbuildmat.2021.122762_b0620 10.1016/j.conbuildmat.2021.122762_b0625 Wiegrink (10.1016/j.conbuildmat.2021.122762_b0270) 1996; 93 Wu (10.1016/j.conbuildmat.2021.122762_b0240) 2017; 149 Lu (10.1016/j.conbuildmat.2021.122762_b0685) 2001; 53 Atrushi (10.1016/j.conbuildmat.2021.122762_b0285) 2003 Yang (10.1016/j.conbuildmat.2021.122762_b0405) 2004; 16 De Schutter (10.1016/j.conbuildmat.2021.122762_b0410) 1996; 29 Wibke (10.1016/j.conbuildmat.2021.122762_b0535) 2021; 10 Zahabizadeh (10.1016/j.conbuildmat.2021.122762_b0340) 2019; 98 Tao (10.1016/j.conbuildmat.2021.122762_b0300) 2006; 36 Wei (10.1016/j.conbuildmat.2021.122762_b0135) 2013; 49 10.1016/j.conbuildmat.2021.122762_b0590 Xin (10.1016/j.conbuildmat.2021.122762_b0145) 2018; 192 Wei (10.1016/j.conbuildmat.2021.122762_b0175) 2013; 25 10.1016/j.conbuildmat.2021.122762_b0595 10.1016/j.conbuildmat.2021.122762_b0355 Zhu (10.1016/j.conbuildmat.2021.122762_b0065) 2021; 115 |
References_xml | – volume: 31 start-page: 1867 year: 2001 end-page: 1872 ident: b0630 article-title: Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete publication-title: Cem. Concr. Res. – volume: 23 start-page: 172 year: 1990 end-page: 177 ident: b0280 article-title: Investigation of thermal cracking with the cracking-frame publication-title: Mater. Struct. – reference: .B. E., S.A. K., B.R. W., Early-Age Cracking Tendency and Ultimate Degree of Hydration of Internally Cured Concrete, J. Mater. Civ. Eng. 24 (2012) 1025–1033. 10.1061/(ASCE)MT.1943-5533.0000469. – volume: 99 start-page: 260 year: 2015 end-page: 271 ident: b0105 article-title: Influence of prewetted lightweight aggregates on the behavior and cracking potential of internally cured concrete at an early age publication-title: Constr. Build. Mater. – reference: American Concrete Institute 207, Report on thermal and volume change effects on cracking of mass concrete, Farmington Hills, MI, 2007. – volume: 196 start-page: 307 year: 2019 end-page: 316 ident: b0675 article-title: Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber publication-title: Constr. Build. Mater. – volume: 17 start-page: 319 year: 2019 end-page: 334 ident: b0565 article-title: Development of Strain-Induced Stresses in Early Age Concrete Composed of Recycled Gravel or Sand publication-title: J. Adv. Concr. Technol. – volume: 10 start-page: 929 year: 2021 end-page: 937 ident: b0535 article-title: Creep of Early Age Concrete under Variable Stress publication-title: CONCREEP – volume: 20 start-page: 235 year: 2017 end-page: 244 ident: b0070 article-title: A monitoring-mining-modeling system and its application to the temperature status of the Xiluodu arch dam publication-title: Adv. Struct. Eng. – reference: C. Boulay, S. Staquet, M. Azenha, A. Deraemaeker, M. Crespini, J. Carette, J. Granja, B. Delsaute, A. Dumoulin, G. Karaiskos, Monitoring elastic properties of concrete since very early age by means of cyclic loadings, ultrasonic measurements, natural resonant frequency of componant frequency of composite beam (EMM-ARM) and with smart aggregates, in: Proc. 8th Int. Conf. Fract. Mech. Concr. Concr. Struct. Fram., Toledo, Spain, 2013. – reference: D.S. Atrushi, Tensile and compressive creep of young concrete: testing and modelling, Fakultet for ingeniørvitenskap og teknologi, 2003. – reference: J. Enzell, M. Tollsten, Thermal cracking of a concrete arch dam due to seasonal temperature variations, (2017) 111. – reference: H. Zhu, Y. Hu, Q. Li, M. Zhang, Determination of concrete elastic modulus in early age for temperature stress testing under the effect of restraint, in: S. Staquet, D. Aggelis (Eds.), Proc. 2nd Int. RILEM/COST Conf. Early Age Crack. Serv. Cem. Mater. Struct., RILEM Publications SARL, Brussels, 2017: pp. 603–608. https://www.rilem.net/publication/publication/529?id_papier=12726. – volume: 124 start-page: 276 year: 2016 end-page: 286 ident: b0495 article-title: Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials publication-title: Constr. Build. Mater. – volume: 102 start-page: 28 year: 2019 end-page: 38 ident: b0220 article-title: Temperature-stress testing machine – a state-of-the-art design and its unique applications in concrete research publication-title: Cem. Concr. Compos. – reference: A.T. and A.K. Schindler, Early-Age Cracking of Lightweight Mass Concrete, ACI Mater. J. 117 (n.d.). 10.14359/51719082. – volume: 56 year: 2020 ident: b0230 article-title: Longitudinal restraining devices for the evaluation of structural behaviour of cement-based materials: The past, present and prospective trends publication-title: Strain. – year: 2018 ident: b0030 article-title: A stress and strain failure criterion for concrete – volume: 16 start-page: 35 year: 2004 end-page: 44 ident: b0405 article-title: Mechanical characteristics of axially restrained concrete specimens at early ages publication-title: J. Mater. Civ. Eng. – volume: 34 start-page: 1219 year: 2004 end-page: 1227 ident: b0395 article-title: Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete publication-title: Cem. Concr. Res. – volume: 212 year: 2020 ident: b0040 article-title: Thermally induced cracking on the massive concrete structure of the NSLS II synchrotron and its engineering remediation publication-title: Eng. Struct. – volume: 26 start-page: 437 year: 2004 end-page: 443 ident: b0170 article-title: Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete publication-title: Cem. Concr. Compos. – volume: 129 year: 2020 ident: b0540 article-title: A viscoelastic poromechanical model for shrinkage and creep of concrete publication-title: Cem. Concr. Res. – volume: 127 start-page: 618 year: 2016 end-page: 626 ident: b0200 article-title: Microprestress-solidification theory-based tensile creep modeling of early-age concrete: Considering temperature and relative humidity effects publication-title: Constr. Build. Mater. – volume: 2113 start-page: 83 year: 2009 end-page: 91 ident: b0360 article-title: Effect of relative humidity on coefficient of thermal expansion of hardened cement paste and concrete publication-title: Transp. Res. Rec. – reference: R.B. and A. Bentur, Free and Restrained Shrinkage of Normal and High-Strength Concretes, ACI Mater. J. 92 (n.d.). 10.14359/9771. – volume: 97 start-page: 288 year: 2019 end-page: 299 ident: b0485 article-title: Methodology of obtaining intrinsic creep property of concrete by flexural deflection test publication-title: Cem. Concr. Compos. – volume: 38 start-page: 1315 year: 2008 end-page: 1324 ident: b0545 article-title: Predictions and verifications of early-age stress development in hydrating blended cement concrete publication-title: Cem. Concr. Res. – reference: S.A.A. and D.A. Lange, Grip-Specimen Interaction in Uniaxial Restrained Test, ACI Symp. Publ. 206 (n.d.). 10.14359/12253. – volume: 199 year: 2018 ident: b0510 article-title: Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model publication-title: Eng. Fract. Mech. – volume: 123 year: 2019 ident: b0260 article-title: Properties of early-age concrete relevant to cracking in massive concrete publication-title: Cem. Concr. Res. – volume: 226 start-page: 651 year: 2019 end-page: 661 ident: b0130 article-title: Reliability of standard methods for evaluating the early-age cracking risk of thermal-shrinkage origin in concrete walls publication-title: Constr. Build. Mater. – year: 2020 ident: b0255 article-title: The effect of shrinkage reducing admixtures on drying shrinkage, autogenous deformation, and early age stress development of concrete publication-title: Struct. Concr. n/a – reference: Ø. Bjøntegaard, E.J. Sellevold, The temperature-stress testing machine (TSTM): Capabilities and limitations, in: J. Weiss, K. Kovler, J. Marchand, S. Mindess (Eds.), Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL, Evanston, Illinois, 2004. – volume: 79 start-page: 148 year: 2017 end-page: 157 ident: b0055 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem. Concr. Compos. – volume: 36 start-page: 183 year: 2003 ident: b0570 article-title: Evaluation of early age cracking characteristics in cementitious systems publication-title: Mater. Struct. – volume: 196 start-page: 1 year: 2019 end-page: 13 ident: b0150 article-title: Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity publication-title: Constr. Build. Mater. – year: 2003 ident: b0285 article-title: Tensile and Compressive Creep of Early Age Concrete : Testing and Modelling – start-page: 318 year: 2010 ident: b0380 article-title: Model Code 2010—First Complete Draft publication-title: Fib Bull. – volume: 112 start-page: 529 year: 2016 end-page: 537 ident: b0505 article-title: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions publication-title: Constr. Build. Mater. – volume: 244 year: 2020 ident: b0075 article-title: Restrained cracking failure behavior of concrete due to temperature and shrinkage publication-title: Constr. Build. Mater. – volume: 149 start-page: 705 year: 2017 end-page: 715 ident: b0215 article-title: Tensile creep and early-age concrete cracking due to restrained shrinkage publication-title: Constr. Build. Mater. – start-page: 295 year: 2020 end-page: 304 ident: b0165 article-title: Evolution of Coefficient of Thermal Expansion of Concrete at Early Ages publication-title: ACMSM25 – volume: 10 start-page: 4451 year: 2020 ident: b0490 article-title: A Simplified Method for Real-Time Prediction of Temperature in Mass Concrete at Early Age publication-title: Appl. Sci. – year: 2013 ident: b0050 article-title: Thermal stresses and temperature control of mass concrete – volume: 29 start-page: 335 year: 1996 ident: b0410 article-title: Degree of hydration-based description of mechanical properties of early age concrete publication-title: Mater. Struct. – volume: 32 start-page: 5020004 year: 2020 ident: b0525 article-title: Tensile Creep Tests of Hydraulic Concrete under Different Curing Conditions publication-title: J. Mater. Civ. Eng. – volume: 53 start-page: 25 year: 2001 end-page: 30 ident: b0685 article-title: Evaluation of thermal crack by a probabilistic model using the tensile strain capacity publication-title: Mag. Concr. Res. – volume: 11 year: 2018 ident: b0190 article-title: Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine publication-title: Materials (Basel). – year: 2015 ident: b0320 article-title: Restraint Effects in Early Age Concrete Structures – volume: 28 start-page: 299 year: 2006 end-page: 306 ident: b0425 article-title: Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation publication-title: Cem. Concr. Compos. – volume: 46 start-page: 1167 year: 2013 end-page: 1182 ident: b0460 article-title: Tensile and compressive creep deformations of hardening concrete containing mineral additives publication-title: Mater. Struct. – year: 2000 ident: b0670 article-title: Hardening concrete: measurments and evaluation of non-elastic deformation and associated restraint stresses – volume: 124 start-page: 765 year: 1998 end-page: 774 ident: b0245 article-title: Shrinkage cracking of restrained concrete slabs publication-title: J. Eng. Mech. – volume: 10 year: 2017 ident: b0085 article-title: Self-developed testing system for determining the temperature behavior of concrete publication-title: Materials (Basel). – year: 2011 ident: b0325 article-title: Standard method of test for coefficient of thermal expansion of hydraulic cement concrete – year: 2018 ident: b0010 article-title: Thermal Cracking of Massive Concrete Structures: State of the Art Report of the RILEM Technical Committee 254-CMS – volume: 28 start-page: 1761 year: 1998 end-page: 1773 ident: b0160 article-title: Compressive strength development of concrete with different curing time and temperature publication-title: Cem. Concr. Res. – volume: 107 year: 2020 ident: b0515 article-title: On the origins of transient thermal deformation of concrete publication-title: Cem. Concr. Compos. – reference: L. Liu, J. Ouyang, F. Li, J. Xin, D. Huang, S. Gao, materials Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine, (n.d.). 10.3390/ma11101822. – volume: 2014 year: 2014 ident: b0020 article-title: Numerical analysis on temperature rise of a concrete arch dam after sealing based on measured data publication-title: Math. Probl. Eng. – volume: 106 start-page: 448 year: 2009 end-page: 454 ident: b0035 article-title: Effects of construction time and coarse aggregate on bridge deck cracking publication-title: ACI Mater. J. – volume: 98 start-page: 14 year: 2019 end-page: 28 ident: b0340 article-title: A new test setup for measuring early age coefficient of thermal expansion of concrete publication-title: Cem. Concr. Compos. – volume: 30 start-page: 1701 year: 2000 end-page: 1707 ident: b0480 article-title: Autogenous shrinkage and induced restraining stresses in high-strength concretes publication-title: Cem. Concr. Res. – reference: A.B.E. Klausen, T. Kanstad, Ø. Bjøntegaard, Early age crack assessment of concrete structures: Experimental and theoretical approaches, in: M.T. HASHOLT (Ed.), Nord. Concr. Res. Proc. XXIII Nord. Concr. Res. Symp., NORSK BETONGFORENING, Postboks 2312, Solli, Oslo: Norsk Betongforening, 2017: pp. 317–320. – volume: 115 year: 2021 ident: b0065 article-title: Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber publication-title: Cem. Concr. Compos. – volume: 25 start-page: 1277 year: 2013 end-page: 1284 ident: b0175 article-title: Tensile creep behavior of concrete subject to constant restraint at very early ages publication-title: J. Mater. Civ. Eng. – volume: 106 start-page: 537 year: 2009 ident: b0210 article-title: Cracking sensitivity of normal-and high-strength concretes publication-title: ACI Mater. J. – reference: K. Van Breugel, S.J. Lokhorst, Stress-based crack criterion as a basis for the prevention of through cracks in concrete structures at early-ages, in: Int. RILEM Conf. Early Age Crack. Cem. Syst. Kovler, K., Bentur, A., Eds, 2003, pp. 229–236. – reference: E.K. Attiogbe, W.J. Weiss, H.T. See, A look at the stress rate versus time of cracking relationship observed in the restrained ring test, in: Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL Bagneux, France, 2004. – volume: 34 start-page: 881 year: 2012 end-page: 890 ident: b0440 article-title: Continuous monitoring of concrete E-modulus since casting based on modal identification: A case study for in situ application publication-title: Cem. Concr. Compos. – volume: 83 start-page: 239 year: 2017 end-page: 250 ident: b0205 article-title: Modeling basic creep of concrete since setting time publication-title: Cem. Concr. Compos. – volume: 40 start-page: 1138 year: 2010 end-page: 1147 ident: b0345 article-title: A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar publication-title: Cem. Concr. Res. – volume: 103 start-page: 67 year: 2016 end-page: 76 ident: b0660 article-title: Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age publication-title: Constr. Build. Mater. – volume: 114 year: 2017 ident: b0305 article-title: Effects of Fly Ash on Early-Age Properties and Cracking of Concrete publication-title: ACI Mater. J. – volume: 35 start-page: 49 year: 2013 end-page: 58 ident: b0370 article-title: Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers publication-title: Cem. Concr. Compos. – reference: B.B. J.-P. Charron J. Marchand, M. Pigeon, Test Device for Studying the Early-Age Stresses and Strains in Concrete, ACI Symp. Publ. 220 (n.d.). 10.14359/13153. – year: 2014 ident: b0390 article-title: C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression1, ASTM International – volume: 164 start-page: 820 year: 2018 end-page: 829 ident: b0680 article-title: Influence of slag composition on cracking potential of slag-portland cement concrete publication-title: Constr. Build. Mater. – volume: 2019 year: 2019 ident: b0155 article-title: Hardening Concrete Exposed to Realistic Curing Temperature Regimes and Restraint Conditions: Advanced Testing and Design Methodology publication-title: Adv. Mater. Sci. Eng. – reference: D. Cusson, T. Hoogeveen, Measuring early-age coefficient of thermal expansion in high-performance concrete, in: Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig., RILEM Publications SARL, 2006: pp. 321–330. – volume: 99 start-page: 191 year: 2019 end-page: 202 ident: b0560 article-title: Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age publication-title: Cem. Concr. Compos. – volume: 93 start-page: 409 year: 1996 end-page: 415 ident: b0270 article-title: Shrinkage cracking of high-strength concrete publication-title: Mater. J. – volume: 31 start-page: 695 year: 2001 end-page: 702 ident: b0500 article-title: The microstructure and mechanical properties of blended cements hydrated at various temperatures publication-title: Cem. Concr. Res. – volume: 49 start-page: 635 year: 2013 end-page: 642 ident: b0135 article-title: Early-age strain-stress relationship and cracking behavior of slag cement mixtures subject to constant uniaxial restraint publication-title: Constr. Build. Mater. – volume: 102 start-page: 369 year: 2015 end-page: 386 ident: b0295 article-title: Degree of restraint concept in analysis of early-age stresses in concrete walls publication-title: Eng. Struct. – volume: 105 start-page: 149 year: 2008 end-page: 155 ident: b0310 article-title: Quantification of effects of fly ash type on concrete early-age cracking publication-title: ACI Mater. J. – volume: 34 start-page: 4019100 year: 2020 ident: b0045 article-title: Cracking in Concrete Water Tank due to Restrained Shrinkage and Heat of Hydration: Field Investigations and 3D Finite Element Simulation publication-title: J. Perform. Constr. Facil. – volume: 83 start-page: 45 year: 2017 end-page: 56 ident: b0415 article-title: Stress prediction in very early-age concrete subject to restraint under varying temperature histories publication-title: Cem. Concr. Compos. – volume: 39 start-page: 154 year: 2009 end-page: 164 ident: b0275 article-title: Simulation of the thermal stress in mass concrete using a thermal stress measuring device publication-title: Cem. Concr. Res. – reference: Zhimin Li, Recommendations for Scientific Breakthroughs of Chinese Universities in 2020, Science Vol 370, Issue 6523, Dec.18 2020. – volume: 71 start-page: 1167 year: 2019 end-page: 1179 ident: b0585 article-title: Early-age tensile creep and shrinkage-induced cracking in internally restrained concrete members publication-title: Mag. Concr. Res. – year: 2021 ident: b0250 article-title: Development of self-stressing Engineered Cementitious Composites (ECC) publication-title: Cem. Concr. Compos. – volume: 32 start-page: 4020049 year: 2020 ident: b0095 article-title: Effect of Various Supplementary Cementitious Materials on Early-Age Concrete Cracking publication-title: J. Mater. Civ. Eng. – volume: 192 start-page: 381 year: 2018 end-page: 390 ident: b0145 article-title: Effect of temperature history and restraint degree on cracking behavior of early-age concrete publication-title: Constr. Build. Mater. – volume: 98 start-page: 323 year: 2001 end-page: 331 ident: b0110 article-title: Creep, shrinkage, and cracking of restrained concrete at early age publication-title: ACI Mater. J. – reference: H. Zhu, Y. Hu, Q. Li, Stress-and-strain based failure criterion for concrete, Shuili Fadian Xuebao/J. Hydroelectr. Eng. 37 (2018). 10.11660/slfdxb.20181201. – reference: SL744-2016, Specification for load design of hydraulic structures, Ministry of Water Resources of China, Beijing, China, 2016. – volume: 249 year: 2020 ident: b0120 article-title: Water-repellent additive that increases concrete cracking resistance in dry curing environments publication-title: Constr. Build. Mater. – reference: B. Delsaute, S. Staquet, Testing Concrete Since Setting Time Under Free and Restrained Conditions, in: Adv. Tech. Test. Cem. Mater., Springer, 2020: pp. 177–209. – volume: 31 start-page: 1895 year: 2001 end-page: 1899 ident: b0195 article-title: Tensile basic creep of early-age concrete under constant load publication-title: Cem. Concr. Res. – reference: Federal Highway Administration, Portland Cement Concrete Pavements Research, 2016. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/thermal.cfm. – volume: 26 start-page: 4014058 year: 2014 ident: b0140 article-title: Statistical determination of cracking probability for mass concrete publication-title: J. Mater. Civ. Eng. – year: 2018 ident: b0330 article-title: C531–18, Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes – volume: 39 start-page: 809 year: 2006 end-page: 815 ident: b0335 article-title: Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction publication-title: Mater. Struct. – volume: 95 start-page: 188 year: 2017 end-page: 194 ident: b0470 article-title: Comparison of tensile and compressive creep of fly ash concretes in the hardening phase publication-title: Cem. Concr. Res. – volume: 229 year: 2019 ident: b0520 article-title: Risk of early age cracking in geopolymer concrete due to restrained shrinkage publication-title: Constr. Build. Mater. – reference: M. Brown, G. Sellers, K.J. Folliard, D.W. Fowler, Restrained shrinkage cracking of concrete bridge decks: State-of-the-Art Review, 2001. – volume: 52 start-page: 91 year: 2016 end-page: 109 ident: b0400 article-title: Testing Concrete E-modulus at Very Early Ages Through Several Techniques: An Inter-laboratory Comparison publication-title: Strain. – reference: P.K. Mehta, P.J.M. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014. – volume: 15 start-page: 787 year: 2011 end-page: 798 ident: b0465 article-title: Behaviour of slag cement concrete under restraint conditions publication-title: Eur. J. Environ. Civ. Eng. – volume: 44 start-page: 749 year: 2011 end-page: 772 ident: b0655 article-title: Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations publication-title: Mater. Struct. – volume: 39 start-page: 426 year: 2009 end-page: 432 ident: b0430 article-title: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics publication-title: Cem. Concr. Res. – volume: 146 start-page: 410 year: 2017 end-page: 418 ident: b0115 article-title: Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age publication-title: Constr. Build. Mater. – volume: 72 start-page: 246 year: 2020 end-page: 261 ident: b0555 article-title: Early-age behaviour and cracking potential of fly ash concrete under restrained condition publication-title: Mag. Concr. Res. – reference: K.A. Estensen, K. Terje, B. Øyvind, Updated Temperature-Stress Testing Machine (TSTM): Introductory Tests, Calculations, Verification, and Investigation of Variable Fly Ash Content, CONCREEP 10. (2021) 724–732. doi:10.1061/9780784479346.086. – volume: 35 start-page: 92 year: 2002 ident: b0180 article-title: Early age creep and stress relaxation of concrete containing blended cements publication-title: Mater. Struct. – volume: 259 year: 2020 ident: b0060 article-title: Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers publication-title: Constr. Build. Mater. – volume: 149 start-page: 62 year: 2017 end-page: 75 ident: b0240 article-title: Autogenous shrinkage of high performance concrete: A review publication-title: Constr. Build. Mater. – volume: 36 start-page: 584 year: 2006 end-page: 591 ident: b0300 article-title: Tensile creep due to restraining stresses in high-strength concrete at early ages publication-title: Cem. Concr. Res. – volume: 38 start-page: 306 year: 2013 end-page: 315 ident: b0365 article-title: In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development publication-title: Constr. Build. Mater. – volume: 2014 year: 2014 ident: b0600 article-title: Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History publication-title: Adv. Mater. Sci. Eng. – volume: 2164 start-page: 58 year: 2010 end-page: 65 ident: b0350 article-title: Interlaboratory study on measuring coefficient of thermal expansion of concrete publication-title: Transp. Res. Rec. – volume: 32 start-page: 1645 year: 2002 end-page: 1651 ident: b0575 article-title: Development of new device for measuring thermal stresses publication-title: Cem. Concr. Res. – volume: 229 year: 2019 ident: b0315 article-title: Estimation of thermal stresses in the field test under the restraint method publication-title: Constr. Build. Mater. – reference: R. Springenschmid, B. R, M. M, Development of the Cracking Frame and The Temperature-Stress Testing Machine, in: Therm. Crack. Concr. Early Ages, Munich, 1994: pp. 137–144. – volume: 40 start-page: 1096 year: 2010 end-page: 1105 ident: b0435 article-title: Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration publication-title: Cem. Concr. Res. – volume: 32 start-page: 1053 year: 2002 end-page: 1059 ident: b0530 article-title: Prediction of cracking within early-age concrete due to thermal, drying and creep behavior publication-title: Cem. Concr. Res. – reference: T. Chariton, B. Kim, W.J. Weiss, Using passive acoustic energy to quantify cracking in volumetrically restrained cementitious systems, in: Am. Soc. Civ. Eng. Mech. Div. 15th ASCE EMD Conf. New York, 2002. – volume: 36 start-page: 373 year: 2012 end-page: 380 ident: b0475 article-title: Concrete early age basic creep: Experiments and test of rheological modelling approaches publication-title: Constr. Build. Mater. – volume: 37 start-page: 200 year: 2007 end-page: 209 ident: b0635 article-title: An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage publication-title: Cem. Concr. Res. – year: 2016 ident: b0235 article-title: Early age crack assessment of concrete structures: experimental investigation of decisive parameters – volume: 45 start-page: 192 year: 2013 end-page: 198 ident: b0580 article-title: Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure publication-title: Constr. Build. Mater. – volume: 27 start-page: 324 year: 1994 ident: b0090 article-title: Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage publication-title: Mater. Struct. – reference: S. Staquet, B. Delsaute, A. Darquennes, B. Espio, Design of a revisited TSTM system for testing concrete since setting time under free and restraint conditions, in: F. Toutlemonde, J.M. Torrenti (Eds.), Concrack3–Rilem-JCI Int. Work. Crack Control Mass Concr. Relat. Issues Concern. Early-Age Concr. Struct., RILEM Publications SARL, Paris, France, 2012: pp. 99–110. – volume: 187 start-page: 118 year: 2018 end-page: 130 ident: b0640 article-title: Influence of Barchip fiber on early-age cracking potential of high performance concrete under restrained condition publication-title: Constr. Build. Mater. – volume: 231 year: 2020 ident: b0080 article-title: Evaluation of behavior and cracking potential of early-age cementitious systems using uniaxial restraint tests: A review publication-title: Constr. Build. Mater. – year: 2018 ident: b0185 article-title: Creep and hygrothermal effects in concrete structures – volume: 34 start-page: 881 year: 2012 ident: 10.1016/j.conbuildmat.2021.122762_b0440 article-title: Continuous monitoring of concrete E-modulus since casting based on modal identification: A case study for in situ application publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2012.04.004 – ident: 10.1016/j.conbuildmat.2021.122762_b0355 doi: 10.1617/2351580052.034 – volume: 164 start-page: 820 year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0680 article-title: Influence of slag composition on cracking potential of slag-portland cement concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.12.216 – year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0185 – volume: 127 start-page: 618 year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0200 article-title: Microprestress-solidification theory-based tensile creep modeling of early-age concrete: Considering temperature and relative humidity effects publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.10.055 – ident: 10.1016/j.conbuildmat.2021.122762_b0015 – volume: 226 start-page: 651 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0130 article-title: Reliability of standard methods for evaluating the early-age cracking risk of thermal-shrinkage origin in concrete walls publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.167 – volume: 39 start-page: 426 year: 2009 ident: 10.1016/j.conbuildmat.2021.122762_b0430 article-title: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.01.016 – ident: 10.1016/j.conbuildmat.2021.122762_b0625 – year: 2000 ident: 10.1016/j.conbuildmat.2021.122762_b0670 – volume: 72 start-page: 246 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0555 article-title: Early-age behaviour and cracking potential of fly ash concrete under restrained condition publication-title: Mag. Concr. Res. doi: 10.1680/jmacr.18.00106 – volume: 129 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0540 article-title: A viscoelastic poromechanical model for shrinkage and creep of concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2019.105970 – volume: 112 start-page: 529 year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0505 article-title: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.02.211 – volume: 149 start-page: 62 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0240 article-title: Autogenous shrinkage of high performance concrete: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.05.064 – volume: 32 start-page: 5020004 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0525 article-title: Tensile Creep Tests of Hydraulic Concrete under Different Curing Conditions publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003090 – volume: 40 start-page: 1096 year: 2010 ident: 10.1016/j.conbuildmat.2021.122762_b0435 article-title: Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.02.014 – volume: 149 start-page: 705 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0215 article-title: Tensile creep and early-age concrete cracking due to restrained shrinkage publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.05.081 – volume: 46 start-page: 1167 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0460 article-title: Tensile and compressive creep deformations of hardening concrete containing mineral additives publication-title: Mater. Struct. doi: 10.1617/s11527-012-9962-7 – volume: 31 start-page: 1895 year: 2001 ident: 10.1016/j.conbuildmat.2021.122762_b0195 article-title: Tensile basic creep of early-age concrete under constant load publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(01)00691-3 – volume: 17 start-page: 319 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0565 article-title: Development of Strain-Induced Stresses in Early Age Concrete Composed of Recycled Gravel or Sand publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.17.319 – ident: 10.1016/j.conbuildmat.2021.122762_b0265 – ident: 10.1016/j.conbuildmat.2021.122762_b0590 doi: 10.1061/(ASCE)MT.1943-5533.0000469 – year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0030 – ident: 10.1016/j.conbuildmat.2021.122762_b0445 – volume: 83 start-page: 239 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0205 article-title: Modeling basic creep of concrete since setting time publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.07.023 – volume: 2113 start-page: 83 year: 2009 ident: 10.1016/j.conbuildmat.2021.122762_b0360 article-title: Effect of relative humidity on coefficient of thermal expansion of hardened cement paste and concrete publication-title: Transp. Res. Rec. doi: 10.3141/2113-10 – year: 2015 ident: 10.1016/j.conbuildmat.2021.122762_b0320 – volume: 105 start-page: 149 year: 2008 ident: 10.1016/j.conbuildmat.2021.122762_b0310 article-title: Quantification of effects of fly ash type on concrete early-age cracking publication-title: ACI Mater. J. – ident: 10.1016/j.conbuildmat.2021.122762_b0645 – volume: 10 start-page: 4451 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0490 article-title: A Simplified Method for Real-Time Prediction of Temperature in Mass Concrete at Early Age publication-title: Appl. Sci. doi: 10.3390/app10134451 – ident: 10.1016/j.conbuildmat.2021.122762_b0620 – start-page: 295 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0165 article-title: Evolution of Coefficient of Thermal Expansion of Concrete at Early Ages – volume: 196 start-page: 307 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0675 article-title: Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.125 – ident: 10.1016/j.conbuildmat.2021.122762_b0595 – volume: 187 start-page: 118 year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0640 article-title: Influence of Barchip fiber on early-age cracking potential of high performance concrete under restrained condition publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.07.121 – volume: 192 start-page: 381 year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0145 article-title: Effect of temperature history and restraint degree on cracking behavior of early-age concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.066 – volume: 25 start-page: 1277 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0175 article-title: Tensile creep behavior of concrete subject to constant restraint at very early ages publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000671 – volume: 44 start-page: 749 year: 2011 ident: 10.1016/j.conbuildmat.2021.122762_b0655 article-title: Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations publication-title: Mater. Struct. doi: 10.1617/s11527-010-9663-z – volume: 212 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0040 article-title: Thermally induced cracking on the massive concrete structure of the NSLS II synchrotron and its engineering remediation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110519 – ident: 10.1016/j.conbuildmat.2021.122762_b0225 doi: 10.1007/978-3-030-39738-8_6 – ident: 10.1016/j.conbuildmat.2021.122762_b0690 – volume: 45 start-page: 192 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0580 article-title: Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.056 – volume: 39 start-page: 809 year: 2006 ident: 10.1016/j.conbuildmat.2021.122762_b0335 article-title: Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction publication-title: Mater. Struct. doi: 10.1617/s11527-006-9086-z – volume: 2019 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0155 article-title: Hardening Concrete Exposed to Realistic Curing Temperature Regimes and Restraint Conditions: Advanced Testing and Design Methodology publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2019/9071034 – volume: 229 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0520 article-title: Risk of early age cracking in geopolymer concrete due to restrained shrinkage publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116840 – volume: 2164 start-page: 58 year: 2010 ident: 10.1016/j.conbuildmat.2021.122762_b0350 article-title: Interlaboratory study on measuring coefficient of thermal expansion of concrete publication-title: Transp. Res. Rec. doi: 10.3141/2164-08 – volume: 199 year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0510 article-title: Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2018.05.040 – volume: 10 start-page: 929 year: 2021 ident: 10.1016/j.conbuildmat.2021.122762_b0535 article-title: Creep of Early Age Concrete under Variable Stress publication-title: CONCREEP – volume: 107 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0515 article-title: On the origins of transient thermal deformation of concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.103508 – volume: 36 start-page: 183 year: 2003 ident: 10.1016/j.conbuildmat.2021.122762_b0570 article-title: Evaluation of early age cracking characteristics in cementitious systems publication-title: Mater. Struct. doi: 10.1007/BF02479556 – volume: 146 start-page: 410 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0115 article-title: Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.04.056 – year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0235 – year: 2021 ident: 10.1016/j.conbuildmat.2021.122762_b0250 article-title: Development of self-stressing Engineered Cementitious Composites (ECC) publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconres.2021.106580 – start-page: 318 year: 2010 ident: 10.1016/j.conbuildmat.2021.122762_b0380 article-title: Model Code 2010—First Complete Draft publication-title: Fib Bull. – volume: 115 year: 2021 ident: 10.1016/j.conbuildmat.2021.122762_b0065 article-title: Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2020.103868 – volume: 98 start-page: 323 year: 2001 ident: 10.1016/j.conbuildmat.2021.122762_b0110 article-title: Creep, shrinkage, and cracking of restrained concrete at early age publication-title: ACI Mater. J. – year: 2003 ident: 10.1016/j.conbuildmat.2021.122762_b0285 – volume: 16 start-page: 35 year: 2004 ident: 10.1016/j.conbuildmat.2021.122762_b0405 article-title: Mechanical characteristics of axially restrained concrete specimens at early ages publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2004)16:1(35) – volume: 103 start-page: 67 year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0660 article-title: Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.11.039 – volume: 20 start-page: 235 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0070 article-title: A monitoring-mining-modeling system and its application to the temperature status of the Xiluodu arch dam publication-title: Adv. Struct. Eng. doi: 10.1177/1369433216660012 – volume: 35 start-page: 92 year: 2002 ident: 10.1016/j.conbuildmat.2021.122762_b0180 article-title: Early age creep and stress relaxation of concrete containing blended cements publication-title: Mater. Struct. doi: 10.1007/BF02482107 – volume: 34 start-page: 4019100 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0045 article-title: Cracking in Concrete Water Tank due to Restrained Shrinkage and Heat of Hydration: Field Investigations and 3D Finite Element Simulation publication-title: J. Perform. Constr. Facil. doi: 10.1061/(ASCE)CF.1943-5509.0001356 – ident: 10.1016/j.conbuildmat.2021.122762_b0290 – volume: 71 start-page: 1167 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0585 article-title: Early-age tensile creep and shrinkage-induced cracking in internally restrained concrete members publication-title: Mag. Concr. Res. doi: 10.1680/jmacr.18.00038 – volume: 38 start-page: 306 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0365 article-title: In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.07.111 – ident: 10.1016/j.conbuildmat.2021.122762_b0605 – volume: 97 start-page: 288 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0485 article-title: Methodology of obtaining intrinsic creep property of concrete by flexural deflection test publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.01.003 – volume: 36 start-page: 584 year: 2006 ident: 10.1016/j.conbuildmat.2021.122762_b0300 article-title: Tensile creep due to restraining stresses in high-strength concrete at early ages publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2005.11.017 – volume: 34 start-page: 1219 year: 2004 ident: 10.1016/j.conbuildmat.2021.122762_b0395 article-title: Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2003.12.011 – volume: 259 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0060 article-title: Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.119805 – volume: 124 start-page: 765 year: 1998 ident: 10.1016/j.conbuildmat.2021.122762_b0245 article-title: Shrinkage cracking of restrained concrete slabs publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1998)124:7(765) – volume: 31 start-page: 1867 year: 2001 ident: 10.1016/j.conbuildmat.2021.122762_b0630 article-title: Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(01)00601-9 – ident: 10.1016/j.conbuildmat.2021.122762_b0375 – ident: 10.1016/j.conbuildmat.2021.122762_b0650 – volume: 38 start-page: 1315 year: 2008 ident: 10.1016/j.conbuildmat.2021.122762_b0545 article-title: Predictions and verifications of early-age stress development in hydrating blended cement concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2008.05.001 – year: 2014 ident: 10.1016/j.conbuildmat.2021.122762_b0390 – year: 2011 ident: 10.1016/j.conbuildmat.2021.122762_b0325 – ident: 10.1016/j.conbuildmat.2021.122762_b0615 – volume: 26 start-page: 4014058 year: 2014 ident: 10.1016/j.conbuildmat.2021.122762_b0140 article-title: Statistical determination of cracking probability for mass concrete publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0000947 – ident: 10.1016/j.conbuildmat.2021.122762_b0610 doi: 10.1061/9780784479346.086 – volume: 40 start-page: 1138 year: 2010 ident: 10.1016/j.conbuildmat.2021.122762_b0345 article-title: A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.03.021 – ident: 10.1016/j.conbuildmat.2021.122762_b0025 – volume: 106 start-page: 448 year: 2009 ident: 10.1016/j.conbuildmat.2021.122762_b0035 article-title: Effects of construction time and coarse aggregate on bridge deck cracking publication-title: ACI Mater. J. – volume: 102 start-page: 28 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0220 article-title: Temperature-stress testing machine – a state-of-the-art design and its unique applications in concrete research publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.04.019 – volume: 83 start-page: 45 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0415 article-title: Stress prediction in very early-age concrete subject to restraint under varying temperature histories publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.07.006 – ident: 10.1016/j.conbuildmat.2021.122762_b0455 – volume: 56 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0230 article-title: Longitudinal restraining devices for the evaluation of structural behaviour of cement-based materials: The past, present and prospective trends publication-title: Strain. doi: 10.1111/str.12343 – volume: 37 start-page: 200 year: 2007 ident: 10.1016/j.conbuildmat.2021.122762_b0635 article-title: An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2006.11.005 – volume: 30 start-page: 1701 year: 2000 ident: 10.1016/j.conbuildmat.2021.122762_b0480 article-title: Autogenous shrinkage and induced restraining stresses in high-strength concretes publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(00)00399-9 – volume: 102 start-page: 369 year: 2015 ident: 10.1016/j.conbuildmat.2021.122762_b0295 article-title: Degree of restraint concept in analysis of early-age stresses in concrete walls publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.08.025 – ident: 10.1016/j.conbuildmat.2021.122762_b0005 – volume: 32 start-page: 1645 year: 2002 ident: 10.1016/j.conbuildmat.2021.122762_b0575 article-title: Development of new device for measuring thermal stresses publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00842-6 – volume: 35 start-page: 49 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0370 article-title: Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2012.08.010 – ident: 10.1016/j.conbuildmat.2021.122762_b0550 – year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0050 – ident: 10.1016/j.conbuildmat.2021.122762_b0450 – volume: 123 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0260 article-title: Properties of early-age concrete relevant to cracking in massive concrete publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2019.05.015 – volume: 23 start-page: 172 year: 1990 ident: 10.1016/j.conbuildmat.2021.122762_b0280 article-title: Investigation of thermal cracking with the cracking-frame publication-title: Mater. Struct. doi: 10.1007/BF02473015 – volume: 124 start-page: 276 year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0495 article-title: Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.07.104 – volume: 53 start-page: 25 year: 2001 ident: 10.1016/j.conbuildmat.2021.122762_b0685 article-title: Evaluation of thermal crack by a probabilistic model using the tensile strain capacity publication-title: Mag. Concr. Res. doi: 10.1680/macr.2001.53.1.25 – volume: 249 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0120 article-title: Water-repellent additive that increases concrete cracking resistance in dry curing environments publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118704 – volume: 106 start-page: 537 year: 2009 ident: 10.1016/j.conbuildmat.2021.122762_b0210 article-title: Cracking sensitivity of normal-and high-strength concretes publication-title: ACI Mater. J. – volume: 229 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0315 article-title: Estimation of thermal stresses in the field test under the restraint method publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.116890 – ident: 10.1016/j.conbuildmat.2021.122762_b0665 – volume: 31 start-page: 695 year: 2001 ident: 10.1016/j.conbuildmat.2021.122762_b0500 article-title: The microstructure and mechanical properties of blended cements hydrated at various temperatures publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(01)00471-9 – volume: 231 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0080 article-title: Evaluation of behavior and cracking potential of early-age cementitious systems using uniaxial restraint tests: A review publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117146 – volume: 27 start-page: 324 year: 1994 ident: 10.1016/j.conbuildmat.2021.122762_b0090 article-title: Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage publication-title: Mater. Struct. doi: 10.1007/BF02473424 – volume: 99 start-page: 260 year: 2015 ident: 10.1016/j.conbuildmat.2021.122762_b0105 article-title: Influence of prewetted lightweight aggregates on the behavior and cracking potential of internally cured concrete at an early age publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.093 – volume: 244 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0075 article-title: Restrained cracking failure behavior of concrete due to temperature and shrinkage publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118318 – volume: 32 start-page: 1053 year: 2002 ident: 10.1016/j.conbuildmat.2021.122762_b0530 article-title: Prediction of cracking within early-age concrete due to thermal, drying and creep behavior publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(02)00743-3 – volume: 36 start-page: 373 year: 2012 ident: 10.1016/j.conbuildmat.2021.122762_b0475 article-title: Concrete early age basic creep: Experiments and test of rheological modelling approaches publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2012.04.101 – volume: 93 start-page: 409 year: 1996 ident: 10.1016/j.conbuildmat.2021.122762_b0270 article-title: Shrinkage cracking of high-strength concrete publication-title: Mater. J. – ident: 10.1016/j.conbuildmat.2021.122762_b0420 – volume: 29 start-page: 335 year: 1996 ident: 10.1016/j.conbuildmat.2021.122762_b0410 article-title: Degree of hydration-based description of mechanical properties of early age concrete publication-title: Mater. Struct. doi: 10.1007/BF02486341 – volume: 49 start-page: 635 year: 2013 ident: 10.1016/j.conbuildmat.2021.122762_b0135 article-title: Early-age strain-stress relationship and cracking behavior of slag cement mixtures subject to constant uniaxial restraint publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.061 – volume: 39 start-page: 154 year: 2009 ident: 10.1016/j.conbuildmat.2021.122762_b0275 article-title: Simulation of the thermal stress in mass concrete using a thermal stress measuring device publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2008.12.008 – volume: 28 start-page: 1761 year: 1998 ident: 10.1016/j.conbuildmat.2021.122762_b0160 article-title: Compressive strength development of concrete with different curing time and temperature publication-title: Cem. Concr. Res. doi: 10.1016/S0008-8846(98)00164-1 – volume: 10 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0085 article-title: Self-developed testing system for determining the temperature behavior of concrete publication-title: Materials (Basel). doi: 10.3390/ma10040419 – volume: 114 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0305 article-title: Effects of Fly Ash on Early-Age Properties and Cracking of Concrete publication-title: ACI Mater. J. – volume: 79 start-page: 148 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0055 article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.02.010 – ident: 10.1016/j.conbuildmat.2021.122762_b0125 – ident: 10.1016/j.conbuildmat.2021.122762_b0385 – volume: 98 start-page: 14 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0340 article-title: A new test setup for measuring early age coefficient of thermal expansion of concrete publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.01.014 – volume: 11 year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0190 article-title: Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine publication-title: Materials (Basel). doi: 10.3390/ma11071079 – ident: 10.1016/j.conbuildmat.2021.122762_b0100 – year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0255 article-title: The effect of shrinkage reducing admixtures on drying shrinkage, autogenous deformation, and early age stress development of concrete publication-title: Struct. Concr. n/a – volume: 32 start-page: 4020049 year: 2020 ident: 10.1016/j.conbuildmat.2021.122762_b0095 article-title: Effect of Various Supplementary Cementitious Materials on Early-Age Concrete Cracking publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)MT.1943-5533.0003120 – volume: 15 start-page: 787 year: 2011 ident: 10.1016/j.conbuildmat.2021.122762_b0465 article-title: Behaviour of slag cement concrete under restraint conditions publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2011.9693365 – year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0330 – volume: 95 start-page: 188 year: 2017 ident: 10.1016/j.conbuildmat.2021.122762_b0470 article-title: Comparison of tensile and compressive creep of fly ash concretes in the hardening phase publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2017.02.018 – volume: 2014 year: 2014 ident: 10.1016/j.conbuildmat.2021.122762_b0600 article-title: Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2014/671795 – volume: 2014 year: 2014 ident: 10.1016/j.conbuildmat.2021.122762_b0020 article-title: Numerical analysis on temperature rise of a concrete arch dam after sealing based on measured data publication-title: Math. Probl. Eng. – volume: 26 start-page: 437 year: 2004 ident: 10.1016/j.conbuildmat.2021.122762_b0170 article-title: Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete publication-title: Cem. Concr. Compos. doi: 10.1016/S0958-9465(03)00067-2 – volume: 28 start-page: 299 year: 2006 ident: 10.1016/j.conbuildmat.2021.122762_b0425 article-title: Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2006.02.007 – volume: 99 start-page: 191 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0560 article-title: Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2019.02.018 – year: 2018 ident: 10.1016/j.conbuildmat.2021.122762_b0010 – volume: 196 start-page: 1 year: 2019 ident: 10.1016/j.conbuildmat.2021.122762_b0150 article-title: Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.11.127 – volume: 52 start-page: 91 year: 2016 ident: 10.1016/j.conbuildmat.2021.122762_b0400 article-title: Testing Concrete E-modulus at Very Early Ages Through Several Techniques: An Inter-laboratory Comparison publication-title: Strain. doi: 10.1111/str.12172 |
SSID | ssj0006262 |
Score | 2.4738927 |
SecondaryResourceType | review_article |
Snippet | •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 122762 |
SubjectTerms | Concrete Creep Early age Failure criterion Temperature stress test machine (TSTM) Thermal cracking |
Title | Concrete thermal failure criteria, test method, and mechanism: A review |
URI | https://dx.doi.org/10.1016/j.conbuildmat.2021.122762 |
Volume | 283 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt47LbJZptkxUsp1mqxB7XYW9hXIGLTovHqb3c2D1tBUPCUBxnIfszOfAsz3yB0rrvcFzI0xKMxJYy6igimOfG0dDR3ta_zRuG7sT-csNtpd1pD_aoXxpZVlrG_iOl5tC7fdEo0O4sk6TwAObAJOIRDiwMswjaaMxZYL29_LMs8gLDTQm_PDlhxw3V0tqzxgiOntNOngRzCUZG6bZfSwKc_56iVvDPYRlslYcS94p92UM2ku2hzRUZwD1335ymQv8xgy-Zm8HUsEltujiEkWC1m0cLAKDNcjItuYZFquLc9v8nb7AL3cNHAso8mg6vH_pCUAxKI8sIgIyJwhPIcSSXwHi67SrmAeNcwPw6MCT0Da-KSaaEDMID9qx0pDexSX4bKKoMdoHo6T80hwhqYgdGx8T1I2oo60uOKg7lyPWEY9xsorCCJVKkebodYvERVmdhztIJmZNGMCjQbiH6ZLgoJjb8YXVa4R9_8IYJQ_7v50f_Mj9GGfSK5SusJqmev7-YUyEcmm7l3NdFa72Y0HNvr6P5p9AlfY9wl |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qCx4P4on1XMHHxiabW3wpxdra48UW-hb2CkRsWjT-f2ebpFYQFHwLSQaSj91vvoWZbwBupBt6jAfKsGlMDYdawmCODA1bclOGlvTkslF4OPK6E-dp6k4r0C57YXRZZcH9Oacv2bq40yzQbC6SpPmM4kAn4AAPLSaqCHcDatqdyq1CrdXrd0crQkbNTnPLPT1jxQo24fqrzAtPnVwPoEZ9iKdFat1alPoe_TlNraWezh7sFpqRtPLP2oeKSg9gZ81J8BAe2_MU9V-miBZ0M3w7ZomuOCfICtqOmTUIisqM5BOjG4SlEq9122_yPrsjLZL3sBzBpPMwbneNYkaCIezAzwzmm0zYJqccpU_IXSEsBN1Vjhf7SgW2wn8KuSOZ9DEAt7A0OVe4UT0eCG0OdgzVdJ6qEyASxYGSsfJszNuCmtwORYjhwrKZckKvDkEJSSQKA3E9x-I1KivFXqI1NCONZpSjWQe6Cl3kLhp_CbovcY--LYkI2f738NP_hV_BVnc8HESD3qh_Btv6ibE0bT2Havb2oS5Qi2T8slhrnwyG3TM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+thermal+failure+criteria%2C+test+method%2C+and+mechanism%3A+A+review&rft.jtitle=Construction+%26+building+materials&rft.au=Zhu%2C+He&rft.au=Hu%2C+Yu&rft.au=Ma%2C+Rui&rft.au=Wang%2C+Juan&rft.date=2021-05-10&rft.issn=0950-0618&rft.volume=283&rft.spage=122762&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.122762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2021_122762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |