Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy
•Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in o...
Saved in:
Published in | Medical image analysis Vol. 74; p. 102250 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1361-8415 1361-8423 1361-8423 |
DOI | 10.1016/j.media.2021.102250 |
Cover
Abstract | •Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in one shot.•Inference requires only a pre-treatment volume and real-time 2D images from the treated organ•Model validation with multiple imaging modalities (MRI and US) both in healthy volunteers and patients.
[Display omitted]
Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art. |
---|---|
AbstractList | Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art. Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art.Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art. Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art. •Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables within a conditional generative model•Temporal predictive mechanism acting on low-dimensional features to forecast multiple future volumes in one shot.•Inference requires only a pre-treatment volume and real-time 2D images from the treated organ•Model validation with multiple imaging modalities (MRI and US) both in healthy volunteers and patients. [Display omitted] Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date volumetric information during treatment can improve tumor tracking, thereby increasing treatment efficiency and reducing damage to healthy tissue. We propose a novel probabilistic model to address the problem of volumetric estimation with scalable predictive horizon from image-based surrogates during radiotherapy treatments, thus enabling out-of-plane tracking of targets. This problem is formulated as a conditional learning task, where the predictive variables are the 2D surrogate images and a pre-operative static 3D volume. The model learns a distribution of realistic motion fields over a population dataset. Simultaneously, a seq-2-seq inspired temporal mechanism acts over the surrogate images yielding extrapolated-in-time representations. The phase-specific motion distributions are associated with the predicted temporal representations, allowing the recovery of dense organ deformation in multiple times. Due to its generative nature, this model enables uncertainty estimations by sampling the latent space multiple times. Furthermore, it can be readily personalized to a new subject via fine-tuning, and does not require inter-subject correspondences. The proposed model was evaluated on free-breathing 4D MRI and ultrasound datasets from 25 healthy volunteers, as well as on 11 cancer patients. A navigator-based data augmentation strategy was used during the slice reordering process to increase model robustness against inter-cycle variability. The patient data was used as a hold-out test set. Our approach yields volumetric prediction from image surrogates with a mean error of 1.67 ± 1.68 mm and 2.17 ± 0.82 mm in unseen cases of the patient MRI and US datasets, respectively. Moreover, model personalization yields a mean landmark error of 1.4 ± 1.1 mm compared to ground truth annotations in the volunteer MRI dataset, with statistically significant improvements over state-of-the-art. |
ArticleNumber | 102250 |
Author | Mansour, Rihab Carrier, Jean-François Kadoury, Samuel Romaguera, Liset Vázquez Mezheritsky, Tal |
Author_xml | – sequence: 1 givenname: Liset Vázquez surname: Romaguera fullname: Romaguera, Liset Vázquez email: liset.vazquez@polymtl.ca organization: École Polytechnique de Montréal, Montréal, Canada – sequence: 2 givenname: Tal surname: Mezheritsky fullname: Mezheritsky, Tal organization: École Polytechnique de Montréal, Montréal, Canada – sequence: 3 givenname: Rihab surname: Mansour fullname: Mansour, Rihab organization: Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, Canada – sequence: 4 givenname: Jean-François surname: Carrier fullname: Carrier, Jean-François organization: Centre Hospitalier de l’Université de Montréal and Département de physique, Université de Montréal, Montréal, Canada – sequence: 5 givenname: Samuel surname: Kadoury fullname: Kadoury, Samuel organization: École Polytechnique de Montréal, Montréal, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34601453$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAUhC1URB_wC5CQJTZscrHjxEkWLFB5VaoEC1hbjn0cfEnsy7HTqgv-O769bRdddHUs65uRZuaUHIUYgJDXnG044_L9drOA9XpTs5qXn7pu2TNywoXkVd_U4ujhzdtjcprSljHWNQ17QY5FIxlvWnFC_v3AOOrRzz5lb2jzie6wuJrsr4Au0cJMHcaF-lBhLDetiHHSGRJdkw8TNTFYn30MeqYTBEB9Kw2QryP-SdRFpH7RE1TT6i1Yitr6mH8XcHfzkjx3ek7w6u6ekV9fPv88_1Zdfv96cf7xsjKi73I11ByMZq1sRT-O3DHuZM-Fs7UZhetKTNc6Z4dBgrV6dLoeBt4NtiR3bNROnJF3B98dxr8rpKwWnwzMsw4Q16TqthtYLznrC_r2EbqNK5Z0hZJMlrJLc4V6c0etY1lB7bBkxBt1X2wBhgNgMKaE4JTxWe97yqj9rDhT-xHVVt2OqPYjqsOIRSseae_tn1Z9OKigFHnlAVUyHoIpIILJykb_pP4_R4K4Tg |
CitedBy_id | crossref_primary_10_1109_TMI_2023_3234046 crossref_primary_10_1016_j_bspc_2025_107694 crossref_primary_10_1186_s13014_024_02532_4 crossref_primary_10_1002_mp_16141 crossref_primary_10_1093_bjro_tzae017 crossref_primary_10_1016_j_media_2023_102843 crossref_primary_10_1016_j_phro_2024_100604 crossref_primary_10_1002_acm2_14500 crossref_primary_10_1109_TBME_2023_3262422 crossref_primary_10_1002_mp_16845 crossref_primary_10_1088_1361_6560_aca873 crossref_primary_10_1088_1361_6560_acb484 crossref_primary_10_1007_s00066_024_02277_9 crossref_primary_10_1007_s11517_021_02477_w crossref_primary_10_1016_j_ejca_2023_113504 crossref_primary_10_1007_s10439_022_03117_6 crossref_primary_10_1088_1361_6560_acc71d crossref_primary_10_1088_1361_6560_ad388a crossref_primary_10_1109_TRPMS_2023_3313132 |
Cites_doi | 10.1111/1754-9485.12713 10.1016/j.radonc.2017.11.032 10.1088/0031-9155/52/6/001 10.1088/0031-9155/54/12/N01 10.1016/j.ijrobp.2016.02.011 10.1118/1.4825097 10.1016/j.ijrobp.2016.06.953 10.1002/mrm.25665 10.1016/j.ejca.2019.07.021 10.1088/1361-6560/ab33e5 10.1088/1361-6560/aafcec 10.1002/mrm.28200 10.1088/1361-6560/aae56d 10.1002/mp.12227 10.1038/s41598-020-70551-8 10.1002/rcs.1793 10.1016/j.radonc.2017.09.009 10.1088/0031-9155/60/19/7485 10.1186/s13014-019-1308-y 10.1016/j.media.2020.101754 10.1007/s11548-016-1405-4 10.1002/mp.12998 10.1118/1.2349696 10.1016/j.radonc.2007.10.034 10.1002/mp.12243 10.1002/mrm.28562 10.1088/1361-6560/aaebcf 10.1088/1361-6560/aa70cc 10.1016/j.media.2012.09.005 10.1088/1361-6560/aa9c22 10.1016/j.adro.2017.05.006 10.21037/qims.2019.12.10 10.1109/TMI.2009.2035616 10.1016/j.media.2014.03.006 10.1186/s13014-020-01524-4 10.1186/s40349-017-0106-y 10.1016/j.media.2016.06.005 10.1259/bjr.20170522 10.1088/1361-6560/ab359a 10.1109/TMI.2019.2897538 10.1088/2057-1976/ab944c 10.1109/TBME.2018.2885233 10.1088/0031-9155/61/14/5335 10.1016/j.ijrobp.2018.09.011 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier B.V. Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier B.V. – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
DOI | 10.1016/j.media.2021.102250 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1361-8423 |
ExternalDocumentID | 34601453 10_1016_j_media_2021_102250 S1361841521002954 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD EFKBS FR3 K9. NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c387t-921eca056538bb1f01f6813fd2cb3f7136f5ffd996eddabfa299179d415f0baf3 |
IEDL.DBID | AIKHN |
ISSN | 1361-8415 1361-8423 |
IngestDate | Fri Sep 05 05:47:47 EDT 2025 Sat Jul 26 03:22:15 EDT 2025 Wed Feb 19 02:27:31 EST 2025 Tue Jul 01 02:49:31 EDT 2025 Thu Apr 24 22:52:57 EDT 2025 Fri Feb 23 02:43:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 4D Imaging Motion modeling Liver Conditional generative networks 41A10 65D05 65D17 Temporal prediction Radiotherapy 41A05 |
Language | English |
License | Copyright © 2021. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-921eca056538bb1f01f6813fd2cb3f7136f5ffd996eddabfa299179d415f0baf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34601453 |
PQID | 2606202014 |
PQPubID | 2045428 |
ParticipantIDs | proquest_miscellaneous_2579086108 proquest_journals_2606202014 pubmed_primary_34601453 crossref_citationtrail_10_1016_j_media_2021_102250 crossref_primary_10_1016_j_media_2021_102250 elsevier_sciencedirect_doi_10_1016_j_media_2021_102250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Medical image analysis |
PublicationTitleAlternate | Med Image Anal |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Baumgartner, Kolbitsch, McClelland, Rueckert, King (bib0004) 2017; 35 Mezheritsky, Romaguera, Kadoury (bib0041) 2020 Pham, Harris, Sun, Yang, Yin, Ren (bib0048) 2019; 64 McClelland, Hawkes, Schaeffter, King (bib0040) 2013; 17 Wilms, Werner, Yamamoto, Handels, Ehrhardt (bib0065) 2017; 62 Tran, Eiben, Wetscherek, Oelfke, Meedt, Hawkes, McClelland (bib0064) 2020 Huttinga, Bruijnen, van den Berg, Sbrizzi (bib0027) 2021; 85 Seregni, Paganelli, Kipritidis, Baroni, Riboldi (bib0055) 2017; Vol. 123 Romaguera, Plantefève, Romero, Hébert, Carrier, Kadoury (bib0052) 2020; 64 Giger, Sandkühler, Jud, Bauman, Bieri, Salomir, Cattin (bib0018) 2018 Fast, van de Schoot, van de Lindt, Carbaat, van der Heide, Sonke (bib0012) 2019; 103 Feng, Tyagi, Otazo (bib0015) 2020; 84 Jud, Cattin, Preiswerk (bib0029) 2017 Kontaxis, Bol, Lagendijk, Raaymakers (bib0034) 2015; 60 Lagendijk, Raaymakers, Raaijmakers, Overweg, Brown, Kerkhof, van der Put, Hårdemark, van Vulpen, van der Heide (bib0038) 2008; 86 Paganelli, Whelan, Peroni, Summers, Fast, van de Lindt, McClelland, Eiben, Keall, Lomax (bib0046) 2018; 63 Giger, Krieger, Jud, Duetschler, Salomir, Bieri, Bauman, Nguyen, Weber, Lomax (bib0019) 2020 Corradini, Alongi, Andratschke, Belka, Boldrini, Cellini, Debus, Guckenberger, Hörner-Rieber, Lagerwaard (bib0009) 2019; 14 Garau, Via, Meschini, Lee, Keall, Riboldi, Baroni, Paganelli (bib0017) 2019 Harris, Wang, Yin, Cai, Ren (bib0024) 2018; 45 Biffi, Cerrolaza, Tarroni, de Marvao, Cook, O’Regan, Rueckert (bib0005) 2019 Hall, Paulson, van der Heide, Fuller, Raaymakers, Lagendijk, Li, Jaffray, Dawson, Erickson (bib0021) 2019; 122 Brandner, Chetty, Giaddui, Xiao, Huq (bib0007) 2017; 44 Jud, Preiswerk, Cattin (bib0030) 2015 Bainbridge, Menten, Fast, Nill, Oelfke, McDonald (bib0002) 2017; 125 Kurenkov, Ji, Garg, Mehta, Gwak, Choy, Savarese (bib0035) 2018 Stemkens, Tijssen, De Senneville, Lagendijk, Van Den Berg (bib0060) 2016; 61 Sohn, Lee, Yan (bib0058) 2015 Girdhar, Fouhey, Rodriguez, Gupta (bib0020) 2016 Lorton, Guillemin, Möri, Crowe, Boudabbous, Terraz, Becker, Cattin, Salomir, Gui (bib0039) 2018; 66 Abdi, Pesteie, Prisman, Abolmaesumi, Fels (bib0001) 2019 Fischer-Valuck, Henke, Green, Kashani, Acharya, Bradley, Robinson, Thomas, Zoberi, Thorstad (bib0016) 2017; 2 . Fayad, Buerger, Tsoumpas, Cheze-Le-Rest, Visvikis (bib0013) 2012 Diodato, Cafarelli, Schiappacasse, Tognarelli, Ciuti, Menciassi (bib0010) 2018; 63 Stemkens, Paulson, Tijssen (bib0059) 2018; 63 Seo, Koizumi, Mitsuishi, Sugita (bib0054) 2017; 13 von Siebenthal, Székely, Lomax, Cattin (bib0057) 2007 Klein, Staring, Murphy, Viergever, Pluim (bib0033) 2009; 29 Kingma, Welling (bib0032) 2013; abs/1312.6114 Mutic, Dempsey (bib0043) 2014; Vol. 24 Raaymakers, Lagendijk, Overweg, Kok, Raaijmakers, Kerkhof, Van Der Put, Meijsing, Crijns, Benedosso (bib0050) 2009; 54 Harris, Ren, Cai, Zhang, Chang, Yin (bib0023) 2016; 95 Kurz, Buizza, Landry, Kamp, Rabe, Paganelli, Baroni, Reiner, Keall, van den Berg (bib0036) 2020; 15 Sutskever, Vinyals, Le (bib0061) 2014 Küstner, Fuin, Hammernik, Bustin, Qi, Hajhosseiny, Masci, Neji, Rueckert, Botnar (bib0037) 2020; 10 Preiswerk, De Luca, Arnold, Celicanin, Petrusca, Tanner, Bieri, Salomir, Cattin (bib0049) 2014; 18 Samei, Tanner, Székely (bib0053) 2012 Mueller, M., Keall, P., 2019. The markerless lung target tracking challenge (match). Accessed: 2021-04-20 Zachiu, de Senneville, Dmitriev, Moonen, Ries (bib0067) 2017; 5 Tanner, Zur, French, Samei, Strehlow, Sat, McLeod, Houston, Kozerke, Székely (bib0062) 2016; 11 Romaguera, Mezheritsky, Mansour, Tanguay, Kadoury (bib0051) 2021 Ehrhardt, Lorenz (bib0011) 2013; Vol. 10 Wölfelschneider, Seregni, Fassi, Ziegler, Baroni, Fietkau, Riboldi, Bert (bib0066) 2017; 44 von Siebenthal, Szekely, Gamper, Boesiger, Lomax, Cattin (bib0056) 2007; 52 Harris, Yin, Cai, Ren (bib0025) 2020; 10 Park, Kim, Lee, Kang, Lee, Seol, Bae, Kim, Lee, Moon (bib0047) 2016; 96 Jaderberg, Simonyan, Zisserman (bib0028) 2015 Balakrishnan, Zhao, Sabuncu, Guttag, Dalca (bib0003) 2019; 38 Han, Laga, Bennamoun (bib0022) 2019 Keall, Mageras, Balter, Emery, Forster, Jiang, Kapatoes, Low, Murphy, Murray (bib0031) 2006; 33 Zhang, Yin, Segars, Ren (bib0068) 2013; 40 Cerrolaza, Li, Biffi, Gomez, Sinclair, Matthew, Knight, Kainz, Rueckert (bib0008) 2018 Paganelli, Portoso, Garau, Meschini, Via, Buizza, Keall, Riboldi, Baroni (bib0045) 2019; 64 Feng, Axel, Chandarana, Block, Sodickson, Otazo (bib0014) 2016; 75 Paganelli, Lee, Kipritidis, Whelan, Greer, Baroni, Riboldi, Keall (bib0044) 2018; 62 Boye, Samei, Schmidt, Székely, Tanner (bib0006) 2013; Vol. 8669 Henke, Kashani, Robinson, Curcuru, DeWees, Bradley, Green, Michalski, Mutic, Parikh (bib0026) 2018; 126 Thomas, Santhanam, Kishan, Cao, Lamb, Min, O’Connell, Yang, Agazaryan, Lee (bib0063) 2018; 91 Jud (10.1016/j.media.2021.102250_bib0030) 2015 Stemkens (10.1016/j.media.2021.102250_bib0060) 2016; 61 Kurz (10.1016/j.media.2021.102250_bib0036) 2020; 15 McClelland (10.1016/j.media.2021.102250_bib0040) 2013; 17 Seo (10.1016/j.media.2021.102250_bib0054) 2017; 13 Fischer-Valuck (10.1016/j.media.2021.102250_bib0016) 2017; 2 Keall (10.1016/j.media.2021.102250_bib0031) 2006; 33 Wilms (10.1016/j.media.2021.102250_bib0065) 2017; 62 Abdi (10.1016/j.media.2021.102250_bib0001) 2019 Henke (10.1016/j.media.2021.102250_bib0026) 2018; 126 Stemkens (10.1016/j.media.2021.102250_bib0059) 2018; 63 Cerrolaza (10.1016/j.media.2021.102250_bib0008) 2018 Klein (10.1016/j.media.2021.102250_bib0033) 2009; 29 Ehrhardt (10.1016/j.media.2021.102250_bib0011) 2013; Vol. 10 Biffi (10.1016/j.media.2021.102250_bib0005) 2019 Park (10.1016/j.media.2021.102250_bib0047) 2016; 96 Balakrishnan (10.1016/j.media.2021.102250_bib0003) 2019; 38 Huttinga (10.1016/j.media.2021.102250_bib0027) 2021; 85 Feng (10.1016/j.media.2021.102250_bib0014) 2016; 75 Mutic (10.1016/j.media.2021.102250_bib0043) 2014; Vol. 24 Romaguera (10.1016/j.media.2021.102250_bib0052) 2020; 64 Küstner (10.1016/j.media.2021.102250_bib0037) 2020; 10 Romaguera (10.1016/j.media.2021.102250_bib0051) 2021 Boye (10.1016/j.media.2021.102250_bib0006) 2013; Vol. 8669 Samei (10.1016/j.media.2021.102250_bib0053) 2012 Seregni (10.1016/j.media.2021.102250_bib0055) 2017; Vol. 123 Bainbridge (10.1016/j.media.2021.102250_bib0002) 2017; 125 Zhang (10.1016/j.media.2021.102250_bib0068) 2013; 40 Mezheritsky (10.1016/j.media.2021.102250_bib0041) 2020 Diodato (10.1016/j.media.2021.102250_bib0010) 2018; 63 Sohn (10.1016/j.media.2021.102250_bib0058) 2015 Wölfelschneider (10.1016/j.media.2021.102250_bib0066) 2017; 44 Raaymakers (10.1016/j.media.2021.102250_bib0050) 2009; 54 Paganelli (10.1016/j.media.2021.102250_bib0044) 2018; 62 Corradini (10.1016/j.media.2021.102250_bib0009) 2019; 14 Giger (10.1016/j.media.2021.102250_bib0019) 2020 Kurenkov (10.1016/j.media.2021.102250_bib0035) 2018 10.1016/j.media.2021.102250_bib0042 Fast (10.1016/j.media.2021.102250_bib0012) 2019; 103 Garau (10.1016/j.media.2021.102250_bib0017) 2019 von Siebenthal (10.1016/j.media.2021.102250_bib0056) 2007; 52 Pham (10.1016/j.media.2021.102250_bib0048) 2019; 64 Baumgartner (10.1016/j.media.2021.102250_bib0004) 2017; 35 Harris (10.1016/j.media.2021.102250_bib0025) 2020; 10 Lagendijk (10.1016/j.media.2021.102250_bib0038) 2008; 86 Fayad (10.1016/j.media.2021.102250_bib0013) 2012 Tanner (10.1016/j.media.2021.102250_bib0062) 2016; 11 Brandner (10.1016/j.media.2021.102250_bib0007) 2017; 44 Harris (10.1016/j.media.2021.102250_bib0023) 2016; 95 Jaderberg (10.1016/j.media.2021.102250_bib0028) 2015 Kontaxis (10.1016/j.media.2021.102250_bib0034) 2015; 60 Han (10.1016/j.media.2021.102250_bib0022) 2019 Paganelli (10.1016/j.media.2021.102250_bib0045) 2019; 64 Thomas (10.1016/j.media.2021.102250_bib0063) 2018; 91 Harris (10.1016/j.media.2021.102250_bib0024) 2018; 45 Tran (10.1016/j.media.2021.102250_bib0064) 2020 Girdhar (10.1016/j.media.2021.102250_bib0020) 2016 Sutskever (10.1016/j.media.2021.102250_bib0061) 2014 Feng (10.1016/j.media.2021.102250_bib0015) 2020; 84 Lorton (10.1016/j.media.2021.102250_bib0039) 2018; 66 Paganelli (10.1016/j.media.2021.102250_bib0046) 2018; 63 Zachiu (10.1016/j.media.2021.102250_bib0067) 2017; 5 Preiswerk (10.1016/j.media.2021.102250_bib0049) 2014; 18 Hall (10.1016/j.media.2021.102250_bib0021) 2019; 122 Kingma (10.1016/j.media.2021.102250_bib0032) 2013; abs/1312.6114 Jud (10.1016/j.media.2021.102250_bib0029) 2017 von Siebenthal (10.1016/j.media.2021.102250_bib0057) 2007 Giger (10.1016/j.media.2021.102250_bib0018) 2018 |
References_xml | – volume: 103 start-page: 468 year: 2019 end-page: 478 ident: bib0012 article-title: Tumor trailing for liver sbrt on the mr-linac publication-title: Int. J. Radiat. Oncol. *Biol.* Phys. – year: 2015 ident: bib0030 article-title: Respiratory motion compensation with topology independent surrogates publication-title: Workshop on imaging and computer assistance in radiation therapy – volume: 63 start-page: 21TR01 year: 2018 ident: bib0059 article-title: Nuts and bolts of 4d-mri for radiotherapy publication-title: Physics in Medicine & Biology – year: 2019 ident: bib0022 article-title: Image-based 3d object reconstruction: state-of-the-art and trends in the deep learning era publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 60 start-page: 7485 year: 2015 ident: bib0034 article-title: A new methodology for inter-and intrafraction plan adaptation for the mr-linac publication-title: Phys. Med. Biol. – volume: 40 start-page: 121701 year: 2013 ident: bib0068 article-title: A technique for estimating 4d-cbct using prior knowledge and limited-angle projections publication-title: Med. Phys. – volume: 45 start-page: 3238 year: 2018 end-page: 3245 ident: bib0024 article-title: A novel method to generate on-board 4d mri using prior 4d mri and on-board kv projections from a conventional linac for target localization in liver sbrt publication-title: Med. Phys. – volume: 96 start-page: E144 year: 2016 ident: bib0047 article-title: The effect of respiratory baseline drift on the real-time tumor tracking accuracy for liver tumors publication-title: Int. J. Radiat. Oncol. * Biol.* Phys. – volume: 38 start-page: 1788 year: 2019 end-page: 1800 ident: bib0003 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imag. – reference: Mueller, M., Keall, P., 2019. The markerless lung target tracking challenge (match). Accessed: 2021-04-20, – volume: 2 start-page: 485 year: 2017 end-page: 493 ident: bib0016 article-title: Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system publication-title: Adv. Radiat. Oncol. – volume: 66 start-page: 2182 year: 2018 end-page: 2191 ident: bib0039 article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging publication-title: IEEE Trans. Biomed. Eng. – year: 2019 ident: bib0017 article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy publication-title: Phys. Med. Biol. – volume: 75 start-page: 775 year: 2016 end-page: 788 ident: bib0014 article-title: Xd-grasp: golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing publication-title: Magn. Reson. Med. – year: 2020 ident: bib0019 article-title: Liver-ultrasound based motion modelling to estimate 4d dose distributions for lung tumours in scanned proton therapy publication-title: Phys. Med. Biol. – volume: 64 start-page: 185013 year: 2019 ident: bib0045 article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis publication-title: Phys. Med. Biol. – start-page: 227 year: 2019 end-page: 235 ident: bib0001 article-title: Variational shape completion for virtual planning of jaw reconstructive surgery publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 84 start-page: 1280 year: 2020 end-page: 1292 ident: bib0015 article-title: Mrsigma: magnetic resonance signature matching for real-time volumetric imaging publication-title: Magn. Reson. Med. – volume: 5 start-page: 27 year: 2017 ident: bib0067 article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen publication-title: J. Ther. Ultrasound. – volume: 85 start-page: 2309 year: 2021 end-page: 2326 ident: bib0027 article-title: Nonrigid 3d motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank mr-motus publication-title: Magn. Reson. Med. – volume: 63 start-page: 035017 year: 2018 ident: bib0010 article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs publication-title: Phys. Med. Biol. – start-page: 2017 year: 2015 end-page: 2025 ident: bib0028 article-title: Spatial transformer networks publication-title: Advances in neural information processing systems – volume: 91 start-page: 20170522 year: 2018 ident: bib0063 article-title: Initial clinical observations of intra-and interfractional motion variation in mr-guided lung sbrt publication-title: Br. J. Radiol. – volume: Vol. 10 year: 2013 ident: bib0011 article-title: 4D Modeling and estimation of respiratory motion for radiation therapy – volume: 10 start-page: 1 year: 2020 end-page: 13 ident: bib0037 article-title: Cinenet: deep learning-based 3d cardiac cine mri reconstruction with multi-coil complex-valued 4d spatio-temporal convolutions publication-title: Sci. Rep. – volume: 18 start-page: 740 year: 2014 end-page: 751 ident: bib0049 article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound publication-title: Med. Image. Anal. – start-page: 379 year: 2017 end-page: 407 ident: bib0029 article-title: Statistical Respiratory Models for Motion Estimation publication-title: Statistical Shape and Deformation Analysis – volume: abs/1312.6114 year: 2013 ident: bib0032 article-title: Auto-encoding variational bayes publication-title: CoRR – volume: 29 start-page: 196 year: 2009 end-page: 205 ident: bib0033 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Image. – volume: 63 start-page: 22TR03 year: 2018 ident: bib0046 article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges publication-title: Phys. Med. Biol. – volume: 44 start-page: 2595 year: 2017 end-page: 2612 ident: bib0007 article-title: Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from nrg oncology publication-title: Med. Phys. – volume: 33 start-page: 3874 year: 2006 end-page: 3900 ident: bib0031 article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a publication-title: Med. Phys. – volume: 64 start-page: 101754 year: 2020 ident: bib0052 article-title: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks publication-title: Med. Image. Anal. – volume: 44 start-page: 2066 year: 2017 end-page: 2076 ident: bib0066 article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates publication-title: Med. Phys. – volume: 126 start-page: 519 year: 2018 end-page: 526 ident: bib0026 article-title: Phase i trial of stereotactic mr-guided online adaptive radiation therapy (smart) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen publication-title: Radiother. Oncol. – volume: Vol. 24 start-page: 196 year: 2014 end-page: 199 ident: bib0043 article-title: The viewray system: magnetic resonance–guided and controlled radiotherapy publication-title: Seminars in radiation oncology – start-page: 3483 year: 2015 end-page: 3491 ident: bib0058 article-title: Learning structured output representation using deep conditional generative models publication-title: Advances in neural information processing systems – volume: 62 start-page: 389 year: 2018 end-page: 400 ident: bib0044 article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy publication-title: J. Med. Image. Radiat. Oncol. – volume: 52 start-page: 1547 year: 2007 ident: bib0056 article-title: 4D mr imaging of respiratory organ motion and its variability publication-title: Physics in Medicine & Biology – volume: 13 start-page: e1793 year: 2017 ident: bib0054 article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound publication-title: Int. J. Med. Robotic. Comput. Assist. Surg. – volume: 125 start-page: 280 year: 2017 end-page: 285 ident: bib0002 article-title: Treating locally advanced lung cancer with a 1.5 t mr-linac–effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy publication-title: Radiother. Oncol. – volume: 86 start-page: 25 year: 2008 end-page: 29 ident: bib0038 article-title: Mri/linac integration publication-title: Radiother. Oncol. – start-page: 383 year: 2018 end-page: 391 ident: bib0008 article-title: 3d fetal skull reconstruction from 2dus via deep conditional generative networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 10 start-page: 432 year: 2020 ident: bib0025 article-title: Volumetric cine magnetic resonance imaging (vc-mri) using motion modeling, free-form deformation and multi-slice undersampled 2d cine mri reconstructed with spatio-temporal low-rank decomposition publication-title: Quant. Image. Med. Surg. – start-page: 3104 year: 2014 end-page: 3112 ident: bib0061 article-title: Sequence to sequence learning with neural networks publication-title: Advances in neural information processing systems – volume: 62 start-page: 5823 year: 2017 ident: bib0065 article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations publication-title: Phys. Med. Biol. – start-page: 484 year: 2016 end-page: 499 ident: bib0020 article-title: Learning a predictable and generative vector representation for objects publication-title: European Conference on Computer Vision – year: 2020 ident: bib0064 article-title: Evaluation of mri-derived surrogate signals to model respiratory motion publication-title: Biomed. Phys. Engineer. Express – volume: 11 start-page: 1143 year: 2016 end-page: 1152 ident: bib0062 article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 122 start-page: 42 year: 2019 end-page: 52 ident: bib0021 article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review publication-title: Eur. J. Cancer – volume: Vol. 123 start-page: S147 year: 2017 end-page: S148 ident: bib0055 article-title: Out-of-plane motion correction in orthogonal cine-mri registration publication-title: Radiotherapy and Oncology – volume: 14 start-page: 1 year: 2019 end-page: 12 ident: bib0009 article-title: Mr-guidance in clinical reality: current treatment challenges and future perspectives publication-title: Radiat. Oncol. – start-page: 1 year: 2021 end-page: 13 ident: bib0051 article-title: Predictive online 3d target tracking with population-based generative networks for image-guided radiotherapy publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 15 start-page: 1 year: 2020 end-page: 16 ident: bib0036 article-title: Medical physics challenges in clinical mr-guided radiotherapy publication-title: Radiat. Oncol. – start-page: 81 year: 2018 end-page: 88 ident: bib0018 article-title: Respiratory motion modelling using cgans publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 64 start-page: 165016 year: 2019 ident: bib0048 article-title: Predicting real-time 3d deformation field maps (dfm) based on volumetric cine mri (vc-mri) and artificial neural networks for on-board 4d target tracking: a feasibility study publication-title: Phys. Med. Biol. – volume: 61 start-page: 5335 year: 2016 ident: bib0060 article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy publication-title: Phys. Med. Biol. – volume: Vol. 8669 start-page: 86690U year: 2013 ident: bib0006 article-title: Population based modeling of respiratory lung motion and prediction from partial information publication-title: Medical Imaging 2013: Image Processing – reference: . – start-page: 147 year: 2012 end-page: 157 ident: bib0053 article-title: Predicting liver motion using exemplar models publication-title: International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging – volume: 95 start-page: 844 year: 2016 end-page: 853 ident: bib0023 article-title: A technique for generating volumetric cine-magnetic resonance imaging publication-title: Int. J. Radiat. Oncol. *Biol.* Phys. – volume: 54 start-page: N229 year: 2009 ident: bib0050 article-title: Integrating a 1.5 t mri scanner with a 6 mv accelerator: proof of concept publication-title: Phys. Med. Biol. – volume: 17 start-page: 19 year: 2013 end-page: 42 ident: bib0040 article-title: Respiratory motion models: a review publication-title: Med. Image. Anal. – start-page: 1808 year: 2020 end-page: 1811 ident: bib0041 article-title: 3d ultrasound generation from partial 2d observations using fully convolutional and spatial transformation networks publication-title: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI) – volume: 35 start-page: 83 year: 2017 end-page: 100 ident: bib0004 article-title: Autoadaptive motion modelling for mr-based respiratory motion estimation publication-title: Med. Image. Anal. – start-page: 659 year: 2007 end-page: 666 ident: bib0057 article-title: Inter-subject modelling of liver deformation during radiation therapy publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1643 year: 2019 end-page: 1646 ident: bib0005 article-title: 3d high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – start-page: 858 year: 2018 end-page: 866 ident: bib0035 article-title: Deformnet: Free-form deformation network for 3d shape reconstruction from a single image publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 4058 year: 2012 end-page: 4061 ident: bib0013 article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators publication-title: 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC) – volume: 62 start-page: 389 issue: 3 year: 2018 ident: 10.1016/j.media.2021.102250_bib0044 article-title: Feasibility study on 3d image reconstruction from 2d orthogonal cine-mri for mri-guided radiotherapy publication-title: J. Med. Image. Radiat. Oncol. doi: 10.1111/1754-9485.12713 – volume: 126 start-page: 519 issue: 3 year: 2018 ident: 10.1016/j.media.2021.102250_bib0026 article-title: Phase i trial of stereotactic mr-guided online adaptive radiation therapy (smart) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2017.11.032 – volume: 52 start-page: 1547 issue: 6 year: 2007 ident: 10.1016/j.media.2021.102250_bib0056 article-title: 4D mr imaging of respiratory organ motion and its variability publication-title: Physics in Medicine & Biology doi: 10.1088/0031-9155/52/6/001 – volume: 54 start-page: N229 issue: 12 year: 2009 ident: 10.1016/j.media.2021.102250_bib0050 article-title: Integrating a 1.5 t mri scanner with a 6 mv accelerator: proof of concept publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/54/12/N01 – volume: 95 start-page: 844 issue: 2 year: 2016 ident: 10.1016/j.media.2021.102250_bib0023 article-title: A technique for generating volumetric cine-magnetic resonance imaging publication-title: Int. J. Radiat. Oncol. *Biol.* Phys. doi: 10.1016/j.ijrobp.2016.02.011 – volume: 40 start-page: 121701 issue: 12 year: 2013 ident: 10.1016/j.media.2021.102250_bib0068 article-title: A technique for estimating 4d-cbct using prior knowledge and limited-angle projections publication-title: Med. Phys. doi: 10.1118/1.4825097 – volume: Vol. 8669 start-page: 86690U year: 2013 ident: 10.1016/j.media.2021.102250_bib0006 article-title: Population based modeling of respiratory lung motion and prediction from partial information – start-page: 227 year: 2019 ident: 10.1016/j.media.2021.102250_bib0001 article-title: Variational shape completion for virtual planning of jaw reconstructive surgery – volume: 96 start-page: E144 issue: 2 year: 2016 ident: 10.1016/j.media.2021.102250_bib0047 article-title: The effect of respiratory baseline drift on the real-time tumor tracking accuracy for liver tumors publication-title: Int. J. Radiat. Oncol. * Biol.* Phys. doi: 10.1016/j.ijrobp.2016.06.953 – volume: 75 start-page: 775 issue: 2 year: 2016 ident: 10.1016/j.media.2021.102250_bib0014 article-title: Xd-grasp: golden-angle radial mri with reconstruction of extra motion-state dimensions using compressed sensing publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25665 – volume: 122 start-page: 42 year: 2019 ident: 10.1016/j.media.2021.102250_bib0021 article-title: The transformation of radiation oncology using real-time magnetic resonance guidance: a review publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2019.07.021 – volume: 64 start-page: 185013 issue: 18 year: 2019 ident: 10.1016/j.media.2021.102250_bib0045 article-title: Time-resolved volumetric mri in mri-guided radiotherapy: an in silico comparative analysis publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab33e5 – start-page: 1808 year: 2020 ident: 10.1016/j.media.2021.102250_bib0041 article-title: 3d ultrasound generation from partial 2d observations using fully convolutional and spatial transformation networks – year: 2019 ident: 10.1016/j.media.2021.102250_bib0017 article-title: A roi-based global motion model established on 4dct and 2d cine-mri data for mri-guidance in radiation therapy publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aafcec – year: 2019 ident: 10.1016/j.media.2021.102250_bib0022 article-title: Image-based 3d object reconstruction: state-of-the-art and trends in the deep learning era publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 858 year: 2018 ident: 10.1016/j.media.2021.102250_bib0035 article-title: Deformnet: Free-form deformation network for 3d shape reconstruction from a single image – volume: 84 start-page: 1280 issue: 3 year: 2020 ident: 10.1016/j.media.2021.102250_bib0015 article-title: Mrsigma: magnetic resonance signature matching for real-time volumetric imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28200 – volume: 63 start-page: 21TR01 issue: 21 year: 2018 ident: 10.1016/j.media.2021.102250_bib0059 article-title: Nuts and bolts of 4d-mri for radiotherapy publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/aae56d – volume: 44 start-page: 2595 issue: 6 year: 2017 ident: 10.1016/j.media.2021.102250_bib0007 article-title: Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from nrg oncology publication-title: Med. Phys. doi: 10.1002/mp.12227 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.media.2021.102250_bib0037 article-title: Cinenet: deep learning-based 3d cardiac cine mri reconstruction with multi-coil complex-valued 4d spatio-temporal convolutions publication-title: Sci. Rep. doi: 10.1038/s41598-020-70551-8 – volume: 13 start-page: e1793 issue: 4 year: 2017 ident: 10.1016/j.media.2021.102250_bib0054 article-title: Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound publication-title: Int. J. Med. Robotic. Comput. Assist. Surg. doi: 10.1002/rcs.1793 – volume: 125 start-page: 280 issue: 2 year: 2017 ident: 10.1016/j.media.2021.102250_bib0002 article-title: Treating locally advanced lung cancer with a 1.5 t mr-linac–effects of the magnetic field and irradiation geometry on conventionally fractionated and isotoxic dose-escalated radiotherapy publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2017.09.009 – volume: abs/1312.6114 year: 2013 ident: 10.1016/j.media.2021.102250_bib0032 article-title: Auto-encoding variational bayes publication-title: CoRR – volume: 60 start-page: 7485 issue: 19 year: 2015 ident: 10.1016/j.media.2021.102250_bib0034 article-title: A new methodology for inter-and intrafraction plan adaptation for the mr-linac publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/19/7485 – volume: 14 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.media.2021.102250_bib0009 article-title: Mr-guidance in clinical reality: current treatment challenges and future perspectives publication-title: Radiat. Oncol. doi: 10.1186/s13014-019-1308-y – volume: 64 start-page: 101754 year: 2020 ident: 10.1016/j.media.2021.102250_bib0052 article-title: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks publication-title: Med. Image. Anal. doi: 10.1016/j.media.2020.101754 – volume: 11 start-page: 1143 issue: 6 year: 2016 ident: 10.1016/j.media.2021.102250_bib0062 article-title: In vivo validation of spatio-temporal liver motion prediction from motion tracked on mr thermometry images publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1405-4 – volume: 45 start-page: 3238 issue: 7 year: 2018 ident: 10.1016/j.media.2021.102250_bib0024 article-title: A novel method to generate on-board 4d mri using prior 4d mri and on-board kv projections from a conventional linac for target localization in liver sbrt publication-title: Med. Phys. doi: 10.1002/mp.12998 – start-page: 81 year: 2018 ident: 10.1016/j.media.2021.102250_bib0018 article-title: Respiratory motion modelling using cgans – volume: 33 start-page: 3874 issue: 10 year: 2006 ident: 10.1016/j.media.2021.102250_bib0031 article-title: The management of respiratory motion in radiation oncology report of aapm task group 76 a publication-title: Med. Phys. doi: 10.1118/1.2349696 – volume: 86 start-page: 25 issue: 1 year: 2008 ident: 10.1016/j.media.2021.102250_bib0038 article-title: Mri/linac integration publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2007.10.034 – start-page: 659 year: 2007 ident: 10.1016/j.media.2021.102250_bib0057 article-title: Inter-subject modelling of liver deformation during radiation therapy – volume: Vol. 24 start-page: 196 year: 2014 ident: 10.1016/j.media.2021.102250_bib0043 article-title: The viewray system: magnetic resonance–guided and controlled radiotherapy – volume: Vol. 123 start-page: S147 year: 2017 ident: 10.1016/j.media.2021.102250_bib0055 article-title: Out-of-plane motion correction in orthogonal cine-mri registration – volume: 44 start-page: 2066 issue: 6 year: 2017 ident: 10.1016/j.media.2021.102250_bib0066 article-title: Examination of a deformable motion model for respiratory movements and 4d dose calculations using different driving surrogates publication-title: Med. Phys. doi: 10.1002/mp.12243 – volume: 85 start-page: 2309 issue: 4 year: 2021 ident: 10.1016/j.media.2021.102250_bib0027 article-title: Nonrigid 3d motion estimation at high temporal resolution from prospectively undersampled k-space data using low-rank mr-motus publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28562 – year: 2020 ident: 10.1016/j.media.2021.102250_bib0019 article-title: Liver-ultrasound based motion modelling to estimate 4d dose distributions for lung tumours in scanned proton therapy publication-title: Phys. Med. Biol. – start-page: 1 year: 2021 ident: 10.1016/j.media.2021.102250_bib0051 article-title: Predictive online 3d target tracking with population-based generative networks for image-guided radiotherapy publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: Vol. 10 year: 2013 ident: 10.1016/j.media.2021.102250_bib0011 – ident: 10.1016/j.media.2021.102250_bib0042 – start-page: 147 year: 2012 ident: 10.1016/j.media.2021.102250_bib0053 article-title: Predicting liver motion using exemplar models – volume: 63 start-page: 22TR03 issue: 22 year: 2018 ident: 10.1016/j.media.2021.102250_bib0046 article-title: Mri-guidance for motion management in external beam radiotherapy: current status and future challenges publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aaebcf – volume: 62 start-page: 5823 issue: 14 year: 2017 ident: 10.1016/j.media.2021.102250_bib0065 article-title: Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa70cc – volume: 17 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.media.2021.102250_bib0040 article-title: Respiratory motion models: a review publication-title: Med. Image. Anal. doi: 10.1016/j.media.2012.09.005 – volume: 63 start-page: 035017 issue: 3 year: 2018 ident: 10.1016/j.media.2021.102250_bib0010 article-title: Motion compensation with skin contact control for high intensity focused ultrasound surgery in moving organs publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa9c22 – volume: 2 start-page: 485 issue: 3 year: 2017 ident: 10.1016/j.media.2021.102250_bib0016 article-title: Two-and-a-half-year clinical experience with the world’s first magnetic resonance image guided radiation therapy system publication-title: Adv. Radiat. Oncol. doi: 10.1016/j.adro.2017.05.006 – start-page: 4058 year: 2012 ident: 10.1016/j.media.2021.102250_bib0013 article-title: A generic respiratory motion model based on 4d mri imaging and 2d image navigators – start-page: 379 year: 2017 ident: 10.1016/j.media.2021.102250_bib0029 article-title: Statistical Respiratory Models for Motion Estimation – start-page: 3104 year: 2014 ident: 10.1016/j.media.2021.102250_bib0061 article-title: Sequence to sequence learning with neural networks – volume: 10 start-page: 432 issue: 2 year: 2020 ident: 10.1016/j.media.2021.102250_bib0025 article-title: Volumetric cine magnetic resonance imaging (vc-mri) using motion modeling, free-form deformation and multi-slice undersampled 2d cine mri reconstructed with spatio-temporal low-rank decomposition publication-title: Quant. Image. Med. Surg. doi: 10.21037/qims.2019.12.10 – volume: 29 start-page: 196 issue: 1 year: 2009 ident: 10.1016/j.media.2021.102250_bib0033 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Trans. Med. Image. doi: 10.1109/TMI.2009.2035616 – start-page: 1643 year: 2019 ident: 10.1016/j.media.2021.102250_bib0005 article-title: 3d high-resolution cardiac segmentation reconstruction from 2d views using conditional variational autoencoders – start-page: 484 year: 2016 ident: 10.1016/j.media.2021.102250_bib0020 article-title: Learning a predictable and generative vector representation for objects – year: 2015 ident: 10.1016/j.media.2021.102250_bib0030 article-title: Respiratory motion compensation with topology independent surrogates – volume: 18 start-page: 740 issue: 5 year: 2014 ident: 10.1016/j.media.2021.102250_bib0049 article-title: Model-guided respiratory organ motion prediction of the liver from 2d ultrasound publication-title: Med. Image. Anal. doi: 10.1016/j.media.2014.03.006 – volume: 15 start-page: 1 year: 2020 ident: 10.1016/j.media.2021.102250_bib0036 article-title: Medical physics challenges in clinical mr-guided radiotherapy publication-title: Radiat. Oncol. doi: 10.1186/s13014-020-01524-4 – volume: 5 start-page: 27 issue: 1 year: 2017 ident: 10.1016/j.media.2021.102250_bib0067 article-title: A framework for continuous target tracking during mr-guided high intensity focused ultrasound thermal ablations in the abdomen publication-title: J. Ther. Ultrasound. doi: 10.1186/s40349-017-0106-y – volume: 35 start-page: 83 year: 2017 ident: 10.1016/j.media.2021.102250_bib0004 article-title: Autoadaptive motion modelling for mr-based respiratory motion estimation publication-title: Med. Image. Anal. doi: 10.1016/j.media.2016.06.005 – start-page: 383 year: 2018 ident: 10.1016/j.media.2021.102250_bib0008 article-title: 3d fetal skull reconstruction from 2dus via deep conditional generative networks – start-page: 2017 year: 2015 ident: 10.1016/j.media.2021.102250_bib0028 article-title: Spatial transformer networks – volume: 91 start-page: 20170522 issue: xxxx year: 2018 ident: 10.1016/j.media.2021.102250_bib0063 article-title: Initial clinical observations of intra-and interfractional motion variation in mr-guided lung sbrt publication-title: Br. J. Radiol. doi: 10.1259/bjr.20170522 – volume: 64 start-page: 165016 issue: 16 year: 2019 ident: 10.1016/j.media.2021.102250_bib0048 article-title: Predicting real-time 3d deformation field maps (dfm) based on volumetric cine mri (vc-mri) and artificial neural networks for on-board 4d target tracking: a feasibility study publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ab359a – volume: 38 start-page: 1788 issue: 8 year: 2019 ident: 10.1016/j.media.2021.102250_bib0003 article-title: Voxelmorph: a learning framework for deformable medical image registration publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2019.2897538 – year: 2020 ident: 10.1016/j.media.2021.102250_bib0064 article-title: Evaluation of mri-derived surrogate signals to model respiratory motion publication-title: Biomed. Phys. Engineer. Express doi: 10.1088/2057-1976/ab944c – start-page: 3483 year: 2015 ident: 10.1016/j.media.2021.102250_bib0058 article-title: Learning structured output representation using deep conditional generative models – volume: 66 start-page: 2182 issue: 8 year: 2018 ident: 10.1016/j.media.2021.102250_bib0039 article-title: Self-scanned hifu ablation of moving tissue using real-time hybrid us-mr imaging publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2885233 – volume: 61 start-page: 5335 issue: 14 year: 2016 ident: 10.1016/j.media.2021.102250_bib0060 article-title: Image-driven, model-based 3d abdominal motion estimation for mr-guided radiotherapy publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/14/5335 – volume: 103 start-page: 468 issue: 2 year: 2019 ident: 10.1016/j.media.2021.102250_bib0012 article-title: Tumor trailing for liver sbrt on the mr-linac publication-title: Int. J. Radiat. Oncol. *Biol.* Phys. doi: 10.1016/j.ijrobp.2018.09.011 |
SSID | ssj0007440 |
Score | 2.4823399 |
Snippet | •Free-breathing motion model to generate 3D + t volumes.•Integration of anatomical information and a history of partial observations as predictive variables... Shape and location organ variability induced by respiration constitutes one of the main challenges during dose delivery in radiotherapy. Providing up-to-date... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102250 |
SubjectTerms | 4D Imaging Annotations Cognitive tasks Conditional generative networks Datasets Humans Liver Magnetic Resonance Imaging Medical imaging Models, Statistical Motion modeling Patients Prediction models Probabilistic models Probability theory Radiation therapy Radiotherapy Radiotherapy, Image-Guided Representations Respiration Statistical analysis Temporal prediction Three dimensional models Tracking Tumors Two dimensional models Ultrasonography Variability |
Title | Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy |
URI | https://dx.doi.org/10.1016/j.media.2021.102250 https://www.ncbi.nlm.nih.gov/pubmed/34601453 https://www.proquest.com/docview/2606202014 https://www.proquest.com/docview/2579086108 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tnYTgAcGAURiTkXjEtI4TJ3mcxqYC2oQEk_ZmxXFcBbG0StuHPYy_nTvbqUBie-AxsS1ZPt-X7-53AO-cVU6i38Fr1A08ddOKG-qaquq8yKiwKvVPA-cXanaZfr7KrnbgZKiFobTKKPuDTPfSOv6ZxNOcLNt28k1IalZC-odCS1m6C3uJLFU2gr3jT19mF1uBTBh4ofxKcFowgA_5NC9foIF-YiIIxSCh-vt_K6i7DFCviM6ewONoQbLjsMmnsNN0-_DoD1zBfXhwHiPmz-D2a48cSxmwBMjM0o9s2dMgSTnm2-AwqjBhbcfJhmarTd8v6GltxSglfs7QX7ZteDBkc49R7Zd2IX18xdDoZe01SiU-37S2sayvbBvLum6ew-XZ6feTGY8tF3gti3zNy0Q0dYVGEcpBY4SbCqcKIZ1NaiMdOrTKZc5ZdJIaayvjKtRmyNIWT9VNTeXkCxh1i655CawkxZdWhgDkUlEoU1YmNzXKl7wpTC7HkAznrOuIR05tMX7qIfHsh_bE0UQcHYgzhvfbRcsAx3H_dDUQUP91qzQqjPsXHg7k1pGpVxpdP4Vz0Kkcw9vtMLIjxViqrllscE6Wl-glimkxhoNwTbYblamiIK589b-7eg0P6Stk0xzCaN1vmjdoE63NEex--CWO4s3_DWECCo8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIvE4ICivQAEjcWRJvPZ6N0dUqAI0FRKt1Jtlr9fRIthEm-TAAX47M7Y3gAQ9cPVDsjz2POxvvgF44Z3yAuOOrEbbkEk_MZmlqqmqLquCEqtkeBqYn6rZuXx_UVzswdGQC0OwyqT7o04P2jq1jNNujldtO_7EBRUrIftDX0uFvAJXZSFKwvW9-vEL50EMeDH5imc0fKAeCiCvkJ6BUWLOicMgp-z7v5unf7mfwQwd34ZbyX9kr-MS78Be0x3Azd9YBQ_g2jz9l9-F7x97vK-EfyU6ZibfsFVPnaTjWCiCwyi_hLVdRh40W2_7fkkPa2tGgPgFw2jZtfG5kC0CQ3WY2kXw-Jqhy8var6iTssW2dY1jvXFtSur6dg_Oj9-eHc2yVHAhq0VVbrJpzpvaoEuEWtBa7ifcq4oL7_LaCo_hrPKF9w5DpMY5Y71BW4YX2uGu-ok1XtyH_W7ZNQ-BTcnsSWOJPk7yStmpsaWtUbuUTWVLMYJ82GddJzZyKorxRQ-ws886CEeTcHQUzghe7iatIhnH5cPVIED9x5nSaC4un3g4iFunK73WGPgpHIMh5Qie77rxMtIPi-ma5RbHFOUUY0Q-qUbwIB6T3UKFVPSFKx7976qewfXZ2fxEn7w7_fAYblBPxNUcwv6m3zZP0Dva2Kfh9P8EpYsLWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probabilistic+4D+predictive+model+from+in-room+surrogates+using+conditional+generative+networks+for+image-guided+radiotherapy&rft.jtitle=Medical+image+analysis&rft.au=Romaguera%2C+Liset+V%C3%A1zquez&rft.au=Mezheritsky%2C+Tal&rft.au=Mansour%2C+Rihab&rft.au=Carrier%2C+Jean-Fran%C3%A7ois&rft.date=2021-12-01&rft.eissn=1361-8423&rft.volume=74&rft.spage=102250&rft_id=info:doi/10.1016%2Fj.media.2021.102250&rft_id=info%3Apmid%2F34601453&rft.externalDocID=34601453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |