Metabolic engineering of erythritol production from glycerol by Yarrowia lipolytica

Erythritol as a four-carbon polyol has been widely used in food, pharmaceutical and daily chemical industries with characteristics of low caloric value and high chemical stability. Here, a system metabolic engineering strategy was used to increase the yield of erythritol from glycerol in Yarrowia li...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioprocess engineering Vol. 29; no. 1; pp. 119 - 127
Main Authors Wang, Ya-Ting, Zhao, Ling-Xuan, Wei, Liu-Jing, Chen, Jun, Liu, Zhijie, Liu, Feng, Hua, Qiang
Format Journal Article
LanguageEnglish
Published Seoul The Korean Society for Biotechnology and Bioengineering 01.02.2024
Springer Nature B.V
한국생물공학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Erythritol as a four-carbon polyol has been widely used in food, pharmaceutical and daily chemical industries with characteristics of low caloric value and high chemical stability. Here, a system metabolic engineering strategy was used to increase the yield of erythritol from glycerol in Yarrowia lipolytica by enhancing the substrate transformation and restricting the by-product synthesis. Specifically, we determined that over-expression of a newly identified erythrose reductase YPR1 was able to improve the erythritol production as same as the well-known erythrose reductase ER27. Instead of its up-regulation, knockout of erythrose reductase ER10 was effective to improve erythritol synthesis. Moreover, both over-expression of YPR1 and deletion of ER10 significantly accelerated the glycerol utilization in response to high osmotic stress. To further decrease the by-product accumulation, a restriction and recycling strategy was implemented by knockout of mannitol dehydrogenase MDH2 and enhancement of arabitol dehydrogenase ADH1 and fructokinase HXK1. The engineered strain YL13 produced a titer of 25 g/L erythritol and less than 0.5 g/L mannitol and arabitol. By over-expression of transketolase TKL1, the final strain YL14 produced 28.5 g/L erythritol and none of mannitol and arabitol. This study provides a new idea for reducing the production of by-products and improving the glycerol conversion to erythritol.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1226-8372
1976-3816
DOI:10.1007/s12257-024-00005-9