An Integrated MCI Detection Framework Based on Spectral-temporal Analysis

Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation and computing Vol. 16; no. 6; pp. 786 - 799
Main Authors Yin, Jiao, Cao, Jinli, Siuly, Siuly, Wang, Hua
Format Journal Article
LanguageEnglish
Published Beijing Institute of Automation, Chinese Academy of Sciences 01.12.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-8186
2153-182X
1751-8520
2153-1838
DOI10.1007/s11633-019-1197-4

Cover

Abstract Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates noise by employing stationary wavelet transformation (SWT). Then, a set of features is extracted through spectral-temporal analysis. Next, a new wrapper algorithm, named three-dimensional (3-D) evaluation algorithm, is proposed to derive an optimal feature subset. Finally, the support vector machine (SVM) algorithm is adopted to identify MCI patients on the optimal feature subset. Decision tree and K-nearest neighbors (KNN) algorithms are also used to test the effectiveness of the selected feature subset. Twenty-two subjects are involved in experiments, of which eleven persons were in an MCI condition and the rest were elderly control subjects. Extensive experiments show that our method is able to classify MCI patients and elderly control subjects automatically and effectively, with the accuracy of 96.94% achieved by the SVM classifier. Decision tree and KNN algorithms also achieved superior results based on the optimal feature subset extracted by the proposed framework. This study is conducive to timely diagnosis and intervention for MCI patients, and therefore to delaying cognitive decline and dementia onset.
AbstractList Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates noise by employing stationary wavelet transformation (SWT). Then, a set of features is extracted through spectral-temporal analysis. Next, a new wrapper algorithm, named three-dimensional (3-D) evaluation algorithm, is proposed to derive an optimal feature subset. Finally, the support vector machine (SVM) algorithm is adopted to identify MCI patients on the optimal feature subset. Decision tree and K-nearest neighbors (KNN) algorithms are also used to test the effectiveness of the selected feature subset. Twenty-two subjects are involved in experiments, of which eleven persons were in an MCI condition and the rest were elderly control subjects. Extensive experiments show that our method is able to classify MCI patients and elderly control subjects automatically and effectively, with the accuracy of 96.94% achieved by the SVM classifier. Decision tree and KNN algorithms also achieved superior results based on the optimal feature subset extracted by the proposed framework. This study is conducive to timely diagnosis and intervention for MCI patients, and therefore to delaying cognitive decline and dementia onset.
Author Siuly, Siuly
Yin, Jiao
Cao, Jinli
Wang, Hua
Author_xml – sequence: 1
  givenname: Jiao
  orcidid: 0000-0002-0269-2624
  surname: Yin
  fullname: Yin, Jiao
  email: j.yin@latrobe.edu.au
  organization: Department of Computer Science and Information Technology, La Trobe University, School of Software Engineering, Chongqing University of Arts and Sciences
– sequence: 2
  givenname: Jinli
  surname: Cao
  fullname: Cao, Jinli
  organization: Department of Computer Science and Information Technology, La Trobe University
– sequence: 3
  givenname: Siuly
  surname: Siuly
  fullname: Siuly, Siuly
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University
– sequence: 4
  givenname: Hua
  surname: Wang
  fullname: Wang, Hua
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnqOZJM3HsVarCxUP6jlks2nZut1dky3Sf2_KCoKgpwyZ95lMngkaNW3jEboEcg2EyJsIIBjDBDQG0BLzEzQGOQOsZpSMUs2lwAqUOEOTGLeECEk1H6N83mR50_tNsL0vs6dFnt353ru-aptsGezOf7bhPbu1MXXT1UuXesHWuPe7rk1FNm9sfYhVPEena1tHf_F9TtHb8v518YhXzw_5Yr7CjinZY-2o1bYoC8ZdCQqkLwqlSk-U1r7QUmgpnQXmuC40UC4pkRqIIJpyRQVhU3Q1zO1C-7H3sTfbdh_SEtFQnT6oWBrxb4qBpjOhhE4pGFIutDEGvzZdqHY2HAwQc_RqBq8meTVHr4YnRv5iXNXbo6_kpar_JelAxvRKs_HhZ6e_oS8HzYuC
CitedBy_id crossref_primary_10_1007_s11571_023_10010_y
crossref_primary_10_1007_s13246_021_01083_2
crossref_primary_10_1016_j_bspc_2024_107380
crossref_primary_10_1038_s41598_024_63180_y
crossref_primary_10_1007_s11571_022_09859_2
crossref_primary_10_1007_s41870_023_01676_y
crossref_primary_10_1109_TETCI_2022_3186180
crossref_primary_10_1016_j_bspc_2023_105462
crossref_primary_10_1109_TNSRE_2020_3022715
crossref_primary_10_1007_s13755_024_00320_8
crossref_primary_10_1016_j_cmpb_2024_108123
crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_1007_s11633_021_1295_y
crossref_primary_10_1007_s11280_021_00909_z
crossref_primary_10_1109_JSEN_2021_3070373
crossref_primary_10_4018_IJSSCI_315302
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_3390_eng5030078
crossref_primary_10_1007_s40846_024_00912_5
crossref_primary_10_3390_diagnostics14151619
crossref_primary_10_3389_fnins_2023_1128851
crossref_primary_10_22399_ijcesen_534
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1007_s13755_023_00212_3
crossref_primary_10_3390_s24206721
crossref_primary_10_1155_2022_2014001
crossref_primary_10_1016_j_heliyon_2023_e21530
crossref_primary_10_1016_j_dsp_2024_104399
crossref_primary_10_1109_TNSRE_2023_3347032
crossref_primary_10_1016_j_compbiomed_2022_105311
crossref_primary_10_1109_RBME_2021_3055956
crossref_primary_10_1109_TNSRE_2020_3013429
crossref_primary_10_1007_s10462_021_10062_8
crossref_primary_10_1109_TCDS_2024_3386364
crossref_primary_10_1371_journal_pone_0253094
Cites_doi 10.1016/j.neurobiolaging.2016.03.032
10.1063/1.4906038
10.1186/s12911-018-0613-y
10.1016/j.jneumeth.2005.04.013
10.1016/j.cmpb.2016.09.023
10.2174/156720510790691137
10.1155/2015/576437
10.1016/j.clinph.2008.03.026
10.1016/j.clinph.2017.06.251
10.4103/2228-7477.175869
10.1016/B978-0-7020-5307-8.00015-6
10.3389/fnins.2016.00604
10.3390/s151129015
10.1109/JBHI.2013.2253326
10.3389/fnagi.2013.00058
10.3390/s19071489
10.1155/2014/906038
10.1007/s11633-018-1136-9
10.1007/s11633-019-1178-7
10.15540/nr.4.2.79
10.1007/s10439-013-0795-5
10.1371/journal.pone.0193607
10.1007/978-3-030-16145-3_11
10.1007/s11633-018-1158-3
10.1016/j.cviu.2016.12.005
10.1016/j.jneumeth.2006.10.023
10.1007/s00702-017-1699-6
10.1016/j.cmpb.2014.01.019
10.1007/s11633-019-1171-1
10.1145/3121138.3121183
10.1109/MeMeA.2017.7985916
10.1109/ICCES.2007.4447052
10.1109/TETCI.2018.2876529
10.1007/s13755-018-0048-y
ContentType Journal Article
Copyright Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019
2019© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: 2019© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
JQ2
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11633-019-1197-4
DatabaseName CrossRef
ProQuest Computer Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8520
2153-1838
EndPage 799
ExternalDocumentID 10_1007_s11633_019_1197_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
29~
2B.
2C0
2J2
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VR
5VS
6NX
8TC
8UJ
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABWNU
ABXPI
ACBXY
ACGFS
ACHXU
ACKNC
ACMLO
ACOKC
ACOMO
ACSNA
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
DNIVK
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IHE
IJ-
IXD
I~X
I~Z
J-C
JBSCW
KOV
M4Y
MA-
NQJWS
NU0
O9-
O9J
P9O
PF0
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ACSTC
CITATION
JQ2
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c387t-9c2a9abdb34cd1817ebb88de0899eb976977ca13c49b912472079106092482603
IEDL.DBID U2A
ISSN 1476-8186
2153-182X
IngestDate Fri Jul 25 23:31:37 EDT 2025
Sun Jul 13 03:34:59 EDT 2025
Tue Jul 01 01:06:03 EDT 2025
Thu Apr 24 22:54:08 EDT 2025
Fri Feb 21 02:35:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords mild cognitive impairment (MCI)
dementia early detection
Electroencephalogram (EEG)
support vector machine (SVM)
stationary wavelet transformation (SWT)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-9c2a9abdb34cd1817ebb88de0899eb976977ca13c49b912472079106092482603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0269-2624
OpenAccessLink https://vuir.vu.edu.au/41033/
PQID 2918683697
PQPubID 2029113
PageCount 14
ParticipantIDs proquest_journals_2918683697
proquest_journals_2319256869
crossref_primary_10_1007_s11633_019_1197_4
crossref_citationtrail_10_1007_s11633_019_1197_4
springer_journals_10_1007_s11633_019_1197_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of automation and computing
PublicationTitleAbbrev Int. J. Autom. Comput
PublicationYear 2019
Publisher Institute of Automation, Chinese Academy of Sciences
Springer Nature B.V
Publisher_xml – name: Institute of Automation, Chinese Academy of Sciences
– name: Springer Nature B.V
References Ghorbanian, Devilbiss, Verma, Bernstein, Hess, Simon, Ashrafiuon (CR16) 2013; 41
Kashefpoor, Rabbani, Barekatain (CR2) 2016; 6
Supriya, Siuly, Wang, Zhang (CR9) 2018
Vigil, Tataryn (CR27) 2017; 4
Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (CR19) 2017; 128
Buscema, Grossi, Capriotti, Babiloni, Rossini (CR14) 2010; 7
Güler, Übeyli (CR25) 2005; 148
Fiscon, Weitschek, Cialini, Felici, Bertolazzi, De Salvo, Bramanti, Bramanti, De Cola (CR37) 2018; 18
Garn, Coronel, Waser, Caravias, Ransmayr (CR12) 2017; 124
Pandey, Yin, Wang, Zhang (CR31) 2017; 155
Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (CR1) 2018; 13
CR10
Afrakhteh, Mosavi, Khishe, Ayatollahi (CR23) 2018; 17
Khatun, Morshed, Bidelman (CR3) 2017
Yao, Bi, Chen (CR6) 2018; 15
Poil, De Haan, van der Flier, Mansvelder, Scheltens, Linkenkaer-Hansen (CR17) 2013; 5
Hosni, Gadallah, Bahgat, Abdel-Wahab (CR29) 2007
Siuly, Bajaj, Sengur, Zhang (CR33) 2019; 16
McBride, Zhao, Munro, Smith, Jicha, Hively, Broster, Schmitt, Kryscio, Jiang (CR35) 2014; 114
CR8
Siuly, Kabir, Wang, Zhang (CR13) 2015; 2015
Bibina, Chakraborty, Lourde, Kumar (CR4) 2017
Al-Qazzaz, Ali, Ahmad, Chellappan, Islam, Escudero (CR5) 2014; 2014
Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni, Babiloni (CR21) 2017; 10
Al-Qazzaz, Ali, Ahmad, Islam, Escudero (CR32) 2015; 15
CR26
Rossini, Buscema, Capriotti, Grossi, Rodriguez, Del Percio, Babiloni (CR36) 2008; 119
Wang, Wang, Li, Yu, Deng, Wei (CR20) 2015; 25
Kanda, Oliveira, Fraga (CR11) 2017; 138
Liu, Zhou, Cao, Wang, Wang, Zhang (CR18) 2019
Aghajani, Zahedi, Jalili, Keikhosravi, Vahdat (CR24) 2013; 17
Zhang, Wang, Shen, Lei (CR28) 2019; 16
Vecchio, Babiloni, Lizio, Fallani, Blinowska, Verrienti, Frisoni, Rossini (CR7) 2013; 62
Bertè, Lamponi, Calabrò, Bramanti (CR22) 2014; 29
Liu, Zhou, Wang, Cao, Wang, Zhang (CR30) 2019; 19
Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (CR34) 2007; 161
Barzegaran, van Damme, Meuli, Knyazeva (CR15) 2016; 43
E Barzegaran (1197_CR15) 2016; 43
P Ghorbanian (1197_CR16) 2013; 41
1197_CR10
Z J Yao (1197_CR6) 2018; 15
J C McBride (1197_CR35) 2014; 114
1197_CR8
M. Buscema (1197_CR14) 2010; 7
Siuly Siuly (1197_CR33) 2019; 16
V C Bibina (1197_CR4) 2017
F Bertè (1197_CR22) 2014; 29
S Supriya (1197_CR9) 2018
H Garn (1197_CR12) 2017; 124
B T Zhang (1197_CR28) 2019; 16
G Fiscon (1197_CR37) 2018; 18
F Vecchio (1197_CR7) 2013; 62
N Houmani (1197_CR1) 2018; 13
İnan Güler (1197_CR25) 2005; 148
Haleh Aghajani (1197_CR24) 2013; 17
M Kashefpoor (1197_CR2) 2016; 6
N K Al-Qazzaz (1197_CR5) 2014; 2014
N K Al-Qazzaz (1197_CR32) 2015; 15
P A M Kanda (1197_CR11) 2017; 138
S S Poil (1197_CR17) 2013; 5
J Vigil (1197_CR27) 2017; 4
C Lehmann (1197_CR34) 2007; 161
F Liu (1197_CR18) 2019
A I Triggiani (1197_CR21) 2017; 10
F Liu (1197_CR30) 2019; 19
S Siuly (1197_CR13) 2015; 2015
D Pandey (1197_CR31) 2017; 155
S Khatun (1197_CR3) 2017
Sajjad Afrakhteh (1197_CR23) 2018; 17
L.R. Trambaiolli (1197_CR19) 2017; 128
R F Wang (1197_CR20) 2015; 25
P M Rossini (1197_CR36) 2008; 119
1197_CR26
S M Hosni (1197_CR29) 2007
References_xml – volume: 43
  start-page: 129
  year: 2016
  end-page: 139
  ident: CR15
  article-title: Perception-related EEG is more sensitive to Alzheimer’s disease effects than resting EEG
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2016.03.032
– volume: 25
  start-page: 013110
  issue: 1
  year: 2015
  ident: CR20
  article-title: Multiple feature extraction and classification of electroencephalograph signal for Alzheimers’ with spectrum and bispectrum
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.4906038
– volume: 18
  start-page: 35
  year: 2018
  ident: CR37
  article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-018-0613-y
– volume: 148
  start-page: 113
  issue: 2
  year: 2005
  end-page: 121
  ident: CR25
  article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2005.04.013
– volume: 138
  start-page: 13
  year: 2017
  end-page: 22
  ident: CR11
  article-title: EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.09.023
– volume: 7
  start-page: 173
  issue: 2
  year: 2010
  end-page: 187
  ident: CR14
  article-title: The I.F.A.S.T. Model Allows the Prediction of Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment with High Degree of Accuracy
  publication-title: Current Alzheimer Research
  doi: 10.2174/156720510790691137
– volume: 2015
  start-page: 576437
  year: 2015
  ident: CR13
  article-title: Exploring sampling in the detection of multicategory EEG signals
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2015/576437
– volume: 119
  start-page: 1534
  issue: 7
  year: 2008
  end-page: 1545
  ident: CR36
  article-title: Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2008.03.026
– ident: CR10
– start-page: 220
  year: 2007
  end-page: 226
  ident: CR29
  article-title: Classification of EEG signals using different feature extraction techniques for mental-task BCI
  publication-title: Proceedings of International Conference on Computer Engineering & Systems
– volume: 128
  start-page: 2058
  issue: 10
  year: 2017
  end-page: 2067
  ident: CR19
  article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2017.06.251
– volume: 6
  start-page: 25
  issue: 1
  year: 2016
  end-page: 32
  ident: CR2
  article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features
  publication-title: Journal of Medical Signals and Sensors
  doi: 10.4103/2228-7477.175869
– volume: 62
  start-page: 223
  year: 2013
  end-page: 236
  ident: CR7
  article-title: Resting state cortical EEG rhythms in Alzheimer’s disease: Toward EEG markers for clinical applications: A review
  publication-title: Supplements to Clinical Neurophysiology
  doi: 10.1016/B978-0-7020-5307-8.00015-6
– ident: CR8
– volume: 10
  start-page: 604
  year: 2017
  ident: CR21
  article-title: Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: A study using artificial neural networks
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00604
– volume: 15
  start-page: 29015
  issue: 11
  year: 2015
  end-page: 29035
  ident: CR32
  article-title: Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task
  publication-title: Sensors
  doi: 10.3390/s151129015
– volume: 17
  start-page: 1039
  issue: 6
  year: 2013
  end-page: 1045
  ident: CR24
  article-title: Diagnosis of Early Alzheimer’s Disease Based on EEG Source Localization and a Standardized Realistic Head Model
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2013.2253326
– volume: 5
  start-page: 58
  year: 2013
  ident: CR17
  article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2013.00058
– volume: 19
  start-page: 1489
  issue: 7
  year: 2019
  ident: CR30
  article-title: Unobtrusive mattress-based identification of hypertension by integrating classification and association rule mining
  publication-title: Sensors
  doi: 10.3390/s19071489
– volume: 2014
  start-page: 906038
  year: 2014
  ident: CR5
  article-title: Role of EEG as biomarker in the early detection and classification of dementia
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/906038
– volume: 15
  start-page: 643
  issue: 6
  year: 2018
  end-page: 655
  ident: CR6
  article-title: Applying deep learning to individual and community health monitoring data: A survey
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-018-1136-9
– volume: 16
  start-page: 737
  issue: 6
  year: 2019
  end-page: 747
  ident: CR33
  article-title: An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1178-7
– volume: 4
  start-page: 79
  issue: 2
  year: 2017
  end-page: 94
  ident: CR27
  article-title: Neurotherapies and Alzheimer’s: A protocol-oriented review
  publication-title: NeuroRegulation
  doi: 10.15540/nr.4.2.79
– volume: 41
  start-page: 1243
  issue: 6
  year: 2013
  end-page: 1257
  ident: CR16
  article-title: Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-013-0795-5
– volume: 13
  start-page: e0193607
  issue: 3
  year: 2018
  ident: CR1
  article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193607
– start-page: 49
  year: 2017
  end-page: 54
  ident: CR4
  article-title: Time-frequency methods for diagnosing Alzheimer’s disease using EEG: A technical review
  publication-title: Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science
– volume: 29
  start-page: 57
  issue: 1
  year: 2014
  end-page: 65
  ident: CR22
  article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer’s disease
  publication-title: Functional Neurology
– start-page: 136
  year: 2019
  end-page: 149
  ident: CR18
  article-title: Arrhythmias classification by integrating stacked bidirectional LSTM and two-dimensional CNN
  publication-title: Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining
  doi: 10.1007/978-3-030-16145-3_11
– volume: 17
  start-page: 108
  issue: 1
  year: 2018
  end-page: 122
  ident: CR23
  article-title: Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-018-1158-3
– volume: 155
  start-page: 162
  year: 2017
  end-page: 172
  ident: CR31
  article-title: Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2016.12.005
– volume: 161
  start-page: 342
  issue: 2
  year: 2007
  end-page: 350
  ident: CR34
  article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG)
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2006.10.023
– volume: 124
  start-page: 569
  issue: 5
  year: 2017
  end-page: 581
  ident: CR12
  article-title: Differential diagnosis between patients with probable Alzheimer’s disease, Parkinson’s disease dementia, or dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using quantitative electroencephalo-graphic features
  publication-title: Journal of Neural Transmission
  doi: 10.1007/s00702-017-1699-6
– start-page: 199
  year: 2018
  end-page: 207
  ident: CR9
  article-title: An efficient framework for the analysis of big brain signals data
  publication-title: Prceedings of Australasian Database Conference
– ident: CR26
– start-page: 437
  year: 2017
  end-page: 442
  ident: CR3
  article-title: Single channel EEG time-frequency features to detect mild cognitive impairment
  publication-title: Proceedings of IEEE International Symposium on Medical Measurements and Applications
– volume: 114
  start-page: 153
  issue: 2
  year: 2014
  end-page: 163
  ident: CR35
  article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2014.01.019
– volume: 16
  start-page: 286
  issue: 3
  year: 2019
  end-page: 296
  ident: CR28
  article-title: Dual-modal physiological feature fusion-based sleep recognition using CFS and RF algorithm
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1171-1
– start-page: 49
  volume-title: Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science
  year: 2017
  ident: 1197_CR4
  doi: 10.1145/3121138.3121183
– volume: 25
  start-page: 013110
  issue: 1
  year: 2015
  ident: 1197_CR20
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.4906038
– volume: 13
  start-page: e0193607
  issue: 3
  year: 2018
  ident: 1197_CR1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0193607
– volume: 124
  start-page: 569
  issue: 5
  year: 2017
  ident: 1197_CR12
  publication-title: Journal of Neural Transmission
  doi: 10.1007/s00702-017-1699-6
– start-page: 437
  volume-title: Proceedings of IEEE International Symposium on Medical Measurements and Applications
  year: 2017
  ident: 1197_CR3
  doi: 10.1109/MeMeA.2017.7985916
– volume: 2015
  start-page: 576437
  year: 2015
  ident: 1197_CR13
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2015/576437
– volume: 41
  start-page: 1243
  issue: 6
  year: 2013
  ident: 1197_CR16
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-013-0795-5
– volume: 4
  start-page: 79
  issue: 2
  year: 2017
  ident: 1197_CR27
  publication-title: NeuroRegulation
  doi: 10.15540/nr.4.2.79
– start-page: 199
  volume-title: Prceedings of Australasian Database Conference
  year: 2018
  ident: 1197_CR9
– volume: 148
  start-page: 113
  issue: 2
  year: 2005
  ident: 1197_CR25
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2005.04.013
– volume: 138
  start-page: 13
  year: 2017
  ident: 1197_CR11
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2016.09.023
– start-page: 220
  volume-title: Proceedings of International Conference on Computer Engineering & Systems
  year: 2007
  ident: 1197_CR29
  doi: 10.1109/ICCES.2007.4447052
– volume: 119
  start-page: 1534
  issue: 7
  year: 2008
  ident: 1197_CR36
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2008.03.026
– ident: 1197_CR26
– volume: 15
  start-page: 29015
  issue: 11
  year: 2015
  ident: 1197_CR32
  publication-title: Sensors
  doi: 10.3390/s151129015
– volume: 5
  start-page: 58
  year: 2013
  ident: 1197_CR17
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2013.00058
– volume: 18
  start-page: 35
  year: 2018
  ident: 1197_CR37
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-018-0613-y
– volume: 17
  start-page: 108
  issue: 1
  year: 2018
  ident: 1197_CR23
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-018-1158-3
– volume: 128
  start-page: 2058
  issue: 10
  year: 2017
  ident: 1197_CR19
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2017.06.251
– volume: 16
  start-page: 286
  issue: 3
  year: 2019
  ident: 1197_CR28
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1171-1
– ident: 1197_CR10
  doi: 10.1109/TETCI.2018.2876529
– volume: 114
  start-page: 153
  issue: 2
  year: 2014
  ident: 1197_CR35
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2014.01.019
– volume: 16
  start-page: 737
  issue: 6
  year: 2019
  ident: 1197_CR33
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-019-1178-7
– volume: 62
  start-page: 223
  year: 2013
  ident: 1197_CR7
  publication-title: Supplements to Clinical Neurophysiology
  doi: 10.1016/B978-0-7020-5307-8.00015-6
– volume: 15
  start-page: 643
  issue: 6
  year: 2018
  ident: 1197_CR6
  publication-title: International Journal of Automation and Computing
  doi: 10.1007/s11633-018-1136-9
– volume: 19
  start-page: 1489
  issue: 7
  year: 2019
  ident: 1197_CR30
  publication-title: Sensors
  doi: 10.3390/s19071489
– volume: 7
  start-page: 173
  issue: 2
  year: 2010
  ident: 1197_CR14
  publication-title: Current Alzheimer Research
  doi: 10.2174/156720510790691137
– volume: 2014
  start-page: 906038
  year: 2014
  ident: 1197_CR5
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/906038
– volume: 43
  start-page: 129
  year: 2016
  ident: 1197_CR15
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2016.03.032
– start-page: 136
  volume-title: Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining
  year: 2019
  ident: 1197_CR18
  doi: 10.1007/978-3-030-16145-3_11
– volume: 155
  start-page: 162
  year: 2017
  ident: 1197_CR31
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2016.12.005
– ident: 1197_CR8
  doi: 10.1007/s13755-018-0048-y
– volume: 29
  start-page: 57
  issue: 1
  year: 2014
  ident: 1197_CR22
  publication-title: Functional Neurology
– volume: 161
  start-page: 342
  issue: 2
  year: 2007
  ident: 1197_CR34
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2006.10.023
– volume: 10
  start-page: 604
  year: 2017
  ident: 1197_CR21
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2016.00604
– volume: 17
  start-page: 1039
  issue: 6
  year: 2013
  ident: 1197_CR24
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2013.2253326
– volume: 6
  start-page: 25
  issue: 1
  year: 2016
  ident: 1197_CR2
  publication-title: Journal of Medical Signals and Sensors
  doi: 10.4103/2228-7477.175869
SSID ssj0067294
ssj0003320693
Score 2.3605444
Snippet Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 786
SubjectTerms Algorithms
CAE) and Design
Computer Applications
Computer-Aided Engineering (CAD
Control
Decision trees
Electroencephalography
Engineering
Feature extraction
Mechatronics
Older people
Research Article
Robotics
Spectra
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTsMwDI1gXLggECAGA-XACRTRJVmbnNAYlA1pnJi0W5Sk2Ql1g5X_x-7STSDYtWlSyXbjF9t5JuTagk14zgNowComfaaZ8gDkeDpLVU_CdjjDi8Lj13Q4kS_T3jQG3JaxrLLZE-uNuph7jJHfcY3E7iLV2f3ig2HXKMyuxhYau2SvC54G7Vzlz-sYixA8SWveXXBsggGUnjaJzfr2HGARLCbSDHNpTP50TRu8-StFWnue_JAcRMhI-ysdH5GdUB6TUb-ko4bqoaDjwYg-hqquqypp3lRc0QdwUgWFR9hnHoMaLHJRwXqRjuSETPKnt8GQxbYIzAuVVUx7brV1hRPSF-Cgs-CcUkXABF5wAC8A0nnbFV5qp8F9ZzzJABSkCRy14DCRiFPSKudlOCPUJjYgTbEH4UqJ1G9CzbTzIJOs6HrXJkkjEeMjZzi2rng3G7ZjFKKBCQaFaGSb3KynLFaEGdte7jRiNvHfWRpAnBqAmEr138NrQ2iT20Yzm-F_v3W-fbELss9rU8BKlQ5pVZ9f4RLwRuWuaqP6BtNXzMU
  priority: 102
  providerName: ProQuest
Title An Integrated MCI Detection Framework Based on Spectral-temporal Analysis
URI https://link.springer.com/article/10.1007/s11633-019-1197-4
https://www.proquest.com/docview/2319256869
https://www.proquest.com/docview/2918683697
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-InTOXLwpAS6NkuTYzfXbcqGiIN5Kk2anaSKq_-_L11jVabgqdB8lL6X5P1e3ssvAJcpjgnt-wY1kArKdCip0AjkfL7kosdwOVzag8LTGR_P2e2it6jOca9ctrsLSZYrdX3YDaGDzf2R1Ia-KNuGZg9ddzsb537kll-OaLEMJbOQU0vX5kKZm7r4boxqhPkjKFramngf9iqQSKK1Vg9gy-SHsPuFOvAIJlFOJo7qISPTwYTcmKLMq8pJ7DKuSB-NVEbwlb1n3m5q0IqLCnuv6EiOYR4PHwdjWl2LQHUgwoJK7acyVZkKmM7QQIdGKSEyYwN4RiG8QEin026gmVQSzXfoeyGCAu6hq4XOhBecQCN_yc0pkNRLjaUp1hIdPWap3wKxlEqjhMKsq1ULPCefRFec4fbqiuekZju2Ik2wQWJFmrAWXH02eV0TZvxVue2EnlRzZ5Ug4pQIxASXm4ulZfgP8C9bcO30VBf_-q2zf9U-hx2_HCc2caUNjeLt3Vwg_ChUB7ZFPOpAMxo93Q3x2R_O7h865SD8ANjG0SM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCQIAYzxzgAoooSWibA0IbMK3AJoRA2q00aXZCHY8hxJ_iN2J3zSYQcOPaNKlku_GX2P4MsJOhTVghHGogi7mykeaxRSAnwn4YHyncDvtUKNzphu07ddE76k3Bh6-FobRKvyeWG3U-sHRHfiA0EbvLUEcnj0-cukZRdNW30BiZxaV7f8Mj28txcob63RWidX572uZVVwFuZRwNubYi05nJjVQ2R_8WOWPiOHcU_3IGvTMiIpsdSqu00ej9IhFE6FPDAE8qiMUDietOw4yiitYazDTPu9c341sdKUUQlky_6EolR_De86HUsl4P0Q-lL2lO0TuuvjrDCcL9FpQtfV1rAeYrkMoaI6tahClXLEHSKFjiySVy1jlN2JkblplcBWv5HC_WRLeYM3xEne3pGoVX7Fe4XkWAsgx3_yKyFagVg8KtAsuCzBExskV1KkVkczLua2NRJlF-aE0dAi-R1FYs5dQs4yGd8CuTEFOckJIQU1WHvfGUxxFFx18vb3gxp9Xf-pIixtUI_eJQ_zw8Nr067HvNTIZ__dba34ttw2z7tnOVXiXdy3WYE6VZUJ7MBtSGz69uE9HO0GxVJsbg_r-t-hMWsglB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBEyha12ZtchyDagU2cWDSblGTpidUJlb-P3bXUEADiWvzqGq78ZfY-UzIZQo2YXzfggZSwbiJJBMGgJwf5qHoc1gOc7woPJ6Eoym_n_VndZ3Thct2dyHJ5Z0GZGkqyu48y7vNxTeAEZgHJBmGwRhfJxuwGvfQ0Kf-wC3FISDHKqzMo5AhdZsLa66a4rtjatDmjwBp5XfiXbJTA0Y6WGp4j6zZYp9sf6ERPCDJoKCJo33I6HiY0FtbVjlWBY1d9hW9AYeVUXiENefxgIPVvFQwe01Nckim8d3zcMTqEgnMBCIqmTR-KlOd6YCbDJx1ZLUWIrMYzLMaoAbAO5P2AsOlluDKI9-LACCEHmy7YGPhBUekVbwW9pjQ1EstUhYbCZs-jjRwgcilNiChKOsZ3Saek48yNX84lrF4UQ3zMYpUwQCFIlW8Ta4-h8yX5Bl_de44oav6P1ooQJ8SQJkI5epmiWz_AXxlm1w7PTXNv77r5F-9L8jm022sHpPJwynZ8iuTwXyWDmmVb-_2DFBJqc8ry_sASM_UPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+MCI+Detection+Framework+Based+on+Spectral-temporal+Analysis&rft.jtitle=International+journal+of+automation+and+computing&rft.au=Yin%2C+Jiao&rft.au=Cao%2C+Jinli&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Hua&rft.date=2019-12-01&rft.pub=Institute+of+Automation%2C+Chinese+Academy+of+Sciences&rft.issn=1476-8186&rft.eissn=1751-8520&rft.volume=16&rft.issue=6&rft.spage=786&rft.epage=799&rft_id=info:doi/10.1007%2Fs11633-019-1197-4&rft.externalDocID=10_1007_s11633_019_1197_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-8186&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-8186&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-8186&client=summon