Concrete thermal failure criteria, test method, and mechanism: A review

•Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direc...

Full description

Saved in:
Bibliographic Details
Published inConstruction & building materials Vol. 283; p. 122762
Main Authors Zhu, He, Hu, Yu, Ma, Rui, Wang, Juan, Li, Qingbin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 10.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direct tensile strength/strain are required. The thermal cracking of massive concrete, especially for the dam concrete, due to the complex temperature histories and restraint conditions jeopardizes the structure's safety and durability. Suitable failure criterion is one of the critical factors for preventing thermal cracking. The eligible failure criterion depends on the full understanding of the failure mechanism, which further relies on convincing experimental techniques. Though the mechanisms and experimental techniques of thermal cracking have been extensively studied, their relations to failure criteria are rarely established. Thus this state-of-the-art review focuses on the thermal failure criteria, related to mechanisms and temperature stress test (TST) methods. The TST researches show the restrained concrete exhibits lower failure stress than its direct tensile strength tested by the free specimen, while has a larger failure strain than its tensile strain capacity, leading to disqualification of the conventional tensile strength/strain capacity criterion. The development of a multiple TST machine system enables the establishment and verification of a Stress-Strain combined criterion. Meanwhile, more verifications experiments considering the material compositions, temperature histories, restrained degrees, loading durations should be conducted. Moreover, the three-dimensional failure criteria and TST methods are suggested for future research.
AbstractList •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of concrete thermal cracking.•Stress-Strain combined criterion has demonstrated in evaluating thermal cracking.•Both restrained stress/strain and direct tensile strength/strain are required. The thermal cracking of massive concrete, especially for the dam concrete, due to the complex temperature histories and restraint conditions jeopardizes the structure's safety and durability. Suitable failure criterion is one of the critical factors for preventing thermal cracking. The eligible failure criterion depends on the full understanding of the failure mechanism, which further relies on convincing experimental techniques. Though the mechanisms and experimental techniques of thermal cracking have been extensively studied, their relations to failure criteria are rarely established. Thus this state-of-the-art review focuses on the thermal failure criteria, related to mechanisms and temperature stress test (TST) methods. The TST researches show the restrained concrete exhibits lower failure stress than its direct tensile strength tested by the free specimen, while has a larger failure strain than its tensile strain capacity, leading to disqualification of the conventional tensile strength/strain capacity criterion. The development of a multiple TST machine system enables the establishment and verification of a Stress-Strain combined criterion. Meanwhile, more verifications experiments considering the material compositions, temperature histories, restrained degrees, loading durations should be conducted. Moreover, the three-dimensional failure criteria and TST methods are suggested for future research.
ArticleNumber 122762
Author Li, Qingbin
Wang, Juan
Zhu, He
Hu, Yu
Ma, Rui
Author_xml – sequence: 1
  givenname: He
  orcidid: 0000-0003-1503-6076
  surname: Zhu
  fullname: Zhu, He
  email: zhuhe14@tsinghua.org.cn
  organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Yu
  surname: Hu
  fullname: Hu, Yu
  email: yu-hu@tsinghua.edu.cn
  organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Rui
  surname: Ma
  fullname: Ma, Rui
  email: marui14@tsinghua.org.cn
  organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  email: wangjuan@zzu.edu.cn
  organization: School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China
– sequence: 5
  givenname: Qingbin
  surname: Li
  fullname: Li, Qingbin
  email: qingbinli@tsinghua.edu.cn
  organization: State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
BookMark eNqNkE9LwzAYh4NMcJt-h3hf65t0SVsvMopOYeBFzyF_3rKMNZU0U_z2dsyDeNrpfS-_B55nRiahD0jILYOcAZN3u9z2wRz83nU65Rw4yxnnpeQXZMqqss5AcDkhU6gFZCBZdUVmw7ADAMkln5J10wcbMSFNW4yd3tNW-_0hIrXRJ4xeL2jCIdEO07Z3C6qDG3-71cEP3T1d0YifHr-uyWWr9wPe_N45eX96fGues83r-qVZbTJbVGXKdAnaFmC4EYLVRljLeMsFLmVbIlYFjga1WTrtynEAUDgwBpdcSFNZIWQxJ_WJa2M_DBFb9RF9p-O3YqCORdRO_SmijkXUqci4ffi3tT7p5PuQ4ih9FqE5EXBUHLWjGqzHYNH5iDYp1_szKD99S4d4
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2023_130737
crossref_primary_10_3390_math12071078
crossref_primary_10_1155_2024_6662963
crossref_primary_10_1016_j_cemconres_2021_106580
crossref_primary_10_3390_app11199338
crossref_primary_10_1007_s11831_022_09822_8
crossref_primary_10_1016_j_cemconres_2023_107298
crossref_primary_10_1016_j_conbuildmat_2022_127169
crossref_primary_10_1088_1402_4896_ad1ad5
crossref_primary_10_1016_j_cemconcomp_2024_105798
crossref_primary_10_1016_j_cscm_2023_e02209
crossref_primary_10_3390_iic1010002
crossref_primary_10_1016_j_est_2025_115917
crossref_primary_10_1080_15732479_2023_2200755
crossref_primary_10_1016_j_fmre_2024_08_005
crossref_primary_10_1016_j_jobe_2023_107811
crossref_primary_10_1520_JTE20220421
crossref_primary_10_1016_j_cemconcomp_2023_105051
crossref_primary_10_1016_j_cemconres_2022_107045
crossref_primary_10_1111_mice_13156
crossref_primary_10_1016_j_cscm_2023_e02144
crossref_primary_10_1617_s11527_023_02200_1
crossref_primary_10_1016_j_conbuildmat_2022_128463
crossref_primary_10_1016_j_dibe_2024_100356
crossref_primary_10_1016_j_cemconcomp_2022_104825
crossref_primary_10_1016_j_cscm_2023_e01926
crossref_primary_10_3390_app15063213
crossref_primary_10_1016_j_conbuildmat_2023_131382
crossref_primary_10_1016_j_conbuildmat_2023_134752
crossref_primary_10_1038_s41598_024_58891_1
crossref_primary_10_1016_j_jobe_2022_105588
Cites_doi 10.1016/j.cemconcomp.2012.04.004
10.1617/2351580052.034
10.1016/j.conbuildmat.2017.12.216
10.1016/j.conbuildmat.2016.10.055
10.1016/j.conbuildmat.2019.07.167
10.1016/j.cemconres.2009.01.016
10.1680/jmacr.18.00106
10.1016/j.cemconres.2019.105970
10.1016/j.conbuildmat.2016.02.211
10.1016/j.conbuildmat.2017.05.064
10.1061/(ASCE)MT.1943-5533.0003090
10.1016/j.cemconres.2010.02.014
10.1016/j.conbuildmat.2017.05.081
10.1617/s11527-012-9962-7
10.1016/S0008-8846(01)00691-3
10.3151/jact.17.319
10.1061/(ASCE)MT.1943-5533.0000469
10.1016/j.cemconcomp.2017.07.023
10.3141/2113-10
10.3390/app10134451
10.1016/j.conbuildmat.2018.10.125
10.1016/j.conbuildmat.2018.07.121
10.1016/j.conbuildmat.2018.10.066
10.1061/(ASCE)MT.1943-5533.0000671
10.1617/s11527-010-9663-z
10.1016/j.engstruct.2020.110519
10.1007/978-3-030-39738-8_6
10.1016/j.conbuildmat.2013.03.056
10.1617/s11527-006-9086-z
10.1155/2019/9071034
10.1016/j.conbuildmat.2019.116840
10.3141/2164-08
10.1016/j.engfracmech.2018.05.040
10.1016/j.cemconcomp.2019.103508
10.1007/BF02479556
10.1016/j.conbuildmat.2017.04.056
10.1016/j.cemconres.2021.106580
10.1016/j.cemconcomp.2020.103868
10.1061/(ASCE)0899-1561(2004)16:1(35)
10.1016/j.conbuildmat.2015.11.039
10.1177/1369433216660012
10.1007/BF02482107
10.1061/(ASCE)CF.1943-5509.0001356
10.1680/jmacr.18.00038
10.1016/j.conbuildmat.2012.07.111
10.1016/j.cemconcomp.2019.01.003
10.1016/j.cemconres.2005.11.017
10.1016/j.cemconres.2003.12.011
10.1016/j.conbuildmat.2020.119805
10.1061/(ASCE)0733-9399(1998)124:7(765)
10.1016/S0008-8846(01)00601-9
10.1016/j.cemconres.2008.05.001
10.1061/(ASCE)MT.1943-5533.0000947
10.1061/9780784479346.086
10.1016/j.cemconres.2010.03.021
10.1016/j.cemconcomp.2019.04.019
10.1016/j.cemconcomp.2017.07.006
10.1111/str.12343
10.1016/j.cemconres.2006.11.005
10.1016/S0008-8846(00)00399-9
10.1016/j.engstruct.2015.08.025
10.1016/S0008-8846(02)00842-6
10.1016/j.cemconcomp.2012.08.010
10.1016/j.cemconres.2019.05.015
10.1007/BF02473015
10.1016/j.conbuildmat.2016.07.104
10.1680/macr.2001.53.1.25
10.1016/j.conbuildmat.2020.118704
10.1016/j.conbuildmat.2019.116890
10.1016/S0008-8846(01)00471-9
10.1016/j.conbuildmat.2019.117146
10.1007/BF02473424
10.1016/j.conbuildmat.2015.08.093
10.1016/j.conbuildmat.2020.118318
10.1016/S0008-8846(02)00743-3
10.1016/j.conbuildmat.2012.04.101
10.1007/BF02486341
10.1016/j.conbuildmat.2013.08.061
10.1016/j.cemconres.2008.12.008
10.1016/S0008-8846(98)00164-1
10.3390/ma10040419
10.1016/j.cemconcomp.2017.02.010
10.1016/j.cemconcomp.2019.01.014
10.3390/ma11071079
10.1061/(ASCE)MT.1943-5533.0003120
10.1080/19648189.2011.9693365
10.1016/j.cemconres.2017.02.018
10.1155/2014/671795
10.1016/S0958-9465(03)00067-2
10.1016/j.cemconcomp.2006.02.007
10.1016/j.cemconcomp.2019.02.018
10.1016/j.conbuildmat.2018.11.127
10.1111/str.12172
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2021.122762
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2021_122762
S0950061821005225
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RIG
RNS
SET
SEW
SMS
SSH
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c387t-a70ac30b2b5519b5cc12f25e46f7ee83e2029b4dad7c38003d0bbe4256b8c5563
IEDL.DBID .~1
ISSN 0950-0618
IngestDate Tue Jul 01 04:33:17 EDT 2025
Thu Apr 24 23:06:20 EDT 2025
Fri Feb 23 02:39:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Concrete
Failure criterion
Creep
Temperature stress test machine (TSTM)
Early age
Thermal cracking
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-a70ac30b2b5519b5cc12f25e46f7ee83e2029b4dad7c38003d0bbe4256b8c5563
ORCID 0000-0003-1503-6076
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2021_122762
crossref_citationtrail_10_1016_j_conbuildmat_2021_122762
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_122762
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-10
PublicationDateYYYYMMDD 2021-05-10
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-10
  day: 10
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Delsaute, Staquet (b0565) 2019; 17
Maruyama, Lura (b0260) 2019; 123
Wiegrink, Marikunte, Shah (b0270) 1996; 93
Riding, Poole, Schindler, Juenger, Folliard (b0140) 2014; 26
Riding, Poole, Schindler, Juenger, Folliard (b0310) 2008; 105
Kovler, Bentur (b0210) 2009; 106
Atrushi (b0285) 2003
Crawford, Gudimettla, Tanesi (b0350) 2010; 2164
H. Zhu, Y. Hu, Q. Li, Stress-and-strain based failure criterion for concrete, Shuili Fadian Xuebao/J. Hydroelectr. Eng. 37 (2018). 10.11660/slfdxb.20181201.
Klemczak, Żmij (b0130) 2019; 226
Zhu, Zhang, Wang, Wang, Li (b0250) 2021
Loser, Münch, Lura (b0345) 2010; 40
Zhu, Zhang, Wang, Wu, Li (b0060) 2020; 259
Khan, Xu, Castel, Gilbert (b0585) 2019; 71
Wei, Hansen (b0135) 2013; 49
Riding, Poole, Schindler, Juenger, Folliard (b0035) 2009; 106
Khan, Castel, Gilbert (b0215) 2017; 149
Klausen (b0235) 2016
Li, O’Moore, Dux, Lura, Dao (b0165) 2020
Al-Gburi (b0320) 2015
Weiss, Yang, Shah (b0245) 1998; 124
Wu, Farzadnia, Shi, Zhang, Wang (b0240) 2017; 149
Tao, Weizu (b0300) 2006; 36
Bofang (b0050) 2013
M. Brown, G. Sellers, K.J. Folliard, D.W. Fowler, Restrained shrinkage cracking of concrete bridge decks: State-of-the-Art Review, 2001.
Hu, Liang, Li, Zuo (b0070) 2017; 20
Federal Highway Administration, Portland Cement Concrete Pavements Research, 2016. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/thermal.cfm.
Manzoni, Vidal, Sellier, Bourbon, Camps (b0515) 2020; 107
Wei, Guo, Liang (b0200) 2016; 127
Wibke, Harald (b0535) 2021; 10
Velay-Lizancos, Martinez-Lage, Azenha, Vázquez-Burgo (b0495) 2016; 124
Amin, Kim, Lee, Kim (b0275) 2009; 39
Simos, Fallier, Joos, Johnson, Soueid (b0040) 2020; 212
Zhu, Yu, Li (b0065) 2021; 115
D.S. Atrushi, Tensile and compressive creep of young concrete: testing and modelling, Fakultet for ingeniørvitenskap og teknologi, 2003.
Zhu, Li, Hu, Ma (b0190) 2018; 11
P.K. Mehta, P.J.M. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014.
Darquennes, Staquet, Espion (b0465) 2011; 15
Zhu, Li, Hu (b0085) 2017; 10
Mi, Hu, Li, Gao, Yin (b0150) 2019; 196
Bentur, Kovler (b0570) 2003; 36
Shi, Ouyang, Zhang, Huang (b0600) 2014; 2014
Delsaute, Boulay, Granja, Carette, Azenha, Dumoulin, Karaiskos, Deraemaeker, Staquet (b0400) 2016; 52
Delsaute, Torrenti, Staquet (b0205) 2017; 83
Breitenbücher (b0280) 1990; 23
SL744-2016, Specification for load design of hydraulic structures, Ministry of Water Resources of China, Beijing, China, 2016.
Klausen, Kanstad, Bjøntegaard, Sellevold (b0470) 2017; 95
De Schutter, Taerwe (b0410) 1996; 29
Liu, Huang, Wang, Xin, Liu (b0315) 2019; 229
Lura, Van Breugel, Maruyama (b0630) 2001; 31
Yeon, Choi, Won (b0360) 2009; 2113
Escalante-García, Sharp (b0500) 2001; 31
B.B. J.-P. Charron J. Marchand, M. Pigeon, Test Device for Studying the Early-Age Stresses and Strains in Concrete, ACI Symp. Publ. 220 (n.d.). 10.14359/13153.
Altoubat, Lange (b0110) 2001; 98
Bažant, Jirásek (b0185) 2018
Ji, Kanstad, Bjøntegaard, Sellevold, Kanstad, Bjøntegaard, Sellevold (b0460) 2013; 46
Østergaard, Lange, Altoubat, Stang (b0195) 2001; 31
Aili, Vandamme, Torrenti, Masson (b0540) 2020; 129
Knoppik-Wróbel, Klemczak (b0295) 2015; 102
Khan, Xu, Castel, Gilbert, Babaee (b0520) 2019; 229
Markandeya, Shanahan, Gunatilake, Riding, Zayed (b0680) 2018; 164
Zahabizadeh, Edalat-Behbahani, Granja, Gomes, Faria, Azenha (b0340) 2019; 98
Wu, Shi, He, Wang (b0055) 2017; 79
An, Yang, Li, Hu, Yang (b0490) 2020; 10
Mi, Hu, Li, Zhu (b0510) 2018; 199
Saeed, Rahman, Baluch, Tooti (b0045) 2020; 34
Pane, Hansen (b0545) 2008; 38
R. Springenschmid, B. R, M. M, Development of the Cracking Frame and The Temperature-Stress Testing Machine, in: Therm. Crack. Concr. Early Ages, Munich, 1994: pp. 137–144.
Du Béton (b0380) 2010
Shen, Wang, Liu, Zhao, Jiang (b0640) 2018; 187
A.B.E. Klausen, T. Kanstad, Ø. Bjøntegaard, Early age crack assessment of concrete structures: Experimental and theoretical approaches, in: M.T. HASHOLT (Ed.), Nord. Concr. Res. Proc. XXIII Nord. Concr. Res. Symp., NORSK BETONGFORENING, Postboks 2312, Solli, Oslo: Norsk Betongforening, 2017: pp. 317–320.
De Schutter (b0170) 2004; 26
Wei, Liang, Guo, Hansen (b0415) 2017; 83
Shen, Jiang, Shen, Yao, Jiang (b0105) 2015; 99
Azenha, Magalhães, Faria, Cunha (b0435) 2010; 40
Yaoying, Yong, Yu, Lei (b0525) 2020; 32
Xin, Zhang, Liu, Wang, Wu (b0145) 2018; 192
Li, Liang, Hu, Zuo (b0020) 2014; 2014
Zhu (b0030) 2018
Wei, Hansen (b0175) 2013; 25
L. Liu, J. Ouyang, F. Li, J. Xin, D. Huang, S. Gao, materials Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine, (n.d.). 10.3390/ma11101822.
Yuan, Wan (b0530) 2002; 32
Nasir, Al-Amoudi, Al-Gahtani, Maslehuddin (b0505) 2016; 112
Mounanga, Bouasker, Pertue, Perronnet, Khelidj (b0655) 2011; 44
K. Van Breugel, S.J. Lokhorst, Stress-based crack criterion as a basis for the prevention of through cracks in concrete structures at early-ages, in: Int. RILEM Conf. Early Age Crack. Cem. Syst. Kovler, K., Bentur, A., Eds, 2003, pp. 229–236.
Hedlund (b0670) 2000
Klausen, Kanstad (b0255) 2020
Khan, Castel, Gilbert (b0305) 2017; 114
Igarashi, Bentur, Kovler (b0480) 2000; 30
K.A. Estensen, K. Terje, B. Øyvind, Updated Temperature-Stress Testing Machine (TSTM): Introductory Tests, Calculations, Verification, and Investigation of Variable Fly Ash Content, CONCREEP 10. (2021) 724–732. doi:10.1061/9780784479346.086.
Shen, Wang, Li, Yao, Jiang (b0555) 2020; 72
B. Delsaute, S. Staquet, Testing Concrete Since Setting Time Under Free and Restrained Conditions, in: Adv. Tech. Test. Cem. Mater., Springer, 2020: pp. 177–209.
Shen, Jiang, Shen, Yao, Jiang (b0660) 2016; 103
Wyrzykowski, Lura (b0370) 2013; 35
ASTM (b0330) 2018
Xin, Zhang, Liu, Wang, Wu (b0080) 2020; 231
Azenha, Ramos, Aguilar, Granja (b0440) 2012; 34
Krauß, Hariri (b0425) 2006; 28
Zhu, Li, Ma, Yang, Hu, Zhang (b0120) 2020; 249
J. Enzell, M. Tollsten, Thermal cracking of a concrete arch dam due to seasonal temperature variations, (2017) 111.
Fairbairn, Azenha (b0010) 2018
B. E., S.A. K., B.R. W., Early-Age Cracking Tendency and Ultimate Degree of Hydration of Internally Cured Concrete, J. Mater. Civ. Eng. 24 (2012) 1025–1033. 10.1061/(ASCE)MT.1943-5533.0000469.
Chu, Lee, Amin, Jang, Kim (b0580) 2013; 45
ASTM (b0390) 2014
A.T. and A.K. Schindler, Early-Age Cracking of Lightweight Mass Concrete, ACI Mater. J. 117 (n.d.). 10.14359/51719082.
Liang, Wei (b0485) 2019; 97
Briffaut, Benboudjema, Torrenti, Nahas (b0475) 2012; 36
C. Boulay, S. Staquet, M. Azenha, A. Deraemaeker, M. Crespini, J. Carette, J. Granja, B. Delsaute, A. Dumoulin, G. Karaiskos, Monitoring elastic properties of concrete since very early age by means of cyclic loadings, ultrasonic measurements, natural resonant frequency of componant frequency of composite beam (EMM-ARM) and with smart aggregates, in: Proc. 8th Int. Conf. Fract. Mech. Concr. Concr. Struct. Fram., Toledo, Spain, 2013.
Kim, Moon, Eo (b0160) 1998; 28
Van Den Abeele, Desadeleer, De Schutter, Wevers (b0430) 2009; 39
AASHTO (b0325) 2011
H. Zhu, Y. Hu, Q. Li, M. Zhang, Determination of concrete elastic modulus in early age for temperature stress testing under the effect of restraint, in: S. Staquet, D. Aggelis (Eds.), Proc. 2nd Int. RILEM/COST Conf. Early Age Crack. Serv. Cem. Mater. Struct., RILEM Publications SARL, Brussels, 2017: pp. 603–608. https://www.rilem.net/publication/publication/529?id_papier=12726.
Kanavaris, Azenha, Schlicke, Kovler (b0230) 2020; 56
Yeon, Choi, Won (b0365) 2013; 38
Kovler (b0090) 1994; 27
Khan, Xu, Khan, Castel, Gilbert (b0095) 2020; 32
Kim, Jeon, Kim (b0575) 2002; 32
Lu, Swaddiwudhipong, Wee (b0685) 2001; 53
D. Cusson, T. Hoogeveen, Measuring early-age coefficient of thermal expansion in high-performance concrete, in: Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig., RILEM Publications SARL, 2006: pp. 321–330.
Yang, Yi, Lee (b0405) 2004; 16
Zhimin Li, Recommendations for Scientific Breakthroughs of Chinese Universities in 2020, Science Vol 370, Issue 6523, Dec.18 2020.
Klausen, Kanstad, Bjøntegaard (b0155) 2019; 2019
Zhu, Hu, Li, Ma (b0075) 2020; 244
Nguyen, Nguyen, Lura, Dao (b0220) 2019; 102
S.A.A. and D.A. Lange, Grip-Specimen Interaction in Uniaxial Restrained Test, ACI Symp. Publ. 206 (n.d.). 10.14359/12253.
Shen, Jiang, Wang, Shen, Jiang (b0115) 2017; 146
Zhao, Wang, Lange, Zhou, Wang, Zhu (b0560) 2019; 99
Han, Kim (b0395) 2004; 34
Cusson, Hoogeveen (b0635) 2007; 37
Sellevold, Bjøntegaard (b0335) 2006; 39
S. Staquet, B. Delsaute, A. Darquennes, B. Espio, Design of a revisited TSTM system for testing concrete since setting time under free and restraint conditions, in: F. Toutlemonde, J.M. Torrenti (Eds.), Concrack3–Rilem-JCI Int. Work. Crack Control Mass Concr. Relat. Issues Concern. Early-Age Concr. Struct., RILEM Publications SARL, Paris, France, 2012: pp. 99–110.
T. Chariton, B. Kim, W.J. Weiss, Using passive acoustic energy to quantify cracking in volumetrically restrained cementitious systems, in: Am. Soc. Civ. Eng. Mech. Div. 15th ASCE EMD Conf. New York, 2002.
Shen, Liu, Li, Sun, Wang (b0675) 2019; 196
Pane, Hansen (b0180) 2002; 35
E.K. Attiogbe, W.J. Weiss, H.T. See, A look at the stress rate versus time of cracking relationship observed in the restrained ring test, in: Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL Bagneux, France, 2004.
American Concrete Institute 207, Report on thermal and volume change effects on cracking of mass concrete, Farmington Hills, MI, 2007.
R.B. and A. Bentur, Free and Restrained Shrinkage of Normal and High-Strength Concretes, ACI Mater. J. 92 (n.d.). 10.14359/9771.
Ø. Bjøntegaard, E.J. Sellevold, The temperature-stress testing machine (TSTM): Capabilities and limitations, in: J. Weiss, K. Kovler, J. Marchand, S. Mindess (Eds.), Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL, Evanston, Illinois, 2004.
10.1016/j.conbuildmat.2021.122762_b0610
Shen (10.1016/j.conbuildmat.2021.122762_b0675) 2019; 196
10.1016/j.conbuildmat.2021.122762_b0455
Yaoying (10.1016/j.conbuildmat.2021.122762_b0525) 2020; 32
Zhu (10.1016/j.conbuildmat.2021.122762_b0120) 2020; 249
10.1016/j.conbuildmat.2021.122762_b0615
Saeed (10.1016/j.conbuildmat.2021.122762_b0045) 2020; 34
Altoubat (10.1016/j.conbuildmat.2021.122762_b0110) 2001; 98
Khan (10.1016/j.conbuildmat.2021.122762_b0095) 2020; 32
Loser (10.1016/j.conbuildmat.2021.122762_b0345) 2010; 40
Simos (10.1016/j.conbuildmat.2021.122762_b0040) 2020; 212
Van Den Abeele (10.1016/j.conbuildmat.2021.122762_b0430) 2009; 39
10.1016/j.conbuildmat.2021.122762_b0100
Khan (10.1016/j.conbuildmat.2021.122762_b0585) 2019; 71
Kovler (10.1016/j.conbuildmat.2021.122762_b0210) 2009; 106
10.1016/j.conbuildmat.2021.122762_b0445
Kovler (10.1016/j.conbuildmat.2021.122762_b0090) 1994; 27
10.1016/j.conbuildmat.2021.122762_b0605
Li (10.1016/j.conbuildmat.2021.122762_b0165) 2020
Liu (10.1016/j.conbuildmat.2021.122762_b0315) 2019; 229
10.1016/j.conbuildmat.2021.122762_b0290
An (10.1016/j.conbuildmat.2021.122762_b0490) 2020; 10
Breitenbücher (10.1016/j.conbuildmat.2021.122762_b0280) 1990; 23
10.1016/j.conbuildmat.2021.122762_b0690
Manzoni (10.1016/j.conbuildmat.2021.122762_b0515) 2020; 107
10.1016/j.conbuildmat.2021.122762_b0450
ASTM (10.1016/j.conbuildmat.2021.122762_b0330) 2018
Han (10.1016/j.conbuildmat.2021.122762_b0395) 2004; 34
Zhao (10.1016/j.conbuildmat.2021.122762_b0560) 2019; 99
Pane (10.1016/j.conbuildmat.2021.122762_b0180) 2002; 35
Yeon (10.1016/j.conbuildmat.2021.122762_b0360) 2009; 2113
Klausen (10.1016/j.conbuildmat.2021.122762_b0235) 2016
Zhu (10.1016/j.conbuildmat.2021.122762_b0190) 2018; 11
Krauß (10.1016/j.conbuildmat.2021.122762_b0425) 2006; 28
Klausen (10.1016/j.conbuildmat.2021.122762_b0155) 2019; 2019
Shen (10.1016/j.conbuildmat.2021.122762_b0660) 2016; 103
Li (10.1016/j.conbuildmat.2021.122762_b0020) 2014; 2014
Crawford (10.1016/j.conbuildmat.2021.122762_b0350) 2010; 2164
Wu (10.1016/j.conbuildmat.2021.122762_b0055) 2017; 79
Wei (10.1016/j.conbuildmat.2021.122762_b0200) 2016; 127
Nasir (10.1016/j.conbuildmat.2021.122762_b0505) 2016; 112
Kanavaris (10.1016/j.conbuildmat.2021.122762_b0230) 2020; 56
Yeon (10.1016/j.conbuildmat.2021.122762_b0365) 2013; 38
Kim (10.1016/j.conbuildmat.2021.122762_b0575) 2002; 32
Zhu (10.1016/j.conbuildmat.2021.122762_b0060) 2020; 259
Klausen (10.1016/j.conbuildmat.2021.122762_b0255) 2020
Delsaute (10.1016/j.conbuildmat.2021.122762_b0565) 2019; 17
Shen (10.1016/j.conbuildmat.2021.122762_b0115) 2017; 146
Khan (10.1016/j.conbuildmat.2021.122762_b0305) 2017; 114
Liang (10.1016/j.conbuildmat.2021.122762_b0485) 2019; 97
Shi (10.1016/j.conbuildmat.2021.122762_b0600) 2014; 2014
Chu (10.1016/j.conbuildmat.2021.122762_b0580) 2013; 45
Mi (10.1016/j.conbuildmat.2021.122762_b0150) 2019; 196
Wei (10.1016/j.conbuildmat.2021.122762_b0415) 2017; 83
10.1016/j.conbuildmat.2021.122762_b0665
Escalante-García (10.1016/j.conbuildmat.2021.122762_b0500) 2001; 31
Cusson (10.1016/j.conbuildmat.2021.122762_b0635) 2007; 37
Hedlund (10.1016/j.conbuildmat.2021.122762_b0670) 2000
Zhu (10.1016/j.conbuildmat.2021.122762_b0250) 2021
Darquennes (10.1016/j.conbuildmat.2021.122762_b0465) 2011; 15
AASHTO (10.1016/j.conbuildmat.2021.122762_b0325) 2011
Bentur (10.1016/j.conbuildmat.2021.122762_b0570) 2003; 36
Knoppik-Wróbel (10.1016/j.conbuildmat.2021.122762_b0295) 2015; 102
Zhu (10.1016/j.conbuildmat.2021.122762_b0030) 2018
Azenha (10.1016/j.conbuildmat.2021.122762_b0435) 2010; 40
Du Béton (10.1016/j.conbuildmat.2021.122762_b0380) 2010
10.1016/j.conbuildmat.2021.122762_b0550
10.1016/j.conbuildmat.2021.122762_b0015
Mounanga (10.1016/j.conbuildmat.2021.122762_b0655) 2011; 44
Fairbairn (10.1016/j.conbuildmat.2021.122762_b0010) 2018
Khan (10.1016/j.conbuildmat.2021.122762_b0520) 2019; 229
Shen (10.1016/j.conbuildmat.2021.122762_b0105) 2015; 99
Mi (10.1016/j.conbuildmat.2021.122762_b0510) 2018; 199
Sellevold (10.1016/j.conbuildmat.2021.122762_b0335) 2006; 39
Aili (10.1016/j.conbuildmat.2021.122762_b0540) 2020; 129
Hu (10.1016/j.conbuildmat.2021.122762_b0070) 2017; 20
Riding (10.1016/j.conbuildmat.2021.122762_b0035) 2009; 106
Ji (10.1016/j.conbuildmat.2021.122762_b0460) 2013; 46
Bažant (10.1016/j.conbuildmat.2021.122762_b0185) 2018
Zhu (10.1016/j.conbuildmat.2021.122762_b0085) 2017; 10
Maruyama (10.1016/j.conbuildmat.2021.122762_b0260) 2019; 123
Amin (10.1016/j.conbuildmat.2021.122762_b0275) 2009; 39
Klausen (10.1016/j.conbuildmat.2021.122762_b0470) 2017; 95
Riding (10.1016/j.conbuildmat.2021.122762_b0310) 2008; 105
Østergaard (10.1016/j.conbuildmat.2021.122762_b0195) 2001; 31
10.1016/j.conbuildmat.2021.122762_b0265
10.1016/j.conbuildmat.2021.122762_b0385
10.1016/j.conbuildmat.2021.122762_b0025
10.1016/j.conbuildmat.2021.122762_b0420
10.1016/j.conbuildmat.2021.122762_b0005
10.1016/j.conbuildmat.2021.122762_b0125
10.1016/j.conbuildmat.2021.122762_b0645
Klemczak (10.1016/j.conbuildmat.2021.122762_b0130) 2019; 226
Weiss (10.1016/j.conbuildmat.2021.122762_b0245) 1998; 124
Velay-Lizancos (10.1016/j.conbuildmat.2021.122762_b0495) 2016; 124
Azenha (10.1016/j.conbuildmat.2021.122762_b0440) 2012; 34
De Schutter (10.1016/j.conbuildmat.2021.122762_b0170) 2004; 26
Shen (10.1016/j.conbuildmat.2021.122762_b0640) 2018; 187
Delsaute (10.1016/j.conbuildmat.2021.122762_b0400) 2016; 52
Zhu (10.1016/j.conbuildmat.2021.122762_b0075) 2020; 244
Bofang (10.1016/j.conbuildmat.2021.122762_b0050) 2013
Khan (10.1016/j.conbuildmat.2021.122762_b0215) 2017; 149
Yuan (10.1016/j.conbuildmat.2021.122762_b0530) 2002; 32
Al-Gburi (10.1016/j.conbuildmat.2021.122762_b0320) 2015
Lura (10.1016/j.conbuildmat.2021.122762_b0630) 2001; 31
10.1016/j.conbuildmat.2021.122762_b0375
10.1016/j.conbuildmat.2021.122762_b0650
ASTM (10.1016/j.conbuildmat.2021.122762_b0390) 2014
Kim (10.1016/j.conbuildmat.2021.122762_b0160) 1998; 28
Riding (10.1016/j.conbuildmat.2021.122762_b0140) 2014; 26
Xin (10.1016/j.conbuildmat.2021.122762_b0080) 2020; 231
Shen (10.1016/j.conbuildmat.2021.122762_b0555) 2020; 72
Briffaut (10.1016/j.conbuildmat.2021.122762_b0475) 2012; 36
Nguyen (10.1016/j.conbuildmat.2021.122762_b0220) 2019; 102
Wyrzykowski (10.1016/j.conbuildmat.2021.122762_b0370) 2013; 35
Pane (10.1016/j.conbuildmat.2021.122762_b0545) 2008; 38
Markandeya (10.1016/j.conbuildmat.2021.122762_b0680) 2018; 164
Igarashi (10.1016/j.conbuildmat.2021.122762_b0480) 2000; 30
Delsaute (10.1016/j.conbuildmat.2021.122762_b0205) 2017; 83
10.1016/j.conbuildmat.2021.122762_b0225
10.1016/j.conbuildmat.2021.122762_b0620
10.1016/j.conbuildmat.2021.122762_b0625
Wiegrink (10.1016/j.conbuildmat.2021.122762_b0270) 1996; 93
Wu (10.1016/j.conbuildmat.2021.122762_b0240) 2017; 149
Lu (10.1016/j.conbuildmat.2021.122762_b0685) 2001; 53
Atrushi (10.1016/j.conbuildmat.2021.122762_b0285) 2003
Yang (10.1016/j.conbuildmat.2021.122762_b0405) 2004; 16
De Schutter (10.1016/j.conbuildmat.2021.122762_b0410) 1996; 29
Wibke (10.1016/j.conbuildmat.2021.122762_b0535) 2021; 10
Zahabizadeh (10.1016/j.conbuildmat.2021.122762_b0340) 2019; 98
Tao (10.1016/j.conbuildmat.2021.122762_b0300) 2006; 36
Wei (10.1016/j.conbuildmat.2021.122762_b0135) 2013; 49
10.1016/j.conbuildmat.2021.122762_b0590
Xin (10.1016/j.conbuildmat.2021.122762_b0145) 2018; 192
Wei (10.1016/j.conbuildmat.2021.122762_b0175) 2013; 25
10.1016/j.conbuildmat.2021.122762_b0595
10.1016/j.conbuildmat.2021.122762_b0355
Zhu (10.1016/j.conbuildmat.2021.122762_b0065) 2021; 115
References_xml – volume: 31
  start-page: 1867
  year: 2001
  end-page: 1872
  ident: b0630
  article-title: Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete
  publication-title: Cem. Concr. Res.
– volume: 23
  start-page: 172
  year: 1990
  end-page: 177
  ident: b0280
  article-title: Investigation of thermal cracking with the cracking-frame
  publication-title: Mater. Struct.
– reference: .B. E., S.A. K., B.R. W., Early-Age Cracking Tendency and Ultimate Degree of Hydration of Internally Cured Concrete, J. Mater. Civ. Eng. 24 (2012) 1025–1033. 10.1061/(ASCE)MT.1943-5533.0000469.
– volume: 99
  start-page: 260
  year: 2015
  end-page: 271
  ident: b0105
  article-title: Influence of prewetted lightweight aggregates on the behavior and cracking potential of internally cured concrete at an early age
  publication-title: Constr. Build. Mater.
– reference: American Concrete Institute 207, Report on thermal and volume change effects on cracking of mass concrete, Farmington Hills, MI, 2007.
– volume: 196
  start-page: 307
  year: 2019
  end-page: 316
  ident: b0675
  article-title: Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber
  publication-title: Constr. Build. Mater.
– volume: 17
  start-page: 319
  year: 2019
  end-page: 334
  ident: b0565
  article-title: Development of Strain-Induced Stresses in Early Age Concrete Composed of Recycled Gravel or Sand
  publication-title: J. Adv. Concr. Technol.
– volume: 10
  start-page: 929
  year: 2021
  end-page: 937
  ident: b0535
  article-title: Creep of Early Age Concrete under Variable Stress
  publication-title: CONCREEP
– volume: 20
  start-page: 235
  year: 2017
  end-page: 244
  ident: b0070
  article-title: A monitoring-mining-modeling system and its application to the temperature status of the Xiluodu arch dam
  publication-title: Adv. Struct. Eng.
– reference: C. Boulay, S. Staquet, M. Azenha, A. Deraemaeker, M. Crespini, J. Carette, J. Granja, B. Delsaute, A. Dumoulin, G. Karaiskos, Monitoring elastic properties of concrete since very early age by means of cyclic loadings, ultrasonic measurements, natural resonant frequency of componant frequency of composite beam (EMM-ARM) and with smart aggregates, in: Proc. 8th Int. Conf. Fract. Mech. Concr. Concr. Struct. Fram., Toledo, Spain, 2013.
– reference: D.S. Atrushi, Tensile and compressive creep of young concrete: testing and modelling, Fakultet for ingeniørvitenskap og teknologi, 2003.
– reference: J. Enzell, M. Tollsten, Thermal cracking of a concrete arch dam due to seasonal temperature variations, (2017) 111.
– reference: H. Zhu, Y. Hu, Q. Li, M. Zhang, Determination of concrete elastic modulus in early age for temperature stress testing under the effect of restraint, in: S. Staquet, D. Aggelis (Eds.), Proc. 2nd Int. RILEM/COST Conf. Early Age Crack. Serv. Cem. Mater. Struct., RILEM Publications SARL, Brussels, 2017: pp. 603–608. https://www.rilem.net/publication/publication/529?id_papier=12726.
– volume: 124
  start-page: 276
  year: 2016
  end-page: 286
  ident: b0495
  article-title: Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials
  publication-title: Constr. Build. Mater.
– volume: 102
  start-page: 28
  year: 2019
  end-page: 38
  ident: b0220
  article-title: Temperature-stress testing machine – a state-of-the-art design and its unique applications in concrete research
  publication-title: Cem. Concr. Compos.
– reference: A.T. and A.K. Schindler, Early-Age Cracking of Lightweight Mass Concrete, ACI Mater. J. 117 (n.d.). 10.14359/51719082.
– volume: 56
  year: 2020
  ident: b0230
  article-title: Longitudinal restraining devices for the evaluation of structural behaviour of cement-based materials: The past, present and prospective trends
  publication-title: Strain.
– year: 2018
  ident: b0030
  article-title: A stress and strain failure criterion for concrete
– volume: 16
  start-page: 35
  year: 2004
  end-page: 44
  ident: b0405
  article-title: Mechanical characteristics of axially restrained concrete specimens at early ages
  publication-title: J. Mater. Civ. Eng.
– volume: 34
  start-page: 1219
  year: 2004
  end-page: 1227
  ident: b0395
  article-title: Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete
  publication-title: Cem. Concr. Res.
– volume: 212
  year: 2020
  ident: b0040
  article-title: Thermally induced cracking on the massive concrete structure of the NSLS II synchrotron and its engineering remediation
  publication-title: Eng. Struct.
– volume: 26
  start-page: 437
  year: 2004
  end-page: 443
  ident: b0170
  article-title: Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete
  publication-title: Cem. Concr. Compos.
– volume: 129
  year: 2020
  ident: b0540
  article-title: A viscoelastic poromechanical model for shrinkage and creep of concrete
  publication-title: Cem. Concr. Res.
– volume: 127
  start-page: 618
  year: 2016
  end-page: 626
  ident: b0200
  article-title: Microprestress-solidification theory-based tensile creep modeling of early-age concrete: Considering temperature and relative humidity effects
  publication-title: Constr. Build. Mater.
– volume: 2113
  start-page: 83
  year: 2009
  end-page: 91
  ident: b0360
  article-title: Effect of relative humidity on coefficient of thermal expansion of hardened cement paste and concrete
  publication-title: Transp. Res. Rec.
– reference: R.B. and A. Bentur, Free and Restrained Shrinkage of Normal and High-Strength Concretes, ACI Mater. J. 92 (n.d.). 10.14359/9771.
– volume: 97
  start-page: 288
  year: 2019
  end-page: 299
  ident: b0485
  article-title: Methodology of obtaining intrinsic creep property of concrete by flexural deflection test
  publication-title: Cem. Concr. Compos.
– volume: 38
  start-page: 1315
  year: 2008
  end-page: 1324
  ident: b0545
  article-title: Predictions and verifications of early-age stress development in hydrating blended cement concrete
  publication-title: Cem. Concr. Res.
– reference: S.A.A. and D.A. Lange, Grip-Specimen Interaction in Uniaxial Restrained Test, ACI Symp. Publ. 206 (n.d.). 10.14359/12253.
– volume: 199
  year: 2018
  ident: b0510
  article-title: Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model
  publication-title: Eng. Fract. Mech.
– volume: 123
  year: 2019
  ident: b0260
  article-title: Properties of early-age concrete relevant to cracking in massive concrete
  publication-title: Cem. Concr. Res.
– volume: 226
  start-page: 651
  year: 2019
  end-page: 661
  ident: b0130
  article-title: Reliability of standard methods for evaluating the early-age cracking risk of thermal-shrinkage origin in concrete walls
  publication-title: Constr. Build. Mater.
– year: 2020
  ident: b0255
  article-title: The effect of shrinkage reducing admixtures on drying shrinkage, autogenous deformation, and early age stress development of concrete
  publication-title: Struct. Concr. n/a
– reference: Ø. Bjøntegaard, E.J. Sellevold, The temperature-stress testing machine (TSTM): Capabilities and limitations, in: J. Weiss, K. Kovler, J. Marchand, S. Mindess (Eds.), Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL, Evanston, Illinois, 2004.
– volume: 79
  start-page: 148
  year: 2017
  end-page: 157
  ident: b0055
  article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
  publication-title: Cem. Concr. Compos.
– volume: 36
  start-page: 183
  year: 2003
  ident: b0570
  article-title: Evaluation of early age cracking characteristics in cementitious systems
  publication-title: Mater. Struct.
– volume: 196
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0150
  article-title: Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity
  publication-title: Constr. Build. Mater.
– year: 2003
  ident: b0285
  article-title: Tensile and Compressive Creep of Early Age Concrete : Testing and Modelling
– start-page: 318
  year: 2010
  ident: b0380
  article-title: Model Code 2010—First Complete Draft
  publication-title: Fib Bull.
– volume: 112
  start-page: 529
  year: 2016
  end-page: 537
  ident: b0505
  article-title: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions
  publication-title: Constr. Build. Mater.
– volume: 244
  year: 2020
  ident: b0075
  article-title: Restrained cracking failure behavior of concrete due to temperature and shrinkage
  publication-title: Constr. Build. Mater.
– volume: 149
  start-page: 705
  year: 2017
  end-page: 715
  ident: b0215
  article-title: Tensile creep and early-age concrete cracking due to restrained shrinkage
  publication-title: Constr. Build. Mater.
– start-page: 295
  year: 2020
  end-page: 304
  ident: b0165
  article-title: Evolution of Coefficient of Thermal Expansion of Concrete at Early Ages
  publication-title: ACMSM25
– volume: 10
  start-page: 4451
  year: 2020
  ident: b0490
  article-title: A Simplified Method for Real-Time Prediction of Temperature in Mass Concrete at Early Age
  publication-title: Appl. Sci.
– year: 2013
  ident: b0050
  article-title: Thermal stresses and temperature control of mass concrete
– volume: 29
  start-page: 335
  year: 1996
  ident: b0410
  article-title: Degree of hydration-based description of mechanical properties of early age concrete
  publication-title: Mater. Struct.
– volume: 32
  start-page: 5020004
  year: 2020
  ident: b0525
  article-title: Tensile Creep Tests of Hydraulic Concrete under Different Curing Conditions
  publication-title: J. Mater. Civ. Eng.
– volume: 53
  start-page: 25
  year: 2001
  end-page: 30
  ident: b0685
  article-title: Evaluation of thermal crack by a probabilistic model using the tensile strain capacity
  publication-title: Mag. Concr. Res.
– volume: 11
  year: 2018
  ident: b0190
  article-title: Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine
  publication-title: Materials (Basel).
– year: 2015
  ident: b0320
  article-title: Restraint Effects in Early Age Concrete Structures
– volume: 28
  start-page: 299
  year: 2006
  end-page: 306
  ident: b0425
  article-title: Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation
  publication-title: Cem. Concr. Compos.
– volume: 46
  start-page: 1167
  year: 2013
  end-page: 1182
  ident: b0460
  article-title: Tensile and compressive creep deformations of hardening concrete containing mineral additives
  publication-title: Mater. Struct.
– year: 2000
  ident: b0670
  article-title: Hardening concrete: measurments and evaluation of non-elastic deformation and associated restraint stresses
– volume: 124
  start-page: 765
  year: 1998
  end-page: 774
  ident: b0245
  article-title: Shrinkage cracking of restrained concrete slabs
  publication-title: J. Eng. Mech.
– volume: 10
  year: 2017
  ident: b0085
  article-title: Self-developed testing system for determining the temperature behavior of concrete
  publication-title: Materials (Basel).
– year: 2011
  ident: b0325
  article-title: Standard method of test for coefficient of thermal expansion of hydraulic cement concrete
– year: 2018
  ident: b0010
  article-title: Thermal Cracking of Massive Concrete Structures: State of the Art Report of the RILEM Technical Committee 254-CMS
– volume: 28
  start-page: 1761
  year: 1998
  end-page: 1773
  ident: b0160
  article-title: Compressive strength development of concrete with different curing time and temperature
  publication-title: Cem. Concr. Res.
– volume: 107
  year: 2020
  ident: b0515
  article-title: On the origins of transient thermal deformation of concrete
  publication-title: Cem. Concr. Compos.
– reference: L. Liu, J. Ouyang, F. Li, J. Xin, D. Huang, S. Gao, materials Research on the Crack Risk of Early-Age Concrete under the Temperature Stress Test Machine, (n.d.). 10.3390/ma11101822.
– volume: 2014
  year: 2014
  ident: b0020
  article-title: Numerical analysis on temperature rise of a concrete arch dam after sealing based on measured data
  publication-title: Math. Probl. Eng.
– volume: 106
  start-page: 448
  year: 2009
  end-page: 454
  ident: b0035
  article-title: Effects of construction time and coarse aggregate on bridge deck cracking
  publication-title: ACI Mater. J.
– volume: 98
  start-page: 14
  year: 2019
  end-page: 28
  ident: b0340
  article-title: A new test setup for measuring early age coefficient of thermal expansion of concrete
  publication-title: Cem. Concr. Compos.
– volume: 30
  start-page: 1701
  year: 2000
  end-page: 1707
  ident: b0480
  article-title: Autogenous shrinkage and induced restraining stresses in high-strength concretes
  publication-title: Cem. Concr. Res.
– reference: A.B.E. Klausen, T. Kanstad, Ø. Bjøntegaard, Early age crack assessment of concrete structures: Experimental and theoretical approaches, in: M.T. HASHOLT (Ed.), Nord. Concr. Res. Proc. XXIII Nord. Concr. Res. Symp., NORSK BETONGFORENING, Postboks 2312, Solli, Oslo: Norsk Betongforening, 2017: pp. 317–320.
– volume: 115
  year: 2021
  ident: b0065
  article-title: Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber
  publication-title: Cem. Concr. Compos.
– volume: 25
  start-page: 1277
  year: 2013
  end-page: 1284
  ident: b0175
  article-title: Tensile creep behavior of concrete subject to constant restraint at very early ages
  publication-title: J. Mater. Civ. Eng.
– volume: 106
  start-page: 537
  year: 2009
  ident: b0210
  article-title: Cracking sensitivity of normal-and high-strength concretes
  publication-title: ACI Mater. J.
– reference: K. Van Breugel, S.J. Lokhorst, Stress-based crack criterion as a basis for the prevention of through cracks in concrete structures at early-ages, in: Int. RILEM Conf. Early Age Crack. Cem. Syst. Kovler, K., Bentur, A., Eds, 2003, pp. 229–236.
– reference: E.K. Attiogbe, W.J. Weiss, H.T. See, A look at the stress rate versus time of cracking relationship observed in the restrained ring test, in: Int. RILEM Symp. Concr. Sci. Eng. A Tribut. to Arnon Bentur, RILEM Publications SARL Bagneux, France, 2004.
– volume: 34
  start-page: 881
  year: 2012
  end-page: 890
  ident: b0440
  article-title: Continuous monitoring of concrete E-modulus since casting based on modal identification: A case study for in situ application
  publication-title: Cem. Concr. Compos.
– volume: 83
  start-page: 239
  year: 2017
  end-page: 250
  ident: b0205
  article-title: Modeling basic creep of concrete since setting time
  publication-title: Cem. Concr. Compos.
– volume: 40
  start-page: 1138
  year: 2010
  end-page: 1147
  ident: b0345
  article-title: A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar
  publication-title: Cem. Concr. Res.
– volume: 103
  start-page: 67
  year: 2016
  end-page: 76
  ident: b0660
  article-title: Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age
  publication-title: Constr. Build. Mater.
– volume: 114
  year: 2017
  ident: b0305
  article-title: Effects of Fly Ash on Early-Age Properties and Cracking of Concrete
  publication-title: ACI Mater. J.
– volume: 35
  start-page: 49
  year: 2013
  end-page: 58
  ident: b0370
  article-title: Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers
  publication-title: Cem. Concr. Compos.
– reference: B.B. J.-P. Charron J. Marchand, M. Pigeon, Test Device for Studying the Early-Age Stresses and Strains in Concrete, ACI Symp. Publ. 220 (n.d.). 10.14359/13153.
– year: 2014
  ident: b0390
  article-title: C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression1, ASTM International
– volume: 164
  start-page: 820
  year: 2018
  end-page: 829
  ident: b0680
  article-title: Influence of slag composition on cracking potential of slag-portland cement concrete
  publication-title: Constr. Build. Mater.
– volume: 2019
  year: 2019
  ident: b0155
  article-title: Hardening Concrete Exposed to Realistic Curing Temperature Regimes and Restraint Conditions: Advanced Testing and Design Methodology
  publication-title: Adv. Mater. Sci. Eng.
– reference: D. Cusson, T. Hoogeveen, Measuring early-age coefficient of thermal expansion in high-performance concrete, in: Int. RILEM Conf. Vol. Chang. Hardening Concr. Test. Mitig., RILEM Publications SARL, 2006: pp. 321–330.
– volume: 99
  start-page: 191
  year: 2019
  end-page: 202
  ident: b0560
  article-title: Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age
  publication-title: Cem. Concr. Compos.
– volume: 93
  start-page: 409
  year: 1996
  end-page: 415
  ident: b0270
  article-title: Shrinkage cracking of high-strength concrete
  publication-title: Mater. J.
– volume: 31
  start-page: 695
  year: 2001
  end-page: 702
  ident: b0500
  article-title: The microstructure and mechanical properties of blended cements hydrated at various temperatures
  publication-title: Cem. Concr. Res.
– volume: 49
  start-page: 635
  year: 2013
  end-page: 642
  ident: b0135
  article-title: Early-age strain-stress relationship and cracking behavior of slag cement mixtures subject to constant uniaxial restraint
  publication-title: Constr. Build. Mater.
– volume: 102
  start-page: 369
  year: 2015
  end-page: 386
  ident: b0295
  article-title: Degree of restraint concept in analysis of early-age stresses in concrete walls
  publication-title: Eng. Struct.
– volume: 105
  start-page: 149
  year: 2008
  end-page: 155
  ident: b0310
  article-title: Quantification of effects of fly ash type on concrete early-age cracking
  publication-title: ACI Mater. J.
– volume: 34
  start-page: 4019100
  year: 2020
  ident: b0045
  article-title: Cracking in Concrete Water Tank due to Restrained Shrinkage and Heat of Hydration: Field Investigations and 3D Finite Element Simulation
  publication-title: J. Perform. Constr. Facil.
– volume: 83
  start-page: 45
  year: 2017
  end-page: 56
  ident: b0415
  article-title: Stress prediction in very early-age concrete subject to restraint under varying temperature histories
  publication-title: Cem. Concr. Compos.
– volume: 39
  start-page: 154
  year: 2009
  end-page: 164
  ident: b0275
  article-title: Simulation of the thermal stress in mass concrete using a thermal stress measuring device
  publication-title: Cem. Concr. Res.
– reference: Zhimin Li, Recommendations for Scientific Breakthroughs of Chinese Universities in 2020, Science Vol 370, Issue 6523, Dec.18 2020.
– volume: 71
  start-page: 1167
  year: 2019
  end-page: 1179
  ident: b0585
  article-title: Early-age tensile creep and shrinkage-induced cracking in internally restrained concrete members
  publication-title: Mag. Concr. Res.
– year: 2021
  ident: b0250
  article-title: Development of self-stressing Engineered Cementitious Composites (ECC)
  publication-title: Cem. Concr. Compos.
– volume: 32
  start-page: 4020049
  year: 2020
  ident: b0095
  article-title: Effect of Various Supplementary Cementitious Materials on Early-Age Concrete Cracking
  publication-title: J. Mater. Civ. Eng.
– volume: 192
  start-page: 381
  year: 2018
  end-page: 390
  ident: b0145
  article-title: Effect of temperature history and restraint degree on cracking behavior of early-age concrete
  publication-title: Constr. Build. Mater.
– volume: 98
  start-page: 323
  year: 2001
  end-page: 331
  ident: b0110
  article-title: Creep, shrinkage, and cracking of restrained concrete at early age
  publication-title: ACI Mater. J.
– reference: H. Zhu, Y. Hu, Q. Li, Stress-and-strain based failure criterion for concrete, Shuili Fadian Xuebao/J. Hydroelectr. Eng. 37 (2018). 10.11660/slfdxb.20181201.
– reference: SL744-2016, Specification for load design of hydraulic structures, Ministry of Water Resources of China, Beijing, China, 2016.
– volume: 249
  year: 2020
  ident: b0120
  article-title: Water-repellent additive that increases concrete cracking resistance in dry curing environments
  publication-title: Constr. Build. Mater.
– reference: B. Delsaute, S. Staquet, Testing Concrete Since Setting Time Under Free and Restrained Conditions, in: Adv. Tech. Test. Cem. Mater., Springer, 2020: pp. 177–209.
– volume: 31
  start-page: 1895
  year: 2001
  end-page: 1899
  ident: b0195
  article-title: Tensile basic creep of early-age concrete under constant load
  publication-title: Cem. Concr. Res.
– reference: Federal Highway Administration, Portland Cement Concrete Pavements Research, 2016. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/pccp/thermal.cfm.
– volume: 26
  start-page: 4014058
  year: 2014
  ident: b0140
  article-title: Statistical determination of cracking probability for mass concrete
  publication-title: J. Mater. Civ. Eng.
– year: 2018
  ident: b0330
  article-title: C531–18, Standard test method for linear shrinkage and coefficient of thermal expansion of chemical-resistant mortars, grouts, monolithic surfacings, and polymer concretes
– volume: 39
  start-page: 809
  year: 2006
  end-page: 815
  ident: b0335
  article-title: Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction
  publication-title: Mater. Struct.
– volume: 95
  start-page: 188
  year: 2017
  end-page: 194
  ident: b0470
  article-title: Comparison of tensile and compressive creep of fly ash concretes in the hardening phase
  publication-title: Cem. Concr. Res.
– volume: 229
  year: 2019
  ident: b0520
  article-title: Risk of early age cracking in geopolymer concrete due to restrained shrinkage
  publication-title: Constr. Build. Mater.
– reference: M. Brown, G. Sellers, K.J. Folliard, D.W. Fowler, Restrained shrinkage cracking of concrete bridge decks: State-of-the-Art Review, 2001.
– volume: 52
  start-page: 91
  year: 2016
  end-page: 109
  ident: b0400
  article-title: Testing Concrete E-modulus at Very Early Ages Through Several Techniques: An Inter-laboratory Comparison
  publication-title: Strain.
– reference: P.K. Mehta, P.J.M. Monteiro, Concrete: microstructure, properties, and materials, McGraw-Hill Education, 2014.
– volume: 15
  start-page: 787
  year: 2011
  end-page: 798
  ident: b0465
  article-title: Behaviour of slag cement concrete under restraint conditions
  publication-title: Eur. J. Environ. Civ. Eng.
– volume: 44
  start-page: 749
  year: 2011
  end-page: 772
  ident: b0655
  article-title: Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations
  publication-title: Mater. Struct.
– volume: 39
  start-page: 426
  year: 2009
  end-page: 432
  ident: b0430
  article-title: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics
  publication-title: Cem. Concr. Res.
– volume: 146
  start-page: 410
  year: 2017
  end-page: 418
  ident: b0115
  article-title: Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age
  publication-title: Constr. Build. Mater.
– volume: 72
  start-page: 246
  year: 2020
  end-page: 261
  ident: b0555
  article-title: Early-age behaviour and cracking potential of fly ash concrete under restrained condition
  publication-title: Mag. Concr. Res.
– reference: K.A. Estensen, K. Terje, B. Øyvind, Updated Temperature-Stress Testing Machine (TSTM): Introductory Tests, Calculations, Verification, and Investigation of Variable Fly Ash Content, CONCREEP 10. (2021) 724–732. doi:10.1061/9780784479346.086.
– volume: 35
  start-page: 92
  year: 2002
  ident: b0180
  article-title: Early age creep and stress relaxation of concrete containing blended cements
  publication-title: Mater. Struct.
– volume: 259
  year: 2020
  ident: b0060
  article-title: Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers
  publication-title: Constr. Build. Mater.
– volume: 149
  start-page: 62
  year: 2017
  end-page: 75
  ident: b0240
  article-title: Autogenous shrinkage of high performance concrete: A review
  publication-title: Constr. Build. Mater.
– volume: 36
  start-page: 584
  year: 2006
  end-page: 591
  ident: b0300
  article-title: Tensile creep due to restraining stresses in high-strength concrete at early ages
  publication-title: Cem. Concr. Res.
– volume: 38
  start-page: 306
  year: 2013
  end-page: 315
  ident: b0365
  article-title: In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development
  publication-title: Constr. Build. Mater.
– volume: 2014
  year: 2014
  ident: b0600
  article-title: Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History
  publication-title: Adv. Mater. Sci. Eng.
– volume: 2164
  start-page: 58
  year: 2010
  end-page: 65
  ident: b0350
  article-title: Interlaboratory study on measuring coefficient of thermal expansion of concrete
  publication-title: Transp. Res. Rec.
– volume: 32
  start-page: 1645
  year: 2002
  end-page: 1651
  ident: b0575
  article-title: Development of new device for measuring thermal stresses
  publication-title: Cem. Concr. Res.
– volume: 229
  year: 2019
  ident: b0315
  article-title: Estimation of thermal stresses in the field test under the restraint method
  publication-title: Constr. Build. Mater.
– reference: R. Springenschmid, B. R, M. M, Development of the Cracking Frame and The Temperature-Stress Testing Machine, in: Therm. Crack. Concr. Early Ages, Munich, 1994: pp. 137–144.
– volume: 40
  start-page: 1096
  year: 2010
  end-page: 1105
  ident: b0435
  article-title: Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration
  publication-title: Cem. Concr. Res.
– volume: 32
  start-page: 1053
  year: 2002
  end-page: 1059
  ident: b0530
  article-title: Prediction of cracking within early-age concrete due to thermal, drying and creep behavior
  publication-title: Cem. Concr. Res.
– reference: T. Chariton, B. Kim, W.J. Weiss, Using passive acoustic energy to quantify cracking in volumetrically restrained cementitious systems, in: Am. Soc. Civ. Eng. Mech. Div. 15th ASCE EMD Conf. New York, 2002.
– volume: 36
  start-page: 373
  year: 2012
  end-page: 380
  ident: b0475
  article-title: Concrete early age basic creep: Experiments and test of rheological modelling approaches
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 200
  year: 2007
  end-page: 209
  ident: b0635
  article-title: An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage
  publication-title: Cem. Concr. Res.
– year: 2016
  ident: b0235
  article-title: Early age crack assessment of concrete structures: experimental investigation of decisive parameters
– volume: 45
  start-page: 192
  year: 2013
  end-page: 198
  ident: b0580
  article-title: Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure
  publication-title: Constr. Build. Mater.
– volume: 27
  start-page: 324
  year: 1994
  ident: b0090
  article-title: Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage
  publication-title: Mater. Struct.
– reference: S. Staquet, B. Delsaute, A. Darquennes, B. Espio, Design of a revisited TSTM system for testing concrete since setting time under free and restraint conditions, in: F. Toutlemonde, J.M. Torrenti (Eds.), Concrack3–Rilem-JCI Int. Work. Crack Control Mass Concr. Relat. Issues Concern. Early-Age Concr. Struct., RILEM Publications SARL, Paris, France, 2012: pp. 99–110.
– volume: 187
  start-page: 118
  year: 2018
  end-page: 130
  ident: b0640
  article-title: Influence of Barchip fiber on early-age cracking potential of high performance concrete under restrained condition
  publication-title: Constr. Build. Mater.
– volume: 231
  year: 2020
  ident: b0080
  article-title: Evaluation of behavior and cracking potential of early-age cementitious systems using uniaxial restraint tests: A review
  publication-title: Constr. Build. Mater.
– year: 2018
  ident: b0185
  article-title: Creep and hygrothermal effects in concrete structures
– volume: 34
  start-page: 881
  year: 2012
  ident: 10.1016/j.conbuildmat.2021.122762_b0440
  article-title: Continuous monitoring of concrete E-modulus since casting based on modal identification: A case study for in situ application
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2012.04.004
– ident: 10.1016/j.conbuildmat.2021.122762_b0355
  doi: 10.1617/2351580052.034
– volume: 164
  start-page: 820
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0680
  article-title: Influence of slag composition on cracking potential of slag-portland cement concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.12.216
– year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0185
– volume: 127
  start-page: 618
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0200
  article-title: Microprestress-solidification theory-based tensile creep modeling of early-age concrete: Considering temperature and relative humidity effects
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.10.055
– ident: 10.1016/j.conbuildmat.2021.122762_b0015
– volume: 226
  start-page: 651
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0130
  article-title: Reliability of standard methods for evaluating the early-age cracking risk of thermal-shrinkage origin in concrete walls
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.167
– volume: 39
  start-page: 426
  year: 2009
  ident: 10.1016/j.conbuildmat.2021.122762_b0430
  article-title: Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.01.016
– ident: 10.1016/j.conbuildmat.2021.122762_b0625
– year: 2000
  ident: 10.1016/j.conbuildmat.2021.122762_b0670
– volume: 72
  start-page: 246
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0555
  article-title: Early-age behaviour and cracking potential of fly ash concrete under restrained condition
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.18.00106
– volume: 129
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0540
  article-title: A viscoelastic poromechanical model for shrinkage and creep of concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2019.105970
– volume: 112
  start-page: 529
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0505
  article-title: Effect of casting temperature on strength and density of plain and blended cement concretes prepared and cured under hot weather conditions
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.02.211
– volume: 149
  start-page: 62
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0240
  article-title: Autogenous shrinkage of high performance concrete: A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.05.064
– volume: 32
  start-page: 5020004
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0525
  article-title: Tensile Creep Tests of Hydraulic Concrete under Different Curing Conditions
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003090
– volume: 40
  start-page: 1096
  year: 2010
  ident: 10.1016/j.conbuildmat.2021.122762_b0435
  article-title: Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.02.014
– volume: 149
  start-page: 705
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0215
  article-title: Tensile creep and early-age concrete cracking due to restrained shrinkage
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.05.081
– volume: 46
  start-page: 1167
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0460
  article-title: Tensile and compressive creep deformations of hardening concrete containing mineral additives
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-012-9962-7
– volume: 31
  start-page: 1895
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.122762_b0195
  article-title: Tensile basic creep of early-age concrete under constant load
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00691-3
– volume: 17
  start-page: 319
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0565
  article-title: Development of Strain-Induced Stresses in Early Age Concrete Composed of Recycled Gravel or Sand
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.17.319
– ident: 10.1016/j.conbuildmat.2021.122762_b0265
– ident: 10.1016/j.conbuildmat.2021.122762_b0590
  doi: 10.1061/(ASCE)MT.1943-5533.0000469
– year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0030
– ident: 10.1016/j.conbuildmat.2021.122762_b0445
– volume: 83
  start-page: 239
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0205
  article-title: Modeling basic creep of concrete since setting time
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.07.023
– volume: 2113
  start-page: 83
  year: 2009
  ident: 10.1016/j.conbuildmat.2021.122762_b0360
  article-title: Effect of relative humidity on coefficient of thermal expansion of hardened cement paste and concrete
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2113-10
– year: 2015
  ident: 10.1016/j.conbuildmat.2021.122762_b0320
– volume: 105
  start-page: 149
  year: 2008
  ident: 10.1016/j.conbuildmat.2021.122762_b0310
  article-title: Quantification of effects of fly ash type on concrete early-age cracking
  publication-title: ACI Mater. J.
– ident: 10.1016/j.conbuildmat.2021.122762_b0645
– volume: 10
  start-page: 4451
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0490
  article-title: A Simplified Method for Real-Time Prediction of Temperature in Mass Concrete at Early Age
  publication-title: Appl. Sci.
  doi: 10.3390/app10134451
– ident: 10.1016/j.conbuildmat.2021.122762_b0620
– start-page: 295
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0165
  article-title: Evolution of Coefficient of Thermal Expansion of Concrete at Early Ages
– volume: 196
  start-page: 307
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0675
  article-title: Early-age behavior and cracking resistance of high-strength concrete reinforced with Dramix 3D steel fiber
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.125
– ident: 10.1016/j.conbuildmat.2021.122762_b0595
– volume: 187
  start-page: 118
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0640
  article-title: Influence of Barchip fiber on early-age cracking potential of high performance concrete under restrained condition
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.07.121
– volume: 192
  start-page: 381
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0145
  article-title: Effect of temperature history and restraint degree on cracking behavior of early-age concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.066
– volume: 25
  start-page: 1277
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0175
  article-title: Tensile creep behavior of concrete subject to constant restraint at very early ages
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000671
– volume: 44
  start-page: 749
  year: 2011
  ident: 10.1016/j.conbuildmat.2021.122762_b0655
  article-title: Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-010-9663-z
– volume: 212
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0040
  article-title: Thermally induced cracking on the massive concrete structure of the NSLS II synchrotron and its engineering remediation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110519
– ident: 10.1016/j.conbuildmat.2021.122762_b0225
  doi: 10.1007/978-3-030-39738-8_6
– ident: 10.1016/j.conbuildmat.2021.122762_b0690
– volume: 45
  start-page: 192
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0580
  article-title: Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.056
– volume: 39
  start-page: 809
  year: 2006
  ident: 10.1016/j.conbuildmat.2021.122762_b0335
  article-title: Coefficient of thermal expansion of cement paste and concrete: Mechanisms of moisture interaction
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-006-9086-z
– volume: 2019
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0155
  article-title: Hardening Concrete Exposed to Realistic Curing Temperature Regimes and Restraint Conditions: Advanced Testing and Design Methodology
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2019/9071034
– volume: 229
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0520
  article-title: Risk of early age cracking in geopolymer concrete due to restrained shrinkage
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116840
– volume: 2164
  start-page: 58
  year: 2010
  ident: 10.1016/j.conbuildmat.2021.122762_b0350
  article-title: Interlaboratory study on measuring coefficient of thermal expansion of concrete
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2164-08
– volume: 199
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0510
  article-title: Elevated temperature inversion phenomenon in fracture properties of concrete and its application to maturity model
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2018.05.040
– volume: 10
  start-page: 929
  year: 2021
  ident: 10.1016/j.conbuildmat.2021.122762_b0535
  article-title: Creep of Early Age Concrete under Variable Stress
  publication-title: CONCREEP
– volume: 107
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0515
  article-title: On the origins of transient thermal deformation of concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.103508
– volume: 36
  start-page: 183
  year: 2003
  ident: 10.1016/j.conbuildmat.2021.122762_b0570
  article-title: Evaluation of early age cracking characteristics in cementitious systems
  publication-title: Mater. Struct.
  doi: 10.1007/BF02479556
– volume: 146
  start-page: 410
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0115
  article-title: Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.04.056
– year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0235
– year: 2021
  ident: 10.1016/j.conbuildmat.2021.122762_b0250
  article-title: Development of self-stressing Engineered Cementitious Composites (ECC)
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconres.2021.106580
– start-page: 318
  year: 2010
  ident: 10.1016/j.conbuildmat.2021.122762_b0380
  article-title: Model Code 2010—First Complete Draft
  publication-title: Fib Bull.
– volume: 115
  year: 2021
  ident: 10.1016/j.conbuildmat.2021.122762_b0065
  article-title: Sprayable engineered cementitious composites (ECC) using calcined clay limestone cement (LC3) and PP fiber
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2020.103868
– volume: 98
  start-page: 323
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.122762_b0110
  article-title: Creep, shrinkage, and cracking of restrained concrete at early age
  publication-title: ACI Mater. J.
– year: 2003
  ident: 10.1016/j.conbuildmat.2021.122762_b0285
– volume: 16
  start-page: 35
  year: 2004
  ident: 10.1016/j.conbuildmat.2021.122762_b0405
  article-title: Mechanical characteristics of axially restrained concrete specimens at early ages
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2004)16:1(35)
– volume: 103
  start-page: 67
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0660
  article-title: Influence of curing temperature on autogenous shrinkage and cracking resistance of high-performance concrete at an early age
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.11.039
– volume: 20
  start-page: 235
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0070
  article-title: A monitoring-mining-modeling system and its application to the temperature status of the Xiluodu arch dam
  publication-title: Adv. Struct. Eng.
  doi: 10.1177/1369433216660012
– volume: 35
  start-page: 92
  year: 2002
  ident: 10.1016/j.conbuildmat.2021.122762_b0180
  article-title: Early age creep and stress relaxation of concrete containing blended cements
  publication-title: Mater. Struct.
  doi: 10.1007/BF02482107
– volume: 34
  start-page: 4019100
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0045
  article-title: Cracking in Concrete Water Tank due to Restrained Shrinkage and Heat of Hydration: Field Investigations and 3D Finite Element Simulation
  publication-title: J. Perform. Constr. Facil.
  doi: 10.1061/(ASCE)CF.1943-5509.0001356
– ident: 10.1016/j.conbuildmat.2021.122762_b0290
– volume: 71
  start-page: 1167
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0585
  article-title: Early-age tensile creep and shrinkage-induced cracking in internally restrained concrete members
  publication-title: Mag. Concr. Res.
  doi: 10.1680/jmacr.18.00038
– volume: 38
  start-page: 306
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0365
  article-title: In situ measurement of coefficient of thermal expansion in hardening concrete and its effect on thermal stress development
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.07.111
– ident: 10.1016/j.conbuildmat.2021.122762_b0605
– volume: 97
  start-page: 288
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0485
  article-title: Methodology of obtaining intrinsic creep property of concrete by flexural deflection test
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.01.003
– volume: 36
  start-page: 584
  year: 2006
  ident: 10.1016/j.conbuildmat.2021.122762_b0300
  article-title: Tensile creep due to restraining stresses in high-strength concrete at early ages
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2005.11.017
– volume: 34
  start-page: 1219
  year: 2004
  ident: 10.1016/j.conbuildmat.2021.122762_b0395
  article-title: Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2003.12.011
– volume: 259
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0060
  article-title: Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119805
– volume: 124
  start-page: 765
  year: 1998
  ident: 10.1016/j.conbuildmat.2021.122762_b0245
  article-title: Shrinkage cracking of restrained concrete slabs
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1998)124:7(765)
– volume: 31
  start-page: 1867
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.122762_b0630
  article-title: Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00601-9
– ident: 10.1016/j.conbuildmat.2021.122762_b0375
– ident: 10.1016/j.conbuildmat.2021.122762_b0650
– volume: 38
  start-page: 1315
  year: 2008
  ident: 10.1016/j.conbuildmat.2021.122762_b0545
  article-title: Predictions and verifications of early-age stress development in hydrating blended cement concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2008.05.001
– year: 2014
  ident: 10.1016/j.conbuildmat.2021.122762_b0390
– year: 2011
  ident: 10.1016/j.conbuildmat.2021.122762_b0325
– ident: 10.1016/j.conbuildmat.2021.122762_b0615
– volume: 26
  start-page: 4014058
  year: 2014
  ident: 10.1016/j.conbuildmat.2021.122762_b0140
  article-title: Statistical determination of cracking probability for mass concrete
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0000947
– ident: 10.1016/j.conbuildmat.2021.122762_b0610
  doi: 10.1061/9780784479346.086
– volume: 40
  start-page: 1138
  year: 2010
  ident: 10.1016/j.conbuildmat.2021.122762_b0345
  article-title: A volumetric technique for measuring the coefficient of thermal expansion of hardening cement paste and mortar
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.03.021
– ident: 10.1016/j.conbuildmat.2021.122762_b0025
– volume: 106
  start-page: 448
  year: 2009
  ident: 10.1016/j.conbuildmat.2021.122762_b0035
  article-title: Effects of construction time and coarse aggregate on bridge deck cracking
  publication-title: ACI Mater. J.
– volume: 102
  start-page: 28
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0220
  article-title: Temperature-stress testing machine – a state-of-the-art design and its unique applications in concrete research
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.04.019
– volume: 83
  start-page: 45
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0415
  article-title: Stress prediction in very early-age concrete subject to restraint under varying temperature histories
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.07.006
– ident: 10.1016/j.conbuildmat.2021.122762_b0455
– volume: 56
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0230
  article-title: Longitudinal restraining devices for the evaluation of structural behaviour of cement-based materials: The past, present and prospective trends
  publication-title: Strain.
  doi: 10.1111/str.12343
– volume: 37
  start-page: 200
  year: 2007
  ident: 10.1016/j.conbuildmat.2021.122762_b0635
  article-title: An experimental approach for the analysis of early-age behaviour of high-performance concrete structures under restrained shrinkage
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2006.11.005
– volume: 30
  start-page: 1701
  year: 2000
  ident: 10.1016/j.conbuildmat.2021.122762_b0480
  article-title: Autogenous shrinkage and induced restraining stresses in high-strength concretes
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(00)00399-9
– volume: 102
  start-page: 369
  year: 2015
  ident: 10.1016/j.conbuildmat.2021.122762_b0295
  article-title: Degree of restraint concept in analysis of early-age stresses in concrete walls
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2015.08.025
– ident: 10.1016/j.conbuildmat.2021.122762_b0005
– volume: 32
  start-page: 1645
  year: 2002
  ident: 10.1016/j.conbuildmat.2021.122762_b0575
  article-title: Development of new device for measuring thermal stresses
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00842-6
– volume: 35
  start-page: 49
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0370
  article-title: Controlling the coefficient of thermal expansion of cementitious materials - A new application for superabsorbent polymers
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2012.08.010
– ident: 10.1016/j.conbuildmat.2021.122762_b0550
– year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0050
– ident: 10.1016/j.conbuildmat.2021.122762_b0450
– volume: 123
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0260
  article-title: Properties of early-age concrete relevant to cracking in massive concrete
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2019.05.015
– volume: 23
  start-page: 172
  year: 1990
  ident: 10.1016/j.conbuildmat.2021.122762_b0280
  article-title: Investigation of thermal cracking with the cracking-frame
  publication-title: Mater. Struct.
  doi: 10.1007/BF02473015
– volume: 124
  start-page: 276
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0495
  article-title: Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.07.104
– volume: 53
  start-page: 25
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.122762_b0685
  article-title: Evaluation of thermal crack by a probabilistic model using the tensile strain capacity
  publication-title: Mag. Concr. Res.
  doi: 10.1680/macr.2001.53.1.25
– volume: 249
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0120
  article-title: Water-repellent additive that increases concrete cracking resistance in dry curing environments
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118704
– volume: 106
  start-page: 537
  year: 2009
  ident: 10.1016/j.conbuildmat.2021.122762_b0210
  article-title: Cracking sensitivity of normal-and high-strength concretes
  publication-title: ACI Mater. J.
– volume: 229
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0315
  article-title: Estimation of thermal stresses in the field test under the restraint method
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.116890
– ident: 10.1016/j.conbuildmat.2021.122762_b0665
– volume: 31
  start-page: 695
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.122762_b0500
  article-title: The microstructure and mechanical properties of blended cements hydrated at various temperatures
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(01)00471-9
– volume: 231
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0080
  article-title: Evaluation of behavior and cracking potential of early-age cementitious systems using uniaxial restraint tests: A review
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117146
– volume: 27
  start-page: 324
  year: 1994
  ident: 10.1016/j.conbuildmat.2021.122762_b0090
  article-title: Testing system for determining the mechanical behaviour of early age concrete under restrained and free uniaxial shrinkage
  publication-title: Mater. Struct.
  doi: 10.1007/BF02473424
– volume: 99
  start-page: 260
  year: 2015
  ident: 10.1016/j.conbuildmat.2021.122762_b0105
  article-title: Influence of prewetted lightweight aggregates on the behavior and cracking potential of internally cured concrete at an early age
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.093
– volume: 244
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0075
  article-title: Restrained cracking failure behavior of concrete due to temperature and shrinkage
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118318
– volume: 32
  start-page: 1053
  year: 2002
  ident: 10.1016/j.conbuildmat.2021.122762_b0530
  article-title: Prediction of cracking within early-age concrete due to thermal, drying and creep behavior
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(02)00743-3
– volume: 36
  start-page: 373
  year: 2012
  ident: 10.1016/j.conbuildmat.2021.122762_b0475
  article-title: Concrete early age basic creep: Experiments and test of rheological modelling approaches
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.04.101
– volume: 93
  start-page: 409
  year: 1996
  ident: 10.1016/j.conbuildmat.2021.122762_b0270
  article-title: Shrinkage cracking of high-strength concrete
  publication-title: Mater. J.
– ident: 10.1016/j.conbuildmat.2021.122762_b0420
– volume: 29
  start-page: 335
  year: 1996
  ident: 10.1016/j.conbuildmat.2021.122762_b0410
  article-title: Degree of hydration-based description of mechanical properties of early age concrete
  publication-title: Mater. Struct.
  doi: 10.1007/BF02486341
– volume: 49
  start-page: 635
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.122762_b0135
  article-title: Early-age strain-stress relationship and cracking behavior of slag cement mixtures subject to constant uniaxial restraint
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.061
– volume: 39
  start-page: 154
  year: 2009
  ident: 10.1016/j.conbuildmat.2021.122762_b0275
  article-title: Simulation of the thermal stress in mass concrete using a thermal stress measuring device
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2008.12.008
– volume: 28
  start-page: 1761
  year: 1998
  ident: 10.1016/j.conbuildmat.2021.122762_b0160
  article-title: Compressive strength development of concrete with different curing time and temperature
  publication-title: Cem. Concr. Res.
  doi: 10.1016/S0008-8846(98)00164-1
– volume: 10
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0085
  article-title: Self-developed testing system for determining the temperature behavior of concrete
  publication-title: Materials (Basel).
  doi: 10.3390/ma10040419
– volume: 114
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0305
  article-title: Effects of Fly Ash on Early-Age Properties and Cracking of Concrete
  publication-title: ACI Mater. J.
– volume: 79
  start-page: 148
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0055
  article-title: Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.02.010
– ident: 10.1016/j.conbuildmat.2021.122762_b0125
– ident: 10.1016/j.conbuildmat.2021.122762_b0385
– volume: 98
  start-page: 14
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0340
  article-title: A new test setup for measuring early age coefficient of thermal expansion of concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.01.014
– volume: 11
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0190
  article-title: Double feedback control method for determining early-age restrained creep of concrete using a temperature stress testing machine
  publication-title: Materials (Basel).
  doi: 10.3390/ma11071079
– ident: 10.1016/j.conbuildmat.2021.122762_b0100
– year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0255
  article-title: The effect of shrinkage reducing admixtures on drying shrinkage, autogenous deformation, and early age stress development of concrete
  publication-title: Struct. Concr. n/a
– volume: 32
  start-page: 4020049
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.122762_b0095
  article-title: Effect of Various Supplementary Cementitious Materials on Early-Age Concrete Cracking
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)MT.1943-5533.0003120
– volume: 15
  start-page: 787
  year: 2011
  ident: 10.1016/j.conbuildmat.2021.122762_b0465
  article-title: Behaviour of slag cement concrete under restraint conditions
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2011.9693365
– year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0330
– volume: 95
  start-page: 188
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.122762_b0470
  article-title: Comparison of tensile and compressive creep of fly ash concretes in the hardening phase
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2017.02.018
– volume: 2014
  year: 2014
  ident: 10.1016/j.conbuildmat.2021.122762_b0600
  article-title: Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2014/671795
– volume: 2014
  year: 2014
  ident: 10.1016/j.conbuildmat.2021.122762_b0020
  article-title: Numerical analysis on temperature rise of a concrete arch dam after sealing based on measured data
  publication-title: Math. Probl. Eng.
– volume: 26
  start-page: 437
  year: 2004
  ident: 10.1016/j.conbuildmat.2021.122762_b0170
  article-title: Applicability of degree of hydration concept and maturity method for thermo-visco-elastic behaviour of early age concrete
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/S0958-9465(03)00067-2
– volume: 28
  start-page: 299
  year: 2006
  ident: 10.1016/j.conbuildmat.2021.122762_b0425
  article-title: Determination of initial degree of hydration for improvement of early-age properties of concrete using ultrasonic wave propagation
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2006.02.007
– volume: 99
  start-page: 191
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0560
  article-title: Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2019.02.018
– year: 2018
  ident: 10.1016/j.conbuildmat.2021.122762_b0010
– volume: 196
  start-page: 1
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.122762_b0150
  article-title: Maturity model for fracture properties of concrete considering coupling effect of curing temperature and humidity
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.11.127
– volume: 52
  start-page: 91
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.122762_b0400
  article-title: Testing Concrete E-modulus at Very Early Ages Through Several Techniques: An Inter-laboratory Comparison
  publication-title: Strain.
  doi: 10.1111/str.12172
SSID ssj0006262
Score 2.4738927
SecondaryResourceType review_article
Snippet •Failure stress is lower than the tensile strength for concrete thermal cracking.•The unsuitable failure criterion is the main reason for occurrence of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 122762
SubjectTerms Concrete
Creep
Early age
Failure criterion
Temperature stress test machine (TSTM)
Thermal cracking
Title Concrete thermal failure criteria, test method, and mechanism: A review
URI https://dx.doi.org/10.1016/j.conbuildmat.2021.122762
Volume 283
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBdGD-MT6KCt47LbJZptkxUsp1mqxB7XYW9hXIGLTovHqb3c2D1tBUPCUBxnIfszOfAsz3yB0rrvcFzI0xKMxJYy6igimOfG0dDR3ta_zRuG7sT-csNtpd1pD_aoXxpZVlrG_iOl5tC7fdEo0O4sk6TwAObAJOIRDiwMswjaaMxZYL29_LMs8gLDTQm_PDlhxw3V0tqzxgiOntNOngRzCUZG6bZfSwKc_56iVvDPYRlslYcS94p92UM2ku2hzRUZwD1335ymQv8xgy-Zm8HUsEltujiEkWC1m0cLAKDNcjItuYZFquLc9v8nb7AL3cNHAso8mg6vH_pCUAxKI8sIgIyJwhPIcSSXwHi67SrmAeNcwPw6MCT0Da-KSaaEDMID9qx0pDexSX4bKKoMdoHo6T80hwhqYgdGx8T1I2oo60uOKg7lyPWEY9xsorCCJVKkebodYvERVmdhztIJmZNGMCjQbiH6ZLgoJjb8YXVa4R9_8IYJQ_7v50f_Mj9GGfSK5SusJqmev7-YUyEcmm7l3NdFa72Y0HNvr6P5p9AlfY9wl
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qCx4P4on1XMHHxiabW3wpxdra48UW-hb2CkRsWjT-f2ebpFYQFHwLSQaSj91vvoWZbwBupBt6jAfKsGlMDYdawmCODA1bclOGlvTkslF4OPK6E-dp6k4r0C57YXRZZcH9Oacv2bq40yzQbC6SpPmM4kAn4AAPLSaqCHcDatqdyq1CrdXrd0crQkbNTnPLPT1jxQo24fqrzAtPnVwPoEZ9iKdFat1alPoe_TlNraWezh7sFpqRtPLP2oeKSg9gZ81J8BAe2_MU9V-miBZ0M3w7ZomuOCfICtqOmTUIisqM5BOjG4SlEq9122_yPrsjLZL3sBzBpPMwbneNYkaCIezAzwzmm0zYJqccpU_IXSEsBN1Vjhf7SgW2wn8KuSOZ9DEAt7A0OVe4UT0eCG0OdgzVdJ6qEyASxYGSsfJszNuCmtwORYjhwrKZckKvDkEJSSQKA3E9x-I1KivFXqI1NCONZpSjWQe6Cl3kLhp_CbovcY--LYkI2f738NP_hV_BVnc8HESD3qh_Btv6ibE0bT2Havb2oS5Qi2T8slhrnwyG3TM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concrete+thermal+failure+criteria%2C+test+method%2C+and+mechanism%3A+A+review&rft.jtitle=Construction+%26+building+materials&rft.au=Zhu%2C+He&rft.au=Hu%2C+Yu&rft.au=Ma%2C+Rui&rft.au=Wang%2C+Juan&rft.date=2021-05-10&rft.issn=0950-0618&rft.volume=283&rft.spage=122762&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.122762&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2021_122762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon