Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing

This paper reports the development of conductive, carbon nanotube (CNT)-filled, polymer composite films that can be used as strain sensors with tailored sensitivity. The films were fabricated via either melt processing or solution casting of poly(methyl methacrylate) (PMMA) matrices containing low c...

Full description

Saved in:
Bibliographic Details
Published inComposites. Part B, Engineering Vol. 39; no. 1; pp. 209 - 216
Main Authors Pham, Giang T., Park, Young-Bin, Liang, Zhiyong, Zhang, Chuck, Wang, Ben
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports the development of conductive, carbon nanotube (CNT)-filled, polymer composite films that can be used as strain sensors with tailored sensitivity. The films were fabricated via either melt processing or solution casting of poly(methyl methacrylate) (PMMA) matrices containing low concentrations of multi-walled carbon nanotubes (MWNTs). The electrical resistivities of the films were measured in situ using laboratory-designed fixtures and data acquisition system. The measured resistivities were correlated with the applied strains to evaluate the sensitivity of the nanocomposite film sensor. The study suggests that conductive network formation, thus strain sensitivity of the conductive films, can be tailored by controlling nanotube loading, degree of nanotube dispersion, and film fabrication process. The developed sensors exhibited a broad range of sensitivity, the upper limit showing nearly an order of magnitude increase compared to conventional, resistance-type strain gages. A semi-empirical model that shows the relationship between CNT volume fraction and sensitivity is proposed.
AbstractList This paper reports the development of conductive, carbon nanotube (CNT)-filled, polymer composite films that can be used as strain sensors with tailored sensitivity. The films were fabricated via either melt processing or solution casting of poly(methyl methacrylate) (PMMA) matrices containing low concentrations of multi-walled carbon nanotubes (MWNTs). The electrical resistivities of the films were measured in situ using laboratory-designed fixtures and data acquisition system. The measured resistivities were correlated with the applied strains to evaluate the sensitivity of the nanocomposite film sensor. The study suggests that conductive network formation, thus strain sensitivity of the conductive films, can be tailored by controlling nanotube loading, degree of nanotube dispersion, and film fabrication process. The developed sensors exhibited a broad range of sensitivity, the upper limit showing nearly an order of magnitude increase compared to conventional, resistance-type strain gages. A semi-empirical model that shows the relationship between CNT volume fraction and sensitivity is proposed.
Author Park, Young-Bin
Pham, Giang T.
Liang, Zhiyong
Wang, Ben
Zhang, Chuck
Author_xml – sequence: 1
  givenname: Giang T.
  surname: Pham
  fullname: Pham, Giang T.
– sequence: 2
  givenname: Young-Bin
  surname: Park
  fullname: Park, Young-Bin
  email: ypark@eng.fsu.edu
– sequence: 3
  givenname: Zhiyong
  surname: Liang
  fullname: Liang, Zhiyong
– sequence: 4
  givenname: Chuck
  surname: Zhang
  fullname: Zhang, Chuck
– sequence: 5
  givenname: Ben
  surname: Wang
  fullname: Wang, Ben
BookMark eNqNkF9LwzAUxYNMcJt-h_gB2uVf2_RJZKgTBvqgb0JI01vNaJORZAO_vS3zQXwaHLj3PJwf954FmjnvAKFbSnJKaLna5cYPex9tgtjkjJAqJ2yUuEBzKqs6o6SsZ-POizqTvJRXaBHjjhAiCs7m6OM1eAMxWveJtWvx4FvoJ-M7bLxrDybZI-D0BWHw-17HZM3K6NB4h512Ph0awJ3th4g7H3BMQVuHI7iJeI0uO91HuPmdS_T--PC23mTbl6fn9f02M1xWKatZKVhTwug6KWjVmNZQqbXgVcELIMAF10ZyLWTFKPCuIqwe_2oEJ3VRUL5EdyeuCT7GAJ0yNulkvZvO6RUlaipL7dSfstRUliJslBgJ9T_CPthBh--zsutTFsYXjxaCisaCM9DaACap1tszKD8WYJBo
CitedBy_id crossref_primary_10_1038_s41598_018_35638_3
crossref_primary_10_1016_j_jmrt_2019_08_019
crossref_primary_10_1002_adem_201701159
crossref_primary_10_1002_app_39177
crossref_primary_10_1016_j_coco_2021_100769
crossref_primary_10_1016_j_compositesb_2018_03_025
crossref_primary_10_1016_j_synthmet_2013_09_041
crossref_primary_10_1177_0021998310393296
crossref_primary_10_1155_2020_4047937
crossref_primary_10_1177_0954408920966301
crossref_primary_10_1039_C8NR09120J
crossref_primary_10_3390_ma13225260
crossref_primary_10_1177_00219983241289490
crossref_primary_10_1177_1045389X08097387
crossref_primary_10_1016_j_compscitech_2013_08_033
crossref_primary_10_1016_j_compositesb_2014_11_028
crossref_primary_10_1016_j_commatsci_2014_03_032
crossref_primary_10_1002_app_43665
crossref_primary_10_3390_ma15113831
crossref_primary_10_21926_rpm_2303031
crossref_primary_10_1039_c2nr11555g
crossref_primary_10_1016_j_compscitech_2012_09_016
crossref_primary_10_1016_j_nanoso_2019_100312
crossref_primary_10_1016_j_carbon_2012_08_029
crossref_primary_10_1016_j_matpr_2022_08_030
crossref_primary_10_1021_am404808u
crossref_primary_10_1002_app_51516
crossref_primary_10_1088_0957_4484_24_46_465702
crossref_primary_10_1002_adfm_201505070
crossref_primary_10_1016_j_compositesb_2016_12_047
crossref_primary_10_1088_1361_665X_aa78c3
crossref_primary_10_1016_j_nanoms_2022_08_003
crossref_primary_10_1016_j_compscitech_2011_11_005
crossref_primary_10_1039_C6RA16236C
crossref_primary_10_1088_0960_1317_21_7_075012
crossref_primary_10_1088_0964_1726_22_6_065010
crossref_primary_10_3390_ma14237428
crossref_primary_10_1002_pssa_201900584
crossref_primary_10_4028_www_scientific_net_KEM_495_33
crossref_primary_10_3390_s111110691
crossref_primary_10_1039_D0TC05526C
crossref_primary_10_1002_pc_22931
crossref_primary_10_1016_j_compositesb_2020_108314
crossref_primary_10_1016_j_matchemphys_2021_125441
crossref_primary_10_1243_03093247JSA535
crossref_primary_10_3389_frobt_2016_00069
crossref_primary_10_1002_app_42313
crossref_primary_10_1016_j_compscitech_2015_08_014
crossref_primary_10_1088_1742_6596_431_1_012015
crossref_primary_10_1016_j_compositesa_2015_01_001
crossref_primary_10_1016_j_compositesb_2016_11_002
crossref_primary_10_1088_0964_1726_19_6_065013
crossref_primary_10_1016_j_compositesa_2009_07_001
crossref_primary_10_1016_j_mtcomm_2019_100566
crossref_primary_10_1088_0964_1726_18_4_045013
crossref_primary_10_1016_j_matpr_2016_11_044
crossref_primary_10_1016_j_mee_2013_11_013
crossref_primary_10_1016_j_sna_2023_114633
crossref_primary_10_1177_0954008316689132
crossref_primary_10_1088_0964_1726_22_1_015013
crossref_primary_10_1088_2053_1591_aaee3e
crossref_primary_10_1126_science_aag2879
crossref_primary_10_3390_nano8020058
crossref_primary_10_1080_14328917_2020_1766645
crossref_primary_10_1016_j_msea_2009_09_039
crossref_primary_10_1680_adcr_13_00007
crossref_primary_10_1016_j_sna_2013_11_004
crossref_primary_10_1016_j_sna_2012_09_030
crossref_primary_10_1080_14328917_2019_1686559
crossref_primary_10_7567_1347_4065_ab12c2
crossref_primary_10_1088_0957_4484_27_20_205502
crossref_primary_10_1016_j_eurpolymj_2019_109226
crossref_primary_10_1142_S1793604716500247
crossref_primary_10_1016_j_compscitech_2013_11_018
crossref_primary_10_1016_j_sna_2017_03_003
crossref_primary_10_1016_j_compscitech_2015_11_012
crossref_primary_10_1080_1536383X_2025_2454397
crossref_primary_10_1109_JSEN_2022_3162988
crossref_primary_10_1088_2631_6331_ab47f9
crossref_primary_10_3390_s140610042
crossref_primary_10_1016_j_carbon_2012_03_008
crossref_primary_10_1002_pat_3386
crossref_primary_10_1039_C7TA04329E
crossref_primary_10_1007_s41779_018_0275_3
crossref_primary_10_1016_j_matdes_2014_04_029
crossref_primary_10_1016_j_compstruct_2013_04_033
crossref_primary_10_4028_www_scientific_net_AMM_146_137
crossref_primary_10_1016_j_compositesb_2021_108641
crossref_primary_10_1039_C5TC02751A
crossref_primary_10_1016_j_carbon_2019_02_001
crossref_primary_10_3390_s21020518
crossref_primary_10_1016_j_conbuildmat_2016_07_045
crossref_primary_10_1080_20550324_2016_1227546
crossref_primary_10_1016_j_conbuildmat_2020_119404
crossref_primary_10_1016_j_compositesa_2019_105728
crossref_primary_10_1016_j_snb_2009_02_022
crossref_primary_10_1016_j_sna_2019_07_004
crossref_primary_10_1016_j_coco_2021_100735
crossref_primary_10_1007_s12598_018_1193_9
crossref_primary_10_1016_j_sna_2010_12_022
crossref_primary_10_1016_j_compositesb_2011_09_014
crossref_primary_10_1016_j_conbuildmat_2023_132923
crossref_primary_10_3390_nano14211761
crossref_primary_10_1016_j_compositesa_2013_01_004
crossref_primary_10_1016_j_carbon_2009_10_012
crossref_primary_10_1002_polb_21705
crossref_primary_10_1016_j_compstruct_2016_12_014
crossref_primary_10_1002_pc_25118
crossref_primary_10_1002_adfm_201000283
crossref_primary_10_1007_s10853_021_06223_3
crossref_primary_10_1002_app_40686
crossref_primary_10_1016_j_compositesa_2016_08_003
crossref_primary_10_1021_acsami_2c14482
crossref_primary_10_1088_0957_4484_22_45_455301
crossref_primary_10_1143_JJAP_51_06FD04
crossref_primary_10_1016_j_sna_2012_04_015
crossref_primary_10_1038_s41598_020_65771_x
crossref_primary_10_3389_fphy_2022_849633
crossref_primary_10_1177_0021998319870592
crossref_primary_10_1002_app_37834
crossref_primary_10_1007_s10965_014_0479_3
crossref_primary_10_1016_j_carbon_2024_119810
crossref_primary_10_1016_j_sna_2015_02_020
crossref_primary_10_1016_j_sna_2018_07_006
crossref_primary_10_1002_pi_5199
crossref_primary_10_1002_macp_201300242
crossref_primary_10_3390_s150407742
crossref_primary_10_1016_j_conbuildmat_2020_118838
crossref_primary_10_3390_ma10040408
crossref_primary_10_1007_s11595_011_0316_z
crossref_primary_10_1016_j_ijmecsci_2020_105816
crossref_primary_10_1109_TNANO_2017_2662087
crossref_primary_10_1080_15583724_2012_703747
crossref_primary_10_3390_ma12233875
crossref_primary_10_1002_mame_202300219
crossref_primary_10_1016_j_compositesb_2019_107285
crossref_primary_10_1088_0964_1726_22_8_085031
crossref_primary_10_3390_nano2040329
crossref_primary_10_1016_j_sna_2016_12_011
crossref_primary_10_1016_j_carbon_2018_06_037
crossref_primary_10_1016_j_compscitech_2020_108616
crossref_primary_10_1007_s11837_012_0358_5
crossref_primary_10_1109_JSEN_2013_2272098
crossref_primary_10_1002_mame_201900278
crossref_primary_10_1007_s00226_021_01311_8
crossref_primary_10_1680_jsmic_20_00025
crossref_primary_10_1016_j_compositesa_2011_06_005
crossref_primary_10_1002_pc_23996
crossref_primary_10_1016_j_carbon_2015_05_091
crossref_primary_10_1016_j_sna_2023_114364
crossref_primary_10_1115_1_4044649
crossref_primary_10_1016_j_solener_2009_03_001
crossref_primary_10_1016_j_compositesb_2014_09_029
crossref_primary_10_1016_j_polymer_2017_01_068
crossref_primary_10_1080_03602559_2013_814670
crossref_primary_10_1016_j_compositesb_2016_09_061
crossref_primary_10_1088_0964_1726_22_4_045008
crossref_primary_10_1021_acs_macromol_7b02336
crossref_primary_10_1063_1_4892098
crossref_primary_10_1002_pi_5610
crossref_primary_10_1088_0957_4484_21_30_305502
crossref_primary_10_1088_2053_1591_ab8842
crossref_primary_10_1016_j_compositesb_2016_03_096
crossref_primary_10_1109_TNANO_2010_2060350
crossref_primary_10_1039_c3tb20819b
crossref_primary_10_1016_j_carbon_2009_03_037
crossref_primary_10_1007_s00466_017_1391_6
crossref_primary_10_1016_j_sna_2015_06_012
crossref_primary_10_1016_j_actamat_2008_02_030
crossref_primary_10_1016_j_carbon_2013_05_038
crossref_primary_10_1080_15376494_2018_1432812
crossref_primary_10_1002_adfm_201200724
crossref_primary_10_1016_j_sna_2021_113348
crossref_primary_10_1186_1556_276X_7_402
crossref_primary_10_1002_pat_3526
crossref_primary_10_1016_j_compositesa_2018_04_011
crossref_primary_10_1088_2053_1591_ab447b
crossref_primary_10_3795_KSME_A_2011_35_9_999
crossref_primary_10_1088_0957_4484_20_14_145707
crossref_primary_10_1007_s12567_016_0123_7
crossref_primary_10_1016_j_carbon_2013_03_024
crossref_primary_10_1163_092430410X490446
crossref_primary_10_1155_2017_4838095
crossref_primary_10_1039_C4NR07528E
crossref_primary_10_1002_pen_25458
crossref_primary_10_4028_www_scientific_net_AMR_243_249_5360
crossref_primary_10_1016_j_carbon_2014_02_068
crossref_primary_10_1016_j_compositesa_2011_10_017
crossref_primary_10_3390_s18040948
crossref_primary_10_4028_www_scientific_net_KEM_605_231
crossref_primary_10_1016_j_sna_2008_05_013
crossref_primary_10_1016_j_compositesb_2012_04_022
crossref_primary_10_1063_1_4927628
crossref_primary_10_1016_j_compscitech_2023_110188
crossref_primary_10_3390_s21020341
crossref_primary_10_3390_ma12122013
crossref_primary_10_1016_j_conbuildmat_2022_130024
crossref_primary_10_1016_j_compositesb_2017_07_005
crossref_primary_10_1177_0021998316667541
crossref_primary_10_1016_j_sna_2012_03_029
crossref_primary_10_1016_j_compscitech_2016_08_019
crossref_primary_10_1007_s00339_022_05316_3
crossref_primary_10_1007_s11998_016_9802_8
crossref_primary_10_3795_KSME_A_2010_34_9_1209
crossref_primary_10_1021_acsami_8b03401
crossref_primary_10_1016_j_compscitech_2011_05_019
crossref_primary_10_1016_j_compositesb_2016_06_021
crossref_primary_10_1016_j_tsf_2010_04_108
crossref_primary_10_1016_j_polymer_2015_11_030
crossref_primary_10_1007_s10853_015_8862_y
crossref_primary_10_1039_c0jm04543h
crossref_primary_10_1016_j_matdes_2021_109715
crossref_primary_10_1016_j_synthmet_2008_12_020
crossref_primary_10_1016_j_sna_2010_10_023
crossref_primary_10_3390_nano13030495
crossref_primary_10_1007_s00542_012_1471_7
crossref_primary_10_3390_jcs3040109
crossref_primary_10_1063_1_4833756
crossref_primary_10_1016_j_jmps_2018_02_014
crossref_primary_10_1021_nn503454h
crossref_primary_10_1063_1_2937093
crossref_primary_10_1016_j_msea_2010_07_105
crossref_primary_10_1002_app_56066
crossref_primary_10_1007_s11661_011_0814_9
crossref_primary_10_1103_PhysRevB_80_245437
crossref_primary_10_1002_app_55410
crossref_primary_10_1007_s00289_019_02888_8
crossref_primary_10_1016_j_proeng_2014_12_190
crossref_primary_10_1177_1045389X14560367
crossref_primary_10_1016_j_mser_2014_08_002
crossref_primary_10_1039_D0NJ05950A
crossref_primary_10_1088_0964_1726_25_4_045011
crossref_primary_10_1021_acsami_8b04073
crossref_primary_10_1557_jmr_2014_361
crossref_primary_10_1088_0957_4484_25_28_285502
crossref_primary_10_1109_JSEN_2013_2252889
crossref_primary_10_1038_ncomms11802
crossref_primary_10_7567_JJAP_51_06FD04
crossref_primary_10_1016_j_eurpolymj_2018_12_002
crossref_primary_10_1021_acsanm_0c02362
crossref_primary_10_1088_0964_1726_24_9_095004
Cites_doi 10.1002/(SICI)1097-4628(19991017)74:3<601::AID-APP14>3.0.CO;2-K
10.1103/PhysRevLett.40.1197
10.1002/adma.200306310
10.1016/S0032-3861(99)00166-4
10.1016/S1359-8368(02)00012-4
10.1016/j.polymer.2003.12.013
10.1016/j.carbon.2004.08.015
10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G
10.1063/1.125193
10.1103/PhysRevB.63.161403
10.1002/polb.20597
10.1016/S0008-6223(98)00130-4
10.1016/j.carbon.2003.12.001
10.1021/ar010151m
10.1016/j.cplett.2004.07.047
10.1103/PhysRevB.71.104201
10.1023/A:1004744600284
10.1103/PhysRevLett.85.154
10.1103/PhysRevB.65.113413
10.1016/S1463-0176(99)00012-5
10.1002/pi.811
10.1126/science.1060928
10.1063/1.1702682
10.1103/RevModPhys.45.574
10.1016/j.sna.2003.08.006
10.1016/S0266-3538(01)00094-X
10.1016/S0009-2614(00)01013-7
10.1163/156855404322681073
10.1063/1.1506397
10.1021/cr970102g
10.1088/0957-4484/15/3/026
10.1016/j.msec.2003.09.131
10.1103/PhysRevB.53.6209
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2007.02.024
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
EndPage 216
ExternalDocumentID 10_1016_j_compositesb_2007_02_024
S1359836807000571
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
VH1
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c387t-92642b6ec38f8417bcdc18aa437535e0e343ac83a48721e3f7029106b43095513
IEDL.DBID .~1
ISSN 1359-8368
IngestDate Tue Jul 01 01:24:58 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:27:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords A. Smart materials
A. Nano-structures
A. Polymer-matrix composites
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-92642b6ec38f8417bcdc18aa437535e0e343ac83a48721e3f7029106b43095513
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2007_02_024
crossref_primary_10_1016_j_compositesb_2007_02_024
elsevier_sciencedirect_doi_10_1016_j_compositesb_2007_02_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008
2008-1-00
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008
PublicationDecade 2000
PublicationTitle Composites. Part B, Engineering
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ajayan (bib3) 1999; 99
Gordon, Wang, Chung (bib35) 2004; 11
Ando, Zhao, Shimoyama, Sakai, Kaneto (bib22) 1999; 1
Yang, Han (bib32) 2000; 85
Thostenson, Ren, Chou (bib4) 2001; 61
Dharap, Li, Nagarajaiah, Barrera (bib33) 2004; 15
Kilbride, Coleman, Fraysse, Fournet, Cadek, Drury (bib14) 2002; 92
Meincke, Kaempfer, Weickmann, Friedrich, Vathauer, Warth (bib12) 2004; 45
McLachlan, Chiteme, Park, Wise, Lowther, Lillehei (bib16) 2005; 43
Das, Chaki, Khastgir (bib28) 2002; 51
Aneli, Zaikov, Khananashvili (bib27) 1999; 74
Baughman, Zakhidov, de Heer (bib2) 2002; 297
Frogley, Zhao, Wagner (bib7) 2002; 65
Seo, Park (bib11) 2004; 395
Caneba, Axland (bib24) 2004; 3
Wang, Chung (bib34) 2000; 35
Pötschke, Bhattacharyya, Janke (bib10) 2004; 42
Andrews, Jacques, Qian, Rantell (bib9) 2002; 35
Park, Kim, Lee, Kim (bib21) 2003; 23
Lau, Hui (bib5) 2002; 33
Knite, Teteris, Kiploka, Kaupzs (bib29) 2004; 110
Ajayan, Zhou (bib1) 2001
Haggenmueller, Gommans, Rinzler, Fischer, Winey (bib23) 2000; 330
Paulson, Falvo, Snider, Helser, Hudson, Seeger (bib31) 1999; 75
Celzard, McRae, Deleuze, Dufort, Furdin, Marêché (bib17) 1996; 53
Buldum, Lu (bib30) 2001; 63
Shueler, Petermann, Schule, Wentzel (bib20) 1997; 63
bib8
Foygel, Morris, Anez, French, Sobolev (bib18) 2005; 71
Kirkpatrick (bib36) 1973; 45
Simmons (bib25) 1963; 34
Shaffer, Fan, Windle (bib19) 1998; 36
Sheng, Sichel, Gittleman (bib26) 1978; 40
Li, Dharap, Nagarajaiah, Barrera, Kim (bib6) 2004; 16
Kim, Shin, Choi, Kwon, Chung, Yoon (bib13) 2005; 43
Sandler, Shaffer, Prasse, Bauhofer, Shulte, Windle (bib15) 1999; 40
Foygel (10.1016/j.compositesb.2007.02.024_bib18) 2005; 71
Shaffer (10.1016/j.compositesb.2007.02.024_bib19) 1998; 36
Ajayan (10.1016/j.compositesb.2007.02.024_bib1) 2001
Li (10.1016/j.compositesb.2007.02.024_bib6) 2004; 16
Haggenmueller (10.1016/j.compositesb.2007.02.024_bib23) 2000; 330
Park (10.1016/j.compositesb.2007.02.024_bib21) 2003; 23
Frogley (10.1016/j.compositesb.2007.02.024_bib7) 2002; 65
Caneba (10.1016/j.compositesb.2007.02.024_bib24) 2004; 3
Dharap (10.1016/j.compositesb.2007.02.024_bib33) 2004; 15
Ajayan (10.1016/j.compositesb.2007.02.024_bib3) 1999; 99
Kim (10.1016/j.compositesb.2007.02.024_bib13) 2005; 43
Lau (10.1016/j.compositesb.2007.02.024_bib5) 2002; 33
Pötschke (10.1016/j.compositesb.2007.02.024_bib10) 2004; 42
Andrews (10.1016/j.compositesb.2007.02.024_bib9) 2002; 35
McLachlan (10.1016/j.compositesb.2007.02.024_bib16) 2005; 43
Sheng (10.1016/j.compositesb.2007.02.024_bib26) 1978; 40
Shueler (10.1016/j.compositesb.2007.02.024_bib20) 1997; 63
Kirkpatrick (10.1016/j.compositesb.2007.02.024_bib36) 1973; 45
Wang (10.1016/j.compositesb.2007.02.024_bib34) 2000; 35
Sandler (10.1016/j.compositesb.2007.02.024_bib15) 1999; 40
Yang (10.1016/j.compositesb.2007.02.024_bib32) 2000; 85
Simmons (10.1016/j.compositesb.2007.02.024_bib25) 1963; 34
Aneli (10.1016/j.compositesb.2007.02.024_bib27) 1999; 74
Seo (10.1016/j.compositesb.2007.02.024_bib11) 2004; 395
Paulson (10.1016/j.compositesb.2007.02.024_bib31) 1999; 75
Thostenson (10.1016/j.compositesb.2007.02.024_bib4) 2001; 61
Gordon (10.1016/j.compositesb.2007.02.024_bib35) 2004; 11
Ando (10.1016/j.compositesb.2007.02.024_bib22) 1999; 1
Meincke (10.1016/j.compositesb.2007.02.024_bib12) 2004; 45
Celzard (10.1016/j.compositesb.2007.02.024_bib17) 1996; 53
Kilbride (10.1016/j.compositesb.2007.02.024_bib14) 2002; 92
Das (10.1016/j.compositesb.2007.02.024_bib28) 2002; 51
Buldum (10.1016/j.compositesb.2007.02.024_bib30) 2001; 63
Baughman (10.1016/j.compositesb.2007.02.024_bib2) 2002; 297
Knite (10.1016/j.compositesb.2007.02.024_bib29) 2004; 110
References_xml – year: 2001
  ident: bib1
  publication-title: Carbon nanotubes: synthesis, structure, properties and applications
– volume: 40
  start-page: 5967
  year: 1999
  end-page: 5971
  ident: bib15
  article-title: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties
  publication-title: Polymer
– volume: 330
  start-page: 219
  year: 2000
  end-page: 225
  ident: bib23
  article-title: Aligned single-wall carbon nanotubes in composites by melt processing methods
  publication-title: Chem Phys Lett
– volume: 71
  start-page: 104201
  year: 2005
  end-page: 104207
  ident: bib18
  article-title: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity
  publication-title: Phys Rev B
– volume: 11
  start-page: 95
  year: 2004
  end-page: 103
  ident: bib35
  article-title: Piezoresistivity in unidirectional continuous carbon fiber polymer–matrix composites: single-lamina composite versus two-lamina composite
  publication-title: Compos Interface
– volume: 53
  start-page: 6209
  year: 1996
  end-page: 6214
  ident: bib17
  article-title: Critical concentration in percolating systems containing a high-aspect-ratio filler
  publication-title: Phys Rev B
– volume: 34
  start-page: 1793
  year: 1963
  end-page: 1803
  ident: bib25
  article-title: Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film
  publication-title: J Appl Phys
– volume: 65
  start-page: 113413
  year: 2002
  ident: bib7
  publication-title: Phys Rev B
– volume: 15
  start-page: 379
  year: 2004
  end-page: 382
  ident: bib33
  article-title: Nanotube film based on single-wall carbon nanotubes for strain sensing
  publication-title: Nanotechnol J
– volume: 61
  start-page: 1899
  year: 2001
  end-page: 1912
  ident: bib4
  article-title: Advances in the science and technology of carbon nanotubes and their composites: a review
  publication-title: Compos Sci Technol
– volume: 16
  start-page: 640
  year: 2004
  end-page: 643
  ident: bib6
  article-title: Carbon nanotube film sensors
  publication-title: Adv Mater
– ident: bib8
– volume: 33
  start-page: 263
  year: 2002
  end-page: 277
  ident: bib5
  article-title: The revolutionary creation of new advanced materials – carbon nanotube composites
  publication-title: Composites B
– volume: 63
  start-page: 161403 R
  year: 2001
  ident: bib30
  article-title: Contact resistance between carbon nanotubes
  publication-title: Phys Rev B
– volume: 35
  start-page: 1008
  year: 2002
  end-page: 1017
  ident: bib9
  article-title: Multiwall carbon nanotubes: synthesis and application
  publication-title: Acc Chem Res
– volume: 42
  start-page: 965
  year: 2004
  end-page: 969
  ident: bib10
  article-title: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene
  publication-title: Carbon
– volume: 45
  start-page: 739
  year: 2004
  end-page: 748
  ident: bib12
  article-title: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene
  publication-title: Polymer
– volume: 36
  start-page: 1603
  year: 1998
  end-page: 1612
  ident: bib19
  article-title: Dispersion and packing of carbon nanotubes
  publication-title: Carbon
– volume: 43
  start-page: 23
  year: 2005
  end-page: 30
  ident: bib13
  article-title: Electrical conductivity of chemically modified multiwalled carbon nanotubes-epoxy composites
  publication-title: Carbon
– volume: 23
  start-page: 971
  year: 2003
  end-page: 975
  ident: bib21
  article-title: Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique
  publication-title: Mater Sci Eng C
– volume: 75
  start-page: 2936
  year: 1999
  end-page: 2938
  ident: bib31
  article-title: In situ resistance measurements of strained carbon nanotubes
  publication-title: Appl Phys Lett
– volume: 40
  start-page: 1978
  year: 1978
  ident: bib26
  article-title: Fluctuation-induced tunneling conduction in carbonpolyvinylchloride composites
  publication-title: Phys Rev Lett
– volume: 395
  start-page: 44
  year: 2004
  end-page: 48
  ident: bib11
  article-title: Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites
  publication-title: Chem Phys Lett
– volume: 1
  start-page: 77
  year: 1999
  end-page: 82
  ident: bib22
  article-title: Physical properties of multiwalled carbon nanotubes
  publication-title: Int J Inorg Mater
– volume: 3
  start-page: 73
  year: 2004
  end-page: 80
  ident: bib24
  article-title: Electrical and thermal coatings from a single-walled carbon nanotube (SWCNT)/polymer composite
  publication-title: J Miner Mater Character Eng
– volume: 92
  start-page: 4024
  year: 2002
  end-page: 4030
  ident: bib14
  article-title: Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films
  publication-title: J Appl Phys
– volume: 51
  start-page: 156
  year: 2002
  end-page: 163
  ident: bib28
  article-title: Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites
  publication-title: Polym Int
– volume: 297
  start-page: 787
  year: 2002
  end-page: 792
  ident: bib2
  article-title: Carbon nanotubes – the route toward applications
  publication-title: Science
– volume: 35
  start-page: 91
  year: 2000
  end-page: 100
  ident: bib34
  article-title: Electrical behavior of carbon fiber polymer–matrix composites in the through-thickness direction
  publication-title: J Mater Sci
– volume: 43
  start-page: 3273
  year: 2005
  end-page: 3287
  ident: bib16
  article-title: Ac and dc percolative conductivity of single wall carbon nanotube polymer composites
  publication-title: J Polym Sci B
– volume: 63
  start-page: 1741
  year: 1997
  end-page: 1746
  ident: bib20
  article-title: Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin
  publication-title: J Appl Polym Sci
– volume: 45
  start-page: 574
  year: 1973
  end-page: 588
  ident: bib36
  article-title: Percolation and conduction
  publication-title: Rev Mod Phys
– volume: 85
  start-page: 154
  year: 2000
  end-page: 157
  ident: bib32
  article-title: Electronic structure of deformed carbon nanotubes
  publication-title: Phys Rev Lett
– volume: 110
  start-page: 142
  year: 2004
  end-page: 149
  ident: bib29
  article-title: Polysioprene-carbon black nanocomposites as tensile and pressure sensor materials
  publication-title: Sensors Actuators
– volume: 99
  start-page: 1787
  year: 1999
  end-page: 1799
  ident: bib3
  article-title: Nanotubes from carbon
  publication-title: Chem Rev
– volume: 74
  start-page: 601
  year: 1999
  end-page: 621
  ident: bib27
  article-title: Effects of mechanical deformations on the structurization and electrical conductivity of electric conducting polymer composites
  publication-title: J Appl Polym Sci
– volume: 74
  start-page: 601
  year: 1999
  ident: 10.1016/j.compositesb.2007.02.024_bib27
  article-title: Effects of mechanical deformations on the structurization and electrical conductivity of electric conducting polymer composites
  publication-title: J Appl Polym Sci
  doi: 10.1002/(SICI)1097-4628(19991017)74:3<601::AID-APP14>3.0.CO;2-K
– volume: 40
  start-page: 1978
  issue: 18
  year: 1978
  ident: 10.1016/j.compositesb.2007.02.024_bib26
  article-title: Fluctuation-induced tunneling conduction in carbonpolyvinylchloride composites
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.40.1197
– volume: 16
  start-page: 640
  issue: 7
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib6
  article-title: Carbon nanotube film sensors
  publication-title: Adv Mater
  doi: 10.1002/adma.200306310
– volume: 40
  start-page: 5967
  year: 1999
  ident: 10.1016/j.compositesb.2007.02.024_bib15
  article-title: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00166-4
– volume: 33
  start-page: 263
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib5
  article-title: The revolutionary creation of new advanced materials – carbon nanotube composites
  publication-title: Composites B
  doi: 10.1016/S1359-8368(02)00012-4
– volume: 45
  start-page: 739
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib12
  article-title: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene
  publication-title: Polymer
  doi: 10.1016/j.polymer.2003.12.013
– volume: 43
  start-page: 23
  year: 2005
  ident: 10.1016/j.compositesb.2007.02.024_bib13
  article-title: Electrical conductivity of chemically modified multiwalled carbon nanotubes-epoxy composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.08.015
– volume: 63
  start-page: 1741
  year: 1997
  ident: 10.1016/j.compositesb.2007.02.024_bib20
  article-title: Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin
  publication-title: J Appl Polym Sci
  doi: 10.1002/(SICI)1097-4628(19970328)63:13<1741::AID-APP5>3.0.CO;2-G
– volume: 75
  start-page: 2936
  year: 1999
  ident: 10.1016/j.compositesb.2007.02.024_bib31
  article-title: In situ resistance measurements of strained carbon nanotubes
  publication-title: Appl Phys Lett
  doi: 10.1063/1.125193
– year: 2001
  ident: 10.1016/j.compositesb.2007.02.024_bib1
– volume: 63
  start-page: 161403 R
  year: 2001
  ident: 10.1016/j.compositesb.2007.02.024_bib30
  article-title: Contact resistance between carbon nanotubes
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.63.161403
– volume: 3
  start-page: 73
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib24
  article-title: Electrical and thermal coatings from a single-walled carbon nanotube (SWCNT)/polymer composite
  publication-title: J Miner Mater Character Eng
– volume: 43
  start-page: 3273
  year: 2005
  ident: 10.1016/j.compositesb.2007.02.024_bib16
  article-title: Ac and dc percolative conductivity of single wall carbon nanotube polymer composites
  publication-title: J Polym Sci B
  doi: 10.1002/polb.20597
– volume: 36
  start-page: 1603
  year: 1998
  ident: 10.1016/j.compositesb.2007.02.024_bib19
  article-title: Dispersion and packing of carbon nanotubes
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00130-4
– volume: 42
  start-page: 965
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib10
  article-title: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene
  publication-title: Carbon
  doi: 10.1016/j.carbon.2003.12.001
– volume: 35
  start-page: 1008
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib9
  article-title: Multiwall carbon nanotubes: synthesis and application
  publication-title: Acc Chem Res
  doi: 10.1021/ar010151m
– volume: 395
  start-page: 44
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib11
  article-title: Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites
  publication-title: Chem Phys Lett
  doi: 10.1016/j.cplett.2004.07.047
– volume: 71
  start-page: 104201
  year: 2005
  ident: 10.1016/j.compositesb.2007.02.024_bib18
  article-title: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.71.104201
– volume: 35
  start-page: 91
  year: 2000
  ident: 10.1016/j.compositesb.2007.02.024_bib34
  article-title: Electrical behavior of carbon fiber polymer–matrix composites in the through-thickness direction
  publication-title: J Mater Sci
  doi: 10.1023/A:1004744600284
– volume: 85
  start-page: 154
  year: 2000
  ident: 10.1016/j.compositesb.2007.02.024_bib32
  article-title: Electronic structure of deformed carbon nanotubes
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.85.154
– volume: 65
  start-page: 113413
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib7
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.65.113413
– volume: 1
  start-page: 77
  year: 1999
  ident: 10.1016/j.compositesb.2007.02.024_bib22
  article-title: Physical properties of multiwalled carbon nanotubes
  publication-title: Int J Inorg Mater
  doi: 10.1016/S1463-0176(99)00012-5
– volume: 51
  start-page: 156
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib28
  article-title: Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites
  publication-title: Polym Int
  doi: 10.1002/pi.811
– volume: 297
  start-page: 787
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib2
  article-title: Carbon nanotubes – the route toward applications
  publication-title: Science
  doi: 10.1126/science.1060928
– volume: 34
  start-page: 1793
  year: 1963
  ident: 10.1016/j.compositesb.2007.02.024_bib25
  article-title: Generalized formula for electric tunnel effect between similar electrodes separated by a thin insulating film
  publication-title: J Appl Phys
  doi: 10.1063/1.1702682
– volume: 45
  start-page: 574
  year: 1973
  ident: 10.1016/j.compositesb.2007.02.024_bib36
  article-title: Percolation and conduction
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.45.574
– volume: 110
  start-page: 142
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib29
  article-title: Polysioprene-carbon black nanocomposites as tensile and pressure sensor materials
  publication-title: Sensors Actuators
  doi: 10.1016/j.sna.2003.08.006
– volume: 61
  start-page: 1899
  year: 2001
  ident: 10.1016/j.compositesb.2007.02.024_bib4
  article-title: Advances in the science and technology of carbon nanotubes and their composites: a review
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(01)00094-X
– volume: 330
  start-page: 219
  year: 2000
  ident: 10.1016/j.compositesb.2007.02.024_bib23
  article-title: Aligned single-wall carbon nanotubes in composites by melt processing methods
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(00)01013-7
– volume: 11
  start-page: 95
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib35
  article-title: Piezoresistivity in unidirectional continuous carbon fiber polymer–matrix composites: single-lamina composite versus two-lamina composite
  publication-title: Compos Interface
  doi: 10.1163/156855404322681073
– volume: 92
  start-page: 4024
  year: 2002
  ident: 10.1016/j.compositesb.2007.02.024_bib14
  article-title: Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films
  publication-title: J Appl Phys
  doi: 10.1063/1.1506397
– volume: 99
  start-page: 1787
  year: 1999
  ident: 10.1016/j.compositesb.2007.02.024_bib3
  article-title: Nanotubes from carbon
  publication-title: Chem Rev
  doi: 10.1021/cr970102g
– volume: 15
  start-page: 379
  year: 2004
  ident: 10.1016/j.compositesb.2007.02.024_bib33
  article-title: Nanotube film based on single-wall carbon nanotubes for strain sensing
  publication-title: Nanotechnol J
  doi: 10.1088/0957-4484/15/3/026
– volume: 23
  start-page: 971
  year: 2003
  ident: 10.1016/j.compositesb.2007.02.024_bib21
  article-title: Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2003.09.131
– volume: 53
  start-page: 6209
  year: 1996
  ident: 10.1016/j.compositesb.2007.02.024_bib17
  article-title: Critical concentration in percolating systems containing a high-aspect-ratio filler
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.53.6209
SSID ssj0004532
Score 2.3846958
Snippet This paper reports the development of conductive, carbon nanotube (CNT)-filled, polymer composite films that can be used as strain sensors with tailored...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms A. Nano-structures
A. Polymer-matrix composites
A. Smart materials
Title Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing
URI https://dx.doi.org/10.1016/j.compositesb.2007.02.024
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8rV2btM3AlyGOqbgXHexBKEmaymRrx9q9-ts9pxetICgIgZKSU0J6evKd8uU7hFz2pONB01YA8NPifhRbfd_AdyUUXJUQTlEO6HHsjyb8fupNW-SmPguDtMoq9pcxvYjW1R27Wk17OZvZTw6KzzFfgNPikcriBDsP0Muv3p2GYnhRpAwHWzh6k1x8cbyQto3cKJOpSs3QhcZ_3qMa-85wl-xUgJEOyjntkZZJ9sl2Q0bwgLxUbH_oUJlEtKhug500ppDuoqIrxDSKUG-RLgEuw6NsLVcqTWgikzRfK0Pj2XyRUYCwNCvKRtAMqe3J6yGZDG-fb0ZWVTXB0kwEudUHiOMq30AvFtwJlI60I6TkDDITz_QM40xqwSSkKq5jWBz0XMAMvuIM5egcdkTaSZqYY0IxF4JnyEhJyAMjo_oB09zjrva51jroEFGvU6grSXGc4jysuWNvYWOJseRlEPZcaLxD3E_TZamr8Rej6_plhN-cJIT4_7v5yf_MT8lWSRbB_y9npJ2v1uYcEEmuuoXLdcnG4O5hNP4ATurjYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5DwcuDeMV5jeBr7dqkbQa-yHBM3fbiBnsQSpKmMtnasW6v_nbP6TKdICgIgZKSE0KanHynfPkOIdc16QVQtBMB_HR4mKROPTSwr4SCpxLCK9MBdbphq88fB8GgQhrLuzBIq7S-f-HTS29t37h2Nt3JcOg-eyg-x0IBixavVEIItM5h-2Iag5t3b0UyvMxShq0dbL5Brr5IXsjbRnKUKZSVM_Sh8J8PqZWDp7lLdixipHeLQe2Risn2yfaKjuABebF0f6hQmSW0TG-DlTylEO-ipCs4NYpYb5xPAC9DV66WU5VnNJNZPpsrQ9PhaFxQwLC0KPNG0AK57dnrIek373uNlmPTJjiaiWjm1AHj-Co0UEsF9yKlE-0JKTmD0CQwNcM4k1owCbGK7xmWRjUfQEOoOEM9Oo8dkbUsz8wxoRgMQR8yURICwcSoesQ0D7ivQ661jqpELOcp1lZTHIc4ipfksbd4ZYox52UU13wovEr8T9PJQljjL0a3y48Rf1slMRwAv5uf_M_8kmy2ep123H7oPp2SrQVzBH_GnJG12XRuzgGezNRFufw-AJP05PA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Processing+and+modeling+of+conductive+thermoplastic%2Fcarbon+nanotube+films+for+strain+sensing&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Pham%2C+Giang+T.&rft.au=Park%2C+Young-Bin&rft.au=Liang%2C+Zhiyong&rft.au=Zhang%2C+Chuck&rft.date=2008&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=39&rft.issue=1&rft.spage=209&rft.epage=216&rft_id=info:doi/10.1016%2Fj.compositesb.2007.02.024&rft.externalDocID=S1359836807000571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon