Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy

•Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in o...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 74; p. 102250
Main Authors Romaguera, Liset Vázquez, Mezheritsky, Tal, Mansour, Rihab, Carrier, Jean-François, Kadoury, Samuel
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2021.102250

Cover

Abstract •Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in one shot.•Inference requires only a pre-treatment volume and real-time 2D images from the treated organ•Model validation with multiple imaging modalities (MRI and US) both in healthy volunteers and patients. [Display omitted] Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
AbstractList Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
•Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in one shot.•Inference requires only a pre-treatment volume and real-time 2D images from the treated organ•Model validation with multiple imaging modalities (MRI and US) both in healthy volunteers and patients. [Display omitted] Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.
ArticleNumber 102250
Author Mansour, Rihab
Carrier, Jean-François
Kadoury, Samuel
Romaguera, Liset Vázquez
Mezheritsky, Tal
Author_xml – sequence: 1
  givenname: Liset Vázquez
  surname: Romaguera
  fullname: Romaguera, Liset Vázquez
  email: liset.vazquez@polymtl.ca
  organization: École Polytechnique de Montréal, Montréal, Canada
– sequence: 2
  givenname: Tal
  surname: Mezheritsky
  fullname: Mezheritsky, Tal
  organization: École Polytechnique de Montréal, Montréal, Canada
– sequence: 3
  givenname: Rihab
  surname: Mansour
  fullname: Mansour, Rihab
  organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada
– sequence: 4
  givenname: Jean-François
  surname: Carrier
  fullname: Carrier, Jean-François
  organization: Centre Hospitalier de l’Université de Montréal and Département de physique, Université de Montréal, Montréal, Canada
– sequence: 5
  givenname: Samuel
  surname: Kadoury
  fullname: Kadoury, Samuel
  organization: École Polytechnique de Montréal, Montréal, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34601453$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAUhC1URB_wC5CQJTZscrHjxEkWLFB5VaoEC1hbjn0cfEnsy7HTqgv-O769bRdddHUs65uRZuaUHIUYgJDXnG044_L9drOA9XpTs5qXn7pu2TNywoXkVd_U4ujhzdtjcprSljHWNQ17QY5FIxlvWnFC_v3AOOrRzz5lb2jzie6wuJrsr4Au0cJMHcaF-lBhLDetiHHSGRJdkw8TNTFYn30MeqYTBEB9Kw2QryP-SdRFpH7RE1TT6i1Yitr6mH8XcHfzkjx3ek7w6u6ekV9fPv88_1Zdfv96cf7xsjKi73I11ByMZq1sRT-O3DHuZM-Fs7UZhetKTNc6Z4dBgrV6dLoeBt4NtiR3bNROnJF3B98dxr8rpKwWnwzMsw4Q16TqthtYLznrC_r2EbqNK5Z0hZJMlrJLc4V6c0etY1lB7bBkxBt1X2wBhgNgMKaE4JTxWe97yqj9rDhT-xHVVt2OqPYjqsOIRSseae_tn1Z9OKigFHnlAVUyHoIpIILJykb_pP4_R4K4Tg
CitedBy_id crossref_primary_10_1109_TMI_2023_3234046
crossref_primary_10_1016_j_bspc_2025_107694
crossref_primary_10_1186_s13014_024_02532_4
crossref_primary_10_1002_mp_16141
crossref_primary_10_1093_bjro_tzae017
crossref_primary_10_1016_j_media_2023_102843
crossref_primary_10_1016_j_phro_2024_100604
crossref_primary_10_1002_acm2_14500
crossref_primary_10_1109_TBME_2023_3262422
crossref_primary_10_1002_mp_16845
crossref_primary_10_1088_1361_6560_aca873
crossref_primary_10_1088_1361_6560_acb484
crossref_primary_10_1007_s00066_024_02277_9
crossref_primary_10_1007_s11517_021_02477_w
crossref_primary_10_1016_j_ejca_2023_113504
crossref_primary_10_1007_s10439_022_03117_6
crossref_primary_10_1088_1361_6560_acc71d
crossref_primary_10_1088_1361_6560_ad388a
crossref_primary_10_1109_TRPMS_2023_3313132
Cites_doi 10.1111/1754-9485.12713
10.1016/j.radonc.2017.11.032
10.1088/0031-9155/52/6/001
10.1088/0031-9155/54/12/N01
10.1016/j.ijrobp.2016.02.011
10.1118/1.4825097
10.1016/j.ijrobp.2016.06.953
10.1002/mrm.25665
10.1016/j.ejca.2019.07.021
10.1088/1361-6560/ab33e5
10.1088/1361-6560/aafcec
10.1002/mrm.28200
10.1088/1361-6560/aae56d
10.1002/mp.12227
10.1038/s41598-020-70551-8
10.1002/rcs.1793
10.1016/j.radonc.2017.09.009
10.1088/0031-9155/60/19/7485
10.1186/s13014-019-1308-y
10.1016/j.media.2020.101754
10.1007/s11548-016-1405-4
10.1002/mp.12998
10.1118/1.2349696
10.1016/j.radonc.2007.10.034
10.1002/mp.12243
10.1002/mrm.28562
10.1088/1361-6560/aaebcf
10.1088/1361-6560/aa70cc
10.1016/j.media.2012.09.005
10.1088/1361-6560/aa9c22
10.1016/j.adro.2017.05.006
10.21037/qims.2019.12.10
10.1109/TMI.2009.2035616
10.1016/j.media.2014.03.006
10.1186/s13014-020-01524-4
10.1186/s40349-017-0106-y
10.1016/j.media.2016.06.005
10.1259/bjr.20170522
10.1088/1361-6560/ab359a
10.1109/TMI.2019.2897538
10.1088/2057-1976/ab944c
10.1109/TBME.2018.2885233
10.1088/0031-9155/61/14/5335
10.1016/j.ijrobp.2018.09.011
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier B.V.
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2021.102250
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 34601453
10_1016_j_media_2021_102250
S1361841521002954
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
EFKBS
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c387t-921eca056538bb1f01f6813fd2cb3f7136f5ffd996eddabfa299179d415f0baf3
IEDL.DBID AIKHN
ISSN 1361-8415
1361-8423
IngestDate Fri Sep 05 05:47:47 EDT 2025
Sat Jul 26 03:22:15 EDT 2025
Wed Feb 19 02:27:31 EST 2025
Tue Jul 01 02:49:31 EDT 2025
Thu Apr 24 22:52:57 EDT 2025
Fri Feb 23 02:43:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 4D Imaging
Motion modeling
Liver
Conditional generative networks
41A10
65D05
65D17
Temporal prediction
Radiotherapy
41A05
Language English
License Copyright © 2021. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-921eca056538bb1f01f6813fd2cb3f7136f5ffd996eddabfa299179d415f0baf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34601453
PQID 2606202014
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2579086108
proquest_journals_2606202014
pubmed_primary_34601453
crossref_citationtrail_10_1016_j_media_2021_102250
crossref_primary_10_1016_j_media_2021_102250
elsevier_sciencedirect_doi_10_1016_j_media_2021_102250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Baumgartner, Kolbitsch, McClelland, Rueckert, King (bib0004) 2017; 35
Mezheritsky, Romaguera, Kadoury (bib0041) 2020
Pham, Harris, Sun, Yang, Yin, Ren (bib0048) 2019; 64
McClelland, Hawkes, Schaeffter, King (bib0040) 2013; 17
Wilms, Werner, Yamamoto, Handels, Ehrhardt (bib0065) 2017; 62
Tran, Eiben, Wetscherek, Oelfke, Meedt, Hawkes, McClelland (bib0064) 2020
Huttinga, Bruijnen, van den Berg, Sbrizzi (bib0027) 2021; 85
Seregni, Paganelli, Kipritidis, Baroni, Riboldi (bib0055) 2017; Vol. 123
Romaguera, Plantefève, Romero, Hébert, Carrier, Kadoury (bib0052) 2020; 64
Giger, Sandkühler, Jud, Bauman, Bieri, Salomir, Cattin (bib0018) 2018
Fast, van de Schoot, van de Lindt, Carbaat, van der Heide, Sonke (bib0012) 2019; 103
Feng, Tyagi, Otazo (bib0015) 2020; 84
Jud, Cattin, Preiswerk (bib0029) 2017
Kontaxis, Bol, Lagendijk, Raaymakers (bib0034) 2015; 60
Lagendijk, Raaymakers, Raaijmakers, Overweg, Brown, Kerkhof, van der Put, Hårdemark, van Vulpen, van der Heide (bib0038) 2008; 86
Paganelli, Whelan, Peroni, Summers, Fast, van de Lindt, McClelland, Eiben, Keall, Lomax (bib0046) 2018; 63
Giger, Krieger, Jud, Duetschler, Salomir, Bieri, Bauman, Nguyen, Weber, Lomax (bib0019) 2020
Corradini, Alongi, Andratschke, Belka, Boldrini, Cellini, Debus, Guckenberger, Hörner-Rieber, Lagerwaard (bib0009) 2019; 14
Garau, Via, Meschini, Lee, Keall, Riboldi, Baroni, Paganelli (bib0017) 2019
Harris, Wang, Yin, Cai, Ren (bib0024) 2018; 45
Biffi, Cerrolaza, Tarroni, de Marvao, Cook, O’Regan, Rueckert (bib0005) 2019
Hall, Paulson, van der Heide, Fuller, Raaymakers, Lagendijk, Li, Jaffray, Dawson, Erickson (bib0021) 2019; 122
Brandner, Chetty, Giaddui, Xiao, Huq (bib0007) 2017; 44
Jud, Preiswerk, Cattin (bib0030) 2015
Bainbridge, Menten, Fast, Nill, Oelfke, McDonald (bib0002) 2017; 125
Kurenkov, Ji, Garg, Mehta, Gwak, Choy, Savarese (bib0035) 2018
Stemkens, Tijssen, De Senneville, Lagendijk, Van Den Berg (bib0060) 2016; 61
Sohn, Lee, Yan (bib0058) 2015
Girdhar, Fouhey, Rodriguez, Gupta (bib0020) 2016
Lorton, Guillemin, Möri, Crowe, Boudabbous, Terraz, Becker, Cattin, Salomir, Gui (bib0039) 2018; 66
Abdi, Pesteie, Prisman, Abolmaesumi, Fels (bib0001) 2019
Fischer-Valuck, Henke, Green, Kashani, Acharya, Bradley, Robinson, Thomas, Zoberi, Thorstad (bib0016) 2017; 2
.
Fayad, Buerger, Tsoumpas, Cheze-Le-Rest, Visvikis (bib0013) 2012
Diodato, Cafarelli, Schiappacasse, Tognarelli, Ciuti, Menciassi (bib0010) 2018; 63
Stemkens, Paulson, Tijssen (bib0059) 2018; 63
Seo, Koizumi, Mitsuishi, Sugita (bib0054) 2017; 13
von Siebenthal, Székely, Lomax, Cattin (bib0057) 2007
Klein, Staring, Murphy, Viergever, Pluim (bib0033) 2009; 29
Kingma, Welling (bib0032) 2013; abs/1312.6114
Mutic, Dempsey (bib0043) 2014; Vol. 24
Raaymakers, Lagendijk, Overweg, Kok, Raaijmakers, Kerkhof, Van Der Put, Meijsing, Crijns, Benedosso (bib0050) 2009; 54
Harris, Ren, Cai, Zhang, Chang, Yin (bib0023) 2016; 95
Kurz, Buizza, Landry, Kamp, Rabe, Paganelli, Baroni, Reiner, Keall, van den Berg (bib0036) 2020; 15
Sutskever, Vinyals, Le (bib0061) 2014
Küstner, Fuin, Hammernik, Bustin, Qi, Hajhosseiny, Masci, Neji, Rueckert, Botnar (bib0037) 2020; 10
Preiswerk, De Luca, Arnold, Celicanin, Petrusca, Tanner, Bieri, Salomir, Cattin (bib0049) 2014; 18
Samei, Tanner, Székely (bib0053) 2012
Mueller, M., Keall, P., 2019. The markerless lung target tracking challenge (match). Accessed: 2021-04-20
Zachiu, de Senneville, Dmitriev, Moonen, Ries (bib0067) 2017; 5
Tanner, Zur, French, Samei, Strehlow, Sat, McLeod, Houston, Kozerke, Székely (bib0062) 2016; 11
Romaguera, Mezheritsky, Mansour, Tanguay, Kadoury (bib0051) 2021
Ehrhardt, Lorenz (bib0011) 2013; Vol. 10
Wölfelschneider, Seregni, Fassi, Ziegler, Baroni, Fietkau, Riboldi, Bert (bib0066) 2017; 44
von Siebenthal, Szekely, Gamper, Boesiger, Lomax, Cattin (bib0056) 2007; 52
Harris, Yin, Cai, Ren (bib0025) 2020; 10
Park, Kim, Lee, Kang, Lee, Seol, Bae, Kim, Lee, Moon (bib0047) 2016; 96
Jaderberg, Simonyan, Zisserman (bib0028) 2015
Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0003) 2019; 38
Han, Laga, Bennamoun (bib0022) 2019
Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray (bib0031) 2006; 33
Zhang, Yin, Segars, Ren (bib0068) 2013; 40
Cerrolaza, Li, Biffi, Gomez, Sinclair, Matthew, Knight, Kainz, Rueckert (bib0008) 2018
Paganelli, Portoso, Garau, Meschini, Via, Buizza, Keall, Riboldi, Baroni (bib0045) 2019; 64
Feng, Axel, Chandarana, Block, Sodickson, Otazo (bib0014) 2016; 75
Paganelli, Lee, Kipritidis, Whelan, Greer, Baroni, Riboldi, Keall (bib0044) 2018; 62
Boye, Samei, Schmidt, Székely, Tanner (bib0006) 2013; Vol. 8669
Henke, Kashani, Robinson, Curcuru, DeWees, Bradley, Green, Michalski, Mutic, Parikh (bib0026) 2018; 126
Thomas, Santhanam, Kishan, Cao, Lamb, Min, O’Connell, Yang, Agazaryan, Lee (bib0063) 2018; 91
Jud (10.1016/j.media.2021.102250_bib0030) 2015
Stemkens (10.1016/j.media.2021.102250_bib0060) 2016; 61
Kurz (10.1016/j.media.2021.102250_bib0036) 2020; 15
McClelland (10.1016/j.media.2021.102250_bib0040) 2013; 17
Seo (10.1016/j.media.2021.102250_bib0054) 2017; 13
Fischer-Valuck (10.1016/j.media.2021.102250_bib0016) 2017; 2
Keall (10.1016/j.media.2021.102250_bib0031) 2006; 33
Wilms (10.1016/j.media.2021.102250_bib0065) 2017; 62
Abdi (10.1016/j.media.2021.102250_bib0001) 2019
Henke (10.1016/j.media.2021.102250_bib0026) 2018; 126
Stemkens (10.1016/j.media.2021.102250_bib0059) 2018; 63
Cerrolaza (10.1016/j.media.2021.102250_bib0008) 2018
Klein (10.1016/j.media.2021.102250_bib0033) 2009; 29
Ehrhardt (10.1016/j.media.2021.102250_bib0011) 2013; Vol. 10
Biffi (10.1016/j.media.2021.102250_bib0005) 2019
Park (10.1016/j.media.2021.102250_bib0047) 2016; 96
Balakrishnan (10.1016/j.media.2021.102250_bib0003) 2019; 38
Huttinga (10.1016/j.media.2021.102250_bib0027) 2021; 85
Feng (10.1016/j.media.2021.102250_bib0014) 2016; 75
Mutic (10.1016/j.media.2021.102250_bib0043) 2014; Vol. 24
Romaguera (10.1016/j.media.2021.102250_bib0052) 2020; 64
Küstner (10.1016/j.media.2021.102250_bib0037) 2020; 10
Romaguera (10.1016/j.media.2021.102250_bib0051) 2021
Boye (10.1016/j.media.2021.102250_bib0006) 2013; Vol. 8669
Samei (10.1016/j.media.2021.102250_bib0053) 2012
Seregni (10.1016/j.media.2021.102250_bib0055) 2017; Vol. 123
Bainbridge (10.1016/j.media.2021.102250_bib0002) 2017; 125
Zhang (10.1016/j.media.2021.102250_bib0068) 2013; 40
Mezheritsky (10.1016/j.media.2021.102250_bib0041) 2020
Diodato (10.1016/j.media.2021.102250_bib0010) 2018; 63
Sohn (10.1016/j.media.2021.102250_bib0058) 2015
Wölfelschneider (10.1016/j.media.2021.102250_bib0066) 2017; 44
Raaymakers (10.1016/j.media.2021.102250_bib0050) 2009; 54
Paganelli (10.1016/j.media.2021.102250_bib0044) 2018; 62
Corradini (10.1016/j.media.2021.102250_bib0009) 2019; 14
Giger (10.1016/j.media.2021.102250_bib0019) 2020
Kurenkov (10.1016/j.media.2021.102250_bib0035) 2018
10.1016/j.media.2021.102250_bib0042
Fast (10.1016/j.media.2021.102250_bib0012) 2019; 103
Garau (10.1016/j.media.2021.102250_bib0017) 2019
von Siebenthal (10.1016/j.media.2021.102250_bib0056) 2007; 52
Pham (10.1016/j.media.2021.102250_bib0048) 2019; 64
Baumgartner (10.1016/j.media.2021.102250_bib0004) 2017; 35
Harris (10.1016/j.media.2021.102250_bib0025) 2020; 10
Lagendijk (10.1016/j.media.2021.102250_bib0038) 2008; 86
Fayad (10.1016/j.media.2021.102250_bib0013) 2012
Tanner (10.1016/j.media.2021.102250_bib0062) 2016; 11
Brandner (10.1016/j.media.2021.102250_bib0007) 2017; 44
Harris (10.1016/j.media.2021.102250_bib0023) 2016; 95
Jaderberg (10.1016/j.media.2021.102250_bib0028) 2015
Kontaxis (10.1016/j.media.2021.102250_bib0034) 2015; 60
Han (10.1016/j.media.2021.102250_bib0022) 2019
Paganelli (10.1016/j.media.2021.102250_bib0045) 2019; 64
Thomas (10.1016/j.media.2021.102250_bib0063) 2018; 91
Harris (10.1016/j.media.2021.102250_bib0024) 2018; 45
Tran (10.1016/j.media.2021.102250_bib0064) 2020
Girdhar (10.1016/j.media.2021.102250_bib0020) 2016
Sutskever (10.1016/j.media.2021.102250_bib0061) 2014
Feng (10.1016/j.media.2021.102250_bib0015) 2020; 84
Lorton (10.1016/j.media.2021.102250_bib0039) 2018; 66
Paganelli (10.1016/j.media.2021.102250_bib0046) 2018; 63
Zachiu (10.1016/j.media.2021.102250_bib0067) 2017; 5
Preiswerk (10.1016/j.media.2021.102250_bib0049) 2014; 18
Hall (10.1016/j.media.2021.102250_bib0021) 2019; 122
Kingma (10.1016/j.media.2021.102250_bib0032) 2013; abs/1312.6114
Jud (10.1016/j.media.2021.102250_bib0029) 2017
von Siebenthal (10.1016/j.media.2021.102250_bib0057) 2007
Giger (10.1016/j.media.2021.102250_bib0018) 2018
References_xml – volume: 103
  start-page: 468
  year: 2019
  end-page: 478
  ident: bib0012
  article-title: Tumor trailing for liver sbrt on the mr-linac
  publication-title: Int. J. Radiat. Oncol. *Biol.* Phys.
– year: 2015
  ident: bib0030
  article-title: Respiratory motion compensation with topology independent surrogates
  publication-title: Workshop on imaging and computer assistance in radiation therapy
– volume: 63
  start-page: 21TR01
  year: 2018
  ident: bib0059
  article-title: Nuts and bolts of 4d-mri for radiotherapy
  publication-title: Physics in Medicine & Biology
– year: 2019
  ident: bib0022
  article-title: Image-based 3d object reconstruction: state-of-the-art and trends in the deep learning era
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 7485
  year: 2015
  ident: bib0034
  article-title: A new methodology for inter-and intrafraction plan adaptation for the mr-linac
  publication-title: Phys. Med. Biol.
– volume: 40
  start-page: 121701
  year: 2013
  ident: bib0068
  article-title: A technique for estimating 4d-cbct using prior knowledge and limited-angle projections
  publication-title: Med. Phys.
– volume: 45
  start-page: 3238
  year: 2018
  end-page: 3245
  ident: bib0024
  article-title: A novel method to generate on-board 4d mri using prior 4d mri and on-board kv projections from a conventional linac for target localization in liver sbrt
  publication-title: Med. Phys.
– volume: 96
  start-page: E144
  year: 2016
  ident: bib0047
  article-title: The effect of respiratory baseline drift on the real-time tumor tracking accuracy for liver tumors
  publication-title: Int. J. Radiat. Oncol. * Biol.* Phys.
– volume: 38
  start-page: 1788
  year: 2019
  end-page: 1800
  ident: bib0003
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imag.
– reference: Mueller, M., Keall, P., 2019. The markerless lung target tracking challenge (match). Accessed: 2021-04-20,
– volume: 2
  start-page: 485
  year: 2017
  end-page: 493
  ident: bib0016
  article-title: Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system
  publication-title: Adv. Radiat. Oncol.
– volume: 66
  start-page: 2182
  year: 2018
  end-page: 2191
  ident: bib0039
  article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2019
  ident: bib0017
  article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy
  publication-title: Phys. Med. Biol.
– volume: 75
  start-page: 775
  year: 2016
  end-page: 788
  ident: bib0014
  article-title: Xd-grasp: golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing
  publication-title: Magn. Reson. Med.
– year: 2020
  ident: bib0019
  article-title: Liver-ultrasound based motion modelling to estimate 4d dose distributions for lung tumours in scanned proton therapy
  publication-title: Phys. Med. Biol.
– volume: 64
  start-page: 185013
  year: 2019
  ident: bib0045
  article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis
  publication-title: Phys. Med. Biol.
– start-page: 227
  year: 2019
  end-page: 235
  ident: bib0001
  article-title: Variational shape completion for virtual planning of jaw reconstructive surgery
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 84
  start-page: 1280
  year: 2020
  end-page: 1292
  ident: bib0015
  article-title: Mrsigma: magnetic resonance signature matching for real-time volumetric imaging
  publication-title: Magn. Reson. Med.
– volume: 5
  start-page: 27
  year: 2017
  ident: bib0067
  article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen
  publication-title: J. Ther. Ultrasound.
– volume: 85
  start-page: 2309
  year: 2021
  end-page: 2326
  ident: bib0027
  article-title: Nonrigid 3d motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank mr-motus
  publication-title: Magn. Reson. Med.
– volume: 63
  start-page: 035017
  year: 2018
  ident: bib0010
  article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs
  publication-title: Phys. Med. Biol.
– start-page: 2017
  year: 2015
  end-page: 2025
  ident: bib0028
  article-title: Spatial transformer networks
  publication-title: Advances in neural information processing systems
– volume: 91
  start-page: 20170522
  year: 2018
  ident: bib0063
  article-title: Initial clinical observations of intra-and interfractional motion variation in mr-guided lung sbrt
  publication-title: Br. J. Radiol.
– volume: Vol. 10
  year: 2013
  ident: bib0011
  article-title: 4D Modeling and estimation of respiratory motion for radiation therapy
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib0037
  article-title: Cinenet: deep learning-based 3d cardiac cine mri reconstruction with multi-coil complex-valued 4d spatio-temporal convolutions
  publication-title: Sci. Rep.
– volume: 18
  start-page: 740
  year: 2014
  end-page: 751
  ident: bib0049
  article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound
  publication-title: Med. Image. Anal.
– start-page: 379
  year: 2017
  end-page: 407
  ident: bib0029
  article-title: Statistical Respiratory Models for Motion Estimation
  publication-title: Statistical Shape and Deformation Analysis
– volume: abs/1312.6114
  year: 2013
  ident: bib0032
  article-title: Auto-encoding variational bayes
  publication-title: CoRR
– volume: 29
  start-page: 196
  year: 2009
  end-page: 205
  ident: bib0033
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Image.
– volume: 63
  start-page: 22TR03
  year: 2018
  ident: bib0046
  article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges
  publication-title: Phys. Med. Biol.
– volume: 44
  start-page: 2595
  year: 2017
  end-page: 2612
  ident: bib0007
  article-title: Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from nrg oncology
  publication-title: Med. Phys.
– volume: 33
  start-page: 3874
  year: 2006
  end-page: 3900
  ident: bib0031
  article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a
  publication-title: Med. Phys.
– volume: 64
  start-page: 101754
  year: 2020
  ident: bib0052
  article-title: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks
  publication-title: Med. Image. Anal.
– volume: 44
  start-page: 2066
  year: 2017
  end-page: 2076
  ident: bib0066
  article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates
  publication-title: Med. Phys.
– volume: 126
  start-page: 519
  year: 2018
  end-page: 526
  ident: bib0026
  article-title: Phase i trial of stereotactic mr-guided online adaptive radiation therapy (smart) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen
  publication-title: Radiother. Oncol.
– volume: Vol. 24
  start-page: 196
  year: 2014
  end-page: 199
  ident: bib0043
  article-title: The viewray system: magnetic resonance–guided and controlled radiotherapy
  publication-title: Seminars in radiation oncology
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: bib0058
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Advances in neural information processing systems
– volume: 62
  start-page: 389
  year: 2018
  end-page: 400
  ident: bib0044
  article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy
  publication-title: J. Med. Image. Radiat. Oncol.
– volume: 52
  start-page: 1547
  year: 2007
  ident: bib0056
  article-title: 4D mr imaging of respiratory organ motion and its variability
  publication-title: Physics in Medicine & Biology
– volume: 13
  start-page: e1793
  year: 2017
  ident: bib0054
  article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound
  publication-title: Int. J. Med. Robotic. Comput. Assist. Surg.
– volume: 125
  start-page: 280
  year: 2017
  end-page: 285
  ident: bib0002
  article-title: Treating locally advanced lung cancer with a 1.5 t mr-linac–effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy
  publication-title: Radiother. Oncol.
– volume: 86
  start-page: 25
  year: 2008
  end-page: 29
  ident: bib0038
  article-title: Mri/linac integration
  publication-title: Radiother. Oncol.
– start-page: 383
  year: 2018
  end-page: 391
  ident: bib0008
  article-title: 3d fetal skull reconstruction from 2dus via deep conditional generative networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 10
  start-page: 432
  year: 2020
  ident: bib0025
  article-title: Volumetric cine magnetic resonance imaging (vc-mri) using motion modeling, free-form deformation and multi-slice undersampled 2d cine mri reconstructed with spatio-temporal low-rank decomposition
  publication-title: Quant. Image. Med. Surg.
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: bib0061
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in neural information processing systems
– volume: 62
  start-page: 5823
  year: 2017
  ident: bib0065
  article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations
  publication-title: Phys. Med. Biol.
– start-page: 484
  year: 2016
  end-page: 499
  ident: bib0020
  article-title: Learning a predictable and generative vector representation for objects
  publication-title: European Conference on Computer Vision
– year: 2020
  ident: bib0064
  article-title: Evaluation of mri-derived surrogate signals to model respiratory motion
  publication-title: Biomed. Phys. Engineer. Express
– volume: 11
  start-page: 1143
  year: 2016
  end-page: 1152
  ident: bib0062
  article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 122
  start-page: 42
  year: 2019
  end-page: 52
  ident: bib0021
  article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review
  publication-title: Eur. J. Cancer
– volume: Vol. 123
  start-page: S147
  year: 2017
  end-page: S148
  ident: bib0055
  article-title: Out-of-plane motion correction in orthogonal cine-mri registration
  publication-title: Radiotherapy and Oncology
– volume: 14
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib0009
  article-title: Mr-guidance in clinical reality: current treatment challenges and future perspectives
  publication-title: Radiat. Oncol.
– start-page: 1
  year: 2021
  end-page: 13
  ident: bib0051
  article-title: Predictive online 3d target tracking with population-based generative networks for image-guided radiotherapy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 15
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib0036
  article-title: Medical physics challenges in clinical mr-guided radiotherapy
  publication-title: Radiat. Oncol.
– start-page: 81
  year: 2018
  end-page: 88
  ident: bib0018
  article-title: Respiratory motion modelling using cgans
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 64
  start-page: 165016
  year: 2019
  ident: bib0048
  article-title: Predicting real-time 3d deformation field maps (dfm) based on volumetric cine mri (vc-mri) and artificial neural networks for on-board 4d target tracking: a feasibility study
  publication-title: Phys. Med. Biol.
– volume: 61
  start-page: 5335
  year: 2016
  ident: bib0060
  article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy
  publication-title: Phys. Med. Biol.
– volume: Vol. 8669
  start-page: 86690U
  year: 2013
  ident: bib0006
  article-title: Population based modeling of respiratory lung motion and prediction from partial information
  publication-title: Medical Imaging 2013: Image Processing
– reference: .
– start-page: 147
  year: 2012
  end-page: 157
  ident: bib0053
  article-title: Predicting liver motion using exemplar models
  publication-title: International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging
– volume: 95
  start-page: 844
  year: 2016
  end-page: 853
  ident: bib0023
  article-title: A technique for generating volumetric cine-magnetic resonance imaging
  publication-title: Int. J. Radiat. Oncol. *Biol.* Phys.
– volume: 54
  start-page: N229
  year: 2009
  ident: bib0050
  article-title: Integrating a 1.5 t mri scanner with a 6 mv accelerator: proof of concept
  publication-title: Phys. Med. Biol.
– volume: 17
  start-page: 19
  year: 2013
  end-page: 42
  ident: bib0040
  article-title: Respiratory motion models: a review
  publication-title: Med. Image. Anal.
– start-page: 1808
  year: 2020
  end-page: 1811
  ident: bib0041
  article-title: 3d ultrasound generation from partial 2d observations using fully convolutional and spatial transformation networks
  publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI)
– volume: 35
  start-page: 83
  year: 2017
  end-page: 100
  ident: bib0004
  article-title: Autoadaptive motion modelling for mr-based respiratory motion estimation
  publication-title: Med. Image. Anal.
– start-page: 659
  year: 2007
  end-page: 666
  ident: bib0057
  article-title: Inter-subject modelling of liver deformation during radiation therapy
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1643
  year: 2019
  end-page: 1646
  ident: bib0005
  article-title: 3d high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– start-page: 858
  year: 2018
  end-page: 866
  ident: bib0035
  article-title: Deformnet: Free-form deformation network for 3d shape reconstruction from a single image
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 4058
  year: 2012
  end-page: 4061
  ident: bib0013
  article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators
  publication-title: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC)
– volume: 62
  start-page: 389
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0044
  article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy
  publication-title: J. Med. Image. Radiat. Oncol.
  doi: 10.1111/1754-9485.12713
– volume: 126
  start-page: 519
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0026
  article-title: Phase i trial of stereotactic mr-guided online adaptive radiation therapy (smart) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2017.11.032
– volume: 52
  start-page: 1547
  issue: 6
  year: 2007
  ident: 10.1016/j.media.2021.102250_bib0056
  article-title: 4D mr imaging of respiratory organ motion and its variability
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/0031-9155/52/6/001
– volume: 54
  start-page: N229
  issue: 12
  year: 2009
  ident: 10.1016/j.media.2021.102250_bib0050
  article-title: Integrating a 1.5 t mri scanner with a 6 mv accelerator: proof of concept
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/54/12/N01
– volume: 95
  start-page: 844
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0023
  article-title: A technique for generating volumetric cine-magnetic resonance imaging
  publication-title: Int. J. Radiat. Oncol. *Biol.* Phys.
  doi: 10.1016/j.ijrobp.2016.02.011
– volume: 40
  start-page: 121701
  issue: 12
  year: 2013
  ident: 10.1016/j.media.2021.102250_bib0068
  article-title: A technique for estimating 4d-cbct using prior knowledge and limited-angle projections
  publication-title: Med. Phys.
  doi: 10.1118/1.4825097
– volume: Vol. 8669
  start-page: 86690U
  year: 2013
  ident: 10.1016/j.media.2021.102250_bib0006
  article-title: Population based modeling of respiratory lung motion and prediction from partial information
– start-page: 227
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0001
  article-title: Variational shape completion for virtual planning of jaw reconstructive surgery
– volume: 96
  start-page: E144
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0047
  article-title: The effect of respiratory baseline drift on the real-time tumor tracking accuracy for liver tumors
  publication-title: Int. J. Radiat. Oncol. * Biol.* Phys.
  doi: 10.1016/j.ijrobp.2016.06.953
– volume: 75
  start-page: 775
  issue: 2
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0014
  article-title: Xd-grasp: golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25665
– volume: 122
  start-page: 42
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0021
  article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.07.021
– volume: 64
  start-page: 185013
  issue: 18
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0045
  article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab33e5
– start-page: 1808
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0041
  article-title: 3d ultrasound generation from partial 2d observations using fully convolutional and spatial transformation networks
– year: 2019
  ident: 10.1016/j.media.2021.102250_bib0017
  article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aafcec
– year: 2019
  ident: 10.1016/j.media.2021.102250_bib0022
  article-title: Image-based 3d object reconstruction: state-of-the-art and trends in the deep learning era
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 858
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0035
  article-title: Deformnet: Free-form deformation network for 3d shape reconstruction from a single image
– volume: 84
  start-page: 1280
  issue: 3
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0015
  article-title: Mrsigma: magnetic resonance signature matching for real-time volumetric imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28200
– volume: 63
  start-page: 21TR01
  issue: 21
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0059
  article-title: Nuts and bolts of 4d-mri for radiotherapy
  publication-title: Physics in Medicine & Biology
  doi: 10.1088/1361-6560/aae56d
– volume: 44
  start-page: 2595
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0007
  article-title: Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from nrg oncology
  publication-title: Med. Phys.
  doi: 10.1002/mp.12227
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0037
  article-title: Cinenet: deep learning-based 3d cardiac cine mri reconstruction with multi-coil complex-valued 4d spatio-temporal convolutions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70551-8
– volume: 13
  start-page: e1793
  issue: 4
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0054
  article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound
  publication-title: Int. J. Med. Robotic. Comput. Assist. Surg.
  doi: 10.1002/rcs.1793
– volume: 125
  start-page: 280
  issue: 2
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0002
  article-title: Treating locally advanced lung cancer with a 1.5 t mr-linac–effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2017.09.009
– volume: abs/1312.6114
  year: 2013
  ident: 10.1016/j.media.2021.102250_bib0032
  article-title: Auto-encoding variational bayes
  publication-title: CoRR
– volume: 60
  start-page: 7485
  issue: 19
  year: 2015
  ident: 10.1016/j.media.2021.102250_bib0034
  article-title: A new methodology for inter-and intrafraction plan adaptation for the mr-linac
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/19/7485
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0009
  article-title: Mr-guidance in clinical reality: current treatment challenges and future perspectives
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-019-1308-y
– volume: 64
  start-page: 101754
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0052
  article-title: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2020.101754
– volume: 11
  start-page: 1143
  issue: 6
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0062
  article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1405-4
– volume: 45
  start-page: 3238
  issue: 7
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0024
  article-title: A novel method to generate on-board 4d mri using prior 4d mri and on-board kv projections from a conventional linac for target localization in liver sbrt
  publication-title: Med. Phys.
  doi: 10.1002/mp.12998
– start-page: 81
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0018
  article-title: Respiratory motion modelling using cgans
– volume: 33
  start-page: 3874
  issue: 10
  year: 2006
  ident: 10.1016/j.media.2021.102250_bib0031
  article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a
  publication-title: Med. Phys.
  doi: 10.1118/1.2349696
– volume: 86
  start-page: 25
  issue: 1
  year: 2008
  ident: 10.1016/j.media.2021.102250_bib0038
  article-title: Mri/linac integration
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2007.10.034
– start-page: 659
  year: 2007
  ident: 10.1016/j.media.2021.102250_bib0057
  article-title: Inter-subject modelling of liver deformation during radiation therapy
– volume: Vol. 24
  start-page: 196
  year: 2014
  ident: 10.1016/j.media.2021.102250_bib0043
  article-title: The viewray system: magnetic resonance–guided and controlled radiotherapy
– volume: Vol. 123
  start-page: S147
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0055
  article-title: Out-of-plane motion correction in orthogonal cine-mri registration
– volume: 44
  start-page: 2066
  issue: 6
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0066
  article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates
  publication-title: Med. Phys.
  doi: 10.1002/mp.12243
– volume: 85
  start-page: 2309
  issue: 4
  year: 2021
  ident: 10.1016/j.media.2021.102250_bib0027
  article-title: Nonrigid 3d motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank mr-motus
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28562
– year: 2020
  ident: 10.1016/j.media.2021.102250_bib0019
  article-title: Liver-ultrasound based motion modelling to estimate 4d dose distributions for lung tumours in scanned proton therapy
  publication-title: Phys. Med. Biol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.media.2021.102250_bib0051
  article-title: Predictive online 3d target tracking with population-based generative networks for image-guided radiotherapy
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: Vol. 10
  year: 2013
  ident: 10.1016/j.media.2021.102250_bib0011
– ident: 10.1016/j.media.2021.102250_bib0042
– start-page: 147
  year: 2012
  ident: 10.1016/j.media.2021.102250_bib0053
  article-title: Predicting liver motion using exemplar models
– volume: 63
  start-page: 22TR03
  issue: 22
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0046
  article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aaebcf
– volume: 62
  start-page: 5823
  issue: 14
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0065
  article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa70cc
– volume: 17
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.media.2021.102250_bib0040
  article-title: Respiratory motion models: a review
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2012.09.005
– volume: 63
  start-page: 035017
  issue: 3
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0010
  article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa9c22
– volume: 2
  start-page: 485
  issue: 3
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0016
  article-title: Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system
  publication-title: Adv. Radiat. Oncol.
  doi: 10.1016/j.adro.2017.05.006
– start-page: 4058
  year: 2012
  ident: 10.1016/j.media.2021.102250_bib0013
  article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators
– start-page: 379
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0029
  article-title: Statistical Respiratory Models for Motion Estimation
– start-page: 3104
  year: 2014
  ident: 10.1016/j.media.2021.102250_bib0061
  article-title: Sequence to sequence learning with neural networks
– volume: 10
  start-page: 432
  issue: 2
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0025
  article-title: Volumetric cine magnetic resonance imaging (vc-mri) using motion modeling, free-form deformation and multi-slice undersampled 2d cine mri reconstructed with spatio-temporal low-rank decomposition
  publication-title: Quant. Image. Med. Surg.
  doi: 10.21037/qims.2019.12.10
– volume: 29
  start-page: 196
  issue: 1
  year: 2009
  ident: 10.1016/j.media.2021.102250_bib0033
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Trans. Med. Image.
  doi: 10.1109/TMI.2009.2035616
– start-page: 1643
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0005
  article-title: 3d high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders
– start-page: 484
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0020
  article-title: Learning a predictable and generative vector representation for objects
– year: 2015
  ident: 10.1016/j.media.2021.102250_bib0030
  article-title: Respiratory motion compensation with topology independent surrogates
– volume: 18
  start-page: 740
  issue: 5
  year: 2014
  ident: 10.1016/j.media.2021.102250_bib0049
  article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2014.03.006
– volume: 15
  start-page: 1
  year: 2020
  ident: 10.1016/j.media.2021.102250_bib0036
  article-title: Medical physics challenges in clinical mr-guided radiotherapy
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-020-01524-4
– volume: 5
  start-page: 27
  issue: 1
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0067
  article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen
  publication-title: J. Ther. Ultrasound.
  doi: 10.1186/s40349-017-0106-y
– volume: 35
  start-page: 83
  year: 2017
  ident: 10.1016/j.media.2021.102250_bib0004
  article-title: Autoadaptive motion modelling for mr-based respiratory motion estimation
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2016.06.005
– start-page: 383
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0008
  article-title: 3d fetal skull reconstruction from 2dus via deep conditional generative networks
– start-page: 2017
  year: 2015
  ident: 10.1016/j.media.2021.102250_bib0028
  article-title: Spatial transformer networks
– volume: 91
  start-page: 20170522
  issue: xxxx
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0063
  article-title: Initial clinical observations of intra-and interfractional motion variation in mr-guided lung sbrt
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20170522
– volume: 64
  start-page: 165016
  issue: 16
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0048
  article-title: Predicting real-time 3d deformation field maps (dfm) based on volumetric cine mri (vc-mri) and artificial neural networks for on-board 4d target tracking: a feasibility study
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab359a
– volume: 38
  start-page: 1788
  issue: 8
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0003
  article-title: Voxelmorph: a learning framework for deformable medical image registration
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2019.2897538
– year: 2020
  ident: 10.1016/j.media.2021.102250_bib0064
  article-title: Evaluation of mri-derived surrogate signals to model respiratory motion
  publication-title: Biomed. Phys. Engineer. Express
  doi: 10.1088/2057-1976/ab944c
– start-page: 3483
  year: 2015
  ident: 10.1016/j.media.2021.102250_bib0058
  article-title: Learning structured output representation using deep conditional generative models
– volume: 66
  start-page: 2182
  issue: 8
  year: 2018
  ident: 10.1016/j.media.2021.102250_bib0039
  article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2885233
– volume: 61
  start-page: 5335
  issue: 14
  year: 2016
  ident: 10.1016/j.media.2021.102250_bib0060
  article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/14/5335
– volume: 103
  start-page: 468
  issue: 2
  year: 2019
  ident: 10.1016/j.media.2021.102250_bib0012
  article-title: Tumor trailing for liver sbrt on the mr-linac
  publication-title: Int. J. Radiat. Oncol. *Biol.* Phys.
  doi: 10.1016/j.ijrobp.2018.09.011
SSID ssj0007440
Score 2.4823399
Snippet •Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables...
Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102250
SubjectTerms 4D Imaging
Annotations
Cognitive tasks
Conditional generative networks
Datasets
Humans
Liver
Magnetic Resonance Imaging
Medical imaging
Models, Statistical
Motion modeling
Patients
Prediction models
Probabilistic models
Probability theory
Radiation therapy
Radiotherapy
Radiotherapy, Image-Guided
Representations
Respiration
Statistical analysis
Temporal prediction
Three dimensional models
Tracking
Tumors
Two dimensional models
Ultrasonography
Variability
Title Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy
URI https://dx.doi.org/10.1016/j.media.2021.102250
https://www.ncbi.nlm.nih.gov/pubmed/34601453
https://www.proquest.com/docview/2606202014
https://www.proquest.com/docview/2579086108
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnYTgAcGAURiTkXjEtI4TJ3mcxqYC2oQEk_ZmxXFcBbG0StuHPYy_nTvbqUBie-AxsS1ZPt-X7-53AO-cVU6i38Fr1A08ddOKG-qaquq8yKiwKvVPA-cXanaZfr7KrnbgZKiFobTKKPuDTPfSOv6ZxNOcLNt28k1IalZC-odCS1m6C3uJLFU2gr3jT19mF1uBTBh4ofxKcFowgA_5NC9foIF-YiIIxSCh-vt_K6i7DFCviM6ewONoQbLjsMmnsNN0-_DoD1zBfXhwHiPmz-D2a48cSxmwBMjM0o9s2dMgSTnm2-AwqjBhbcfJhmarTd8v6GltxSglfs7QX7ZteDBkc49R7Zd2IX18xdDoZe01SiU-37S2sayvbBvLum6ew-XZ6feTGY8tF3gti3zNy0Q0dYVGEcpBY4SbCqcKIZ1NaiMdOrTKZc5ZdJIaayvjKtRmyNIWT9VNTeXkCxh1i655CawkxZdWhgDkUlEoU1YmNzXKl7wpTC7HkAznrOuIR05tMX7qIfHsh_bE0UQcHYgzhvfbRcsAx3H_dDUQUP91qzQqjPsXHg7k1pGpVxpdP4Vz0Kkcw9vtMLIjxViqrllscE6Wl-glimkxhoNwTbYblamiIK589b-7eg0P6Stk0xzCaN1vmjdoE63NEex--CWO4s3_DWECCo8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIvE4ICivQAEjcWRJvPZ6N0dUqAI0FRKt1Jtlr9fRIthEm-TAAX47M7Y3gAQ9cPVDsjz2POxvvgF44Z3yAuOOrEbbkEk_MZmlqqmqLquCEqtkeBqYn6rZuXx_UVzswdGQC0OwyqT7o04P2jq1jNNujldtO_7EBRUrIftDX0uFvAJXZSFKwvW9-vEL50EMeDH5imc0fKAeCiCvkJ6BUWLOicMgp-z7v5unf7mfwQwd34ZbyX9kr-MS78Be0x3Azd9YBQ_g2jz9l9-F7x97vK-EfyU6ZibfsFVPnaTjWCiCwyi_hLVdRh40W2_7fkkPa2tGgPgFw2jZtfG5kC0CQ3WY2kXw-Jqhy8var6iTssW2dY1jvXFtSur6dg_Oj9-eHc2yVHAhq0VVbrJpzpvaoEuEWtBa7ifcq4oL7_LaCo_hrPKF9w5DpMY5Y71BW4YX2uGu-ok1XtyH_W7ZNQ-BTcnsSWOJPk7yStmpsaWtUbuUTWVLMYJ82GddJzZyKorxRQ-ws886CEeTcHQUzghe7iatIhnH5cPVIED9x5nSaC4un3g4iFunK73WGPgpHIMh5Qie77rxMtIPi-ma5RbHFOUUY0Q-qUbwIB6T3UKFVPSFKx7976qewfXZ2fxEn7w7_fAYblBPxNUcwv6m3zZP0Dva2Kfh9P8EpYsLWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+4D+predictive+model+from+in-room+surrogates+using+conditional+generative+networks+for+image-guided+radiotherapy&rft.jtitle=Medical+image+analysis&rft.au=Romaguera%2C+Liset+V%C3%A1zquez&rft.au=Mezheritsky%2C+Tal&rft.au=Mansour%2C+Rihab&rft.au=Carrier%2C+Jean-Fran%C3%A7ois&rft.date=2021-12-01&rft.eissn=1361-8423&rft.volume=74&rft.spage=102250&rft_id=info:doi/10.1016%2Fj.media.2021.102250&rft_id=info%3Apmid%2F34601453&rft.externalDocID=34601453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon