Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries
Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle s...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 38; no. 5; pp. 1059 - 1065 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium phosphate (Li
3
PO
4
) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li
3
PO
4
coating on the electrochemical performance of LiNi
0.6
Co
0.2
Mn
0.2
O
2
(NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li
3
PO
4
provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li
+
for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes. |
---|---|
AbstractList | Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes. Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5-3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0-4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes. KCI Citation Count: 3 Lithium phosphate (Li 3 PO 4 ) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li 3 PO 4 coating on the electrochemical performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li 3 PO 4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li + for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes. |
Author | Srinivasa, Madhusudana Koratikere Kim, Jinhong Sung, Jong Hun Choi, So Young Hasan, Fuead Mohanty, Sangram Keshari Shin, Heon-Cheol Kim, Tae Wan Kang, Hyeong-Ku Yoo, Hyun Deog |
Author_xml | – sequence: 1 givenname: Jong Hun surname: Sung fullname: Sung, Jong Hun organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 2 givenname: Tae Wan surname: Kim fullname: Kim, Tae Wan organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 3 givenname: Hyeong-Ku surname: Kang fullname: Kang, Hyeong-Ku organization: Department of Materials Science and Engineering, Pusan National University – sequence: 4 givenname: So Young surname: Choi fullname: Choi, So Young organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 5 givenname: Fuead surname: Hasan fullname: Hasan, Fuead organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 6 givenname: Sangram Keshari surname: Mohanty fullname: Mohanty, Sangram Keshari organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 7 givenname: Jinhong surname: Kim fullname: Kim, Jinhong organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 8 givenname: Madhusudana Koratikere surname: Srinivasa fullname: Srinivasa, Madhusudana Koratikere organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University – sequence: 9 givenname: Heon-Cheol surname: Shin fullname: Shin, Heon-Cheol organization: Department of Materials Science and Engineering, Pusan National University – sequence: 10 givenname: Hyun Deog surname: Yoo fullname: Yoo, Hyun Deog email: hyundeog.yoo@pusan.ac.kr organization: Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002711663$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE9rGzEQxUVIIU7aD5DbQk89yJ3RrqTdYzBtEnDqkj9nVZG1ayWO5EraQL595WwgUGh10DDM7z1m3jE59MFbQk4R5gggvybEFhsKDClIIWh7QGbYSU4lY3BIZsC4oIjIj8hxSg8AnAsGM_LrZtzZ6EKsNm7YVM9hm_Vgq6X74WAuFgHm7MqXb8Uqo_MmrG01JueHQtQ_V01lgs77ti8OW5c3bnyiLvjqXudcfG36SD70epvsp7d6Qu6-f7tdXNDl6vxycbakpm5lplq0BtfWNo0U2HdYG8GFlGBqWwMXayObMuZdb6DuyuNr3hZaaiM7Ie9tfUK-TL4-9urROBW0e61DUI9RnV3fXqpOyrZBKOznid3F8Hu0KauHMEZf1lOMMyZa1jRYKDlRJoaUou2VcblcG3yO2m0VgtpHr6boVYle7aNXbVHiX8pddE86vvxXwyZNKqwfbHzf6d-iP-nglNM |
CitedBy_id | crossref_primary_10_1002_admi_202300268 crossref_primary_10_1002_ente_202300153 crossref_primary_10_1016_j_cej_2023_142686 crossref_primary_10_1021_acs_energyfuels_3c04636 crossref_primary_10_1002_smll_202409310 crossref_primary_10_1016_j_jcis_2024_05_138 crossref_primary_10_1016_j_jiec_2024_06_009 crossref_primary_10_33961_jecst_2023_00150 crossref_primary_10_3390_en16176141 crossref_primary_10_1007_s11814_025_00388_2 crossref_primary_10_1016_j_cclet_2024_109987 crossref_primary_10_1002_adma_202416872 crossref_primary_10_1016_j_apsusc_2022_156018 crossref_primary_10_1002_advs_202400405 crossref_primary_10_1021_acs_iecr_1c04205 |
Cites_doi | 10.1109/TVT.2012.2214246 10.1002/admi.201700567 10.1016/j.electacta.2018.08.085 10.1016/j.jct.2011.09.005 10.1002/anie.201913351 10.1149/1.3306339 10.1002/admi.201901749 10.1016/j.jpowsour.2017.07.087 10.1016/j.jallcom.2006.11.087 10.1016/j.ceramint.2014.03.170 10.1149/1.2716556 10.1149/1.1619988 10.1021/acsami.7b07221 10.1016/j.ensm.2018.02.016 10.1007/s11581-016-1643-z 10.1016/j.elecom.2014.03.017 10.1016/j.jpowsour.2013.02.022 10.1016/j.apsusc.2019.144506 10.1016/j.jallcom.2016.10.099 10.1002/batt.201800122 10.1016/j.electacta.2017.03.155 10.1002/aenm.201802847 10.1016/j.electacta.2016.02.156 10.1149/1.1838758 10.1016/j.electacta.2020.135871 10.1007/s12274-014-0631-8 10.1016/j.jpowsour.2014.12.128 10.1002/chem.201304744 10.1021/acsami.7b15808 10.1016/j.electacta.2018.08.091 10.1016/j.ceramint.2017.08.048 10.1016/j.applthermaleng.2013.11.048 10.1021/acs.jpcc.7b06122 10.1016/j.jpowsour.2016.07.008 10.1039/C6DT01764A 10.1021/acsami.5b02690 10.1063/1.5029766 10.1016/j.jpowsour.2010.09.027 10.1016/j.electacta.2015.06.085 10.1016/j.jpowsour.2017.05.042 10.1016/j.electacta.2019.04.153 10.1149/1.3028318 10.1021/ja00784a018 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2021 The Korean Institute of Chemical Engineers 2021. |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2021 – notice: The Korean Institute of Chemical Engineers 2021. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-021-0766-8 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 1065 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9778410 10_1007_s11814_021_0766_8 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c387t-a68c1dee44761f913c656770c3e3056dc741de59fc0399995d58ee47ac7967be3 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:31 EST 2024 Sun Jul 13 05:39:41 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 Tue Jul 01 03:29:41 EDT 2025 Fri Feb 21 02:48:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | High Voltage Operation Nickel-rich Cathode Lithium Phosphate Coating Cathode-electrolyte Interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-a68c1dee44761f913c656770c3e3056dc741de59fc0399995d58ee47ac7967be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2522682441 |
PQPubID | 2044390 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9778410 proquest_journals_2522682441 crossref_citationtrail_10_1007_s11814_021_0766_8 crossref_primary_10_1007_s11814_021_0766_8 springer_journals_10_1007_s11814_021_0766_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | VäyrynenASalminenJJ. Chem. Thermodyn.2012468010.1016/j.jct.2011.09.0051:CAS:528:DC%2BC3MXhs1ejtrbP DingFLiJDengFXuGLiuYYangKKangFACS Appl. Mater. Interfaces20179279361:CAS:528:DC%2BC2sXht1Gjt7vK2875839910.1021/acsami.7b07221 WangGChenCChenYKangXYangCWangFLiuYXiongXAngew. Chem. Int. Ed.20205920551:CAS:528:DC%2BC1MXitlyis7jE10.1002/anie.201913351 KimYChoJJ. Electrochem. Soc.2007154A4951:CAS:528:DC%2BD2sXmvVyku7w%3D10.1149/1.2716556 TranT-HHarmandSDesmetBFilangiSAppl. Therm. Eng.20146355110.1016/j.applthermaleng.2013.11.048 LiangLSunXWuCHouLSunJZhangXYuanCACS Appl. Mater. Interfaces20181054981:CAS:528:DC%2BC1cXhsVarsLg%3D2935721910.1021/acsami.7b15808 RanQZhaoHHuYShenQLiuWLiuJShuXZhangMLiuSTanMElectrochim. Acta2018289821:CAS:528:DC%2BC1cXhs12hs73K10.1016/j.electacta.2018.08.091 AyuN IKartiniEPrayogiL DFaisalMIonics20162210511:CAS:528:DC%2BC28XhtlOmtLs%3D10.1007/s11581-016-1643-z ZhuXShangKJiangXAiXYangHCaoYCeram. Int.201440112451:CAS:528:DC%2BC2cXmtVChtrc%3D10.1016/j.ceramint.2014.03.170 TangZ-FWuRHuangP-FWangQ-SChenC-HJ. Alloys Compd.201769311571:CAS:528:DC%2BC28XhslCru7bN10.1016/j.jallcom.2016.10.099 LiuJManthiramAJ. Electrochem. Soc.2009156A661:CAS:528:DC%2BD1cXhsVCksbnP10.1149/1.3028318 SongH GKimJ YKimK TParkY JJ. Power Sources201119668471:CAS:528:DC%2BC3MXmvFyktbg%3D10.1016/j.jpowsour.2010.09.027 MaXWangCHanXSunJJ. Alloys Compd.20084533521:CAS:528:DC%2BD1cXjtV2rtb8%3D10.1016/j.jallcom.2006.11.087 SpäthTBeckerDSchulzNHausbrandRJaegermannWAdv. Mater. Interfaces20174170056710.1002/admi.2017005671:CAS:528:DC%2BC2sXhvFCjsLjM DixitMMarkovskyBSchipperFAurbachDMajorD TJ. Phys. Chem. C2017121226281:CAS:528:DC%2BC2sXhsFGhs73L10.1021/acs.jpcc.7b06122 XuLZhouFZhouHKongJWangQYanGElectrochim. Acta20182891201:CAS:528:DC%2BC1cXhslSmsb7N10.1016/j.electacta.2018.08.085 LiangLZhangWZhaoFDenisD KZamanF uHouLYuanCAdv. Mater. Interfaces2020719017491:CAS:528:DC%2BB3cXisVShsLk%3D10.1002/admi.201901749 LeeS-WKimM-SJeongJ HKimD-HChungK YRohK CKimK-BJ. Power Sources20173602061:CAS:528:DC%2BC2sXpslWku70%3D10.1016/j.jpowsour.2017.05.042 KimK CJegalJ-PBakS-MRohK CKimK-BElectrochem. Commun.2014431131:CAS:528:DC%2BC2cXotlWrtbc%3D10.1016/j.elecom.2014.03.017 KuwataNIwagamiNTanjiYMatsudaYKawamuraJJ. Electrochem. Soc.2010157A5211:CAS:528:DC%2BC3cXjt1amu7g%3D10.1149/1.3306339 ContourJSalesseAFromentMGarreauMTheveninJWarinDJ. Microsc. Spect. Elec.197944831:CAS:528:DyaL3cXkvFygtA%3D%3D TaoTChenCYaoYLiangBLuSChenYCeram. Int.201743151731:CAS:528:DC%2BC2sXhtlWgs7nF10.1016/j.ceramint.2017.08.048 HataJ IHirayamaMSuzukiKDupréNGuyomardDKannoRBatter. Supercaps201924541:CAS:528:DC%2BC1MXptFamtrY%3D10.1002/batt.201800122 AlaouiCIEEE Trans. Veh. Technol.2012629810.1109/TVT.2012.2214246 ZhangWLiangLZhaoFLiuYHouLYuanCElectrochim. Acta20203401358711:CAS:528:DC%2BB3cXkslaru74%3D10.1016/j.electacta.2020.135871 ZouPLinZFanMWangFLiuYXiongXAppl. Surf. Sci.20205041445061:CAS:528:DC%2BC1MXitFShtLnO10.1016/j.apsusc.2019.144506 LeeY-SShinW-KKannanA GKooS MKimD-WACS Appl. Mater. Interfaces20157139441:CAS:528:DC%2BC2MXhtVarsrzP2608376610.1021/acsami.5b02690 WangZLiuEHeCShiCLiJZhaoNJ. Power Sources2013236251:CAS:528:DC%2BC3sXmsFantL4%3D10.1016/j.jpowsour.2013.02.022 JoC-HChoD-HNohH-JYashiroHSunY-KMyungS TNano Res.2015814641:CAS:528:DC%2BC2cXitVChs7vF10.1007/s12274-014-0631-8 BianXFuQBieXYangPQiuHPangQChenGDuFWeiYElectrochim. Acta20151748751:CAS:528:DC%2BC2MXhtVKht7vF10.1016/j.electacta.2015.06.085 ChoWKimS-MSongJ HYimTWooS-GLeeK-WKimJ-SKimY-JJ. Power Sources2015282451:CAS:528:DC%2BC2cXitFOqsLnP10.1016/j.jpowsour.2014.12.128 ChenZWangJHuangJFuTSunGLaiSZhouRLiKZhaoJJ. Power Sources20173631681:CAS:528:DC%2BC2sXht1CjsLnP10.1016/j.jpowsour.2017.07.087 DengBWangHGeWLiXYanXChenTQuMPengGElectrochim. Acta2017236611:CAS:528:DC%2BC2sXltlOnsLo%3D10.1016/j.electacta.2017.03.155 QinCCaoJChenJDaiGWuTChenYTangYLiAChenYDalton Trans.20164596691:CAS:528:DC%2BC28XosFejur4%3D2722504410.1039/C6DT01764A27225044 WangDLiXWangZGuoHXuYFanYElectrochim. Acta20161961011:CAS:528:DC%2BC28Xjs1eksbs%3D10.1016/j.electacta.2016.02.156 ChenJZhuLJiaDJiangXWuYHaoQXiaXOuyangYPengLTangWElectrochim. Acta20193121791:CAS:528:DC%2BC1MXptFWqsrk%3D10.1016/j.electacta.2019.04.153 MaoLAiLLiSHouQXieYLiangYXieJAIP Conf. Proc.2018194402004910.1063/1.50297661:CAS:528:DC%2BC1cXms1Grs7s%3D KobayashiYMiyashiroHTakeiKShigemuraHTabuchiMKageyamaHIwahoriTJ. Electrochem. Soc.2003150A15771:CAS:528:DC%2BD3sXovFylsLc%3D10.1149/1.1619988 DuanJ GHuG RCaoY BTanC PWuCDuKPengZ DJ. Power Sources20163263221:CAS:528:DC%2BC28XhtFGltL%2FE10.1016/j.jpowsour.2016.07.008 AurbachDLeviM DLeviETellerHMarkovskyBSalitraGHeiderUHeiderLJ. Electrochem. Soc.199814530241:CAS:528:DyaK1cXlsFWquro%3D10.1149/1.1838758 MorganW EVan WazerJ RStecW JJ. Am. Chem. Soc.1973957511:CAS:528:DyaE3sXptVOrsw%3D%3D10.1021/ja00784a018 ZhangJ-NLiQWangYZhengJYuXLiHEnergy Storage Mater.201814110.1016/j.ensm.2018.02.016 LiangLSunXZhangJHouLSunJLiuYWangSYuanCAdv. Energy Mater.20199180284710.1002/aenm.2018028471:CAS:528:DC%2BC1MXpsFWiuw%3D%3D ChongJXunSZhangJSongXXieHBattagliaVWangRChem. Eur. J.20142074791:CAS:528:DC%2BC2cXntVCis70%3D2478213810.1002/chem.201304744 C Alaoui (766_CR3) 2012; 62 J-N Zhang (766_CR40) 2018; 14 J Chong (766_CR23) 2014; 20 L Mao (766_CR13) 2018; 1944 J Contour (766_CR44) 1979; 4 M Dixit (766_CR6) 2017; 121 J G Duan (766_CR7) 2016; 326 Y Kim (766_CR19) 2007; 154 T-H Tran (766_CR1) 2014; 63 Y-S Lee (766_CR9) 2015; 7 G Wang (766_CR18) 2020; 59 Z Chen (766_CR5) 2017; 363 L Liang (766_CR17) 2020; 7 W E Morgan (766_CR43) 1973; 95 D Aurbach (766_CR38) 1998; 145 Z-F Tang (766_CR30) 2017; 693 J Chen (766_CR41) 2019; 312 C Qin (766_CR10) 2016; 45 D Wang (766_CR11) 2016; 196 K C Kim (766_CR22) 2014; 43 X Zhu (766_CR34) 2014; 40 N Kuwata (766_CR27) 2010; 157 L Liang (766_CR16) 2019; 9 B Deng (766_CR4) 2017; 236 L Liang (766_CR25) 2018; 10 N I Ayu (766_CR26) 2016; 22 J I Hata (766_CR42) 2019; 2 X Bian (766_CR24) 2015; 174 T Späth (766_CR39) 2017; 4 Q Ran (766_CR15) 2018; 289 W Zhang (766_CR32) 2020; 340 A Väyrynen (766_CR2) 2012; 46 P Zou (766_CR31) 2020; 504 S-W Lee (766_CR29) 2017; 360 J Liu (766_CR33) 2009; 156 Z Wang (766_CR36) 2013; 236 H G Song (766_CR21) 2011; 196 Y Kobayashi (766_CR28) 2003; 150 L Xu (766_CR14) 2018; 289 C-H Jo (766_CR35) 2015; 8 T Tao (766_CR12) 2017; 43 X Ma (766_CR20) 2008; 453 F Ding (766_CR37) 2017; 9 W Cho (766_CR8) 2015; 282 |
References_xml | – reference: TangZ-FWuRHuangP-FWangQ-SChenC-HJ. Alloys Compd.201769311571:CAS:528:DC%2BC28XhslCru7bN10.1016/j.jallcom.2016.10.099 – reference: DuanJ GHuG RCaoY BTanC PWuCDuKPengZ DJ. Power Sources20163263221:CAS:528:DC%2BC28XhtFGltL%2FE10.1016/j.jpowsour.2016.07.008 – reference: LiuJManthiramAJ. Electrochem. Soc.2009156A661:CAS:528:DC%2BD1cXhsVCksbnP10.1149/1.3028318 – reference: ChongJXunSZhangJSongXXieHBattagliaVWangRChem. Eur. J.20142074791:CAS:528:DC%2BC2cXntVCis70%3D2478213810.1002/chem.201304744 – reference: AlaouiCIEEE Trans. Veh. Technol.2012629810.1109/TVT.2012.2214246 – reference: SongH GKimJ YKimK TParkY JJ. Power Sources201119668471:CAS:528:DC%2BC3MXmvFyktbg%3D10.1016/j.jpowsour.2010.09.027 – reference: XuLZhouFZhouHKongJWangQYanGElectrochim. Acta20182891201:CAS:528:DC%2BC1cXhslSmsb7N10.1016/j.electacta.2018.08.085 – reference: BianXFuQBieXYangPQiuHPangQChenGDuFWeiYElectrochim. Acta20151748751:CAS:528:DC%2BC2MXhtVKht7vF10.1016/j.electacta.2015.06.085 – reference: LeeS-WKimM-SJeongJ HKimD-HChungK YRohK CKimK-BJ. Power Sources20173602061:CAS:528:DC%2BC2sXpslWku70%3D10.1016/j.jpowsour.2017.05.042 – reference: LeeY-SShinW-KKannanA GKooS MKimD-WACS Appl. Mater. Interfaces20157139441:CAS:528:DC%2BC2MXhtVarsrzP2608376610.1021/acsami.5b02690 – reference: RanQZhaoHHuYShenQLiuWLiuJShuXZhangMLiuSTanMElectrochim. Acta2018289821:CAS:528:DC%2BC1cXhs12hs73K10.1016/j.electacta.2018.08.091 – reference: ContourJSalesseAFromentMGarreauMTheveninJWarinDJ. Microsc. Spect. Elec.197944831:CAS:528:DyaL3cXkvFygtA%3D%3D – reference: ChenJZhuLJiaDJiangXWuYHaoQXiaXOuyangYPengLTangWElectrochim. Acta20193121791:CAS:528:DC%2BC1MXptFWqsrk%3D10.1016/j.electacta.2019.04.153 – reference: TaoTChenCYaoYLiangBLuSChenYCeram. Int.201743151731:CAS:528:DC%2BC2sXhtlWgs7nF10.1016/j.ceramint.2017.08.048 – reference: ZouPLinZFanMWangFLiuYXiongXAppl. Surf. Sci.20205041445061:CAS:528:DC%2BC1MXitFShtLnO10.1016/j.apsusc.2019.144506 – reference: SpäthTBeckerDSchulzNHausbrandRJaegermannWAdv. Mater. Interfaces20174170056710.1002/admi.2017005671:CAS:528:DC%2BC2sXhvFCjsLjM – reference: KuwataNIwagamiNTanjiYMatsudaYKawamuraJJ. Electrochem. Soc.2010157A5211:CAS:528:DC%2BC3cXjt1amu7g%3D10.1149/1.3306339 – reference: LiangLZhangWZhaoFDenisD KZamanF uHouLYuanCAdv. Mater. Interfaces2020719017491:CAS:528:DC%2BB3cXisVShsLk%3D10.1002/admi.201901749 – reference: AyuN IKartiniEPrayogiL DFaisalMIonics20162210511:CAS:528:DC%2BC28XhtlOmtLs%3D10.1007/s11581-016-1643-z – reference: DingFLiJDengFXuGLiuYYangKKangFACS Appl. Mater. Interfaces20179279361:CAS:528:DC%2BC2sXht1Gjt7vK2875839910.1021/acsami.7b07221 – reference: JoC-HChoD-HNohH-JYashiroHSunY-KMyungS TNano Res.2015814641:CAS:528:DC%2BC2cXitVChs7vF10.1007/s12274-014-0631-8 – reference: ZhangWLiangLZhaoFLiuYHouLYuanCElectrochim. Acta20203401358711:CAS:528:DC%2BB3cXkslaru74%3D10.1016/j.electacta.2020.135871 – reference: QinCCaoJChenJDaiGWuTChenYTangYLiAChenYDalton Trans.20164596691:CAS:528:DC%2BC28XosFejur4%3D2722504410.1039/C6DT01764A27225044 – reference: WangZLiuEHeCShiCLiJZhaoNJ. Power Sources2013236251:CAS:528:DC%2BC3sXmsFantL4%3D10.1016/j.jpowsour.2013.02.022 – reference: WangGChenCChenYKangXYangCWangFLiuYXiongXAngew. Chem. Int. Ed.20205920551:CAS:528:DC%2BC1MXitlyis7jE10.1002/anie.201913351 – reference: DixitMMarkovskyBSchipperFAurbachDMajorD TJ. Phys. Chem. C2017121226281:CAS:528:DC%2BC2sXhsFGhs73L10.1021/acs.jpcc.7b06122 – reference: HataJ IHirayamaMSuzukiKDupréNGuyomardDKannoRBatter. Supercaps201924541:CAS:528:DC%2BC1MXptFamtrY%3D10.1002/batt.201800122 – reference: MaoLAiLLiSHouQXieYLiangYXieJAIP Conf. Proc.2018194402004910.1063/1.50297661:CAS:528:DC%2BC1cXms1Grs7s%3D – reference: WangDLiXWangZGuoHXuYFanYElectrochim. Acta20161961011:CAS:528:DC%2BC28Xjs1eksbs%3D10.1016/j.electacta.2016.02.156 – reference: KobayashiYMiyashiroHTakeiKShigemuraHTabuchiMKageyamaHIwahoriTJ. Electrochem. Soc.2003150A15771:CAS:528:DC%2BD3sXovFylsLc%3D10.1149/1.1619988 – reference: ChenZWangJHuangJFuTSunGLaiSZhouRLiKZhaoJJ. Power Sources20173631681:CAS:528:DC%2BC2sXht1CjsLnP10.1016/j.jpowsour.2017.07.087 – reference: ZhangJ-NLiQWangYZhengJYuXLiHEnergy Storage Mater.201814110.1016/j.ensm.2018.02.016 – reference: DengBWangHGeWLiXYanXChenTQuMPengGElectrochim. Acta2017236611:CAS:528:DC%2BC2sXltlOnsLo%3D10.1016/j.electacta.2017.03.155 – reference: ZhuXShangKJiangXAiXYangHCaoYCeram. Int.201440112451:CAS:528:DC%2BC2cXmtVChtrc%3D10.1016/j.ceramint.2014.03.170 – reference: VäyrynenASalminenJJ. Chem. Thermodyn.2012468010.1016/j.jct.2011.09.0051:CAS:528:DC%2BC3MXhs1ejtrbP – reference: MaXWangCHanXSunJJ. Alloys Compd.20084533521:CAS:528:DC%2BD1cXjtV2rtb8%3D10.1016/j.jallcom.2006.11.087 – reference: LiangLSunXWuCHouLSunJZhangXYuanCACS Appl. Mater. Interfaces20181054981:CAS:528:DC%2BC1cXhsVarsLg%3D2935721910.1021/acsami.7b15808 – reference: AurbachDLeviM DLeviETellerHMarkovskyBSalitraGHeiderUHeiderLJ. Electrochem. Soc.199814530241:CAS:528:DyaK1cXlsFWquro%3D10.1149/1.1838758 – reference: KimYChoJJ. Electrochem. Soc.2007154A4951:CAS:528:DC%2BD2sXmvVyku7w%3D10.1149/1.2716556 – reference: LiangLSunXZhangJHouLSunJLiuYWangSYuanCAdv. Energy Mater.20199180284710.1002/aenm.2018028471:CAS:528:DC%2BC1MXpsFWiuw%3D%3D – reference: MorganW EVan WazerJ RStecW JJ. Am. Chem. Soc.1973957511:CAS:528:DyaE3sXptVOrsw%3D%3D10.1021/ja00784a018 – reference: TranT-HHarmandSDesmetBFilangiSAppl. Therm. Eng.20146355110.1016/j.applthermaleng.2013.11.048 – reference: ChoWKimS-MSongJ HYimTWooS-GLeeK-WKimJ-SKimY-JJ. Power Sources2015282451:CAS:528:DC%2BC2cXitFOqsLnP10.1016/j.jpowsour.2014.12.128 – reference: KimK CJegalJ-PBakS-MRohK CKimK-BElectrochem. Commun.2014431131:CAS:528:DC%2BC2cXotlWrtbc%3D10.1016/j.elecom.2014.03.017 – volume: 62 start-page: 98 year: 2012 ident: 766_CR3 publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2012.2214246 – volume: 4 start-page: 1700567 year: 2017 ident: 766_CR39 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201700567 – volume: 289 start-page: 120 year: 2018 ident: 766_CR14 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.085 – volume: 46 start-page: 80 year: 2012 ident: 766_CR2 publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2011.09.005 – volume: 59 start-page: 2055 year: 2020 ident: 766_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913351 – volume: 157 start-page: A521 year: 2010 ident: 766_CR27 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3306339 – volume: 7 start-page: 1901749 year: 2020 ident: 766_CR17 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901749 – volume: 363 start-page: 168 year: 2017 ident: 766_CR5 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.07.087 – volume: 4 start-page: 483 year: 1979 ident: 766_CR44 publication-title: J. Microsc. Spect. Elec. – volume: 453 start-page: 352 year: 2008 ident: 766_CR20 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.11.087 – volume: 40 start-page: 11245 year: 2014 ident: 766_CR34 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.03.170 – volume: 154 start-page: A495 year: 2007 ident: 766_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2716556 – volume: 150 start-page: A1577 year: 2003 ident: 766_CR28 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1619988 – volume: 9 start-page: 27936 year: 2017 ident: 766_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07221 – volume: 14 start-page: 1 year: 2018 ident: 766_CR40 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.02.016 – volume: 22 start-page: 1051 year: 2016 ident: 766_CR26 publication-title: Ionics doi: 10.1007/s11581-016-1643-z – volume: 43 start-page: 113 year: 2014 ident: 766_CR22 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.03.017 – volume: 236 start-page: 25 year: 2013 ident: 766_CR36 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.022 – volume: 504 start-page: 144506 year: 2020 ident: 766_CR31 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144506 – volume: 693 start-page: 1157 year: 2017 ident: 766_CR30 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.10.099 – volume: 2 start-page: 454 year: 2019 ident: 766_CR42 publication-title: Batter. Supercaps doi: 10.1002/batt.201800122 – volume: 236 start-page: 61 year: 2017 ident: 766_CR4 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.155 – volume: 9 start-page: 1802847 year: 2019 ident: 766_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802847 – volume: 196 start-page: 101 year: 2016 ident: 766_CR11 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.156 – volume: 145 start-page: 3024 year: 1998 ident: 766_CR38 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838758 – volume: 340 start-page: 135871 year: 2020 ident: 766_CR32 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.135871 – volume: 8 start-page: 1464 year: 2015 ident: 766_CR35 publication-title: Nano Res. doi: 10.1007/s12274-014-0631-8 – volume: 282 start-page: 45 year: 2015 ident: 766_CR8 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.128 – volume: 20 start-page: 7479 year: 2014 ident: 766_CR23 publication-title: Chem. Eur. J. doi: 10.1002/chem.201304744 – volume: 10 start-page: 5498 year: 2018 ident: 766_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15808 – volume: 289 start-page: 82 year: 2018 ident: 766_CR15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.091 – volume: 43 start-page: 15173 year: 2017 ident: 766_CR12 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.08.048 – volume: 63 start-page: 551 year: 2014 ident: 766_CR1 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.11.048 – volume: 121 start-page: 22628 year: 2017 ident: 766_CR6 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b06122 – volume: 326 start-page: 322 year: 2016 ident: 766_CR7 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.07.008 – volume: 45 start-page: 9669 year: 2016 ident: 766_CR10 publication-title: Dalton Trans. doi: 10.1039/C6DT01764A – volume: 7 start-page: 13944 year: 2015 ident: 766_CR9 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b02690 – volume: 1944 start-page: 020049 year: 2018 ident: 766_CR13 publication-title: AIP Conf. Proc. doi: 10.1063/1.5029766 – volume: 196 start-page: 6847 year: 2011 ident: 766_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.09.027 – volume: 174 start-page: 875 year: 2015 ident: 766_CR24 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.06.085 – volume: 360 start-page: 206 year: 2017 ident: 766_CR29 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.042 – volume: 312 start-page: 179 year: 2019 ident: 766_CR41 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.04.153 – volume: 156 start-page: A66 year: 2009 ident: 766_CR33 publication-title: J. Electrochem. Soc. doi: 10.1149/1.3028318 – volume: 95 start-page: 751 year: 1973 ident: 766_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00784a018 |
SSID | ssj0055620 |
Score | 2.3587422 |
Snippet | Lithium phosphate (Li
3
PO
4
) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li
3
PO
4
coating on the... Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1059 |
SubjectTerms | Biotechnology Catalysis Cathodes Cathodic coating (process) Chemistry Chemistry and Materials Science Coating Electrochemical analysis Electrochemical impedance spectroscopy Electrolytes High voltages Industrial Chemistry Industrial Chemistry/Chemical Engineering Lithium Lithium-ion batteries Materials Science Nickel Photoelectrons Polymer Rechargeable batteries Solid electrolytes Spectrum analysis Thickness Voltage stability 화학공학 |
Title | Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries |
URI | https://link.springer.com/article/10.1007/s11814-021-0766-8 https://www.proquest.com/docview/2522682441 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002711663 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2021, 38(5), 254, pp.1059-1065 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xOFAOiEerLi9ZVU9URk5ix85xWbE8WhakshI9uRvHoSsgQcvu_2cmm7CAAKmX-JCJI83YM9_Y488A333uMpG5hMs4ymm1KuXEAc1THB6IxxU6SDqNfNaLj_vy9Epd1ee4H5pq92ZLsvLUs8NuGIwkp5ICzL1jbuZhUWHqTnVc_bDduF-FAX26sEIEe4h3mq3Mt7p4EYzmi1H-Ame-2hqtIk53FVZqqMjaU9uuwZwv1mGp09zQtg7Lz8gEN-Dv7wmxFpcjRhTEDN3OGH0F-zXsDcV-3CnFfnhW4OM8ZMTVWmaeUdH7NUpEF-eSuXJAJdAMUSxDbP5vOLnjaDSWVgycmFB_hn738LJzzOv7E7iLjB7zQWxckHkvpY6DPAkih-BNa-EiT4lD5hBNZF4luRMIU5JEZcqgtB44naCJfPQFFoqy8F-B5RF2YAYi87mUuVJGpzFq0AgnNXanWyAaRVpXk4vTHRe3dkaLTLq3qHtLuremBXtPn9xPmTU-Ev6G1rE3bmiJD5va69LejCyi_hOLGNbIQLRguzGerWfigw0JYBoEMUELfjQGnb1-94-b_yW9BZ_CalhRJeQ2LIxHE7-DaGWc7sJiu3tw0KP26M_Pw91qtD4C6DbfmA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xOACH1fISZctiIU4gIydxYudYVaACbUGCStxM4zhQsZug0v5_ZtKELmhB4pIcMnGkmcnMZ8_4M8Chy2wqUhtzGQUZrVYlnDigeYLugXg8xABJu5F7_agzkBd34V21j_ul7navS5JlpJ5vdsNkJDm1FODcO-J6EZYRC2hy5YHfqsNviAl9trBCBHuId-pS5v-GeJeMFvNx9g5nfiiNlhnn7Cf8qKAia81suw4LLt-AlXZ9QtsGrP1DJrgJ9zdTYi0uxowoiBmGnQnGCtYd9UfiJGoX4sTv5Xi58hlxtRapY9T0_oASwfWVZLYYUgs0QxTLEJs_jqZ_ORqNJSUDJ06ot2Bwdnrb7vDq_ARuA60mfBhp66XOSakiL4u9wCJ4U0rYwNHEIbWIJlIXxpkVCFPiOExDjdJqaFWMJnLBNizlRe52gGUBDqCHInWZlFkYapVEqEEtrFQ4nGqAqBVpbEUuTmdc_DFzWmTSvUHdG9K90Q04envlecas8ZXwAVrHPNmRIT5suj8U5mlsEPWfG8SwWnqiAc3aeKb6E1-MTwBTI4jxGnBcG3T--NMv7n5Leh9WOre9rume9y9_wapfuhh1RTZhaTKeuj1ELpPkd-mpr5Yg33s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJsH2MG18aN3YZk08DZk6iRM7j6hbBRsUJKjEm2n8ARWQoJL-_7trkxUmhrSX5CEXR7pz7n5nn38HsO2DdcLZnMssCbRaVXDigOYFTg_E4yk6SDqNfDTI9ofy53l63vQ5vW-r3dstyfmZBmJpKuvunQvdxcE3DEySU3kB5uEZ10vwUtJhYJzQw3ivdcUpBvf5IguR7SH2abc1nxriUWBaKifhEeb8a5t0Fn36b-FNAxvZ3tzO7-CFL9dgtdd2a1uD1w-IBdfh4nRKDMbVhBEdMUMXVKPfYIfjwVjsZr1K7MZHJV6OY0a8rZXzjArgL1EiOTmWzFYjKodmiGgZ4vSr8fSWowFZMWPjxOR6A4b9H2e9fd70UuA20armo0zbyHkvpcqikEeJRSCnlLCJpyTCWUQWzqd5sAIhS56nLtUorUZW5Wgun2zCclmV_j2wkOAAeiScD1KGNNWqyFCDWlipcDjVAdEq0tiGaJz6XdyYBUUy6d6g7g3p3ugOfPvzyt2cZeM54a9oHXNtx4a4sel-WZnricEM4MAgntUyEh3Yao1nmr_y3sQENjUCmqgDO61BF4__-cUP_yX9BVZOvvfN4cHg10d4Fc9mGBVIbsFyPZn6Twhi6uLzbKL-BrYw464 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+high+voltage+LiNi0.6Co0.2Mn0.2O2+cathode+using+Li3PO4+coating+for+lithium-ion+batteries&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Sung%2C+Jong+Hun&rft.au=Kim%2C+Tae+Wan&rft.au=Kang%2C+Hyeong-Ku&rft.au=Choi%2C+So+Young&rft.date=2021-05-01&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=38&rft.issue=5&rft.spage=1059&rft.epage=1065&rft_id=info:doi/10.1007%2Fs11814-021-0766-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11814_021_0766_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |