A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing
The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of c...
Saved in:
Published in | Algorithms Vol. 12; no. 8; p. 154 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of convolutional neural networks is therefore usually done in centralized high-performance platforms. However, many applications based on CNNs are migrating to edge devices near the source of data due to the unreliability of a transmission channel in exchanging data with a central server, the uncertainty about channel latency not tolerated by many applications, security and data privacy, etc. While advantageous, deep learning on edge is quite challenging because edge devices are usually limited in terms of performance, cost, and energy. Reconfigurable computing is being considered for inference on edge due to its high performance and energy efficiency while keeping a high hardware flexibility that allows for the easy adaption of the target computing platform to the CNN model. In this paper, we described the features of the most common CNNs, the capabilities of reconfigurable computing for running CNNs, the state-of-the-art of reconfigurable computing implementations proposed to run CNN models, as well as the trends and challenges for future edge reconfigurable platforms. |
---|---|
AbstractList | The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when compared to other machine learning algorithms. CNNs achieve better results at the cost of higher computing and memory requirements. Inference of convolutional neural networks is therefore usually done in centralized high-performance platforms. However, many applications based on CNNs are migrating to edge devices near the source of data due to the unreliability of a transmission channel in exchanging data with a central server, the uncertainty about channel latency not tolerated by many applications, security and data privacy, etc. While advantageous, deep learning on edge is quite challenging because edge devices are usually limited in terms of performance, cost, and energy. Reconfigurable computing is being considered for inference on edge due to its high performance and energy efficiency while keeping a high hardware flexibility that allows for the easy adaption of the target computing platform to the CNN model. In this paper, we described the features of the most common CNNs, the capabilities of reconfigurable computing for running CNNs, the state-of-the-art of reconfigurable computing implementations proposed to run CNN models, as well as the trends and challenges for future edge reconfigurable platforms. |
Author | Véstias, Mário P. |
Author_xml | – sequence: 1 givenname: Mário P. orcidid: 0000-0001-8556-4507 surname: Véstias fullname: Véstias, Mário P. |
BookMark | eNplkUtLw0AUhQepYFtd-A8CrlzEzmQeySxLqVooFnysh9t5xNQ0UyeJpf_etFURXd3L5TuHyzkD1Kt8ZRG6JPiGUolHQBKcYcLZCeoTKWXMMkl7v_YzNKjrFcaCS0H6aDGOntrwYXeRd9HEVx--bJvCV1BGD7YNh9FsfXirI19FU5PbaFs0r9Gj1b5yRd4hy9J2yvWm01X5OTp1UNb24msO0cvt9HlyH88Xd7PJeB5rmqVNDJTwJeciFTYlmBmaJNxQwCkwrTNnZEas1obgTGgjTArCOamJSVgiLOVLOkSzo6_xsFKbUKwh7JSHQh0OPuQKQlPo0ioGFIhOQAgwzDgDnGXWCmbBZZJL2XldHb02wb-3tm7Uyrehi6BWCWdcYskZ66jRkdLB13WwTumigX1WTYCiVASrfQPqp4FOcf1H8f3nf_YTztuHUg |
CitedBy_id | crossref_primary_10_1063_5_0059829 crossref_primary_10_3390_a14090257 crossref_primary_10_1080_27669645_2021_1945523 crossref_primary_10_1093_bioinformatics_btac177 crossref_primary_10_1109_TPDS_2024_3437657 crossref_primary_10_1109_ACCESS_2024_3385430 crossref_primary_10_1109_JXCDC_2021_3120977 crossref_primary_10_1109_ACCESS_2021_3081818 crossref_primary_10_3390_computation9010003 crossref_primary_10_3390_fi15020052 crossref_primary_10_1016_j_engappai_2023_106254 crossref_primary_10_3390_s22051960 crossref_primary_10_1109_TCSI_2021_3102303 crossref_primary_10_1016_j_conbuildmat_2024_135151 crossref_primary_10_1021_acsphotonics_4c01874 crossref_primary_10_3390_electronics9010153 crossref_primary_10_1167_tvst_10_7_28 crossref_primary_10_3390_s22072732 crossref_primary_10_3390_electronics10202514 crossref_primary_10_3390_electronics10131514 crossref_primary_10_1109_ACCESS_2022_3217226 crossref_primary_10_3390_electronics10020139 crossref_primary_10_3390_s22134740 crossref_primary_10_3390_agriengineering6030112 crossref_primary_10_3390_app12052605 crossref_primary_10_1007_s10462_022_10138_z crossref_primary_10_3390_s21217298 crossref_primary_10_3390_ijms22147721 crossref_primary_10_3390_a13050125 crossref_primary_10_3390_electronics9122200 crossref_primary_10_3390_data5020044 crossref_primary_10_1109_ACCESS_2021_3088237 crossref_primary_10_3390_fi13110280 crossref_primary_10_7717_peerj_cs_402 crossref_primary_10_1109_ACCESS_2024_3381493 crossref_primary_10_1145_3488718 crossref_primary_10_1587_transinf_2021EDP7024 crossref_primary_10_34133_plantphenomics_0234 crossref_primary_10_3390_electronics12010192 crossref_primary_10_3390_su132212392 crossref_primary_10_1016_j_renene_2022_12_064 crossref_primary_10_1109_ACCESS_2024_3378568 crossref_primary_10_1007_s13735_023_00274_9 crossref_primary_10_3390_s23041865 crossref_primary_10_1007_s13369_024_09263_4 crossref_primary_10_3390_brainsci11111446 crossref_primary_10_1145_3527457 crossref_primary_10_20535_2617_0965_2020_3_1_198586 crossref_primary_10_1016_j_jocs_2023_102178 crossref_primary_10_1109_ACCESS_2020_3000444 crossref_primary_10_1007_s10661_022_10118_4 crossref_primary_10_1109_JSEN_2020_3002340 crossref_primary_10_1007_s00417_021_05104_4 crossref_primary_10_1136_bjo_2022_321063 crossref_primary_10_1049_cje_2020_11_002 crossref_primary_10_4103_jmss_JMSS_80_20 crossref_primary_10_3390_s21217276 crossref_primary_10_1109_JETCAS_2020_3014503 |
Cites_doi | 10.1109/CVPR.2018.00745 10.1109/35.41400 10.3390/a11100159 10.1137/1.9781611970364 10.1109/CVPRW.2014.106 10.1109/ASPDAC.2016.7428073 10.1109/ISSCC.2017.7870350 10.1109/HPCC/SmartCity/DSS.2019.00229 10.1109/CVPR.2018.00716 10.1109/JSSC.2016.2616357 10.1109/JSSC.2017.2778281 10.1109/CVPR.2017.243 10.1109/CVPR.2017.634 10.1016/j.neucom.2018.09.038 10.1145/3020078.3021698 10.1145/3061639.3062207 10.1109/FPL.2018.00075 10.1109/CVPR.2016.308 10.1145/3079758 10.1109/CVPR.2016.90 10.1109/FCCM.2017.25 10.23919/FPL.2017.8056863 10.1109/TCAD.2017.2705069 10.23919/FPL.2017.8056771 10.1145/3140659.3080215 10.1145/2847263.2847265 10.1142/S0218488598000094 10.1016/j.neucom.2017.09.046 10.1145/2847263.2847276 10.1145/3020078.3021738 10.1109/JPROC.2017.2761740 10.1145/2897937.2898003 10.1109/CVPR.2015.7298594 10.1109/ACCESS.2018.2890150 10.1109/CVPR.2016.435 10.1145/3020078.3021791 10.3390/a11030028 10.1145/3020078.3021744 10.1145/2966986.2967011 10.1109/ICASSP.2015.7178146 10.1109/FCCM.2017.64 10.1109/FCCM.2017.47 10.1109/FPL.2018.00035 10.3390/a12050112 10.1109/ISCA.2016.11 10.1007/978-3-319-10578-9 10.1109/VLSIC.2018.8502438 10.1145/3020078.3021740 10.1007/978-3-319-67952-5_4 10.1109/CVPR.2018.00474 10.1145/2934583.2934644 |
ContentType | Journal Article |
Copyright | 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a12080154 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Architecture |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_4a3a1c2a66ad4dfda548ee64eaf89599 10_3390_a12080154 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c387t-a315b55676e7104d3225d3a07a4cc8fd981eccd1086cd6d7a6ff9c1d2426e35b3 |
IEDL.DBID | BENPR |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:26:43 EDT 2025 Mon Jul 14 10:33:28 EDT 2025 Tue Jul 01 03:23:05 EDT 2025 Thu Apr 24 23:13:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-a315b55676e7104d3225d3a07a4cc8fd981eccd1086cd6d7a6ff9c1d2426e35b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8556-4507 |
OpenAccessLink | https://www.proquest.com/docview/2545909544?pq-origsite=%requestingapplication% |
PQID | 2545909544 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a3a1c2a66ad4dfda548ee64eaf89599 proquest_journals_2545909544 crossref_citationtrail_10_3390_a12080154 crossref_primary_10_3390_a12080154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2019 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 ref_14 ref_58 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 ref_53 ref_52 ref_51 ref_19 ref_18 ref_17 ref_16 ref_15 ref_61 ref_60 Liu (ref_68) 2017; 10 Wang (ref_71) 2017; 36 ref_25 ref_69 ref_24 ref_23 ref_67 ref_22 ref_66 ref_21 ref_65 Shawahna (ref_4) 2019; 7 ref_20 ref_64 ref_63 ref_29 ref_28 ref_27 ref_26 Guo (ref_72) 2018; 37 Venieris (ref_62) 2018; 51 Liang (ref_36) 2018; 275 ref_70 Hochreiter (ref_13) 1998; 6 ref_35 ref_34 Sze (ref_59) 2017; 105 ref_33 ref_77 ref_32 ref_76 ref_31 ref_75 ref_30 ref_73 Yu (ref_41) 2017; 45 Cun (ref_7) 1989; 27 ref_39 ref_38 ref_37 Zhang (ref_3) 2019; 323 Yin (ref_74) 2018; 53 ref_47 ref_46 ref_45 ref_44 ref_43 ref_42 ref_40 ref_1 Chen (ref_54) 2017; 52 ref_2 ref_49 ref_48 ref_9 ref_8 ref_5 ref_6 |
References_xml | – ident: ref_21 doi: 10.1109/CVPR.2018.00745 – volume: 27 start-page: 41 year: 1989 ident: ref_7 article-title: Handwritten digit recognition: applications of neural network chips and automatic learning publication-title: IEEE Commun. Mag. doi: 10.1109/35.41400 – ident: ref_9 – ident: ref_26 – ident: ref_51 doi: 10.3390/a11100159 – ident: ref_47 doi: 10.1137/1.9781611970364 – ident: ref_63 doi: 10.1109/CVPRW.2014.106 – ident: ref_10 doi: 10.1109/ASPDAC.2016.7428073 – ident: ref_16 – ident: ref_39 – ident: ref_55 doi: 10.1109/ISSCC.2017.7870350 – ident: ref_61 – ident: ref_1 – ident: ref_5 doi: 10.1109/HPCC/SmartCity/DSS.2019.00229 – ident: ref_58 – ident: ref_23 doi: 10.1109/CVPR.2018.00716 – volume: 52 start-page: 127 year: 2017 ident: ref_54 article-title: Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2016.2616357 – volume: 53 start-page: 968 year: 2018 ident: ref_74 article-title: A High Energy Efficient Reconfigurable Hybrid Neural Network Processor for Deep Learning Applications publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.2017.2778281 – ident: ref_77 – ident: ref_20 doi: 10.1109/CVPR.2017.243 – ident: ref_25 doi: 10.1109/CVPR.2017.634 – volume: 323 start-page: 37 year: 2019 ident: ref_3 article-title: Recent advances in convolutional neural network acceleration publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.038 – ident: ref_8 – ident: ref_69 doi: 10.1145/3020078.3021698 – ident: ref_31 – ident: ref_56 – ident: ref_70 doi: 10.1145/3061639.3062207 – ident: ref_73 doi: 10.1109/FPL.2018.00075 – ident: ref_27 – ident: ref_52 – ident: ref_18 doi: 10.1109/CVPR.2016.308 – volume: 10 start-page: 17:1 year: 2017 ident: ref_68 article-title: Throughput-Optimized FPGA Accelerator for Deep Convolutional Neural Networks publication-title: ACM Trans. Reconfigurab. Technol. Syst. doi: 10.1145/3079758 – ident: ref_19 doi: 10.1109/CVPR.2016.90 – ident: ref_6 doi: 10.1109/FCCM.2017.25 – ident: ref_34 doi: 10.23919/FPL.2017.8056863 – volume: 37 start-page: 35 year: 2018 ident: ref_72 article-title: Angel-Eye: A Complete Design Flow for Mapping CNN Onto Embedded FPGA publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2017.2705069 – ident: ref_38 doi: 10.23919/FPL.2017.8056771 – volume: 51 start-page: 56:1 year: 2018 ident: ref_62 article-title: Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions publication-title: ACM Comput. Surv. – volume: 45 start-page: 548 year: 2017 ident: ref_41 article-title: Scalpel: Customizing DNN Pruning to the Underlying Hardware Parallelism publication-title: SIGARCH Comput. Archit. News doi: 10.1145/3140659.3080215 – ident: ref_28 – ident: ref_76 – ident: ref_2 doi: 10.1145/2847263.2847265 – ident: ref_24 – volume: 6 start-page: 107 year: 1998 ident: ref_13 article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488598000094 – volume: 275 start-page: 1072 year: 2018 ident: ref_36 article-title: FP-BNN: Binarized neural network on FPGA publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.046 – ident: ref_32 doi: 10.1145/2847263.2847276 – ident: ref_45 doi: 10.1145/3020078.3021738 – ident: ref_40 – ident: ref_67 – ident: ref_37 – volume: 105 start-page: 2295 year: 2017 ident: ref_59 article-title: Efficient Processing of Deep Neural Networks: A Tutorial and Survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2761740 – ident: ref_64 doi: 10.1145/2897937.2898003 – ident: ref_17 doi: 10.1109/CVPR.2015.7298594 – volume: 7 start-page: 7823 year: 2019 ident: ref_4 article-title: FPGA-Based Accelerators of Deep Learning Networks for Learning and Classification: A Review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890150 – ident: ref_48 doi: 10.1109/CVPR.2016.435 – ident: ref_66 doi: 10.1145/3020078.3021791 – ident: ref_11 doi: 10.3390/a11030028 – ident: ref_75 – ident: ref_35 doi: 10.1145/3020078.3021744 – ident: ref_65 doi: 10.1145/2966986.2967011 – ident: ref_29 – ident: ref_30 doi: 10.1109/ICASSP.2015.7178146 – ident: ref_49 doi: 10.1109/FCCM.2017.64 – ident: ref_12 – ident: ref_46 doi: 10.1109/FCCM.2017.47 – volume: 36 start-page: 513 year: 2017 ident: ref_71 article-title: DLAU: A Scalable Deep Learning Accelerator Unit on FPGA publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. – ident: ref_33 doi: 10.1109/FPL.2018.00035 – ident: ref_50 doi: 10.3390/a12050112 – ident: ref_15 – ident: ref_42 doi: 10.1109/ISCA.2016.11 – ident: ref_14 doi: 10.1007/978-3-319-10578-9 – ident: ref_60 – ident: ref_57 doi: 10.1109/VLSIC.2018.8502438 – ident: ref_43 doi: 10.1145/3020078.3021740 – ident: ref_53 doi: 10.1007/978-3-319-67952-5_4 – ident: ref_22 doi: 10.1109/CVPR.2018.00474 – ident: ref_44 doi: 10.1145/2934583.2934644 |
SSID | ssj0065961 |
Score | 2.435127 |
SecondaryResourceType | review_article |
Snippet | The convolutional neural network (CNN) is one of the most used deep learning models for image detection and classification, due to its high accuracy when... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 154 |
SubjectTerms | Algorithms Architecture Artificial neural networks convolutional neural network Deep learning edge inference Efficiency Field programmable gate arrays field-programmable gate array Image classification Image detection Inference Machine learning Network latency Neural networks Neurons reconfigurable computing Reconfiguration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy--xWqVRTx4CU26j2SPtbQUD3rQQm9h9lWEkkpf4L93No-iKHjxFAiTBzM7O98XJt8Qcuc82DSGOApsOeIaM10raSLLUxmDERnYssv3SY4n_HEqpl9GfYWesEoeuHJclwODxPRASrDcegsIsZ2T3IHPlFDlr3tY8xoyVe3BUiiZVDpCDEl9F5IeIqNE8G_VpxTp_7EHl4VldEQOakRI-9WbHJM9V5yQw2baAq2T75Q89-nLZrl1H3Th6WBRbOtFg9cGhY3yULZ0r-iioEM7czR8ZKWBYBb-bYYmeu5odWMsWGdkMhq-DsZRPQ4hMixL1xGwRGghZCodwgJuQypaBnEK3JjMW5UlGA8bRicZK20K0ntlEhuKsGNCs3PSKhaFuyBUOoc7lQLMZ81TJgGQ1WWZNkiOONO-Te4bN-Wm1goPIyvmOXKG4NF859E2ud2ZvlcCGb8ZPQRf7wyCpnV5AiOd15HO_4p0m3SaSOV1oq1y5LdCIUzk_PI_nnFF9hERqarDr0Na6-XGXSPqWOubcoF9AgQQ1oY priority: 102 providerName: Directory of Open Access Journals |
Title | A Survey of Convolutional Neural Networks on Edge with Reconfigurable Computing |
URI | https://www.proquest.com/docview/2545909544 https://doaj.org/article/4a3a1c2a66ad4dfda548ee64eaf89599 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxRBEC7M5iKCxqi4miyNePAyZCf9mO6TbMKuwUMUNZDbUP1aAmEm7m4C_nurZ3pWJZLTwEzRh-r6quqrKaoA3oeIvpritEhsuRCWkG6NcoUXlZqikxp91-V7rs4uxOdLeZkLbuvcVjn4xM5R-9alGvkRERlpKB8Q4uPNzyJtjUp_V_MKjR3YJRes9Qh2T-bnX78NvlhJo8p-nhAncn-E5TFlSKUU_0Shblj_PV_cBZjFHjzNmSGb9Vf5HB6FZh-ezP4q9O_Ds2EJA8uYfAFfZuz77eou_GJtZKdtc5dtiY5Kgze6R9fpvWZtw-Z-GViqvbLEO5t4tSQRex1YfzDFsZdwsZj_OD0r8paEwnFdbQrkpbRSqkoFyhaETwj1HKcVCud09EaXdE0-bVRyXvkKVYzGlT7F5sCl5a9g1LRNeA1MhUAOzCDB3IqKK0Qie1pbR5xJcBvH8GHQWu3yCPG0yeK6JiqRFFxvFTyGd1vRm35uxv-ETpLqtwJp1HX3ol0t64ycWiDH0h2jUuiFjx6JY4WgRMCojTRmDAfDxdUZf-v6j7W8efjzW3hMKZDpW_oOYLRZ3YZDSjM2dgI7evFpki1q0pH1322q1QU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5iPCiC0ai4GrURBS9DZrYfM30IYY1ZNybGgwnkNql-LUKYibubSP6UvzHV81gVxVtOA9NFw1RXf1XfdHUVwBsf0OUppklky4kwtNONVjZxIlcpWlmga7J8D9XkWHw6kScr8LO_CxPTKntMbIDa1Tb-I98kIiM1xQNCbJ9_T2LXqHi62rfQaM1i31_9IMo239r7QOv7djgc7x7tTJKuq0BieZEvEuSZNFKqXHnyrsJFi3Yc0xyFtUVwusjos1zsQGSdcjmqELTNXPRlnkvDad5bcFtw8uTxZvr4Y4_8SmqVtdWLaDDdxGxI8VgmxR8-r2kN8BfyN-5s_ADud3EoG7WG8xBWfLUO90a_HSusw1rf8oF1CPAIvozY14vZpb9idWA7dXXZWS5NFct8NI8mr3zO6ortuqln8U8viyy3Ct-mJGLOPGsnJq_5GI5vRHtPYLWqK_8UmPKe4FIjgYoROVeIRC2LwlhiaIKbMIB3vdZK2xUsj30zzkoiLlHB5VLBA3i9FD1vq3T8S-h9VP1SIBbWbl7Us2nZ7dNSIMfMDlEpdMIFh8TovFfCYyi01HoAG_3Cld1un5e_bPPZ_4dfwZ3J0eeD8mDvcP853KXgS7fJhBuwuphd-BcU4CzMy8aqGJzetBlfA0rCDt8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFUSEVqviadVFFHwJl9x-JPsg5dre0Vo5i1roW7qfh1CSendt6b_mX-dssjkVxbc-BZJhIbO_nZnf7uwMwBvnlc1TlSaBLSdM40rXUpjEslykyvBC2SbLdyoOTtiHU366Bj-6uzAhrbKziY2htrUJe-QDJDJcYjzA2MDHtIjj_cnOxfckdJAKJ61dO40WIkfu5hrp2-L94T7O9dvhcDL-uneQxA4DiaFFvkwUzbjmXOTCoadlNqDbUpXmihlTeCuLDH_Rhm5ExgqbK-G9NJkNfs1RrimOewfW88CKerC-O54ef-78gOBSZG0tI0plOlDZEKOzjLM_PGDTKOAvP9A4t8kD2IhRKRm1MHoIa67agvuj3w4ZtmCzawBBoj14BJ9G5Mvl_MrdkNqTvbq6ijjGoULRj-bRZJkvSF2RsZ05EvZ9SeC8lf82QxF97kg7MPrQx3ByK_p7Ar2qrtxTIMI5NJ5SoYnRLKdCKSSaRaEN8jVGte_Du05rpYnly0MXjfMSaUxQcLlScB9er0Qv2pod_xLaDapfCYQy282Lej4r46otmaIqM0MlhLLMequQ3zknmFO-kFzKPmx3E1fGtb8ofyH12f8_v4K7COHy4-H06Dncw0hMtpmF29Bbzi_dC4x2lvplhBWBs9tG8k81zxRx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+of+Convolutional+Neural+Networks+on+Edge+with+Reconfigurable+Computing&rft.jtitle=Algorithms&rft.au=V%C3%A9stias%2C+M%C3%A1rio+P.&rft.date=2019-08-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=12&rft.issue=8&rft.spage=154&rft_id=info:doi/10.3390%2Fa12080154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a12080154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |