Mechanical Properties of Shaped Metal–Organic Frameworks
Metal–organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less...
Saved in:
Published in | Topics in current chemistry (2016) Vol. 377; no. 5; p. 25 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal–organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale. |
---|---|
AbstractList | Metal–organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale. Metal-organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale.Metal-organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While some progress has been made towards shaping of MOFs to realize industrial applications, the mechanical properties of MOFs remain more or less unexplored. Over the last decade, this area has witnessed a steady growth in terms of understanding the mechanical stability of MOFs and its consequence on their performance. In this review, the mechanical properties of the reported macroscopic shaped MOF structures (mainly granules, pellets, tablets, monoliths, and gels) are discussed. Conclusions are then drawn to determine which shapes and shaping techniques promise to meet industrial requirements on the basis of mechanical stability. Finally, future research directions are proposed to improve our understanding, and possibly enhance stability, by correlating the properties from microscopic single-crystalline level to the industrially relevant macroscopic polycrystalline scale. |
ArticleNumber | 25 |
Author | Shah, Bhuvan B. Zhao, Dan Kundu, Tanay |
Author_xml | – sequence: 1 givenname: Bhuvan B. surname: Shah fullname: Shah, Bhuvan B. organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 2 givenname: Tanay surname: Kundu fullname: Kundu, Tanay organization: Department of Chemical and Biomolecular Engineering, National University of Singapore – sequence: 3 givenname: Dan orcidid: 0000-0002-4427-2150 surname: Zhao fullname: Zhao, Dan email: chezhao@nus.edu.sg organization: Department of Chemical and Biomolecular Engineering, National University of Singapore |
BookMark | eNp9kL1OwzAURi1UJErpA7BlZDH4L3bChioKSK1AAmbLdW5aQxoXOxVi4x14Q54ElzAxdLrf8J17r84xGrS-BYROKTmnhKiLKCiRFBNaYsJygtUBGjIuBS5KSQe_OcekkOURGsfoFiTnRU5zJofocg52ZVpnTZM9BL-B0DmIma-zx5XZQJXNoTPN9-fXfVjuatk0mDW8-_AaT9BhbZoI4785Qs_T66fJLZ7d39xNrmbY8kJ1uCgEU5zXUAiZ_knHoWKGWG6tTMEokZIhpAQmKiUW1lZKMgF5yYyoSsNH6Kzfuwn-bQux02sXLTSNacFvo2as5ITkIqepqvqqDT7GALW2rjOd820XjGs0JXonTPfCdBKmd8K0SiT9R26CW5vwsZdhPRNTt11C0C9-G9rkYg_0A_oyf1o |
CitedBy_id | crossref_primary_10_1002_anie_202011004 crossref_primary_10_1002_er_6608 crossref_primary_10_1016_j_apsusc_2023_157183 crossref_primary_10_1039_D2CS00465H crossref_primary_10_1186_s11671_021_03643_7 crossref_primary_10_3390_separations10090487 crossref_primary_10_1039_D1NJ02401A crossref_primary_10_1002_admt_202200023 crossref_primary_10_1021_acs_chemmater_1c01179 crossref_primary_10_1021_acs_jpcc_2c08424 crossref_primary_10_1016_j_est_2020_101200 crossref_primary_10_1039_D2DT01425D crossref_primary_10_1039_D0CS00920B crossref_primary_10_1155_2022_4855466 crossref_primary_10_1002_ange_202011004 crossref_primary_10_1021_acssuschemeng_0c04486 crossref_primary_10_1016_j_ccr_2021_214107 crossref_primary_10_1016_j_ccr_2024_215690 crossref_primary_10_1002_adma_202412708 crossref_primary_10_3390_en15041489 crossref_primary_10_3390_molecules29092069 crossref_primary_10_1007_s40843_020_1585_1 crossref_primary_10_1002_adfm_202308376 crossref_primary_10_1016_j_nxmate_2023_100009 crossref_primary_10_1039_D2CS00585A crossref_primary_10_1016_j_cej_2022_140228 crossref_primary_10_1039_C9QI01564G crossref_primary_10_1002_adfm_202410356 crossref_primary_10_1021_acs_energyfuels_1c03426 crossref_primary_10_1016_j_cej_2025_161641 crossref_primary_10_1016_j_cej_2023_143394 |
Cites_doi | 10.1351/pac200779101801 10.1016/j.apcata.2010.05.019 10.1021/jz400880p 10.1016/j.jiec.2010.01.022 10.1016/S1369-7021(06)71495-X 10.1039/C3CE42607F 10.1016/j.carbon.2007.05.029 10.1016/j.micromeso.2015.05.017 10.1039/C5SC02794B 10.1038/ncomms5337 10.1039/c2sc00745b 10.1016/j.ccr.2015.12.004 10.1016/j.ijhydene.2015.02.011 10.1002/anie.201001919 10.1007/s10934-010-9378-0 10.1039/c0cs00163e 10.1016/j.actamat.2010.08.006 10.1002/anie.201608250 10.1016/S0008-6223(02)00194-X 10.1016/j.cej.2014.09.123 10.1021/ja908415z 10.1016/j.ijsolstr.2008.10.032 10.1021/acsami.7b11626 10.1103/PhysRevB.73.094111 10.1039/c0jm00515k 10.1021/acscentsci.8b00157 10.1021/jacs.7b01593 10.1039/C3EE42239A 10.1039/C4CC06967F 10.1016/j.ijsolstr.2005.02.048 10.1039/C5CP00442J 10.1002/anie.200902643 10.1073/pnas.1003205107 10.1002/anie.201104285 10.1021/ja401268g 10.1016/S1872-2067(10)60302-6 10.1039/C5DT03621F 10.1039/C7CE00338B 10.1039/C7RA11764G 10.1016/j.apenergy.2015.05.019 10.1002/cjoc.201700151 10.1021/acs.iecr.8b00808 10.1016/j.powtec.2013.09.013 10.1039/C3SC52633J 10.1016/j.ccr.2019.02.023 10.1039/C7SC04192F 10.1038/nmat5050 10.1016/j.micromeso.2015.05.014 10.1038/srep04947 10.1002/adma.201704124 10.1039/b805038b 10.1016/j.ijpharm.2012.09.005 10.6000/1929-6002.2014.03.01.3 10.1002/pat.4197 10.1039/C7TA01559C 10.1039/C7CS00109F 10.1063/1.4904966 10.1021/ja805235k 10.1021/acsami.7b06809 10.1039/C4CE00436A 10.1039/C4TA00622D 10.1021/cr200167v 10.1021/ja305196u 10.1016/j.ccr.2017.09.005 10.1103/PhysRevB.81.174103 10.1039/c0cc02045a 10.1021/ja804079z 10.1002/jps.22261 10.1021/acs.accounts.7b00404 10.1557/jmr.2004.19.1.3 10.1039/C5CE02347E 10.1016/j.poly.2018.01.004 10.1002/anie.201900190 10.1039/C6CC02931K 10.1002/ejic.201600263 10.1021/ja411934f 10.1039/b804680h 10.1039/C6SC05602D 10.1016/S0032-5910(01)00313-8 10.1039/C4TA05116E 10.1016/j.ijhydene.2011.03.002 10.1351/PAC-REC-04-10-14 10.1021/acs.chemmater.5b00046 10.1007/s11051-012-1393-4 10.1039/C5RA23149C 10.1103/PhysRevLett.109.195502 10.1002/anie.201003048 10.1039/C7FD00090A |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1007/s41061-019-0250-7 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 2364-8961 |
ExternalDocumentID | 10_1007_s41061_019_0250_7 |
GrantInformation_xml | – fundername: Ministry of Education - Singapore grantid: R-279-000-540-114 – fundername: National Research Foundation Singapore grantid: NRF2018-NRF-ANR007 POCEMON funderid: http://dx.doi.org/10.13039/501100001381 – fundername: Agency for Science, Technology and Research grantid: 1521200078; A1783c0015; A1789a0024 |
GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHNG AAJBT AAJKR AANZL AARHV AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABJNI ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGJBK AGMZJ AGQEE AGQMX AGWZB AGYKE AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AMYQR ASPBG AVWKF AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M4Y NPVJJ NU0 O9- O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 Z5O Z7U Z7V Z7W Z7X Z7Y ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7X8 ABRTQ |
ID | FETCH-LOGICAL-c387t-8842733fe846896b05ed2a0c3cc6d2aa743cca009e24d74bccd7624e592a4d9a3 |
IEDL.DBID | AGYKE |
ISSN | 2365-0869 2364-8961 |
IngestDate | Fri Jul 11 04:10:50 EDT 2025 Tue Jul 01 03:10:39 EDT 2025 Thu Apr 24 22:53:21 EDT 2025 Fri Feb 21 02:32:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Tablets Gels Shaping Mechanical properties Granules Monoliths Metal–organic frameworks Pellets |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-8842733fe846896b05ed2a0c3cc6d2aa743cca009e24d74bccd7624e592a4d9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4427-2150 |
PQID | 2293005451 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2293005451 crossref_citationtrail_10_1007_s41061_019_0250_7 crossref_primary_10_1007_s41061_019_0250_7 springer_journals_10_1007_s41061_019_0250_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Topics in current chemistry (2016) |
PublicationTitleAbbrev | Top Curr Chem (Z) |
PublicationYear | 2019 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Kim, You, Park, Chang, Bae, Lee, Suh (CR56) 2015; 262 Yot, Yang, Ragon, Dmitriev, Devic, Horcajada, Serre, Maurin (CR35) 2016; 45 Beurroies, Boulhout, Llewellyn, Kuchta, Férey, Serre, Denoyel (CR38) 2010; 49 Graham, Allan, Muszkiewicz, Morrison, Moggach (CR30) 2011; 50 Yot, Ma, Haines, Yang, Ghoufi, Devic, Serre, Dmitriev, Férey, Zhong, Maurin (CR37) 2012; 3 O’Neill, Zhang, Bradshaw (CR99) 2010; 20 Feng, Jia, Li, Chang, Bu (CR21) 2018; 9 Ren, North (CR84) 2014; 3 Ortiz, Boutin, Fuchs, Coudert (CR36) 2013; 4 Kreider, Sefa, Fedchak, Scherschligt, Bible, Natarajan, Klimov, Miller, Ahmed, Hartings (CR74) 2018; 29 Wickenheisser, Herbst, Tannert, Milow, Janiak (CR93) 2015; 215 Burtch, Heinen, Bennett, Dubbeldam, Allendorf (CR27) 2018; 30 Li, Probert, Kosa, Bennett, Thirumurugan, Burwood, Parinello, Howard, Cheetham (CR45) 2012; 134 Ramos-Fernandez, Garcia-Domingos, Juan-Alcañiz, Gascon, Kapteijn (CR102) 2011; 391 Sun, Hu, Zhao, Zeng (CR25) 2017; 9 Ren, Dyosiba, Musyoka, Langmi, Mathe, Liao (CR7) 2017; 352 Zhang, Gao, Lin, Zhang, Xu, Tan, Tian, Jiang (CR54) 2014; 4 Hu, Shao, Yang, Yao, Wang, Chen (CR73) 2015; 157 Miao, Su, Suslick (CR50) 2017; 139 Bétard, Fischer (CR1) 2012; 112 Rogge, Waroquier, Van Speybroeck (CR104) 2018; 51 Tian, Velazquez-Garcia, Bennett, Fairen-Jimenez (CR79) 2015; 3 Ryder, Civalleri, Cinque, Tan (CR103) 2016; 18 Akhtar, Andersson, Ogunwumi, Hedin, Bergström (CR88) 2014; 34 Allendorf, Houk, Andruszkiewicz, Talin, Pikarsky, Choudhury, Gall, Hesketh (CR89) 2008; 130 Mahdizadeh, Goharshadi (CR78) 2013; 15 Yot, Yang, Guillerm, Ragon, Dmitriev, Parisiades, Elkaïm, Devic, Horcajada, Serre, Stock, Mowat, Wright, Férey, Maurin (CR24) 2016; 27 Coudert (CR17) 2015; 27 Lee, Valekar, Hwang, Chang, Kaskel (CR53) 2016 Hou, Orikasa, Itoi, Nishihara, Kyotani (CR71) 2007; 45 Tan, Bennett, Cheetham (CR16) 2010; 107 CR59 Czaja, Trukhan, Müller (CR8) 2009; 38 CR58 CR57 Hu, Zhang (CR34) 2010; 81 Gao, Xu, Cao, Chang, Bu (CR28) 2016; 55 Serra-Crespo, Dikhtiarenko, Stavitski, Juan-Alcañiz, Kapteijn, Coudert, Gascon (CR47) 2015; 17 Khabzina, Dhainaut, Ahlhelm, Richter, Reinsch, Stock, Farrusseng (CR86) 2018; 57 Tian, Zeng, Vulpe, Casco, Divitini, Midgley, Silvestre-Albero, Tan, Moghadam, Fairen-Jimenez (CR51) 2017; 17 Iveson, Litster, Hapgood, Ennis (CR10) 2001; 117 Moosavi, Boyd, Sarkisov, Smit (CR20) 2018; 4 Breuer, Chorghade, Fischer, Golomb (CR95) 2009; 81 Tagliabue, Rizzo, Millini, Dietzel, Blom, Zanardi (CR97) 2011; 18 CR64 CR63 Shang, Sinka, Jayaraman, Pan (CR75) 2013; 442 CR62 Zhou, Wang, Men, Sun, Li, Liu, Zou, Zou (CR46) 2014; 16 CR61 CR60 Ortiz, Boutin, Fuchs, Coudert (CR66) 2012; 109 Cairns, Goodwin (CR44) 2015; 17 Ahmed, Forster, Clowes, Myers, Zhang (CR101) 2014; 50 Valizadeh, Nguyen, Stylianou (CR4) 2018; 145 Tan, Bennett, Cheetham (CR23) 2010; 107 Valekar, Cho, Lee, Lee, Yoon, Hwang, Lee, Cho, Chang (CR55) 2017; 7 Hong, Perera, Burrows (CR69) 2015; 214 Bueken, Van Velthoven, Willhammar, Stassin, Stassen, Keen, Baron, Denayer, Ameloot, Bals, De Vos, Bennett (CR68) 2017; 8 Grande, Blom, Spjelkavik, Moreau, Payet (CR5) 2017; 14 CR77 Rubio-Martinez, Avci-Camur, Thornton, Imaz, Maspoch, Hill (CR9) 2017; 46 Graham, Banu, Düren, Greenaway, McKellar, Mowat, Ward, Wright, Moggach (CR32) 2014; 136 Nandasiri, Jambovane, McGrail, Schaef, Nune (CR13) 2016; 311 Moggach, Bennett, Cheetham (CR41) 2009; 48 Tan, Cheetham (CR26) 2011; 40 Chapman, Halder, Chupas (CR31) 2009; 131 Lim, Choi, Yoon, Park, Yim, Jeon (CR92) 2010; 16 CR3 Coudert, Evans (CR19) 2019; 388 Cai, Katrusiak (CR49) 2014; 5 Yang, Zhou, Xu (CR15) 2016; 6 Purewal, Liu, Yang, Sudik, Siegel, Maurer, Müller (CR67) 2012; 37 Alemán, Chadwick, He, Hess, Horie, Jones, Kratochvíl, Meisel, Mita, Moad, Penczek, Stepto (CR94) 2007; 79 CR87 Ramaswamy, Wieme, Alvarez, Vanduyfhuys, Itié, Fabry, Van Speybroeck, Serre, Yot, Maurin (CR39) 2017; 5 Lozano-Castelló, Cazorla-Amorós, Linares-Solano, Quinn (CR100) 2002; 40 Li, Xu, Feng, Hu, Bu (CR22) 2016; 52 Yao, Xu, Zou, Hu, Wang, Yuan, Chen, Feng, Xiong, Hao, Bu (CR43) 2019; 58 Bazer-Bachi, Assié, Lecocq, Harbuzaru, Falk (CR11) 2014; 255 Collings, Cairns, Thompson, Parker, Tang, Tucker, Catafesta, Levelut, Haines, Dmitriev, Pattison, Goodwin (CR42) 2013; 135 Li, Henke, Cheetham (CR14) 2014; 2 Huang, Bux, Steinbach, Caro (CR90) 2010; 49 Schuh (CR80) 2006; 9 Küsgens, Zgaverdea, Fritz, Siegle, Kaskel (CR76) 2010; 93 Li, Zou, Xiao, Zhang (CR2) 2017; 35 Oliver, Pharr (CR83) 2004; 19 Dhainaut, Avci-Camur, Troyano, Legrand, Canivet, Imaz, Maspoch, Reinsch, Farrusseng (CR52) 2017; 19 Mason, Veenstra, Long (CR18) 2014; 5 Aguado, Canivet, Farrusseng (CR98) 2010; 46 Ren, Musyoka, Langmi, Swartbooi, North, Mathe (CR12) 2015; 40 Zacher, Shekhah, Wöll, Fischer (CR91) 2009; 38 Chapman, Halder, Chupas (CR29) 2008; 130 Mattesini, Soler, Ynduráin (CR65) 2006; 73 Masika, Mokaya (CR70) 2014; 7 Thakkar, Eastman, Al-Naddaf, Rownaghi, Rezaei (CR72) 2017; 9 Ma, Yang, Ghoufi, Yang, Lei, Férey, Zhong, Maurin (CR33) 2014; 2 Hindocha, Poulston (CR85) 2017; 201 Yilmaz, Trukhan, Müller (CR6) 2012; 33 Sakharova, Fernandes, Antunes, Oliveira (CR81) 2009; 46 Li, Tao, Dali, Buckley, Gao, Hubert (CR96) 2011; 100 Lethbridge, Walton, Marmier, Smith, Evans (CR48) 2010; 58 Yot, Vanduyfhuys, Alvarez, Rodriguez, Itié, Fabry, Guillou, Devic, Beurroies, Llewellyn, Van Speybroeck, Serre, Maurin (CR40) 2016; 7 Antunes, Menezes, Fernandes (CR82) 2006; 43 A Huang (250_CR90) 2010; 49 P-J Kim (250_CR56) 2015; 262 S Aguado (250_CR98) 2010; 46 WC Oliver (250_CR83) 2004; 19 AB Cairns (250_CR44) 2015; 17 F-X Coudert (250_CR19) 2019; 388 T Tian (250_CR51) 2017; 17 AH Valekar (250_CR55) 2017; 7 LD O’Neill (250_CR99) 2010; 20 Q Gao (250_CR28) 2016; 55 PG Yot (250_CR24) 2016; 27 U-H Lee (250_CR53) 2016 A Bétard (250_CR1) 2012; 112 P Serra-Crespo (250_CR47) 2015; 17 J Ren (250_CR12) 2015; 40 PX Hou (250_CR71) 2007; 45 Y Li (250_CR2) 2017; 35 R Feng (250_CR21) 2018; 9 JM Antunes (250_CR82) 2006; 43 D Zacher (250_CR91) 2009; 38 KW Chapman (250_CR29) 2008; 130 Y Sun (250_CR25) 2017; 9 JW Lim (250_CR92) 2010; 16 E Masika (250_CR70) 2014; 7 P Küsgens (250_CR76) 2010; 93 E Breuer (250_CR95) 2009; 81 D Lozano-Castelló (250_CR100) 2002; 40 Y Zhang (250_CR54) 2014; 4 MR Ryder (250_CR103) 2016; 18 SMJ Rogge (250_CR104) 2018; 51 J Ren (250_CR7) 2017; 352 H Thakkar (250_CR72) 2017; 9 N Li (250_CR22) 2016; 52 M Zhou (250_CR46) 2014; 16 K Yang (250_CR15) 2016; 6 Q Ma (250_CR33) 2014; 2 EV Ramos-Fernandez (250_CR102) 2011; 391 SM Iveson (250_CR10) 2001; 117 MC Kreider (250_CR74) 2018; 29 NA Sakharova (250_CR81) 2009; 46 AU Ortiz (250_CR36) 2013; 4 WY Hong (250_CR69) 2015; 214 YH Hu (250_CR34) 2010; 81 JJ Purewal (250_CR67) 2012; 37 AJ Graham (250_CR32) 2014; 136 Z-Q Yao (250_CR43) 2019; 58 J Dhainaut (250_CR52) 2017; 19 Y Khabzina (250_CR86) 2018; 57 ZAD Lethbridge (250_CR48) 2010; 58 J Li (250_CR96) 2011; 100 M Wickenheisser (250_CR93) 2015; 215 I Beurroies (250_CR38) 2010; 49 W Cai (250_CR49) 2014; 5 250_CR87 250_CR3 JC Tan (250_CR26) 2011; 40 CA Schuh (250_CR80) 2006; 9 MI Nandasiri (250_CR13) 2016; 311 Y-R Miao (250_CR50) 2017; 139 M Rubio-Martinez (250_CR9) 2017; 46 PG Yot (250_CR37) 2012; 3 JA Mason (250_CR18) 2014; 5 S Hindocha (250_CR85) 2017; 201 MD Allendorf (250_CR89) 2008; 130 250_CR77 SM Moosavi (250_CR20) 2018; 4 W Li (250_CR14) 2014; 2 B Valizadeh (250_CR4) 2018; 145 AU Ortiz (250_CR66) 2012; 109 Q Hu (250_CR73) 2015; 157 M Tagliabue (250_CR97) 2011; 18 IE Collings (250_CR42) 2013; 135 B Yilmaz (250_CR6) 2012; 33 A Ahmed (250_CR101) 2014; 50 J Ren (250_CR84) 2014; 3 JC Tan (250_CR23) 2010; 107 AU Czaja (250_CR8) 2009; 38 NC Burtch (250_CR27) 2018; 30 W Li (250_CR45) 2012; 134 B Bueken (250_CR68) 2017; 8 KW Chapman (250_CR31) 2009; 131 AJ Graham (250_CR30) 2011; 50 C Shang (250_CR75) 2013; 442 JC Tan (250_CR16) 2010; 107 F-X Coudert (250_CR17) 2015; 27 PG Yot (250_CR35) 2016; 45 SA Moggach (250_CR41) 2009; 48 F Akhtar (250_CR88) 2014; 34 D Bazer-Bachi (250_CR11) 2014; 255 CA Grande (250_CR5) 2017; 14 PG Yot (250_CR40) 2016; 7 250_CR57 JV Alemán (250_CR94) 2007; 79 250_CR58 250_CR59 SJ Mahdizadeh (250_CR78) 2013; 15 250_CR60 250_CR61 T Tian (250_CR79) 2015; 3 250_CR62 250_CR63 250_CR64 M Mattesini (250_CR65) 2006; 73 P Ramaswamy (250_CR39) 2017; 5 |
References_xml | – volume: 5 start-page: 11047 issue: 22 year: 2017 end-page: 11054 ident: CR39 article-title: Mechanical properties of a gallium fumarate metal–organic framework: a joint experimental-modelling exploration publication-title: J Mater Chem A – volume: 40 start-page: 1059 issue: 2 year: 2011 end-page: 1080 ident: CR26 article-title: Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships publication-title: Chem Soc Rev – volume: 3 start-page: 12 issue: 1 year: 2014 end-page: 20 ident: CR84 article-title: Shaping porous materials for hydrogen storage applications: a review publication-title: J Technol Innov Renew Energy – volume: 139 start-page: 4667 issue: 13 year: 2017 end-page: 4670 ident: CR50 article-title: Energy storage during compression of metal–organic frameworks publication-title: J Am Chem Soc – volume: 14 start-page: 11 year: 2017 end-page: 18 ident: CR5 article-title: Life-cycle assessment as a tool for eco-design of metal-organic frameworks (MOFs) publication-title: Sustain Mater Technol – volume: 130 start-page: 14404 issue: 44 year: 2008 end-page: 14405 ident: CR89 article-title: Stress-induced chemical detection using flexible metal–organic frameworks publication-title: J Am Chem Soc – volume: 45 start-page: 4283 issue: 10 year: 2016 end-page: 4288 ident: CR35 article-title: Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH2 functionalized versions publication-title: Dalton Trans – ident: CR77 – volume: 9 start-page: 35908 issue: 41 year: 2017 end-page: 35916 ident: CR72 article-title: 3D-printed metal–organic framework monoliths for gas adsorption processes publication-title: ACS Appl Mater Interfaces – volume: 214 start-page: 149 year: 2015 end-page: 155 ident: CR69 article-title: Manufacturing of metal–organic framework monoliths and their application in CO adsorption publication-title: Microporous Mesoporous Mater – volume: 107 start-page: 9938 issue: 22 year: 2010 ident: CR23 article-title: Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 20449 issue: 32 year: 2015 end-page: 20465 ident: CR44 article-title: Negative linear compressibility publication-title: Phys Chem Chem Phys – volume: 131 start-page: 17546 issue: 48 year: 2009 end-page: 17547 ident: CR31 article-title: Pressure-induced amorphization and porosity modification in a metal–organic framework publication-title: J Am Chem Soc – volume: 7 start-page: 55767 issue: 88 year: 2017 end-page: 55777 ident: CR55 article-title: Shaping of porous metal–organic framework granules using mesoporous ρ-alumina as a binder publication-title: RSC Adv – volume: 29 start-page: 867 issue: 2 year: 2018 end-page: 873 ident: CR74 article-title: Toward 3D printed hydrogen storage materials made with ABS-MOF composites publication-title: Polym Adv Technol – volume: 3 start-page: 2999 issue: 6 year: 2015 end-page: 3005 ident: CR79 article-title: Mechanically and chemically robust ZIF-8 monoliths with high volumetric adsorption capacity publication-title: J Mater Chem A – volume: 57 start-page: 8200 issue: 24 year: 2018 end-page: 8208 ident: CR86 article-title: Synthesis and shaping scale-up study of functionalized UiO-66 MOF for ammonia air purification filters publication-title: Ind Eng Chem Res – volume: 352 start-page: 187 year: 2017 end-page: 219 ident: CR7 article-title: Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs) publication-title: Coord Chem Rev – volume: 201 start-page: 113 year: 2017 end-page: 125 ident: CR85 article-title: Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters publication-title: Faraday Discuss – volume: 58 start-page: 6444 issue: 19 year: 2010 end-page: 6451 ident: CR48 article-title: Elastic anisotropy and extreme Poisson’s ratios in single crystals publication-title: Acta Mater – volume: 388 start-page: 48 year: 2019 end-page: 62 ident: CR19 article-title: Nanoscale metamaterials: meta-MOFs and framework materials with anomalous behavior publication-title: Coord Chem Rev – ident: CR57 – ident: CR60 – volume: 442 start-page: 57 issue: 1–2 year: 2013 end-page: 64 ident: CR75 article-title: Break force and tensile strength relationships for curved faced tablets subject to diametrical compression publication-title: Int J Pharm – volume: 50 start-page: 14314 issue: 92 year: 2014 end-page: 14316 ident: CR101 article-title: Hierarchical porous metal–organic framework monoliths publication-title: Chem Commun – volume: 52 start-page: 8501 issue: 55 year: 2016 end-page: 8513 ident: CR22 article-title: Governing metal–organic frameworks towards high stability publication-title: Chem Commun – volume: 130 start-page: 10524 issue: 32 year: 2008 end-page: 10526 ident: CR29 article-title: Guest-dependent high pressure phenomena in a nanoporous Metal–organic framework material publication-title: J Am Chem Soc – volume: 45 start-page: 2011 issue: 10 year: 2007 end-page: 2016 ident: CR71 article-title: Densification of ordered microporous carbons and controlling their micropore size by hot-pressing publication-title: Carbon – volume: 311 start-page: 38 year: 2016 end-page: 52 ident: CR13 article-title: Adsorption, separation, and catalytic properties of densified metal–organic frameworks publication-title: Coord Chem Rev – volume: 2 start-page: 123902 issue: 12 year: 2014 ident: CR14 article-title: Research update: mechanical properties of metal-organic frameworks—influence of structure and chemical bonding publication-title: APL Mater – volume: 19 start-page: 4211 issue: 29 year: 2017 end-page: 4218 ident: CR52 article-title: Systematic study of the impact of MOF densification into tablets on textural and mechanical properties publication-title: CrystEngComm – volume: 6 start-page: 37506 issue: 44 year: 2016 end-page: 37514 ident: CR15 article-title: The elasticity of MOFs under mechanical pressure publication-title: RSC Adv – volume: 136 start-page: 8606 issue: 24 year: 2014 end-page: 8613 ident: CR32 article-title: Stabilization of scandium terephthalate MOFs against reversible amorphization and structural phase transition by guest uptake at extreme pressure publication-title: J Am Chem Soc – volume: 27 start-page: 4424 year: 2016 end-page: 4429 ident: CR24 article-title: Impact of the metal centre and functionalization on the mechanical behaviour of MIL-53 metal–organic frameworks publication-title: Eur J Inorg Chem – start-page: 551 year: 2016 end-page: 572 ident: CR53 article-title: Granulation and shaping of metal–organic frameworks publication-title: The chemistry of metal–organic frameworks – volume: 17 start-page: 174 year: 2017 ident: CR51 article-title: A sol–gel monolithic metal–organic framework with enhanced methane uptake publication-title: Nat Mater – volume: 262 start-page: 683 year: 2015 end-page: 690 ident: CR56 article-title: Separation of SF from SF /N mixture using metal–organic framework MIL-100(Fe) granule publication-title: Chem Eng J – volume: 255 start-page: 52 year: 2014 end-page: 59 ident: CR11 article-title: Towards industrial use of metal–organic framework: impact of shaping on the MOF properties publication-title: Powder Technol – volume: 38 start-page: 1418 issue: 5 year: 2009 end-page: 1429 ident: CR91 article-title: Thin films of metal–organic frameworks publication-title: Chem Soc Rev – volume: 27 start-page: 1905 issue: 6 year: 2015 end-page: 1916 ident: CR17 article-title: Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends publication-title: Chem Mater – volume: 58 start-page: 5614 year: 2019 ident: CR43 article-title: A dual-stimuli-responsive coordination network featuring reversible wide-range luminescence-tuning behavior publication-title: Angew Chem Int Ed – ident: CR63 – volume: 50 start-page: 11138 issue: 47 year: 2011 end-page: 11141 ident: CR30 article-title: The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure publication-title: Angew Chem Int Ed – volume: 157 start-page: 508 year: 2015 end-page: 516 ident: CR73 article-title: Effects of binders on the properties of bio-char pellets publication-title: Appl Energy – volume: 55 start-page: 15027 issue: 48 year: 2016 end-page: 15030 ident: CR28 article-title: A rigid nested metal–organic framework featuring a thermoresponsive gating effect dominated by counterions publication-title: Angew Chem Int Ed – volume: 18 start-page: 289 issue: 3 year: 2011 end-page: 296 ident: CR97 article-title: Methane storage on CPO-27-Ni pellets publication-title: J Porous Mater – ident: CR3 – volume: 4 start-page: 832 issue: 7 year: 2018 end-page: 839 ident: CR20 article-title: Improving the mechanical stability of metal-organic frameworks using chemical caryatids publication-title: ACS Cent Sci – volume: 18 start-page: 4303 issue: 23 year: 2016 end-page: 4312 ident: CR103 article-title: Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework publication-title: CrystEngComm – volume: 5 start-page: 32 issue: 1 year: 2014 end-page: 51 ident: CR18 article-title: Evaluating metal–organic frameworks for natural gas storage publication-title: Chem Sci – volume: 93 start-page: 2476 issue: 9 year: 2010 end-page: 2479 ident: CR76 article-title: Metal–organic frameworks in monolithic structures publication-title: J Am Chem Soc – volume: 100 start-page: 294 issue: 1 year: 2011 end-page: 310 ident: CR96 article-title: The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach toward understanding high-shear wet granulation process. Part II. Granulation and granule properties publication-title: J Pharm Sci – volume: 46 start-page: 7999 issue: 42 year: 2010 end-page: 8001 ident: CR98 article-title: Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications publication-title: Chem Commun – volume: 4 start-page: 4947 year: 2014 ident: CR54 article-title: Constructing free standing metal organic framework MIL-53 membrane based on anodized aluminum oxide precursor publication-title: Sci Rep – volume: 9 start-page: 950 issue: 4 year: 2018 end-page: 955 ident: CR21 article-title: Enhancing the stability and porosity of penetrated metal–organic frameworks through the insertion of coordination sites publication-title: Chem Sci – volume: 37 start-page: 2723 issue: 3 year: 2012 end-page: 2727 ident: CR67 article-title: Increased volumetric hydrogen uptake of MOF-5 by powder densification publication-title: Int J Hydrogen Energy – volume: 49 start-page: 7526 issue: 41 year: 2010 end-page: 7529 ident: CR38 article-title: Using pressure to provoke the structural transition of metal–organic frameworks publication-title: Angew Chem Int Ed – volume: 79 start-page: 1801 issue: 10 year: 2007 end-page: 1829 ident: CR94 article-title: Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007) publication-title: Pure Appl Chem – volume: 81 start-page: 174103 issue: 17 year: 2010 ident: CR34 article-title: Amorphization of metal-organic framework MOF-5 at unusually low applied pressure publication-title: Phys Rev B – volume: 215 start-page: 143 year: 2015 end-page: 153 ident: CR93 article-title: Hierarchical MOF-xerogel monolith composites from embedding MIL-100(Fe, Cr) and MIL-101(Cr) in resorcinol-formaldehyde xerogels for water adsorption applications publication-title: Microporous Mesoporous Mater – volume: 4 start-page: 1861 issue: 11 year: 2013 end-page: 1865 ident: CR36 article-title: Investigating the pressure-induced amorphization of zeolitic imidazolate framework ZIF-8: mechanical instability due to shear mode softening publication-title: J Phys Chem Lett – volume: 134 start-page: 11940 issue: 29 year: 2012 end-page: 11943 ident: CR45 article-title: Negative linear compressibility of a metal–organic framework publication-title: J Am Chem Soc – volume: 16 start-page: 4084 issue: 20 year: 2014 end-page: 4087 ident: CR46 article-title: Pressure-induced isostructural phase transition of a metal–organic framework Co (4,4′-bpy) (NO ) ·xH O publication-title: CrystEngComm – ident: CR87 – ident: CR61 – volume: 46 start-page: 1095 issue: 5 year: 2009 end-page: 1104 ident: CR81 article-title: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study publication-title: Int J Solids Struct – volume: 81 start-page: 971 issue: 5 year: 2009 end-page: 999 ident: CR95 article-title: Glossary of terms related to pharmaceutics (IUPAC recommendations 2009) publication-title: Pure Appl Chem – ident: CR58 – volume: 33 start-page: 3 issue: 1 year: 2012 end-page: 10 ident: CR6 article-title: Industrial outlook on zeolites and metal organic frameworks publication-title: Chin J Catal – volume: 117 start-page: 3 issue: 1 year: 2001 end-page: 39 ident: CR10 article-title: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review publication-title: Powder Technol – volume: 19 start-page: 3 issue: 01 year: 2004 end-page: 20 ident: CR83 article-title: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology publication-title: J Mater Res – volume: 20 start-page: 5720 issue: 27 year: 2010 ident: CR99 article-title: Macro-/microporous MOF composite beads publication-title: J Mater Chem – volume: 7 start-page: 427 issue: 1 year: 2014 end-page: 434 ident: CR70 article-title: Exceptional gravimetric and volumetric hydrogen storage for densified zeolite templated carbons with high mechanical stability publication-title: Energy Environ Sci – volume: 51 start-page: 138 issue: 1 year: 2018 end-page: 148 ident: CR104 article-title: Reliably modeling the mechanical stability of rigid and flexible metal–organic frameworks publication-title: Accounts Chem Res – volume: 40 start-page: 4617 issue: 13 year: 2015 end-page: 4622 ident: CR12 article-title: A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications publication-title: Int J Hydrogen Energy – volume: 9 start-page: 32 issue: 5 year: 2006 end-page: 40 ident: CR80 article-title: Nanoindentation studies of materials publication-title: Mater Today – volume: 2 start-page: 9691 issue: 25 year: 2014 end-page: 9698 ident: CR33 article-title: Guest-modulation of the mechanical properties of flexible porous metal–organic frameworks publication-title: J Mater Chem A – volume: 43 start-page: 784 issue: 3–4 year: 2006 end-page: 806 ident: CR82 article-title: Three-dimensional numerical simulation of Vickers indentation tests publication-title: Int J Solids Struct – volume: 46 start-page: 3453 issue: 11 year: 2017 end-page: 3480 ident: CR9 article-title: New synthetic routes towards MOF production at scale publication-title: Chem Soc Rev – ident: CR64 – volume: 35 start-page: 1501 issue: 10 year: 2017 end-page: 1511 ident: CR2 article-title: Advances of metal–organic frameworks in energy and environmental applications publication-title: Chin J Chem – volume: 30 start-page: 1704124 issue: 37 year: 2018 ident: CR27 article-title: Mechanical properties in metal–organic frameworks: emerging opportunities and challenges for device functionality and technological applications publication-title: Adv Mater – volume: 48 start-page: 7087 issue: 38 year: 2009 end-page: 7089 ident: CR41 article-title: The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa publication-title: Angew Chem Int Ed – volume: 3 start-page: 1100 issue: 4 year: 2012 end-page: 1104 ident: CR37 article-title: Large breathing of the MOF MIL-47(VIV) under mechanical pressure: a joint experimental–modelling exploration publication-title: Chem Sci – volume: 135 start-page: 7610 issue: 20 year: 2013 end-page: 7620 ident: CR42 article-title: Homologous critical behavior in the molecular frameworks Zn(CN) and Cd(imidazolate) publication-title: J Am Chem Soc – volume: 107 start-page: 9938 issue: 22 year: 2010 end-page: 9943 ident: CR16 article-title: Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks publication-title: Proc Natl Acad Sci USA – volume: 145 start-page: 1 year: 2018 end-page: 15 ident: CR4 article-title: Shape engineering of metal–organic frameworks publication-title: Polyhedron – volume: 40 start-page: 2817 issue: 15 year: 2002 end-page: 2825 ident: CR100 article-title: Activated carbon monoliths for methane storage: influence of binder publication-title: Carbon – volume: 112 start-page: 1055 issue: 2 year: 2012 end-page: 1083 ident: CR1 article-title: Metal–organic framework thin films: from fundamentals to applications publication-title: Chem Rev – volume: 38 start-page: 1284 issue: 5 year: 2009 end-page: 1293 ident: CR8 article-title: Industrial applications of metal–organic frameworks publication-title: Chem Soc Rev – volume: 391 start-page: 261 issue: 1–2 year: 2011 end-page: 267 ident: CR102 article-title: MOFs meet monoliths: hierarchical structuring metal organic framework catalysts publication-title: Appl Catal A – volume: 8 start-page: 3939 issue: 5 year: 2017 end-page: 3948 ident: CR68 article-title: Gel-based morphological design of zirconium metal–organic frameworks publication-title: Chem Sci – volume: 9 start-page: 32202 issue: 37 year: 2017 end-page: 32210 ident: CR25 article-title: Mechanical properties of microcrystalline metal–organic frameworks (MOFs) measured by bimodal amplitude modulated-frequency modulated atomic force microscopy publication-title: ACS Appl Mater Interfaces – volume: 17 start-page: 276 issue: 2 year: 2015 end-page: 280 ident: CR47 article-title: Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family publication-title: CrystEngComm – volume: 73 start-page: 1 issue: 9 year: 2006 end-page: 8 ident: CR65 article-title: Ab initio study of metal-organic framework-5 Zn O(1,4- benzenedicarboxylate) : an assessment of mechanical and spectroscopic properties publication-title: Phys Rev B – volume: 16 start-page: 51 issue: 1 year: 2010 end-page: 56 ident: CR92 article-title: Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials publication-title: J Ind Eng Chem – volume: 7 start-page: 446 issue: 1 year: 2016 end-page: 450 ident: CR40 article-title: Mechanical energy storage performance of an aluminum fumarate metal–organic framework publication-title: Chem Sci – volume: 15 start-page: 1393 issue: 1 year: 2013 ident: CR78 article-title: Natural gas storage on silicon, carbon, and silicon carbide nanotubes: a combined quantum mechanics and grand canonical Monte Carlo simulation study publication-title: J Nanoparticle Res – volume: 109 start-page: 1 issue: 19 year: 2012 end-page: 5 ident: CR66 article-title: Anisotropic elastic properties of flexible metal–organic frameworks: how soft are soft porous crystals? publication-title: Phys Rev Lett – volume: 34 start-page: 1643 issue: 7 year: 2014 end-page: 1666 ident: CR88 article-title: Structuring adsorbents and catalysts by processing of porous powders publication-title: J Eur Chem Soc – volume: 5 start-page: 4337 year: 2014 ident: CR49 article-title: Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework publication-title: Nat Commun – ident: CR59 – volume: 49 start-page: 4958 issue: 29 year: 2010 end-page: 4961 ident: CR90 article-title: Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker publication-title: Angew Chem Int Ed – ident: CR62 – volume: 79 start-page: 1801 issue: 10 year: 2007 ident: 250_CR94 publication-title: Pure Appl Chem doi: 10.1351/pac200779101801 – volume: 391 start-page: 261 issue: 1–2 year: 2011 ident: 250_CR102 publication-title: Appl Catal A doi: 10.1016/j.apcata.2010.05.019 – ident: 250_CR63 – volume: 93 start-page: 2476 issue: 9 year: 2010 ident: 250_CR76 publication-title: J Am Chem Soc – ident: 250_CR57 – volume: 4 start-page: 1861 issue: 11 year: 2013 ident: 250_CR36 publication-title: J Phys Chem Lett doi: 10.1021/jz400880p – volume: 16 start-page: 51 issue: 1 year: 2010 ident: 250_CR92 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2010.01.022 – ident: 250_CR77 – volume: 9 start-page: 32 issue: 5 year: 2006 ident: 250_CR80 publication-title: Mater Today doi: 10.1016/S1369-7021(06)71495-X – volume: 16 start-page: 4084 issue: 20 year: 2014 ident: 250_CR46 publication-title: CrystEngComm doi: 10.1039/C3CE42607F – volume: 45 start-page: 2011 issue: 10 year: 2007 ident: 250_CR71 publication-title: Carbon doi: 10.1016/j.carbon.2007.05.029 – volume: 215 start-page: 143 year: 2015 ident: 250_CR93 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2015.05.017 – volume: 7 start-page: 446 issue: 1 year: 2016 ident: 250_CR40 publication-title: Chem Sci doi: 10.1039/C5SC02794B – volume: 5 start-page: 4337 year: 2014 ident: 250_CR49 publication-title: Nat Commun doi: 10.1038/ncomms5337 – volume: 3 start-page: 1100 issue: 4 year: 2012 ident: 250_CR37 publication-title: Chem Sci doi: 10.1039/c2sc00745b – volume: 311 start-page: 38 year: 2016 ident: 250_CR13 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2015.12.004 – volume: 40 start-page: 4617 issue: 13 year: 2015 ident: 250_CR12 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.02.011 – volume: 49 start-page: 4958 issue: 29 year: 2010 ident: 250_CR90 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201001919 – volume: 18 start-page: 289 issue: 3 year: 2011 ident: 250_CR97 publication-title: J Porous Mater doi: 10.1007/s10934-010-9378-0 – volume: 40 start-page: 1059 issue: 2 year: 2011 ident: 250_CR26 publication-title: Chem Soc Rev doi: 10.1039/c0cs00163e – volume: 58 start-page: 6444 issue: 19 year: 2010 ident: 250_CR48 publication-title: Acta Mater doi: 10.1016/j.actamat.2010.08.006 – volume: 55 start-page: 15027 issue: 48 year: 2016 ident: 250_CR28 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201608250 – volume: 40 start-page: 2817 issue: 15 year: 2002 ident: 250_CR100 publication-title: Carbon doi: 10.1016/S0008-6223(02)00194-X – volume: 262 start-page: 683 year: 2015 ident: 250_CR56 publication-title: Chem Eng J doi: 10.1016/j.cej.2014.09.123 – volume: 131 start-page: 17546 issue: 48 year: 2009 ident: 250_CR31 publication-title: J Am Chem Soc doi: 10.1021/ja908415z – volume: 46 start-page: 1095 issue: 5 year: 2009 ident: 250_CR81 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2008.10.032 – volume: 9 start-page: 35908 issue: 41 year: 2017 ident: 250_CR72 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b11626 – volume: 73 start-page: 1 issue: 9 year: 2006 ident: 250_CR65 publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.094111 – volume: 20 start-page: 5720 issue: 27 year: 2010 ident: 250_CR99 publication-title: J Mater Chem doi: 10.1039/c0jm00515k – volume: 4 start-page: 832 issue: 7 year: 2018 ident: 250_CR20 publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00157 – ident: 250_CR59 – volume: 139 start-page: 4667 issue: 13 year: 2017 ident: 250_CR50 publication-title: J Am Chem Soc doi: 10.1021/jacs.7b01593 – volume: 7 start-page: 427 issue: 1 year: 2014 ident: 250_CR70 publication-title: Energy Environ Sci doi: 10.1039/C3EE42239A – volume: 50 start-page: 14314 issue: 92 year: 2014 ident: 250_CR101 publication-title: Chem Commun doi: 10.1039/C4CC06967F – volume: 43 start-page: 784 issue: 3–4 year: 2006 ident: 250_CR82 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2005.02.048 – volume: 17 start-page: 20449 issue: 32 year: 2015 ident: 250_CR44 publication-title: Phys Chem Chem Phys doi: 10.1039/C5CP00442J – volume: 48 start-page: 7087 issue: 38 year: 2009 ident: 250_CR41 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200902643 – volume: 107 start-page: 9938 issue: 22 year: 2010 ident: 250_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003205107 – volume: 50 start-page: 11138 issue: 47 year: 2011 ident: 250_CR30 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201104285 – volume: 135 start-page: 7610 issue: 20 year: 2013 ident: 250_CR42 publication-title: J Am Chem Soc doi: 10.1021/ja401268g – volume: 33 start-page: 3 issue: 1 year: 2012 ident: 250_CR6 publication-title: Chin J Catal doi: 10.1016/S1872-2067(10)60302-6 – volume: 45 start-page: 4283 issue: 10 year: 2016 ident: 250_CR35 publication-title: Dalton Trans doi: 10.1039/C5DT03621F – volume: 19 start-page: 4211 issue: 29 year: 2017 ident: 250_CR52 publication-title: CrystEngComm doi: 10.1039/C7CE00338B – volume: 7 start-page: 55767 issue: 88 year: 2017 ident: 250_CR55 publication-title: RSC Adv doi: 10.1039/C7RA11764G – volume: 157 start-page: 508 year: 2015 ident: 250_CR73 publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.019 – volume: 35 start-page: 1501 issue: 10 year: 2017 ident: 250_CR2 publication-title: Chin J Chem doi: 10.1002/cjoc.201700151 – volume: 57 start-page: 8200 issue: 24 year: 2018 ident: 250_CR86 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.8b00808 – volume: 107 start-page: 9938 issue: 22 year: 2010 ident: 250_CR16 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1003205107 – ident: 250_CR60 – volume: 255 start-page: 52 year: 2014 ident: 250_CR11 publication-title: Powder Technol doi: 10.1016/j.powtec.2013.09.013 – volume: 5 start-page: 32 issue: 1 year: 2014 ident: 250_CR18 publication-title: Chem Sci doi: 10.1039/C3SC52633J – volume: 388 start-page: 48 year: 2019 ident: 250_CR19 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2019.02.023 – volume: 9 start-page: 950 issue: 4 year: 2018 ident: 250_CR21 publication-title: Chem Sci doi: 10.1039/C7SC04192F – ident: 250_CR3 – volume: 17 start-page: 174 year: 2017 ident: 250_CR51 publication-title: Nat Mater doi: 10.1038/nmat5050 – volume: 214 start-page: 149 year: 2015 ident: 250_CR69 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2015.05.014 – volume: 4 start-page: 4947 year: 2014 ident: 250_CR54 publication-title: Sci Rep doi: 10.1038/srep04947 – volume: 30 start-page: 1704124 issue: 37 year: 2018 ident: 250_CR27 publication-title: Adv Mater doi: 10.1002/adma.201704124 – volume: 38 start-page: 1418 issue: 5 year: 2009 ident: 250_CR91 publication-title: Chem Soc Rev doi: 10.1039/b805038b – volume: 442 start-page: 57 issue: 1–2 year: 2013 ident: 250_CR75 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2012.09.005 – volume: 3 start-page: 12 issue: 1 year: 2014 ident: 250_CR84 publication-title: J Technol Innov Renew Energy doi: 10.6000/1929-6002.2014.03.01.3 – volume: 29 start-page: 867 issue: 2 year: 2018 ident: 250_CR74 publication-title: Polym Adv Technol doi: 10.1002/pat.4197 – volume: 5 start-page: 11047 issue: 22 year: 2017 ident: 250_CR39 publication-title: J Mater Chem A doi: 10.1039/C7TA01559C – volume: 46 start-page: 3453 issue: 11 year: 2017 ident: 250_CR9 publication-title: Chem Soc Rev doi: 10.1039/C7CS00109F – volume: 2 start-page: 123902 issue: 12 year: 2014 ident: 250_CR14 publication-title: APL Mater doi: 10.1063/1.4904966 – volume: 130 start-page: 14404 issue: 44 year: 2008 ident: 250_CR89 publication-title: J Am Chem Soc doi: 10.1021/ja805235k – volume: 9 start-page: 32202 issue: 37 year: 2017 ident: 250_CR25 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b06809 – ident: 250_CR87 – volume: 17 start-page: 276 issue: 2 year: 2015 ident: 250_CR47 publication-title: CrystEngComm doi: 10.1039/C4CE00436A – volume: 2 start-page: 9691 issue: 25 year: 2014 ident: 250_CR33 publication-title: J Mater Chem A doi: 10.1039/C4TA00622D – volume: 112 start-page: 1055 issue: 2 year: 2012 ident: 250_CR1 publication-title: Chem Rev doi: 10.1021/cr200167v – volume: 134 start-page: 11940 issue: 29 year: 2012 ident: 250_CR45 publication-title: J Am Chem Soc doi: 10.1021/ja305196u – volume: 352 start-page: 187 year: 2017 ident: 250_CR7 publication-title: Coord Chem Rev doi: 10.1016/j.ccr.2017.09.005 – volume: 81 start-page: 174103 issue: 17 year: 2010 ident: 250_CR34 publication-title: Phys Rev B doi: 10.1103/PhysRevB.81.174103 – ident: 250_CR62 – volume: 46 start-page: 7999 issue: 42 year: 2010 ident: 250_CR98 publication-title: Chem Commun doi: 10.1039/c0cc02045a – volume: 130 start-page: 10524 issue: 32 year: 2008 ident: 250_CR29 publication-title: J Am Chem Soc doi: 10.1021/ja804079z – volume: 100 start-page: 294 issue: 1 year: 2011 ident: 250_CR96 publication-title: J Pharm Sci doi: 10.1002/jps.22261 – volume: 51 start-page: 138 issue: 1 year: 2018 ident: 250_CR104 publication-title: Accounts Chem Res doi: 10.1021/acs.accounts.7b00404 – volume: 19 start-page: 3 issue: 01 year: 2004 ident: 250_CR83 publication-title: J Mater Res doi: 10.1557/jmr.2004.19.1.3 – volume: 18 start-page: 4303 issue: 23 year: 2016 ident: 250_CR103 publication-title: CrystEngComm doi: 10.1039/C5CE02347E – volume: 34 start-page: 1643 issue: 7 year: 2014 ident: 250_CR88 publication-title: J Eur Chem Soc – volume: 145 start-page: 1 year: 2018 ident: 250_CR4 publication-title: Polyhedron doi: 10.1016/j.poly.2018.01.004 – volume: 58 start-page: 5614 year: 2019 ident: 250_CR43 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201900190 – volume: 52 start-page: 8501 issue: 55 year: 2016 ident: 250_CR22 publication-title: Chem Commun doi: 10.1039/C6CC02931K – volume: 27 start-page: 4424 year: 2016 ident: 250_CR24 publication-title: Eur J Inorg Chem doi: 10.1002/ejic.201600263 – ident: 250_CR61 – ident: 250_CR64 – volume: 136 start-page: 8606 issue: 24 year: 2014 ident: 250_CR32 publication-title: J Am Chem Soc doi: 10.1021/ja411934f – start-page: 551 volume-title: The chemistry of metal–organic frameworks year: 2016 ident: 250_CR53 – volume: 38 start-page: 1284 issue: 5 year: 2009 ident: 250_CR8 publication-title: Chem Soc Rev doi: 10.1039/b804680h – ident: 250_CR58 – volume: 8 start-page: 3939 issue: 5 year: 2017 ident: 250_CR68 publication-title: Chem Sci doi: 10.1039/C6SC05602D – volume: 117 start-page: 3 issue: 1 year: 2001 ident: 250_CR10 publication-title: Powder Technol doi: 10.1016/S0032-5910(01)00313-8 – volume: 3 start-page: 2999 issue: 6 year: 2015 ident: 250_CR79 publication-title: J Mater Chem A doi: 10.1039/C4TA05116E – volume: 37 start-page: 2723 issue: 3 year: 2012 ident: 250_CR67 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.03.002 – volume: 81 start-page: 971 issue: 5 year: 2009 ident: 250_CR95 publication-title: Pure Appl Chem doi: 10.1351/PAC-REC-04-10-14 – volume: 27 start-page: 1905 issue: 6 year: 2015 ident: 250_CR17 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b00046 – volume: 15 start-page: 1393 issue: 1 year: 2013 ident: 250_CR78 publication-title: J Nanoparticle Res doi: 10.1007/s11051-012-1393-4 – volume: 14 start-page: 11 year: 2017 ident: 250_CR5 publication-title: Sustain Mater Technol – volume: 6 start-page: 37506 issue: 44 year: 2016 ident: 250_CR15 publication-title: RSC Adv doi: 10.1039/C5RA23149C – volume: 109 start-page: 1 issue: 19 year: 2012 ident: 250_CR66 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.195502 – volume: 49 start-page: 7526 issue: 41 year: 2010 ident: 250_CR38 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201003048 – volume: 201 start-page: 113 year: 2017 ident: 250_CR85 publication-title: Faraday Discuss doi: 10.1039/C7FD00090A |
SSID | ssib053851526 ssj0001738078 |
Score | 2.298716 |
SecondaryResourceType | review_article |
Snippet | Metal–organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While... Metal-organic frameworks (MOFs) have gathered tremendous interest among researchers for their potential applications such as in storage and separation. While... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25 |
SubjectTerms | Chemistry Chemistry and Materials Science Chemistry/Food Science Life Sciences Materials Science Metal-Organic Framework: From Design to Applications Molecular Medicine Physics Review |
Title | Mechanical Properties of Shaped Metal–Organic Frameworks |
URI | https://link.springer.com/article/10.1007/s41061-019-0250-7 https://www.proquest.com/docview/2293005451 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oi-jFpSrWpUTwpIxkmWze2tJalBbBFuopTCYTBCUtTXrx5H_wH_pLfJNkKhYVesthMiRvmfe9eRvAhc5jh8euTSwvtAjlMeqcGRrEYNzXaWhQwWW9c3_g9Eb0bmyPyzruVGW7q5BkflIvit2o9F7Q9fWJtNvEXYcqwg_drkC1eft031FihCqMRrpEFflVi5t3Vc_HzDk2QRDvq_jmb_v-tFDfsHMpUpoboO4ODNWnF3knL9fzLLzmb0tdHVf8t13YLgGp1iwkaA_WRFKDzbaaA1eDjTxJlKf7cNMXsk5YslV7kJf4M9mNVZvE2uMzm4pI6wuE8p_vH0WBJ9e6KvMrPYBRtzNs90g5e4Fwy3Mz4nkUgY0VC8Qnnu8gVUVkMp1bnDv4wBB4IO8RoAmTRi4NOY_wWKXC9k1GI59Zh1BJJok4Ai0yIwO9ojB20NdjzPHMmLpM-BIqMspFHXRF74CXjcnlfIzXYNFSOSdPgOQJJHkCtw6Xi1emRVeO_xafKyYGSDoZEGGJmMzTwESsIzGrbdThSjEmKJU4_XvH45VWn8CWKTmbZwCeQiWbzcUZIpksbKDkdlutQaOU4C9WyOe1 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFH5RiMGLC2rEtSaeNENoO928EQKiLDEREjxNptNpTDRAKFw8-R_8h_4S35QORqIm3HqYTtq3zPvevA3gsiJiV8SeQ2w_tAkVMeqcFZrE5CKo0NCkUqh6507Xbfbp_cAZZHXcic521yHJ9KReFLtR5b2g6xsQZbeJtw55ii44elz56u1Tq67FCFUYjXSGKtKrFi_tqp6OmXMdgiA-0PHN3_b9aaG-YedSpDQ1QI1t6OlPn-edvJRn07As3pa6Oq74bzuwlQFSozqXoF1Yk8MiFGp6DlwRNtIkUZHswU1HqjphxVbjQV3iT1Q3VmMUG4_PfCwjoyMRyn--f8wLPIXR0JlfyT70G_VerUmy2QtE2L43Jb5PEdjYsUR84gcuUlVGFq8IWwgXHzgCD-Q9AjRp0cijoRARHqtUOoHFaRRw-wByw9FQHoIRWZGJXlEYu-jrce76Vkw9LgMFFTkVsgQVTW8mssbkaj7GK1u0VE7Jw5A8TJGHeSW4Wrwynnfl-G_xhWYiQ9KpgAgfytEsYRZiHYVZHbME15oxLFPi5O8dj1ZafQ6FZq_TZu27busYNi3F5TQb8ARy08lMniKqmYZnmRR_ARla6Sg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50xcfFt7g-K3hSsttH-vIman2uCCroKaZpiqB0F9u9ePI_-A_9JU7aZkVRQbz1kAYyM-l805n5BmDTFKknUt8lThA7hIoU75wdW8TiIjRpbFEpVL9z59w7uqYnN-5NPec019XuOiVZ9TQolqasaPeStD1ofKMqksEwOCTKhxN_GEaoGfhBA0Z2D29PD7RJ4XVGh10jjPK3i18yrJcj5zyXIKAPda7zu30_e6sPCPola1o6o2gK7vQxqhqUh1a_iFvi-QvD4z_OOQ2TNVA1divLmoEhmc3C-J6eDzcLo2XxqMjnYKcjVf-wUrdxoX7uPymWVqObGpf3vCcToyMR4r-9vFaNn8KIdEVYPg_X0cHV3hGpZzIQ4QR-QYKAIuBxUom4JQg9lLBMbG4KRwgPHzgCErQJBG7SpolPYyES_NxS6YY2p0nInQVoZN1MLoKR2ImF0VKcehgDcu4Fdkp9LkMFITkVsgmmlj0TNWG5mpvxyAZUy6V4GIqHKfEwvwlbg1d6FVvHb4s3tEIZik4lSngmu_2c2YiBFJZ1rSZsayWx-nLnP--49KfV6zB2sR-xs-Pz02WYsJWSyyLBFWgUT325imCniNdqg34HgUHyDA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Properties+of+Shaped+Metal-Organic+Frameworks&rft.jtitle=Topics+in+current+chemistry+%282016%29&rft.au=Shah%2C+Bhuvan+B&rft.au=Kundu%2C+Tanay&rft.au=Zhao%2C+Dan&rft.date=2019-10-01&rft.issn=2364-8961&rft.eissn=2364-8961&rft.volume=377&rft.issue=5&rft.spage=25&rft_id=info:doi/10.1007%2Fs41061-019-0250-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-0869&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-0869&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-0869&client=summon |