Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries

Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle s...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 38; no. 5; pp. 1059 - 1065
Main Authors Sung, Jong Hun, Kim, Tae Wan, Kang, Hyeong-Ku, Choi, So Young, Hasan, Fuead, Mohanty, Sangram Keshari, Kim, Jinhong, Srinivasa, Madhusudana Koratikere, Shin, Heon-Cheol, Yoo, Hyun Deog
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li 3 PO 4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li + for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.
AbstractList Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.
Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5-3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0-4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes. KCI Citation Count: 3
Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li 3 PO 4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li + for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.
Author Srinivasa, Madhusudana Koratikere
Kim, Jinhong
Sung, Jong Hun
Choi, So Young
Hasan, Fuead
Mohanty, Sangram Keshari
Shin, Heon-Cheol
Kim, Tae Wan
Kang, Hyeong-Ku
Yoo, Hyun Deog
Author_xml – sequence: 1
  givenname: Jong Hun
  surname: Sung
  fullname: Sung, Jong Hun
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 2
  givenname: Tae Wan
  surname: Kim
  fullname: Kim, Tae Wan
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 3
  givenname: Hyeong-Ku
  surname: Kang
  fullname: Kang, Hyeong-Ku
  organization: Department of Materials Science and Engineering, Pusan National University
– sequence: 4
  givenname: So Young
  surname: Choi
  fullname: Choi, So Young
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 5
  givenname: Fuead
  surname: Hasan
  fullname: Hasan, Fuead
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 6
  givenname: Sangram Keshari
  surname: Mohanty
  fullname: Mohanty, Sangram Keshari
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 7
  givenname: Jinhong
  surname: Kim
  fullname: Kim, Jinhong
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 8
  givenname: Madhusudana Koratikere
  surname: Srinivasa
  fullname: Srinivasa, Madhusudana Koratikere
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
– sequence: 9
  givenname: Heon-Cheol
  surname: Shin
  fullname: Shin, Heon-Cheol
  organization: Department of Materials Science and Engineering, Pusan National University
– sequence: 10
  givenname: Hyun Deog
  surname: Yoo
  fullname: Yoo, Hyun Deog
  email: hyundeog.yoo@pusan.ac.kr
  organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002711663$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE9rGzEQxUVIIU7aD5DbQk89yJ3RrqTdYzBtEnDqkj9nVZG1ayWO5EraQL595WwgUGh10DDM7z1m3jE59MFbQk4R5gggvybEFhsKDClIIWh7QGbYSU4lY3BIZsC4oIjIj8hxSg8AnAsGM_LrZtzZ6EKsNm7YVM9hm_Vgq6X74WAuFgHm7MqXb8Uqo_MmrG01JueHQtQ_V01lgs77ti8OW5c3bnyiLvjqXudcfG36SD70epvsp7d6Qu6-f7tdXNDl6vxycbakpm5lplq0BtfWNo0U2HdYG8GFlGBqWwMXayObMuZdb6DuyuNr3hZaaiM7Ie9tfUK-TL4-9urROBW0e61DUI9RnV3fXqpOyrZBKOznid3F8Hu0KauHMEZf1lOMMyZa1jRYKDlRJoaUou2VcblcG3yO2m0VgtpHr6boVYle7aNXbVHiX8pddE86vvxXwyZNKqwfbHzf6d-iP-nglNM
CitedBy_id crossref_primary_10_1002_admi_202300268
crossref_primary_10_1002_ente_202300153
crossref_primary_10_1016_j_cej_2023_142686
crossref_primary_10_1021_acs_energyfuels_3c04636
crossref_primary_10_1002_smll_202409310
crossref_primary_10_1016_j_jcis_2024_05_138
crossref_primary_10_1016_j_jiec_2024_06_009
crossref_primary_10_33961_jecst_2023_00150
crossref_primary_10_3390_en16176141
crossref_primary_10_1007_s11814_025_00388_2
crossref_primary_10_1016_j_cclet_2024_109987
crossref_primary_10_1002_adma_202416872
crossref_primary_10_1016_j_apsusc_2022_156018
crossref_primary_10_1002_advs_202400405
crossref_primary_10_1021_acs_iecr_1c04205
Cites_doi 10.1109/TVT.2012.2214246
10.1002/admi.201700567
10.1016/j.electacta.2018.08.085
10.1016/j.jct.2011.09.005
10.1002/anie.201913351
10.1149/1.3306339
10.1002/admi.201901749
10.1016/j.jpowsour.2017.07.087
10.1016/j.jallcom.2006.11.087
10.1016/j.ceramint.2014.03.170
10.1149/1.2716556
10.1149/1.1619988
10.1021/acsami.7b07221
10.1016/j.ensm.2018.02.016
10.1007/s11581-016-1643-z
10.1016/j.elecom.2014.03.017
10.1016/j.jpowsour.2013.02.022
10.1016/j.apsusc.2019.144506
10.1016/j.jallcom.2016.10.099
10.1002/batt.201800122
10.1016/j.electacta.2017.03.155
10.1002/aenm.201802847
10.1016/j.electacta.2016.02.156
10.1149/1.1838758
10.1016/j.electacta.2020.135871
10.1007/s12274-014-0631-8
10.1016/j.jpowsour.2014.12.128
10.1002/chem.201304744
10.1021/acsami.7b15808
10.1016/j.electacta.2018.08.091
10.1016/j.ceramint.2017.08.048
10.1016/j.applthermaleng.2013.11.048
10.1021/acs.jpcc.7b06122
10.1016/j.jpowsour.2016.07.008
10.1039/C6DT01764A
10.1021/acsami.5b02690
10.1063/1.5029766
10.1016/j.jpowsour.2010.09.027
10.1016/j.electacta.2015.06.085
10.1016/j.jpowsour.2017.05.042
10.1016/j.electacta.2019.04.153
10.1149/1.3028318
10.1021/ja00784a018
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2021
The Korean Institute of Chemical Engineers 2021.
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2021
– notice: The Korean Institute of Chemical Engineers 2021.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-021-0766-8
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 1065
ExternalDocumentID oai_kci_go_kr_ARTI_9778410
10_1007_s11814_021_0766_8
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c387t-a68c1dee44761f913c656770c3e3056dc741de59fc0399995d58ee47ac7967be3
IEDL.DBID U2A
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:31 EST 2024
Sun Jul 13 05:39:41 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Tue Jul 01 03:29:41 EDT 2025
Fri Feb 21 02:48:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords High Voltage Operation
Nickel-rich Cathode
Lithium Phosphate
Coating
Cathode-electrolyte Interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-a68c1dee44761f913c656770c3e3056dc741de59fc0399995d58ee47ac7967be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2522682441
PQPubID 2044390
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9778410
proquest_journals_2522682441
crossref_citationtrail_10_1007_s11814_021_0766_8
crossref_primary_10_1007_s11814_021_0766_8
springer_journals_10_1007_s11814_021_0766_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References VäyrynenASalminenJJ. Chem. Thermodyn.2012468010.1016/j.jct.2011.09.0051:CAS:528:DC%2BC3MXhs1ejtrbP
DingFLiJDengFXuGLiuYYangKKangFACS Appl. Mater. Interfaces20179279361:CAS:528:DC%2BC2sXht1Gjt7vK2875839910.1021/acsami.7b07221
WangGChenCChenYKangXYangCWangFLiuYXiongXAngew. Chem. Int. Ed.20205920551:CAS:528:DC%2BC1MXitlyis7jE10.1002/anie.201913351
KimYChoJJ. Electrochem. Soc.2007154A4951:CAS:528:DC%2BD2sXmvVyku7w%3D10.1149/1.2716556
TranT-HHarmandSDesmetBFilangiSAppl. Therm. Eng.20146355110.1016/j.applthermaleng.2013.11.048
LiangLSunXWuCHouLSunJZhangXYuanCACS Appl. Mater. Interfaces20181054981:CAS:528:DC%2BC1cXhsVarsLg%3D2935721910.1021/acsami.7b15808
RanQZhaoHHuYShenQLiuWLiuJShuXZhangMLiuSTanMElectrochim. Acta2018289821:CAS:528:DC%2BC1cXhs12hs73K10.1016/j.electacta.2018.08.091
AyuN IKartiniEPrayogiL DFaisalMIonics20162210511:CAS:528:DC%2BC28XhtlOmtLs%3D10.1007/s11581-016-1643-z
ZhuXShangKJiangXAiXYangHCaoYCeram. Int.201440112451:CAS:528:DC%2BC2cXmtVChtrc%3D10.1016/j.ceramint.2014.03.170
TangZ-FWuRHuangP-FWangQ-SChenC-HJ. Alloys Compd.201769311571:CAS:528:DC%2BC28XhslCru7bN10.1016/j.jallcom.2016.10.099
LiuJManthiramAJ. Electrochem. Soc.2009156A661:CAS:528:DC%2BD1cXhsVCksbnP10.1149/1.3028318
SongH GKimJ YKimK TParkY JJ. Power Sources201119668471:CAS:528:DC%2BC3MXmvFyktbg%3D10.1016/j.jpowsour.2010.09.027
MaXWangCHanXSunJJ. Alloys Compd.20084533521:CAS:528:DC%2BD1cXjtV2rtb8%3D10.1016/j.jallcom.2006.11.087
SpäthTBeckerDSchulzNHausbrandRJaegermannWAdv. Mater. Interfaces20174170056710.1002/admi.2017005671:CAS:528:DC%2BC2sXhvFCjsLjM
DixitMMarkovskyBSchipperFAurbachDMajorD TJ. Phys. Chem. C2017121226281:CAS:528:DC%2BC2sXhsFGhs73L10.1021/acs.jpcc.7b06122
XuLZhouFZhouHKongJWangQYanGElectrochim. Acta20182891201:CAS:528:DC%2BC1cXhslSmsb7N10.1016/j.electacta.2018.08.085
LiangLZhangWZhaoFDenisD KZamanF uHouLYuanCAdv. Mater. Interfaces2020719017491:CAS:528:DC%2BB3cXisVShsLk%3D10.1002/admi.201901749
LeeS-WKimM-SJeongJ HKimD-HChungK YRohK CKimK-BJ. Power Sources20173602061:CAS:528:DC%2BC2sXpslWku70%3D10.1016/j.jpowsour.2017.05.042
KimK CJegalJ-PBakS-MRohK CKimK-BElectrochem. Commun.2014431131:CAS:528:DC%2BC2cXotlWrtbc%3D10.1016/j.elecom.2014.03.017
KuwataNIwagamiNTanjiYMatsudaYKawamuraJJ. Electrochem. Soc.2010157A5211:CAS:528:DC%2BC3cXjt1amu7g%3D10.1149/1.3306339
ContourJSalesseAFromentMGarreauMTheveninJWarinDJ. Microsc. Spect. Elec.197944831:CAS:528:DyaL3cXkvFygtA%3D%3D
TaoTChenCYaoYLiangBLuSChenYCeram. Int.201743151731:CAS:528:DC%2BC2sXhtlWgs7nF10.1016/j.ceramint.2017.08.048
HataJ IHirayamaMSuzukiKDupréNGuyomardDKannoRBatter. Supercaps201924541:CAS:528:DC%2BC1MXptFamtrY%3D10.1002/batt.201800122
AlaouiCIEEE Trans. Veh. Technol.2012629810.1109/TVT.2012.2214246
ZhangWLiangLZhaoFLiuYHouLYuanCElectrochim. Acta20203401358711:CAS:528:DC%2BB3cXkslaru74%3D10.1016/j.electacta.2020.135871
ZouPLinZFanMWangFLiuYXiongXAppl. Surf. Sci.20205041445061:CAS:528:DC%2BC1MXitFShtLnO10.1016/j.apsusc.2019.144506
LeeY-SShinW-KKannanA GKooS MKimD-WACS Appl. Mater. Interfaces20157139441:CAS:528:DC%2BC2MXhtVarsrzP2608376610.1021/acsami.5b02690
WangZLiuEHeCShiCLiJZhaoNJ. Power Sources2013236251:CAS:528:DC%2BC3sXmsFantL4%3D10.1016/j.jpowsour.2013.02.022
JoC-HChoD-HNohH-JYashiroHSunY-KMyungS TNano Res.2015814641:CAS:528:DC%2BC2cXitVChs7vF10.1007/s12274-014-0631-8
BianXFuQBieXYangPQiuHPangQChenGDuFWeiYElectrochim. Acta20151748751:CAS:528:DC%2BC2MXhtVKht7vF10.1016/j.electacta.2015.06.085
ChoWKimS-MSongJ HYimTWooS-GLeeK-WKimJ-SKimY-JJ. Power Sources2015282451:CAS:528:DC%2BC2cXitFOqsLnP10.1016/j.jpowsour.2014.12.128
ChenZWangJHuangJFuTSunGLaiSZhouRLiKZhaoJJ. Power Sources20173631681:CAS:528:DC%2BC2sXht1CjsLnP10.1016/j.jpowsour.2017.07.087
DengBWangHGeWLiXYanXChenTQuMPengGElectrochim. Acta2017236611:CAS:528:DC%2BC2sXltlOnsLo%3D10.1016/j.electacta.2017.03.155
QinCCaoJChenJDaiGWuTChenYTangYLiAChenYDalton Trans.20164596691:CAS:528:DC%2BC28XosFejur4%3D2722504410.1039/C6DT01764A27225044
WangDLiXWangZGuoHXuYFanYElectrochim. Acta20161961011:CAS:528:DC%2BC28Xjs1eksbs%3D10.1016/j.electacta.2016.02.156
ChenJZhuLJiaDJiangXWuYHaoQXiaXOuyangYPengLTangWElectrochim. Acta20193121791:CAS:528:DC%2BC1MXptFWqsrk%3D10.1016/j.electacta.2019.04.153
MaoLAiLLiSHouQXieYLiangYXieJAIP Conf. Proc.2018194402004910.1063/1.50297661:CAS:528:DC%2BC1cXms1Grs7s%3D
KobayashiYMiyashiroHTakeiKShigemuraHTabuchiMKageyamaHIwahoriTJ. Electrochem. Soc.2003150A15771:CAS:528:DC%2BD3sXovFylsLc%3D10.1149/1.1619988
DuanJ GHuG RCaoY BTanC PWuCDuKPengZ DJ. Power Sources20163263221:CAS:528:DC%2BC28XhtFGltL%2FE10.1016/j.jpowsour.2016.07.008
AurbachDLeviM DLeviETellerHMarkovskyBSalitraGHeiderUHeiderLJ. Electrochem. Soc.199814530241:CAS:528:DyaK1cXlsFWquro%3D10.1149/1.1838758
MorganW EVan WazerJ RStecW JJ. Am. Chem. Soc.1973957511:CAS:528:DyaE3sXptVOrsw%3D%3D10.1021/ja00784a018
ZhangJ-NLiQWangYZhengJYuXLiHEnergy Storage Mater.201814110.1016/j.ensm.2018.02.016
LiangLSunXZhangJHouLSunJLiuYWangSYuanCAdv. Energy Mater.20199180284710.1002/aenm.2018028471:CAS:528:DC%2BC1MXpsFWiuw%3D%3D
ChongJXunSZhangJSongXXieHBattagliaVWangRChem. Eur. J.20142074791:CAS:528:DC%2BC2cXntVCis70%3D2478213810.1002/chem.201304744
C Alaoui (766_CR3) 2012; 62
J-N Zhang (766_CR40) 2018; 14
J Chong (766_CR23) 2014; 20
L Mao (766_CR13) 2018; 1944
J Contour (766_CR44) 1979; 4
M Dixit (766_CR6) 2017; 121
J G Duan (766_CR7) 2016; 326
Y Kim (766_CR19) 2007; 154
T-H Tran (766_CR1) 2014; 63
Y-S Lee (766_CR9) 2015; 7
G Wang (766_CR18) 2020; 59
Z Chen (766_CR5) 2017; 363
L Liang (766_CR17) 2020; 7
W E Morgan (766_CR43) 1973; 95
D Aurbach (766_CR38) 1998; 145
Z-F Tang (766_CR30) 2017; 693
J Chen (766_CR41) 2019; 312
C Qin (766_CR10) 2016; 45
D Wang (766_CR11) 2016; 196
K C Kim (766_CR22) 2014; 43
X Zhu (766_CR34) 2014; 40
N Kuwata (766_CR27) 2010; 157
L Liang (766_CR16) 2019; 9
B Deng (766_CR4) 2017; 236
L Liang (766_CR25) 2018; 10
N I Ayu (766_CR26) 2016; 22
J I Hata (766_CR42) 2019; 2
X Bian (766_CR24) 2015; 174
T Späth (766_CR39) 2017; 4
Q Ran (766_CR15) 2018; 289
W Zhang (766_CR32) 2020; 340
A Väyrynen (766_CR2) 2012; 46
P Zou (766_CR31) 2020; 504
S-W Lee (766_CR29) 2017; 360
J Liu (766_CR33) 2009; 156
Z Wang (766_CR36) 2013; 236
H G Song (766_CR21) 2011; 196
Y Kobayashi (766_CR28) 2003; 150
L Xu (766_CR14) 2018; 289
C-H Jo (766_CR35) 2015; 8
T Tao (766_CR12) 2017; 43
X Ma (766_CR20) 2008; 453
F Ding (766_CR37) 2017; 9
W Cho (766_CR8) 2015; 282
References_xml – reference: TangZ-FWuRHuangP-FWangQ-SChenC-HJ. Alloys Compd.201769311571:CAS:528:DC%2BC28XhslCru7bN10.1016/j.jallcom.2016.10.099
– reference: DuanJ GHuG RCaoY BTanC PWuCDuKPengZ DJ. Power Sources20163263221:CAS:528:DC%2BC28XhtFGltL%2FE10.1016/j.jpowsour.2016.07.008
– reference: LiuJManthiramAJ. Electrochem. Soc.2009156A661:CAS:528:DC%2BD1cXhsVCksbnP10.1149/1.3028318
– reference: ChongJXunSZhangJSongXXieHBattagliaVWangRChem. Eur. J.20142074791:CAS:528:DC%2BC2cXntVCis70%3D2478213810.1002/chem.201304744
– reference: AlaouiCIEEE Trans. Veh. Technol.2012629810.1109/TVT.2012.2214246
– reference: SongH GKimJ YKimK TParkY JJ. Power Sources201119668471:CAS:528:DC%2BC3MXmvFyktbg%3D10.1016/j.jpowsour.2010.09.027
– reference: XuLZhouFZhouHKongJWangQYanGElectrochim. Acta20182891201:CAS:528:DC%2BC1cXhslSmsb7N10.1016/j.electacta.2018.08.085
– reference: BianXFuQBieXYangPQiuHPangQChenGDuFWeiYElectrochim. Acta20151748751:CAS:528:DC%2BC2MXhtVKht7vF10.1016/j.electacta.2015.06.085
– reference: LeeS-WKimM-SJeongJ HKimD-HChungK YRohK CKimK-BJ. Power Sources20173602061:CAS:528:DC%2BC2sXpslWku70%3D10.1016/j.jpowsour.2017.05.042
– reference: LeeY-SShinW-KKannanA GKooS MKimD-WACS Appl. Mater. Interfaces20157139441:CAS:528:DC%2BC2MXhtVarsrzP2608376610.1021/acsami.5b02690
– reference: RanQZhaoHHuYShenQLiuWLiuJShuXZhangMLiuSTanMElectrochim. Acta2018289821:CAS:528:DC%2BC1cXhs12hs73K10.1016/j.electacta.2018.08.091
– reference: ContourJSalesseAFromentMGarreauMTheveninJWarinDJ. Microsc. Spect. Elec.197944831:CAS:528:DyaL3cXkvFygtA%3D%3D
– reference: ChenJZhuLJiaDJiangXWuYHaoQXiaXOuyangYPengLTangWElectrochim. Acta20193121791:CAS:528:DC%2BC1MXptFWqsrk%3D10.1016/j.electacta.2019.04.153
– reference: TaoTChenCYaoYLiangBLuSChenYCeram. Int.201743151731:CAS:528:DC%2BC2sXhtlWgs7nF10.1016/j.ceramint.2017.08.048
– reference: ZouPLinZFanMWangFLiuYXiongXAppl. Surf. Sci.20205041445061:CAS:528:DC%2BC1MXitFShtLnO10.1016/j.apsusc.2019.144506
– reference: SpäthTBeckerDSchulzNHausbrandRJaegermannWAdv. Mater. Interfaces20174170056710.1002/admi.2017005671:CAS:528:DC%2BC2sXhvFCjsLjM
– reference: KuwataNIwagamiNTanjiYMatsudaYKawamuraJJ. Electrochem. Soc.2010157A5211:CAS:528:DC%2BC3cXjt1amu7g%3D10.1149/1.3306339
– reference: LiangLZhangWZhaoFDenisD KZamanF uHouLYuanCAdv. Mater. Interfaces2020719017491:CAS:528:DC%2BB3cXisVShsLk%3D10.1002/admi.201901749
– reference: AyuN IKartiniEPrayogiL DFaisalMIonics20162210511:CAS:528:DC%2BC28XhtlOmtLs%3D10.1007/s11581-016-1643-z
– reference: DingFLiJDengFXuGLiuYYangKKangFACS Appl. Mater. Interfaces20179279361:CAS:528:DC%2BC2sXht1Gjt7vK2875839910.1021/acsami.7b07221
– reference: JoC-HChoD-HNohH-JYashiroHSunY-KMyungS TNano Res.2015814641:CAS:528:DC%2BC2cXitVChs7vF10.1007/s12274-014-0631-8
– reference: ZhangWLiangLZhaoFLiuYHouLYuanCElectrochim. Acta20203401358711:CAS:528:DC%2BB3cXkslaru74%3D10.1016/j.electacta.2020.135871
– reference: QinCCaoJChenJDaiGWuTChenYTangYLiAChenYDalton Trans.20164596691:CAS:528:DC%2BC28XosFejur4%3D2722504410.1039/C6DT01764A27225044
– reference: WangZLiuEHeCShiCLiJZhaoNJ. Power Sources2013236251:CAS:528:DC%2BC3sXmsFantL4%3D10.1016/j.jpowsour.2013.02.022
– reference: WangGChenCChenYKangXYangCWangFLiuYXiongXAngew. Chem. Int. Ed.20205920551:CAS:528:DC%2BC1MXitlyis7jE10.1002/anie.201913351
– reference: DixitMMarkovskyBSchipperFAurbachDMajorD TJ. Phys. Chem. C2017121226281:CAS:528:DC%2BC2sXhsFGhs73L10.1021/acs.jpcc.7b06122
– reference: HataJ IHirayamaMSuzukiKDupréNGuyomardDKannoRBatter. Supercaps201924541:CAS:528:DC%2BC1MXptFamtrY%3D10.1002/batt.201800122
– reference: MaoLAiLLiSHouQXieYLiangYXieJAIP Conf. Proc.2018194402004910.1063/1.50297661:CAS:528:DC%2BC1cXms1Grs7s%3D
– reference: WangDLiXWangZGuoHXuYFanYElectrochim. Acta20161961011:CAS:528:DC%2BC28Xjs1eksbs%3D10.1016/j.electacta.2016.02.156
– reference: KobayashiYMiyashiroHTakeiKShigemuraHTabuchiMKageyamaHIwahoriTJ. Electrochem. Soc.2003150A15771:CAS:528:DC%2BD3sXovFylsLc%3D10.1149/1.1619988
– reference: ChenZWangJHuangJFuTSunGLaiSZhouRLiKZhaoJJ. Power Sources20173631681:CAS:528:DC%2BC2sXht1CjsLnP10.1016/j.jpowsour.2017.07.087
– reference: ZhangJ-NLiQWangYZhengJYuXLiHEnergy Storage Mater.201814110.1016/j.ensm.2018.02.016
– reference: DengBWangHGeWLiXYanXChenTQuMPengGElectrochim. Acta2017236611:CAS:528:DC%2BC2sXltlOnsLo%3D10.1016/j.electacta.2017.03.155
– reference: ZhuXShangKJiangXAiXYangHCaoYCeram. Int.201440112451:CAS:528:DC%2BC2cXmtVChtrc%3D10.1016/j.ceramint.2014.03.170
– reference: VäyrynenASalminenJJ. Chem. Thermodyn.2012468010.1016/j.jct.2011.09.0051:CAS:528:DC%2BC3MXhs1ejtrbP
– reference: MaXWangCHanXSunJJ. Alloys Compd.20084533521:CAS:528:DC%2BD1cXjtV2rtb8%3D10.1016/j.jallcom.2006.11.087
– reference: LiangLSunXWuCHouLSunJZhangXYuanCACS Appl. Mater. Interfaces20181054981:CAS:528:DC%2BC1cXhsVarsLg%3D2935721910.1021/acsami.7b15808
– reference: AurbachDLeviM DLeviETellerHMarkovskyBSalitraGHeiderUHeiderLJ. Electrochem. Soc.199814530241:CAS:528:DyaK1cXlsFWquro%3D10.1149/1.1838758
– reference: KimYChoJJ. Electrochem. Soc.2007154A4951:CAS:528:DC%2BD2sXmvVyku7w%3D10.1149/1.2716556
– reference: LiangLSunXZhangJHouLSunJLiuYWangSYuanCAdv. Energy Mater.20199180284710.1002/aenm.2018028471:CAS:528:DC%2BC1MXpsFWiuw%3D%3D
– reference: MorganW EVan WazerJ RStecW JJ. Am. Chem. Soc.1973957511:CAS:528:DyaE3sXptVOrsw%3D%3D10.1021/ja00784a018
– reference: TranT-HHarmandSDesmetBFilangiSAppl. Therm. Eng.20146355110.1016/j.applthermaleng.2013.11.048
– reference: ChoWKimS-MSongJ HYimTWooS-GLeeK-WKimJ-SKimY-JJ. Power Sources2015282451:CAS:528:DC%2BC2cXitFOqsLnP10.1016/j.jpowsour.2014.12.128
– reference: KimK CJegalJ-PBakS-MRohK CKimK-BElectrochem. Commun.2014431131:CAS:528:DC%2BC2cXotlWrtbc%3D10.1016/j.elecom.2014.03.017
– volume: 62
  start-page: 98
  year: 2012
  ident: 766_CR3
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2214246
– volume: 4
  start-page: 1700567
  year: 2017
  ident: 766_CR39
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201700567
– volume: 289
  start-page: 120
  year: 2018
  ident: 766_CR14
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.085
– volume: 46
  start-page: 80
  year: 2012
  ident: 766_CR2
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2011.09.005
– volume: 59
  start-page: 2055
  year: 2020
  ident: 766_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913351
– volume: 157
  start-page: A521
  year: 2010
  ident: 766_CR27
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3306339
– volume: 7
  start-page: 1901749
  year: 2020
  ident: 766_CR17
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901749
– volume: 363
  start-page: 168
  year: 2017
  ident: 766_CR5
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.07.087
– volume: 4
  start-page: 483
  year: 1979
  ident: 766_CR44
  publication-title: J. Microsc. Spect. Elec.
– volume: 453
  start-page: 352
  year: 2008
  ident: 766_CR20
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2006.11.087
– volume: 40
  start-page: 11245
  year: 2014
  ident: 766_CR34
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.03.170
– volume: 154
  start-page: A495
  year: 2007
  ident: 766_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2716556
– volume: 150
  start-page: A1577
  year: 2003
  ident: 766_CR28
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1619988
– volume: 9
  start-page: 27936
  year: 2017
  ident: 766_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07221
– volume: 14
  start-page: 1
  year: 2018
  ident: 766_CR40
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.02.016
– volume: 22
  start-page: 1051
  year: 2016
  ident: 766_CR26
  publication-title: Ionics
  doi: 10.1007/s11581-016-1643-z
– volume: 43
  start-page: 113
  year: 2014
  ident: 766_CR22
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.03.017
– volume: 236
  start-page: 25
  year: 2013
  ident: 766_CR36
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.02.022
– volume: 504
  start-page: 144506
  year: 2020
  ident: 766_CR31
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144506
– volume: 693
  start-page: 1157
  year: 2017
  ident: 766_CR30
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.10.099
– volume: 2
  start-page: 454
  year: 2019
  ident: 766_CR42
  publication-title: Batter. Supercaps
  doi: 10.1002/batt.201800122
– volume: 236
  start-page: 61
  year: 2017
  ident: 766_CR4
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.155
– volume: 9
  start-page: 1802847
  year: 2019
  ident: 766_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802847
– volume: 196
  start-page: 101
  year: 2016
  ident: 766_CR11
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.02.156
– volume: 145
  start-page: 3024
  year: 1998
  ident: 766_CR38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1838758
– volume: 340
  start-page: 135871
  year: 2020
  ident: 766_CR32
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.135871
– volume: 8
  start-page: 1464
  year: 2015
  ident: 766_CR35
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0631-8
– volume: 282
  start-page: 45
  year: 2015
  ident: 766_CR8
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.128
– volume: 20
  start-page: 7479
  year: 2014
  ident: 766_CR23
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201304744
– volume: 10
  start-page: 5498
  year: 2018
  ident: 766_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15808
– volume: 289
  start-page: 82
  year: 2018
  ident: 766_CR15
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.091
– volume: 43
  start-page: 15173
  year: 2017
  ident: 766_CR12
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.08.048
– volume: 63
  start-page: 551
  year: 2014
  ident: 766_CR1
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.11.048
– volume: 121
  start-page: 22628
  year: 2017
  ident: 766_CR6
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b06122
– volume: 326
  start-page: 322
  year: 2016
  ident: 766_CR7
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.07.008
– volume: 45
  start-page: 9669
  year: 2016
  ident: 766_CR10
  publication-title: Dalton Trans.
  doi: 10.1039/C6DT01764A
– volume: 7
  start-page: 13944
  year: 2015
  ident: 766_CR9
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02690
– volume: 1944
  start-page: 020049
  year: 2018
  ident: 766_CR13
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.5029766
– volume: 196
  start-page: 6847
  year: 2011
  ident: 766_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.09.027
– volume: 174
  start-page: 875
  year: 2015
  ident: 766_CR24
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.06.085
– volume: 360
  start-page: 206
  year: 2017
  ident: 766_CR29
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.042
– volume: 312
  start-page: 179
  year: 2019
  ident: 766_CR41
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.04.153
– volume: 156
  start-page: A66
  year: 2009
  ident: 766_CR33
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3028318
– volume: 95
  start-page: 751
  year: 1973
  ident: 766_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00784a018
SSID ssj0055620
Score 2.3587422
Snippet Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the...
Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1059
SubjectTerms Biotechnology
Catalysis
Cathodes
Cathodic coating (process)
Chemistry
Chemistry and Materials Science
Coating
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrolytes
High voltages
Industrial Chemistry
Industrial Chemistry/Chemical Engineering
Lithium
Lithium-ion batteries
Materials Science
Nickel
Photoelectrons
Polymer
Rechargeable batteries
Solid electrolytes
Spectrum analysis
Thickness
Voltage stability
화학공학
Title Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries
URI https://link.springer.com/article/10.1007/s11814-021-0766-8
https://www.proquest.com/docview/2522682441
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002711663
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2021, 38(5), 254, pp.1059-1065
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOFAOiEerLi9ZVU9URk5ix85xWbE8WhakshI9uRvHoSsgQcvu_2cmm7CAAKmX-JCJI83YM9_Y488A333uMpG5hMs4ymm1KuXEAc1THB6IxxU6SDqNfNaLj_vy9Epd1ee4H5pq92ZLsvLUs8NuGIwkp5ICzL1jbuZhUWHqTnVc_bDduF-FAX26sEIEe4h3mq3Mt7p4EYzmi1H-Ame-2hqtIk53FVZqqMjaU9uuwZwv1mGp09zQtg7Lz8gEN-Dv7wmxFpcjRhTEDN3OGH0F-zXsDcV-3CnFfnhW4OM8ZMTVWmaeUdH7NUpEF-eSuXJAJdAMUSxDbP5vOLnjaDSWVgycmFB_hn738LJzzOv7E7iLjB7zQWxckHkvpY6DPAkih-BNa-EiT4lD5hBNZF4luRMIU5JEZcqgtB44naCJfPQFFoqy8F-B5RF2YAYi87mUuVJGpzFq0AgnNXanWyAaRVpXk4vTHRe3dkaLTLq3qHtLuremBXtPn9xPmTU-Ev6G1rE3bmiJD5va69LejCyi_hOLGNbIQLRguzGerWfigw0JYBoEMUELfjQGnb1-94-b_yW9BZ_CalhRJeQ2LIxHE7-DaGWc7sJiu3tw0KP26M_Pw91qtD4C6DbfmA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOACH1fISZctiIU4gIydxYudYVaACbUGCStxM4zhQsZug0v5_ZtKELmhB4pIcMnGkmcnMZ8_4M8Chy2wqUhtzGQUZrVYlnDigeYLugXg8xABJu5F7_agzkBd34V21j_ul7navS5JlpJ5vdsNkJDm1FODcO-J6EZYRC2hy5YHfqsNviAl9trBCBHuId-pS5v-GeJeMFvNx9g5nfiiNlhnn7Cf8qKAia81suw4LLt-AlXZ9QtsGrP1DJrgJ9zdTYi0uxowoiBmGnQnGCtYd9UfiJGoX4sTv5Xi58hlxtRapY9T0_oASwfWVZLYYUgs0QxTLEJs_jqZ_ORqNJSUDJ06ot2Bwdnrb7vDq_ARuA60mfBhp66XOSakiL4u9wCJ4U0rYwNHEIbWIJlIXxpkVCFPiOExDjdJqaFWMJnLBNizlRe52gGUBDqCHInWZlFkYapVEqEEtrFQ4nGqAqBVpbEUuTmdc_DFzWmTSvUHdG9K90Q04envlecas8ZXwAVrHPNmRIT5suj8U5mlsEPWfG8SwWnqiAc3aeKb6E1-MTwBTI4jxGnBcG3T--NMv7n5Leh9WOre9rume9y9_wapfuhh1RTZhaTKeuj1ELpPkd-mpr5Yg33s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJsH2MG18aN3YZk08DZk6iRM7j6hbBRsUJKjEm2n8ARWQoJL-_7trkxUmhrSX5CEXR7pz7n5nn38HsO2DdcLZnMssCbRaVXDigOYFTg_E4yk6SDqNfDTI9ofy53l63vQ5vW-r3dstyfmZBmJpKuvunQvdxcE3DEySU3kB5uEZ10vwUtJhYJzQw3ivdcUpBvf5IguR7SH2abc1nxriUWBaKifhEeb8a5t0Fn36b-FNAxvZ3tzO7-CFL9dgtdd2a1uD1w-IBdfh4nRKDMbVhBEdMUMXVKPfYIfjwVjsZr1K7MZHJV6OY0a8rZXzjArgL1EiOTmWzFYjKodmiGgZ4vSr8fSWowFZMWPjxOR6A4b9H2e9fd70UuA20armo0zbyHkvpcqikEeJRSCnlLCJpyTCWUQWzqd5sAIhS56nLtUorUZW5Wgun2zCclmV_j2wkOAAeiScD1KGNNWqyFCDWlipcDjVAdEq0tiGaJz6XdyYBUUy6d6g7g3p3ugOfPvzyt2cZeM54a9oHXNtx4a4sel-WZnricEM4MAgntUyEh3Yao1nmr_y3sQENjUCmqgDO61BF4__-cUP_yX9BVZOvvfN4cHg10d4Fc9mGBVIbsFyPZn6Twhi6uLzbKL-BrYw464
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+high+voltage+LiNi0.6Co0.2Mn0.2O2+cathode+using+Li3PO4+coating+for+lithium-ion+batteries&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Sung%2C+Jong+Hun&rft.au=Kim%2C+Tae+Wan&rft.au=Kang%2C+Hyeong-Ku&rft.au=Choi%2C+So+Young&rft.date=2021-05-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=38&rft.issue=5&rft.spage=1059&rft.epage=1065&rft_id=info:doi/10.1007%2Fs11814-021-0766-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_0766_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon