An Integrated MCI Detection Framework Based on Spectral-temporal Analysis
Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates...
Saved in:
Published in | International journal of automation and computing Vol. 16; no. 6; pp. 786 - 799 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Automation, Chinese Academy of Sciences
01.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI | 10.1007/s11633-019-1197-4 |
Cover
Abstract | Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates noise by employing stationary wavelet transformation (SWT). Then, a set of features is extracted through spectral-temporal analysis. Next, a new wrapper algorithm, named three-dimensional (3-D) evaluation algorithm, is proposed to derive an optimal feature subset. Finally, the support vector machine (SVM) algorithm is adopted to identify MCI patients on the optimal feature subset. Decision tree and K-nearest neighbors (KNN) algorithms are also used to test the effectiveness of the selected feature subset. Twenty-two subjects are involved in experiments, of which eleven persons were in an MCI condition and the rest were elderly control subjects. Extensive experiments show that our method is able to classify MCI patients and elderly control subjects automatically and effectively, with the accuracy of 96.94% achieved by the SVM classifier. Decision tree and KNN algorithms also achieved superior results based on the optimal feature subset extracted by the proposed framework. This study is conducive to timely diagnosis and intervention for MCI patients, and therefore to delaying cognitive decline and dementia onset. |
---|---|
AbstractList | Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram (EEG) recordings. This framework firstly eliminates noise by employing stationary wavelet transformation (SWT). Then, a set of features is extracted through spectral-temporal analysis. Next, a new wrapper algorithm, named three-dimensional (3-D) evaluation algorithm, is proposed to derive an optimal feature subset. Finally, the support vector machine (SVM) algorithm is adopted to identify MCI patients on the optimal feature subset. Decision tree and K-nearest neighbors (KNN) algorithms are also used to test the effectiveness of the selected feature subset. Twenty-two subjects are involved in experiments, of which eleven persons were in an MCI condition and the rest were elderly control subjects. Extensive experiments show that our method is able to classify MCI patients and elderly control subjects automatically and effectively, with the accuracy of 96.94% achieved by the SVM classifier. Decision tree and KNN algorithms also achieved superior results based on the optimal feature subset extracted by the proposed framework. This study is conducive to timely diagnosis and intervention for MCI patients, and therefore to delaying cognitive decline and dementia onset. |
Author | Siuly, Siuly Yin, Jiao Cao, Jinli Wang, Hua |
Author_xml | – sequence: 1 givenname: Jiao orcidid: 0000-0002-0269-2624 surname: Yin fullname: Yin, Jiao email: j.yin@latrobe.edu.au organization: Department of Computer Science and Information Technology, La Trobe University, School of Software Engineering, Chongqing University of Arts and Sciences – sequence: 2 givenname: Jinli surname: Cao fullname: Cao, Jinli organization: Department of Computer Science and Information Technology, La Trobe University – sequence: 3 givenname: Siuly surname: Siuly fullname: Siuly, Siuly organization: Institute for Sustainable Industries & Liveable Cities, Victoria University – sequence: 4 givenname: Hua surname: Wang fullname: Wang, Hua organization: Institute for Sustainable Industries & Liveable Cities, Victoria University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnqOZJM3HsVarCxUP6jlks2nZut1dky3Sf2_KCoKgpwyZ95lMngkaNW3jEboEcg2EyJsIIBjDBDQG0BLzEzQGOQOsZpSMUs2lwAqUOEOTGLeECEk1H6N83mR50_tNsL0vs6dFnt353ru-aptsGezOf7bhPbu1MXXT1UuXesHWuPe7rk1FNm9sfYhVPEena1tHf_F9TtHb8v518YhXzw_5Yr7CjinZY-2o1bYoC8ZdCQqkLwqlSk-U1r7QUmgpnQXmuC40UC4pkRqIIJpyRQVhU3Q1zO1C-7H3sTfbdh_SEtFQnT6oWBrxb4qBpjOhhE4pGFIutDEGvzZdqHY2HAwQc_RqBq8meTVHr4YnRv5iXNXbo6_kpar_JelAxvRKs_HhZ6e_oS8HzYuC |
CitedBy_id | crossref_primary_10_1007_s11571_023_10010_y crossref_primary_10_1007_s13246_021_01083_2 crossref_primary_10_1016_j_bspc_2024_107380 crossref_primary_10_1038_s41598_024_63180_y crossref_primary_10_1007_s11571_022_09859_2 crossref_primary_10_1007_s41870_023_01676_y crossref_primary_10_1109_TETCI_2022_3186180 crossref_primary_10_1016_j_bspc_2023_105462 crossref_primary_10_1109_TNSRE_2020_3022715 crossref_primary_10_1007_s13755_024_00320_8 crossref_primary_10_1016_j_cmpb_2024_108123 crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_1007_s11633_021_1295_y crossref_primary_10_1007_s11280_021_00909_z crossref_primary_10_1109_JSEN_2021_3070373 crossref_primary_10_4018_IJSSCI_315302 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_3390_eng5030078 crossref_primary_10_1007_s40846_024_00912_5 crossref_primary_10_3390_diagnostics14151619 crossref_primary_10_3389_fnins_2023_1128851 crossref_primary_10_22399_ijcesen_534 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1007_s13755_023_00212_3 crossref_primary_10_3390_s24206721 crossref_primary_10_1155_2022_2014001 crossref_primary_10_1016_j_heliyon_2023_e21530 crossref_primary_10_1016_j_dsp_2024_104399 crossref_primary_10_1109_TNSRE_2023_3347032 crossref_primary_10_1016_j_compbiomed_2022_105311 crossref_primary_10_1109_RBME_2021_3055956 crossref_primary_10_1109_TNSRE_2020_3013429 crossref_primary_10_1007_s10462_021_10062_8 crossref_primary_10_1109_TCDS_2024_3386364 crossref_primary_10_1371_journal_pone_0253094 |
Cites_doi | 10.1016/j.neurobiolaging.2016.03.032 10.1063/1.4906038 10.1186/s12911-018-0613-y 10.1016/j.jneumeth.2005.04.013 10.1016/j.cmpb.2016.09.023 10.2174/156720510790691137 10.1155/2015/576437 10.1016/j.clinph.2008.03.026 10.1016/j.clinph.2017.06.251 10.4103/2228-7477.175869 10.1016/B978-0-7020-5307-8.00015-6 10.3389/fnins.2016.00604 10.3390/s151129015 10.1109/JBHI.2013.2253326 10.3389/fnagi.2013.00058 10.3390/s19071489 10.1155/2014/906038 10.1007/s11633-018-1136-9 10.1007/s11633-019-1178-7 10.15540/nr.4.2.79 10.1007/s10439-013-0795-5 10.1371/journal.pone.0193607 10.1007/978-3-030-16145-3_11 10.1007/s11633-018-1158-3 10.1016/j.cviu.2016.12.005 10.1016/j.jneumeth.2006.10.023 10.1007/s00702-017-1699-6 10.1016/j.cmpb.2014.01.019 10.1007/s11633-019-1171-1 10.1145/3121138.3121183 10.1109/MeMeA.2017.7985916 10.1109/ICCES.2007.4447052 10.1109/TETCI.2018.2876529 10.1007/s13755-018-0048-y |
ContentType | Journal Article |
Copyright | Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019 2019© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
Copyright_xml | – notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: 2019© Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
DBID | AAYXX CITATION JQ2 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s11633-019-1197-4 |
DatabaseName | CrossRef ProQuest Computer Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef ProQuest Computer Science Collection Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8520 2153-1838 |
EndPage | 799 |
ExternalDocumentID | 10_1007_s11633_019_1197_4 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 29~ 2B. 2C0 2J2 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VR 5VS 6NX 8TC 8UJ 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACBXY ACGFS ACHXU ACKNC ACMLO ACOKC ACOMO ACSNA ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AETLH AEVLU AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CHBEP COF CS3 CSCUP CUBFJ CW9 DNIVK EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IHE IJ- IXD I~X I~Z J-C JBSCW KOV M4Y MA- NQJWS NU0 O9- O9J P9O PF0 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7X Z83 Z88 ZMTXR ~A9 AAYXX ACSTC CITATION JQ2 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c387t-9c2a9abdb34cd1817ebb88de0899eb976977ca13c49b912472079106092482603 |
IEDL.DBID | U2A |
ISSN | 1476-8186 2153-182X |
IngestDate | Fri Jul 25 23:31:37 EDT 2025 Sun Jul 13 03:34:59 EDT 2025 Tue Jul 01 01:06:03 EDT 2025 Thu Apr 24 22:54:08 EDT 2025 Fri Feb 21 02:35:01 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | mild cognitive impairment (MCI) dementia early detection Electroencephalogram (EEG) support vector machine (SVM) stationary wavelet transformation (SWT) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-9c2a9abdb34cd1817ebb88de0899eb976977ca13c49b912472079106092482603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0269-2624 |
OpenAccessLink | https://vuir.vu.edu.au/41033/ |
PQID | 2918683697 |
PQPubID | 2029113 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2918683697 proquest_journals_2319256869 crossref_primary_10_1007_s11633_019_1197_4 crossref_citationtrail_10_1007_s11633_019_1197_4 springer_journals_10_1007_s11633_019_1197_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of automation and computing |
PublicationTitleAbbrev | Int. J. Autom. Comput |
PublicationYear | 2019 |
Publisher | Institute of Automation, Chinese Academy of Sciences Springer Nature B.V |
Publisher_xml | – name: Institute of Automation, Chinese Academy of Sciences – name: Springer Nature B.V |
References | Ghorbanian, Devilbiss, Verma, Bernstein, Hess, Simon, Ashrafiuon (CR16) 2013; 41 Kashefpoor, Rabbani, Barekatain (CR2) 2016; 6 Supriya, Siuly, Wang, Zhang (CR9) 2018 Vigil, Tataryn (CR27) 2017; 4 Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (CR19) 2017; 128 Buscema, Grossi, Capriotti, Babiloni, Rossini (CR14) 2010; 7 Güler, Übeyli (CR25) 2005; 148 Fiscon, Weitschek, Cialini, Felici, Bertolazzi, De Salvo, Bramanti, Bramanti, De Cola (CR37) 2018; 18 Garn, Coronel, Waser, Caravias, Ransmayr (CR12) 2017; 124 Pandey, Yin, Wang, Zhang (CR31) 2017; 155 Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (CR1) 2018; 13 CR10 Afrakhteh, Mosavi, Khishe, Ayatollahi (CR23) 2018; 17 Khatun, Morshed, Bidelman (CR3) 2017 Yao, Bi, Chen (CR6) 2018; 15 Poil, De Haan, van der Flier, Mansvelder, Scheltens, Linkenkaer-Hansen (CR17) 2013; 5 Hosni, Gadallah, Bahgat, Abdel-Wahab (CR29) 2007 Siuly, Bajaj, Sengur, Zhang (CR33) 2019; 16 McBride, Zhao, Munro, Smith, Jicha, Hively, Broster, Schmitt, Kryscio, Jiang (CR35) 2014; 114 CR8 Siuly, Kabir, Wang, Zhang (CR13) 2015; 2015 Bibina, Chakraborty, Lourde, Kumar (CR4) 2017 Al-Qazzaz, Ali, Ahmad, Chellappan, Islam, Escudero (CR5) 2014; 2014 Triggiani, Bevilacqua, Brunetti, Lizio, Tattoli, Cassano, Soricelli, Ferri, Nobili, Gesualdo, Barulli, Tortelli, Cardinali, Giannini, Spagnolo, Armenise, Stocchi, Buenza, Scianatico, Logroscino, Lacidogna, Orzi, Buttinelli, Giubilei, Del Percio, Frisoni, Babiloni (CR21) 2017; 10 Al-Qazzaz, Ali, Ahmad, Islam, Escudero (CR32) 2015; 15 CR26 Rossini, Buscema, Capriotti, Grossi, Rodriguez, Del Percio, Babiloni (CR36) 2008; 119 Wang, Wang, Li, Yu, Deng, Wei (CR20) 2015; 25 Kanda, Oliveira, Fraga (CR11) 2017; 138 Liu, Zhou, Cao, Wang, Wang, Zhang (CR18) 2019 Aghajani, Zahedi, Jalili, Keikhosravi, Vahdat (CR24) 2013; 17 Zhang, Wang, Shen, Lei (CR28) 2019; 16 Vecchio, Babiloni, Lizio, Fallani, Blinowska, Verrienti, Frisoni, Rossini (CR7) 2013; 62 Bertè, Lamponi, Calabrò, Bramanti (CR22) 2014; 29 Liu, Zhou, Wang, Cao, Wang, Zhang (CR30) 2019; 19 Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (CR34) 2007; 161 Barzegaran, van Damme, Meuli, Knyazeva (CR15) 2016; 43 E Barzegaran (1197_CR15) 2016; 43 P Ghorbanian (1197_CR16) 2013; 41 1197_CR10 Z J Yao (1197_CR6) 2018; 15 J C McBride (1197_CR35) 2014; 114 1197_CR8 M. Buscema (1197_CR14) 2010; 7 Siuly Siuly (1197_CR33) 2019; 16 V C Bibina (1197_CR4) 2017 F Bertè (1197_CR22) 2014; 29 S Supriya (1197_CR9) 2018 H Garn (1197_CR12) 2017; 124 B T Zhang (1197_CR28) 2019; 16 G Fiscon (1197_CR37) 2018; 18 F Vecchio (1197_CR7) 2013; 62 N Houmani (1197_CR1) 2018; 13 İnan Güler (1197_CR25) 2005; 148 Haleh Aghajani (1197_CR24) 2013; 17 M Kashefpoor (1197_CR2) 2016; 6 N K Al-Qazzaz (1197_CR5) 2014; 2014 N K Al-Qazzaz (1197_CR32) 2015; 15 P A M Kanda (1197_CR11) 2017; 138 S S Poil (1197_CR17) 2013; 5 J Vigil (1197_CR27) 2017; 4 C Lehmann (1197_CR34) 2007; 161 F Liu (1197_CR18) 2019 A I Triggiani (1197_CR21) 2017; 10 F Liu (1197_CR30) 2019; 19 S Siuly (1197_CR13) 2015; 2015 D Pandey (1197_CR31) 2017; 155 S Khatun (1197_CR3) 2017 Sajjad Afrakhteh (1197_CR23) 2018; 17 L.R. Trambaiolli (1197_CR19) 2017; 128 R F Wang (1197_CR20) 2015; 25 P M Rossini (1197_CR36) 2008; 119 1197_CR26 S M Hosni (1197_CR29) 2007 |
References_xml | – volume: 43 start-page: 129 year: 2016 end-page: 139 ident: CR15 article-title: Perception-related EEG is more sensitive to Alzheimer’s disease effects than resting EEG publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2016.03.032 – volume: 25 start-page: 013110 issue: 1 year: 2015 ident: CR20 article-title: Multiple feature extraction and classification of electroencephalograph signal for Alzheimers’ with spectrum and bispectrum publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4906038 – volume: 18 start-page: 35 year: 2018 ident: CR37 article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0613-y – volume: 148 start-page: 113 issue: 2 year: 2005 end-page: 121 ident: CR25 article-title: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2005.04.013 – volume: 138 start-page: 13 year: 2017 end-page: 22 ident: CR11 article-title: EEG epochs with less alpha rhythm improve discrimination of mild Alzheimer’s publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.09.023 – volume: 7 start-page: 173 issue: 2 year: 2010 end-page: 187 ident: CR14 article-title: The I.F.A.S.T. Model Allows the Prediction of Conversion to Alzheimer Disease in Patients with Mild Cognitive Impairment with High Degree of Accuracy publication-title: Current Alzheimer Research doi: 10.2174/156720510790691137 – volume: 2015 start-page: 576437 year: 2015 ident: CR13 article-title: Exploring sampling in the detection of multicategory EEG signals publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2015/576437 – volume: 119 start-page: 1534 issue: 7 year: 2008 end-page: 1545 ident: CR36 article-title: Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy? publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2008.03.026 – ident: CR10 – start-page: 220 year: 2007 end-page: 226 ident: CR29 article-title: Classification of EEG signals using different feature extraction techniques for mental-task BCI publication-title: Proceedings of International Conference on Computer Engineering & Systems – volume: 128 start-page: 2058 issue: 10 year: 2017 end-page: 2067 ident: CR19 article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2017.06.251 – volume: 6 start-page: 25 issue: 1 year: 2016 end-page: 32 ident: CR2 article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features publication-title: Journal of Medical Signals and Sensors doi: 10.4103/2228-7477.175869 – volume: 62 start-page: 223 year: 2013 end-page: 236 ident: CR7 article-title: Resting state cortical EEG rhythms in Alzheimer’s disease: Toward EEG markers for clinical applications: A review publication-title: Supplements to Clinical Neurophysiology doi: 10.1016/B978-0-7020-5307-8.00015-6 – ident: CR8 – volume: 10 start-page: 604 year: 2017 ident: CR21 article-title: Classification of healthy subjects and Alzheimer’s disease patients with dementia from cortical sources of resting state EEG rhythms: A study using artificial neural networks publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00604 – volume: 15 start-page: 29015 issue: 11 year: 2015 end-page: 29035 ident: CR32 article-title: Selection of mother wavelet functions for multi-channel EEG signal analysis during a working memory task publication-title: Sensors doi: 10.3390/s151129015 – volume: 17 start-page: 1039 issue: 6 year: 2013 end-page: 1045 ident: CR24 article-title: Diagnosis of Early Alzheimer’s Disease Based on EEG Source Localization and a Standardized Realistic Head Model publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2013.2253326 – volume: 5 start-page: 58 year: 2013 ident: CR17 article-title: Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCI stage publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2013.00058 – volume: 19 start-page: 1489 issue: 7 year: 2019 ident: CR30 article-title: Unobtrusive mattress-based identification of hypertension by integrating classification and association rule mining publication-title: Sensors doi: 10.3390/s19071489 – volume: 2014 start-page: 906038 year: 2014 ident: CR5 article-title: Role of EEG as biomarker in the early detection and classification of dementia publication-title: The Scientific World Journal doi: 10.1155/2014/906038 – volume: 15 start-page: 643 issue: 6 year: 2018 end-page: 655 ident: CR6 article-title: Applying deep learning to individual and community health monitoring data: A survey publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-018-1136-9 – volume: 16 start-page: 737 issue: 6 year: 2019 end-page: 747 ident: CR33 article-title: An Advanced Analysis System for Identifying Alcoholic Brain State Through EEG Signals publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1178-7 – volume: 4 start-page: 79 issue: 2 year: 2017 end-page: 94 ident: CR27 article-title: Neurotherapies and Alzheimer’s: A protocol-oriented review publication-title: NeuroRegulation doi: 10.15540/nr.4.2.79 – volume: 41 start-page: 1243 issue: 6 year: 2013 end-page: 1257 ident: CR16 article-title: Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-013-0795-5 – volume: 13 start-page: e0193607 issue: 3 year: 2018 ident: CR1 article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework publication-title: PLoS One doi: 10.1371/journal.pone.0193607 – start-page: 49 year: 2017 end-page: 54 ident: CR4 article-title: Time-frequency methods for diagnosing Alzheimer’s disease using EEG: A technical review publication-title: Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science – volume: 29 start-page: 57 issue: 1 year: 2014 end-page: 65 ident: CR22 article-title: Elman neural network for the early identification of cognitive impairment in Alzheimer’s disease publication-title: Functional Neurology – start-page: 136 year: 2019 end-page: 149 ident: CR18 article-title: Arrhythmias classification by integrating stacked bidirectional LSTM and two-dimensional CNN publication-title: Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining doi: 10.1007/978-3-030-16145-3_11 – volume: 17 start-page: 108 issue: 1 year: 2018 end-page: 122 ident: CR23 article-title: Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Population-physic-based Algorithm publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-018-1158-3 – volume: 155 start-page: 162 year: 2017 end-page: 172 ident: CR31 article-title: Accurate vessel segmentation using maximum entropy incorporating line detection and phase-preserving denoising publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2016.12.005 – volume: 161 start-page: 342 issue: 2 year: 2007 end-page: 350 ident: CR34 article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG) publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2006.10.023 – volume: 124 start-page: 569 issue: 5 year: 2017 end-page: 581 ident: CR12 article-title: Differential diagnosis between patients with probable Alzheimer’s disease, Parkinson’s disease dementia, or dementia with Lewy bodies and frontotemporal dementia, behavioral variant, using quantitative electroencephalo-graphic features publication-title: Journal of Neural Transmission doi: 10.1007/s00702-017-1699-6 – start-page: 199 year: 2018 end-page: 207 ident: CR9 article-title: An efficient framework for the analysis of big brain signals data publication-title: Prceedings of Australasian Database Conference – ident: CR26 – start-page: 437 year: 2017 end-page: 442 ident: CR3 article-title: Single channel EEG time-frequency features to detect mild cognitive impairment publication-title: Proceedings of IEEE International Symposium on Medical Measurements and Applications – volume: 114 start-page: 153 issue: 2 year: 2014 end-page: 163 ident: CR35 article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2014.01.019 – volume: 16 start-page: 286 issue: 3 year: 2019 end-page: 296 ident: CR28 article-title: Dual-modal physiological feature fusion-based sleep recognition using CFS and RF algorithm publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1171-1 – start-page: 49 volume-title: Proceedings of the 6th International Conference on Bioinformatics and Biomedical Science year: 2017 ident: 1197_CR4 doi: 10.1145/3121138.3121183 – volume: 25 start-page: 013110 issue: 1 year: 2015 ident: 1197_CR20 publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4906038 – volume: 13 start-page: e0193607 issue: 3 year: 2018 ident: 1197_CR1 publication-title: PLoS One doi: 10.1371/journal.pone.0193607 – volume: 124 start-page: 569 issue: 5 year: 2017 ident: 1197_CR12 publication-title: Journal of Neural Transmission doi: 10.1007/s00702-017-1699-6 – start-page: 437 volume-title: Proceedings of IEEE International Symposium on Medical Measurements and Applications year: 2017 ident: 1197_CR3 doi: 10.1109/MeMeA.2017.7985916 – volume: 2015 start-page: 576437 year: 2015 ident: 1197_CR13 publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2015/576437 – volume: 41 start-page: 1243 issue: 6 year: 2013 ident: 1197_CR16 publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-013-0795-5 – volume: 4 start-page: 79 issue: 2 year: 2017 ident: 1197_CR27 publication-title: NeuroRegulation doi: 10.15540/nr.4.2.79 – start-page: 199 volume-title: Prceedings of Australasian Database Conference year: 2018 ident: 1197_CR9 – volume: 148 start-page: 113 issue: 2 year: 2005 ident: 1197_CR25 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2005.04.013 – volume: 138 start-page: 13 year: 2017 ident: 1197_CR11 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2016.09.023 – start-page: 220 volume-title: Proceedings of International Conference on Computer Engineering & Systems year: 2007 ident: 1197_CR29 doi: 10.1109/ICCES.2007.4447052 – volume: 119 start-page: 1534 issue: 7 year: 2008 ident: 1197_CR36 publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2008.03.026 – ident: 1197_CR26 – volume: 15 start-page: 29015 issue: 11 year: 2015 ident: 1197_CR32 publication-title: Sensors doi: 10.3390/s151129015 – volume: 5 start-page: 58 year: 2013 ident: 1197_CR17 publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2013.00058 – volume: 18 start-page: 35 year: 2018 ident: 1197_CR37 publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0613-y – volume: 17 start-page: 108 issue: 1 year: 2018 ident: 1197_CR23 publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-018-1158-3 – volume: 128 start-page: 2058 issue: 10 year: 2017 ident: 1197_CR19 publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2017.06.251 – volume: 16 start-page: 286 issue: 3 year: 2019 ident: 1197_CR28 publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1171-1 – ident: 1197_CR10 doi: 10.1109/TETCI.2018.2876529 – volume: 114 start-page: 153 issue: 2 year: 2014 ident: 1197_CR35 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2014.01.019 – volume: 16 start-page: 737 issue: 6 year: 2019 ident: 1197_CR33 publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-019-1178-7 – volume: 62 start-page: 223 year: 2013 ident: 1197_CR7 publication-title: Supplements to Clinical Neurophysiology doi: 10.1016/B978-0-7020-5307-8.00015-6 – volume: 15 start-page: 643 issue: 6 year: 2018 ident: 1197_CR6 publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-018-1136-9 – volume: 19 start-page: 1489 issue: 7 year: 2019 ident: 1197_CR30 publication-title: Sensors doi: 10.3390/s19071489 – volume: 7 start-page: 173 issue: 2 year: 2010 ident: 1197_CR14 publication-title: Current Alzheimer Research doi: 10.2174/156720510790691137 – volume: 2014 start-page: 906038 year: 2014 ident: 1197_CR5 publication-title: The Scientific World Journal doi: 10.1155/2014/906038 – volume: 43 start-page: 129 year: 2016 ident: 1197_CR15 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2016.03.032 – start-page: 136 volume-title: Proceedings of the 23rd Pacific-Asia Conference on Knowledge Discovery and Data Mining year: 2019 ident: 1197_CR18 doi: 10.1007/978-3-030-16145-3_11 – volume: 155 start-page: 162 year: 2017 ident: 1197_CR31 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2016.12.005 – ident: 1197_CR8 doi: 10.1007/s13755-018-0048-y – volume: 29 start-page: 57 issue: 1 year: 2014 ident: 1197_CR22 publication-title: Functional Neurology – volume: 161 start-page: 342 issue: 2 year: 2007 ident: 1197_CR34 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2006.10.023 – volume: 10 start-page: 604 year: 2017 ident: 1197_CR21 publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2016.00604 – volume: 17 start-page: 1039 issue: 6 year: 2013 ident: 1197_CR24 publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2013.2253326 – volume: 6 start-page: 25 issue: 1 year: 2016 ident: 1197_CR2 publication-title: Journal of Medical Signals and Sensors doi: 10.4103/2228-7477.175869 |
SSID | ssj0067294 ssj0003320693 |
Score | 2.3605444 |
Snippet | Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study proposes an integrated framework based on... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 786 |
SubjectTerms | Algorithms CAE) and Design Computer Applications Computer-Aided Engineering (CAD Control Decision trees Electroencephalography Engineering Feature extraction Mechatronics Older people Research Article Robotics Spectra Support vector machines Wavelet transforms |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BTsMwDI1gXLggECAGA-XACRTRJVmbnNAYlA1pnJi0W5Sk2Ql1g5X_x-7STSDYtWlSyXbjF9t5JuTagk14zgNowComfaaZ8gDkeDpLVU_CdjjDi8Lj13Q4kS_T3jQG3JaxrLLZE-uNuph7jJHfcY3E7iLV2f3ig2HXKMyuxhYau2SvC54G7Vzlz-sYixA8SWveXXBsggGUnjaJzfr2HGARLCbSDHNpTP50TRu8-StFWnue_JAcRMhI-ysdH5GdUB6TUb-ko4bqoaDjwYg-hqquqypp3lRc0QdwUgWFR9hnHoMaLHJRwXqRjuSETPKnt8GQxbYIzAuVVUx7brV1hRPSF-Cgs-CcUkXABF5wAC8A0nnbFV5qp8F9ZzzJABSkCRy14DCRiFPSKudlOCPUJjYgTbEH4UqJ1G9CzbTzIJOs6HrXJkkjEeMjZzi2rng3G7ZjFKKBCQaFaGSb3KynLFaEGdte7jRiNvHfWRpAnBqAmEr138NrQ2iT20Yzm-F_v3W-fbELss9rU8BKlQ5pVZ9f4RLwRuWuaqP6BtNXzMU priority: 102 providerName: ProQuest |
Title | An Integrated MCI Detection Framework Based on Spectral-temporal Analysis |
URI | https://link.springer.com/article/10.1007/s11633-019-1197-4 https://www.proquest.com/docview/2319256869 https://www.proquest.com/docview/2918683697 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_odtGD-InTOXLwpAS6NkuTYzfXbcqGiIN5Kk2anaSKq_-_L11jVabgqdB8lL6X5P1e3ssvAJcpjgnt-wY1kArKdCip0AjkfL7kosdwOVzag8LTGR_P2e2it6jOca9ctrsLSZYrdX3YDaGDzf2R1Ia-KNuGZg9ddzsb537kll-OaLEMJbOQU0vX5kKZm7r4boxqhPkjKFramngf9iqQSKK1Vg9gy-SHsPuFOvAIJlFOJo7qISPTwYTcmKLMq8pJ7DKuSB-NVEbwlb1n3m5q0IqLCnuv6EiOYR4PHwdjWl2LQHUgwoJK7acyVZkKmM7QQIdGKSEyYwN4RiG8QEin026gmVQSzXfoeyGCAu6hq4XOhBecQCN_yc0pkNRLjaUp1hIdPWap3wKxlEqjhMKsq1ULPCefRFec4fbqiuekZju2Ik2wQWJFmrAWXH02eV0TZvxVue2EnlRzZ5Ug4pQIxASXm4ulZfgP8C9bcO30VBf_-q2zf9U-hx2_HCc2caUNjeLt3Vwg_ChUB7ZFPOpAMxo93Q3x2R_O7h865SD8ANjG0SM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgHOCCQIAYzxzgAoooSWibA0IbMK3AJoRA2q00aXZCHY8hxJ_iN2J3zSYQcOPaNKlku_GX2P4MsJOhTVghHGogi7mykeaxRSAnwn4YHyncDvtUKNzphu07ddE76k3Bh6-FobRKvyeWG3U-sHRHfiA0EbvLUEcnj0-cukZRdNW30BiZxaV7f8Mj28txcob63RWidX572uZVVwFuZRwNubYi05nJjVQ2R_8WOWPiOHcU_3IGvTMiIpsdSqu00ej9IhFE6FPDAE8qiMUDietOw4yiitYazDTPu9c341sdKUUQlky_6EolR_De86HUsl4P0Q-lL2lO0TuuvjrDCcL9FpQtfV1rAeYrkMoaI6tahClXLEHSKFjiySVy1jlN2JkblplcBWv5HC_WRLeYM3xEne3pGoVX7Fe4XkWAsgx3_yKyFagVg8KtAsuCzBExskV1KkVkczLua2NRJlF-aE0dAi-R1FYs5dQs4yGd8CuTEFOckJIQU1WHvfGUxxFFx18vb3gxp9Xf-pIixtUI_eJQ_zw8Nr067HvNTIZ__dba34ttw2z7tnOVXiXdy3WYE6VZUJ7MBtSGz69uE9HO0GxVJsbg_r-t-hMWsglB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBEyha12ZtchyDagU2cWDSblGTpidUJlb-P3bXUEADiWvzqGq78ZfY-UzIZQo2YXzfggZSwbiJJBMGgJwf5qHoc1gOc7woPJ6Eoym_n_VndZ3Thct2dyHJ5Z0GZGkqyu48y7vNxTeAEZgHJBmGwRhfJxuwGvfQ0Kf-wC3FISDHKqzMo5AhdZsLa66a4rtjatDmjwBp5XfiXbJTA0Y6WGp4j6zZYp9sf6ERPCDJoKCJo33I6HiY0FtbVjlWBY1d9hW9AYeVUXiENefxgIPVvFQwe01Nckim8d3zcMTqEgnMBCIqmTR-KlOd6YCbDJx1ZLUWIrMYzLMaoAbAO5P2AsOlluDKI9-LACCEHmy7YGPhBUekVbwW9pjQ1EstUhYbCZs-jjRwgcilNiChKOsZ3Saek48yNX84lrF4UQ3zMYpUwQCFIlW8Ta4-h8yX5Bl_de44oav6P1ooQJ8SQJkI5epmiWz_AXxlm1w7PTXNv77r5F-9L8jm022sHpPJwynZ8iuTwXyWDmmVb-_2DFBJqc8ry_sASM_UPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+MCI+Detection+Framework+Based+on+Spectral-temporal+Analysis&rft.jtitle=International+journal+of+automation+and+computing&rft.au=Yin%2C+Jiao&rft.au=Cao%2C+Jinli&rft.au=Siuly%2C+Siuly&rft.au=Wang%2C+Hua&rft.date=2019-12-01&rft.pub=Institute+of+Automation%2C+Chinese+Academy+of+Sciences&rft.issn=1476-8186&rft.eissn=1751-8520&rft.volume=16&rft.issue=6&rft.spage=786&rft.epage=799&rft_id=info:doi/10.1007%2Fs11633-019-1197-4&rft.externalDocID=10_1007_s11633_019_1197_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-8186&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-8186&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-8186&client=summon |