A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing

The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of c...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 12; no. 8; p. 154
Main Author Véstias, Mário P.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of convolutional neural networks is therefore usually done in centralized high-performance platforms. However, many applications based on CNNs are migrating to edge devices near the source of data due to the unreliability of a transmission channel in exchanging data with a central server, the uncertainty about channel latency not tolerated by many applications, security and data privacy, etc. While advantageous, deep learning on edge is quite challenging because edge devices are usually limited in terms of performance, cost, and energy. Reconfigurable computing is being considered for inference on edge due to its high performance and energy efficiency while keeping a high hardware flexibility that allows for the easy adaption of the target computing platform to the CNN model. In this paper, we described the features of the most common CNNs, the capabilities of reconfigurable computing for running CNNs, the state-of-the-art of reconfigurable computing implementations proposed to run CNN models, as well as the trends and challenges for future edge reconfigurable platforms.
AbstractList The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of convolutional neural networks is therefore usually done in centralized high-performance platforms. However, many applications based on CNNs are migrating to edge devices near the source of data due to the unreliability of a transmission channel in exchanging data with a central server, the uncertainty about channel latency not tolerated by many applications, security and data privacy, etc. While advantageous, deep learning on edge is quite challenging because edge devices are usually limited in terms of performance, cost, and energy. Reconfigurable computing is being considered for inference on edge due to its high performance and energy efficiency while keeping a high hardware flexibility that allows for the easy adaption of the target computing platform to the CNN model. In this paper, we described the features of the most common CNNs, the capabilities of reconfigurable computing for running CNNs, the state-of-the-art of reconfigurable computing implementations proposed to run CNN models, as well as the trends and challenges for future edge reconfigurable platforms.
Author Véstias, Mário P.
Author_xml – sequence: 1
  givenname: Mário P.
  orcidid: 0000-0001-8556-4507
  surname: Véstias
  fullname: Véstias, Mário P.
BookMark eNplkUtLw0AUhQepYFtd-A8CrlzEzmQeySxLqVooFnysh9t5xNQ0UyeJpf_etFURXd3L5TuHyzkD1Kt8ZRG6JPiGUolHQBKcYcLZCeoTKWXMMkl7v_YzNKjrFcaCS0H6aDGOntrwYXeRd9HEVx--bJvCV1BGD7YNh9FsfXirI19FU5PbaFs0r9Gj1b5yRd4hy9J2yvWm01X5OTp1UNb24msO0cvt9HlyH88Xd7PJeB5rmqVNDJTwJeciFTYlmBmaJNxQwCkwrTNnZEas1obgTGgjTArCOamJSVgiLOVLOkSzo6_xsFKbUKwh7JSHQh0OPuQKQlPo0ioGFIhOQAgwzDgDnGXWCmbBZZJL2XldHb02wb-3tm7Uyrehi6BWCWdcYskZ66jRkdLB13WwTumigX1WTYCiVASrfQPqp4FOcf1H8f3nf_YTztuHUg
CitedBy_id crossref_primary_10_1063_5_0059829
crossref_primary_10_3390_a14090257
crossref_primary_10_1080_27669645_2021_1945523
crossref_primary_10_1093_bioinformatics_btac177
crossref_primary_10_1109_TPDS_2024_3437657
crossref_primary_10_1109_ACCESS_2024_3385430
crossref_primary_10_1109_JXCDC_2021_3120977
crossref_primary_10_1109_ACCESS_2021_3081818
crossref_primary_10_3390_computation9010003
crossref_primary_10_3390_fi15020052
crossref_primary_10_1016_j_engappai_2023_106254
crossref_primary_10_3390_s22051960
crossref_primary_10_1109_TCSI_2021_3102303
crossref_primary_10_1016_j_conbuildmat_2024_135151
crossref_primary_10_1021_acsphotonics_4c01874
crossref_primary_10_3390_electronics9010153
crossref_primary_10_1167_tvst_10_7_28
crossref_primary_10_3390_s22072732
crossref_primary_10_3390_electronics10202514
crossref_primary_10_3390_electronics10131514
crossref_primary_10_1109_ACCESS_2022_3217226
crossref_primary_10_3390_electronics10020139
crossref_primary_10_3390_s22134740
crossref_primary_10_3390_agriengineering6030112
crossref_primary_10_3390_app12052605
crossref_primary_10_1007_s10462_022_10138_z
crossref_primary_10_3390_s21217298
crossref_primary_10_3390_ijms22147721
crossref_primary_10_3390_a13050125
crossref_primary_10_3390_electronics9122200
crossref_primary_10_3390_data5020044
crossref_primary_10_1109_ACCESS_2021_3088237
crossref_primary_10_3390_fi13110280
crossref_primary_10_7717_peerj_cs_402
crossref_primary_10_1109_ACCESS_2024_3381493
crossref_primary_10_1145_3488718
crossref_primary_10_1587_transinf_2021EDP7024
crossref_primary_10_34133_plantphenomics_0234
crossref_primary_10_3390_electronics12010192
crossref_primary_10_3390_su132212392
crossref_primary_10_1016_j_renene_2022_12_064
crossref_primary_10_1109_ACCESS_2024_3378568
crossref_primary_10_1007_s13735_023_00274_9
crossref_primary_10_3390_s23041865
crossref_primary_10_1007_s13369_024_09263_4
crossref_primary_10_3390_brainsci11111446
crossref_primary_10_1145_3527457
crossref_primary_10_20535_2617_0965_2020_3_1_198586
crossref_primary_10_1016_j_jocs_2023_102178
crossref_primary_10_1109_ACCESS_2020_3000444
crossref_primary_10_1007_s10661_022_10118_4
crossref_primary_10_1109_JSEN_2020_3002340
crossref_primary_10_1007_s00417_021_05104_4
crossref_primary_10_1136_bjo_2022_321063
crossref_primary_10_1049_cje_2020_11_002
crossref_primary_10_4103_jmss_JMSS_80_20
crossref_primary_10_3390_s21217276
crossref_primary_10_1109_JETCAS_2020_3014503
Cites_doi 10.1109/CVPR.2018.00745
10.1109/35.41400
10.3390/a11100159
10.1137/1.9781611970364
10.1109/CVPRW.2014.106
10.1109/ASPDAC.2016.7428073
10.1109/ISSCC.2017.7870350
10.1109/HPCC/SmartCity/DSS.2019.00229
10.1109/CVPR.2018.00716
10.1109/JSSC.2016.2616357
10.1109/JSSC.2017.2778281
10.1109/CVPR.2017.243
10.1109/CVPR.2017.634
10.1016/j.neucom.2018.09.038
10.1145/3020078.3021698
10.1145/3061639.3062207
10.1109/FPL.2018.00075
10.1109/CVPR.2016.308
10.1145/3079758
10.1109/CVPR.2016.90
10.1109/FCCM.2017.25
10.23919/FPL.2017.8056863
10.1109/TCAD.2017.2705069
10.23919/FPL.2017.8056771
10.1145/3140659.3080215
10.1145/2847263.2847265
10.1142/S0218488598000094
10.1016/j.neucom.2017.09.046
10.1145/2847263.2847276
10.1145/3020078.3021738
10.1109/JPROC.2017.2761740
10.1145/2897937.2898003
10.1109/CVPR.2015.7298594
10.1109/ACCESS.2018.2890150
10.1109/CVPR.2016.435
10.1145/3020078.3021791
10.3390/a11030028
10.1145/3020078.3021744
10.1145/2966986.2967011
10.1109/ICASSP.2015.7178146
10.1109/FCCM.2017.64
10.1109/FCCM.2017.47
10.1109/FPL.2018.00035
10.3390/a12050112
10.1109/ISCA.2016.11
10.1007/978-3-319-10578-9
10.1109/VLSIC.2018.8502438
10.1145/3020078.3021740
10.1007/978-3-319-67952-5_4
10.1109/CVPR.2018.00474
10.1145/2934583.2934644
ContentType Journal Article
Copyright 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/a12080154
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_4a3a1c2a66ad4dfda548ee64eaf89599
10_3390_a12080154
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c387t-a315b55676e7104d3225d3a07a4cc8fd981eccd1086cd6d7a6ff9c1d2426e35b3
IEDL.DBID BENPR
ISSN 1999-4893
IngestDate Wed Aug 27 01:26:43 EDT 2025
Mon Jul 14 10:33:28 EDT 2025
Tue Jul 01 03:23:05 EDT 2025
Thu Apr 24 23:13:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-a315b55676e7104d3225d3a07a4cc8fd981eccd1086cd6d7a6ff9c1d2426e35b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8556-4507
OpenAccessLink https://www.proquest.com/docview/2545909544?pq-origsite=%requestingapplication%
PQID 2545909544
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_4a3a1c2a66ad4dfda548ee64eaf89599
proquest_journals_2545909544
crossref_citationtrail_10_3390_a12080154
crossref_primary_10_3390_a12080154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
ref_14
ref_58
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_53
ref_52
ref_51
ref_19
ref_18
ref_17
ref_16
ref_15
ref_61
ref_60
Liu (ref_68) 2017; 10
Wang (ref_71) 2017; 36
ref_25
ref_69
ref_24
ref_23
ref_67
ref_22
ref_66
ref_21
ref_65
Shawahna (ref_4) 2019; 7
ref_20
ref_64
ref_63
ref_29
ref_28
ref_27
ref_26
Guo (ref_72) 2018; 37
Venieris (ref_62) 2018; 51
Liang (ref_36) 2018; 275
ref_70
Hochreiter (ref_13) 1998; 6
ref_35
ref_34
Sze (ref_59) 2017; 105
ref_33
ref_77
ref_32
ref_76
ref_31
ref_75
ref_30
ref_73
Yu (ref_41) 2017; 45
Cun (ref_7) 1989; 27
ref_39
ref_38
ref_37
Zhang (ref_3) 2019; 323
Yin (ref_74) 2018; 53
ref_47
ref_46
ref_45
ref_44
ref_43
ref_42
ref_40
ref_1
Chen (ref_54) 2017; 52
ref_2
ref_49
ref_48
ref_9
ref_8
ref_5
ref_6
References_xml – ident: ref_21
  doi: 10.1109/CVPR.2018.00745
– volume: 27
  start-page: 41
  year: 1989
  ident: ref_7
  article-title: Handwritten digit recognition: applications of neural network chips and automatic learning
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/35.41400
– ident: ref_9
– ident: ref_26
– ident: ref_51
  doi: 10.3390/a11100159
– ident: ref_47
  doi: 10.1137/1.9781611970364
– ident: ref_63
  doi: 10.1109/CVPRW.2014.106
– ident: ref_10
  doi: 10.1109/ASPDAC.2016.7428073
– ident: ref_16
– ident: ref_39
– ident: ref_55
  doi: 10.1109/ISSCC.2017.7870350
– ident: ref_61
– ident: ref_1
– ident: ref_5
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00229
– ident: ref_58
– ident: ref_23
  doi: 10.1109/CVPR.2018.00716
– volume: 52
  start-page: 127
  year: 2017
  ident: ref_54
  article-title: Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2016.2616357
– volume: 53
  start-page: 968
  year: 2018
  ident: ref_74
  article-title: A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.2017.2778281
– ident: ref_77
– ident: ref_20
  doi: 10.1109/CVPR.2017.243
– ident: ref_25
  doi: 10.1109/CVPR.2017.634
– volume: 323
  start-page: 37
  year: 2019
  ident: ref_3
  article-title: Recent advances in convolutional neural network acceleration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.038
– ident: ref_8
– ident: ref_69
  doi: 10.1145/3020078.3021698
– ident: ref_31
– ident: ref_56
– ident: ref_70
  doi: 10.1145/3061639.3062207
– ident: ref_73
  doi: 10.1109/FPL.2018.00075
– ident: ref_27
– ident: ref_52
– ident: ref_18
  doi: 10.1109/CVPR.2016.308
– volume: 10
  start-page: 17:1
  year: 2017
  ident: ref_68
  article-title: Throughput-Optimized FPGA Accelerator for Deep Convolutional Neural Networks
  publication-title: ACM Trans. Reconfigurab. Technol. Syst.
  doi: 10.1145/3079758
– ident: ref_19
  doi: 10.1109/CVPR.2016.90
– ident: ref_6
  doi: 10.1109/FCCM.2017.25
– ident: ref_34
  doi: 10.23919/FPL.2017.8056863
– volume: 37
  start-page: 35
  year: 2018
  ident: ref_72
  article-title: Angel-Eye: A Complete Design Flow for Mapping CNN Onto Embedded FPGA
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2017.2705069
– ident: ref_38
  doi: 10.23919/FPL.2017.8056771
– volume: 51
  start-page: 56:1
  year: 2018
  ident: ref_62
  article-title: Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions
  publication-title: ACM Comput. Surv.
– volume: 45
  start-page: 548
  year: 2017
  ident: ref_41
  article-title: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism
  publication-title: SIGARCH Comput. Archit. News
  doi: 10.1145/3140659.3080215
– ident: ref_28
– ident: ref_76
– ident: ref_2
  doi: 10.1145/2847263.2847265
– ident: ref_24
– volume: 6
  start-page: 107
  year: 1998
  ident: ref_13
  article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– volume: 275
  start-page: 1072
  year: 2018
  ident: ref_36
  article-title: FP-BNN: Binarized neural network on FPGA
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.046
– ident: ref_32
  doi: 10.1145/2847263.2847276
– ident: ref_45
  doi: 10.1145/3020078.3021738
– ident: ref_40
– ident: ref_67
– ident: ref_37
– volume: 105
  start-page: 2295
  year: 2017
  ident: ref_59
  article-title: Efficient Processing of Deep Neural Networks: A Tutorial and Survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
– ident: ref_64
  doi: 10.1145/2897937.2898003
– ident: ref_17
  doi: 10.1109/CVPR.2015.7298594
– volume: 7
  start-page: 7823
  year: 2019
  ident: ref_4
  article-title: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890150
– ident: ref_48
  doi: 10.1109/CVPR.2016.435
– ident: ref_66
  doi: 10.1145/3020078.3021791
– ident: ref_11
  doi: 10.3390/a11030028
– ident: ref_75
– ident: ref_35
  doi: 10.1145/3020078.3021744
– ident: ref_65
  doi: 10.1145/2966986.2967011
– ident: ref_29
– ident: ref_30
  doi: 10.1109/ICASSP.2015.7178146
– ident: ref_49
  doi: 10.1109/FCCM.2017.64
– ident: ref_12
– ident: ref_46
  doi: 10.1109/FCCM.2017.47
– volume: 36
  start-page: 513
  year: 2017
  ident: ref_71
  article-title: DLAU: A Scalable Deep Learning Accelerator Unit on FPGA
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
– ident: ref_33
  doi: 10.1109/FPL.2018.00035
– ident: ref_50
  doi: 10.3390/a12050112
– ident: ref_15
– ident: ref_42
  doi: 10.1109/ISCA.2016.11
– ident: ref_14
  doi: 10.1007/978-3-319-10578-9
– ident: ref_60
– ident: ref_57
  doi: 10.1109/VLSIC.2018.8502438
– ident: ref_43
  doi: 10.1145/3020078.3021740
– ident: ref_53
  doi: 10.1007/978-3-319-67952-5_4
– ident: ref_22
  doi: 10.1109/CVPR.2018.00474
– ident: ref_44
  doi: 10.1145/2934583.2934644
SSID ssj0065961
Score 2.435127
SecondaryResourceType review_article
Snippet The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 154
SubjectTerms Algorithms
Architecture
Artificial neural networks
convolutional neural network
Deep learning
edge inference
Efficiency
Field programmable gate arrays
field-programmable gate array
Image classification
Image detection
Inference
Machine learning
Network latency
Neural networks
Neurons
reconfigurable computing
Reconfiguration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xWqVRTx4CU26j2SPtbQUD3rQQm9h9lWEkkpf4L93No-iKHjxFAiTBzM7O98XJt8Qcuc82DSGOApsOeIaM10raSLLUxmDERnYssv3SY4n_HEqpl9GfYWesEoeuHJclwODxPRASrDcegsIsZ2T3IHPlFDlr3tY8xoyVe3BUiiZVDpCDEl9F5IeIqNE8G_VpxTp_7EHl4VldEQOakRI-9WbHJM9V5yQw2baAq2T75Q89-nLZrl1H3Th6WBRbOtFg9cGhY3yULZ0r-iioEM7czR8ZKWBYBb-bYYmeu5odWMsWGdkMhq-DsZRPQ4hMixL1xGwRGghZCodwgJuQypaBnEK3JjMW5UlGA8bRicZK20K0ntlEhuKsGNCs3PSKhaFuyBUOoc7lQLMZ81TJgGQ1WWZNkiOONO-Te4bN-Wm1goPIyvmOXKG4NF859E2ud2ZvlcCGb8ZPQRf7wyCpnV5AiOd15HO_4p0m3SaSOV1oq1y5LdCIUzk_PI_nnFF9hERqarDr0Na6-XGXSPqWOubcoF9AgQQ1oY
  priority: 102
  providerName: Directory of Open Access Journals
Title A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing
URI https://www.proquest.com/docview/2545909544
https://doaj.org/article/4a3a1c2a66ad4dfda548ee64eaf89599
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC7M5iKCxqi4miyNePAyZCf9mO6TbMKuwUMUNZDbUP1aAmEm7m4C_nurZ3pWJZLTwEzRh-r6quqrKaoA3oeIvpritEhsuRCWkG6NcoUXlZqikxp91-V7rs4uxOdLeZkLbuvcVjn4xM5R-9alGvkRERlpKB8Q4uPNzyJtjUp_V_MKjR3YJRes9Qh2T-bnX78NvlhJo8p-nhAncn-E5TFlSKUU_0Shblj_PV_cBZjFHjzNmSGb9Vf5HB6FZh-ezP4q9O_Ds2EJA8uYfAFfZuz77eou_GJtZKdtc5dtiY5Kgze6R9fpvWZtw-Z-GViqvbLEO5t4tSQRex1YfzDFsZdwsZj_OD0r8paEwnFdbQrkpbRSqkoFyhaETwj1HKcVCud09EaXdE0-bVRyXvkKVYzGlT7F5sCl5a9g1LRNeA1MhUAOzCDB3IqKK0Qie1pbR5xJcBvH8GHQWu3yCPG0yeK6JiqRFFxvFTyGd1vRm35uxv-ETpLqtwJp1HX3ol0t64ycWiDH0h2jUuiFjx6JY4WgRMCojTRmDAfDxdUZf-v6j7W8efjzW3hMKZDpW_oOYLRZ3YZDSjM2dgI7evFpki1q0pH1322q1QU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5iPCiC0ai4GrURBS9DZrYfM30IYY1ZNybGgwnkNql-LUKYibubSP6UvzHV81gVxVtOA9NFw1RXf1XfdHUVwBsf0OUppklky4kwtNONVjZxIlcpWlmga7J8D9XkWHw6kScr8LO_CxPTKntMbIDa1Tb-I98kIiM1xQNCbJ9_T2LXqHi62rfQaM1i31_9IMo239r7QOv7djgc7x7tTJKuq0BieZEvEuSZNFKqXHnyrsJFi3Yc0xyFtUVwusjos1zsQGSdcjmqELTNXPRlnkvDad5bcFtw8uTxZvr4Y4_8SmqVtdWLaDDdxGxI8VgmxR8-r2kN8BfyN-5s_ADud3EoG7WG8xBWfLUO90a_HSusw1rf8oF1CPAIvozY14vZpb9idWA7dXXZWS5NFct8NI8mr3zO6ortuqln8U8viyy3Ct-mJGLOPGsnJq_5GI5vRHtPYLWqK_8UmPKe4FIjgYoROVeIRC2LwlhiaIKbMIB3vdZK2xUsj30zzkoiLlHB5VLBA3i9FD1vq3T8S-h9VP1SIBbWbl7Us2nZ7dNSIMfMDlEpdMIFh8TovFfCYyi01HoAG_3Cld1un5e_bPPZ_4dfwZ3J0eeD8mDvcP853KXgS7fJhBuwuphd-BcU4CzMy8aqGJzetBlfA0rCDt8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUSEVqviadVFFHwJl9x-JPsg5dre0Vo5i1roW7qfh1CSendt6b_mX-dssjkVxbc-BZJhIbO_nZnf7uwMwBvnlc1TlSaBLSdM40rXUpjEslykyvBC2SbLdyoOTtiHU366Bj-6uzAhrbKziY2htrUJe-QDJDJcYjzA2MDHtIjj_cnOxfckdJAKJ61dO40WIkfu5hrp2-L94T7O9dvhcDL-uneQxA4DiaFFvkwUzbjmXOTCoadlNqDbUpXmihlTeCuLDH_Rhm5ExgqbK-G9NJkNfs1RrimOewfW88CKerC-O54ef-78gOBSZG0tI0plOlDZEKOzjLM_PGDTKOAvP9A4t8kD2IhRKRm1MHoIa67agvuj3w4ZtmCzawBBoj14BJ9G5Mvl_MrdkNqTvbq6ijjGoULRj-bRZJkvSF2RsZ05EvZ9SeC8lf82QxF97kg7MPrQx3ByK_p7Ar2qrtxTIMI5NJ5SoYnRLKdCKSSaRaEN8jVGte_Du05rpYnly0MXjfMSaUxQcLlScB9er0Qv2pod_xLaDapfCYQy282Lej4r46otmaIqM0MlhLLMequQ3zknmFO-kFzKPmx3E1fGtb8ofyH12f8_v4K7COHy4-H06Dncw0hMtpmF29Bbzi_dC4x2lvplhBWBs9tG8k81zxRx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Convolutional+Neural+Networks+on+Edge+with+Reconfigurable+Computing&rft.jtitle=Algorithms&rft.au=V%C3%A9stias%2C+M%C3%A1rio+P.&rft.date=2019-08-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=12&rft.issue=8&rft.spage=154&rft_id=info:doi/10.3390%2Fa12080154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a12080154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon