Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry
Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered...
Saved in:
Published in | Green chemistry : an international journal and green chemistry resource : GC Vol. 21; no. 19; pp. 5374 - 5385 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
30.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (
Saccharomyces cerevisiae
) was enhanced. Then, the improved laccase variant was overproduced in the industrial host
Aspergillus oryzae
and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved
k
cat
values on the different substrates tested. Moreover, it is remarkably produced in
S. cerevisiae
at rates not formerly reported in the literature. These facts, together with the overexpression in
A. oryzae
opens new scenarios for its further development and application.
From laccase design to application of the overexpressed biocatalyst in an industrial environment for eco-friendly synthesis of polyaniline and dyes. |
---|---|
AbstractList | Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (
Saccharomyces cerevisiae
) was enhanced. Then, the improved laccase variant was overproduced in the industrial host
Aspergillus oryzae
and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved
k
cat
values on the different substrates tested. Moreover, it is remarkably produced in
S. cerevisiae
at rates not formerly reported in the literature. These facts, together with the overexpression in
A. oryzae
opens new scenarios for its further development and application.
From laccase design to application of the overexpressed biocatalyst in an industrial environment for eco-friendly synthesis of polyaniline and dyes. Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (Saccharomyces cerevisiae) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved kcat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application. Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering ( Saccharomyces cerevisiae ) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved k cat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application. Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (Saccharomyces cerevisiae) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved kcₐₜ values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application. |
Author | Camarero, Susana Santiago, Gerard Vind, Jesper de Salas, Felipe Kilic, Sibel Sener, Mehmet E Aza, Pablo Guallar, Víctor Martínez, Angel T Gilabert, Joan F |
AuthorAffiliation | ICREA Barcelona Supercomputing Center Centro de Investigaciones Biológicas Novozymes A/S Nostrum Biodiscovery Setas Kimya San AS |
AuthorAffiliation_xml | – sequence: 0 name: Novozymes A/S – sequence: 0 name: Nostrum Biodiscovery – sequence: 0 name: ICREA – sequence: 0 name: Barcelona Supercomputing Center – sequence: 0 name: Setas Kimya San AS – sequence: 0 name: Centro de Investigaciones Biológicas |
Author_xml | – sequence: 1 givenname: Felipe surname: de Salas fullname: de Salas, Felipe – sequence: 2 givenname: Pablo surname: Aza fullname: Aza, Pablo – sequence: 3 givenname: Joan F surname: Gilabert fullname: Gilabert, Joan F – sequence: 4 givenname: Gerard surname: Santiago fullname: Santiago, Gerard – sequence: 5 givenname: Sibel surname: Kilic fullname: Kilic, Sibel – sequence: 6 givenname: Mehmet E surname: Sener fullname: Sener, Mehmet E – sequence: 7 givenname: Jesper surname: Vind fullname: Vind, Jesper – sequence: 8 givenname: Víctor surname: Guallar fullname: Guallar, Víctor – sequence: 9 givenname: Angel T surname: Martínez fullname: Martínez, Angel T – sequence: 10 givenname: Susana surname: Camarero fullname: Camarero, Susana |
BookMark | eNptkc1LJDEQxYMoOH5cvAsBLyL2mo_u9OQogzsuCHvZPTfpdKUnEpMxSYv93xudRUH2VAX1e6-Kekdo3wcPCJ1R8oMSLm-0HDVhdduoPbSgteCVZC3Z_-wFO0RHKT0SQmkr6gWa7_xoPUC0fsTBYIXN5EflsFNaqwQ4BzzAC7iwLbMY-inla_wCMalsHWDlB7yx48bNFbxuI6QEA-5t0CorN6eMTYg4FZGyXvVFoDfwZFOO8wk6MMolOP1Xj9Hfn3d_VvfVw-_1r9XtQ6X5ss1VywYYYGmauteMCwMtb4QknFI2sJ6BEUovORloozWjtKmh74VshaSCciINP0aXO99tDM8TpNyV_RqcUx7ClDrGeUOLs5AFvfiGPoYp-nJdx5iUlDAiWKHIjtIxpBTBdNrm8o3gc1TWdZR071l0K7lefWRxWyRX3yTbaJ9UnP8Pn-_gmPQn9xUsfwM02ZZz |
CitedBy_id | crossref_primary_10_3390_jof7050359 crossref_primary_10_1016_j_gce_2020_09_002 crossref_primary_10_1128_AEM_00778_20 crossref_primary_10_3390_ijms22031157 crossref_primary_10_1016_j_chemosphere_2020_127371 crossref_primary_10_1016_j_chemosphere_2021_129671 crossref_primary_10_1021_acs_est_1c08042 crossref_primary_10_1186_s13068_024_02566_6 crossref_primary_10_3390_molecules25092221 crossref_primary_10_1016_j_indcrop_2022_115658 crossref_primary_10_1016_j_procbio_2023_09_008 crossref_primary_10_1016_j_jenvman_2022_114676 crossref_primary_10_1016_j_ijbiomac_2024_129484 crossref_primary_10_1186_s12896_023_00789_3 crossref_primary_10_1002_cctc_202301109 crossref_primary_10_1016_j_biortech_2022_127040 crossref_primary_10_1021_acs_orglett_0c01792 crossref_primary_10_1002_prot_25952 crossref_primary_10_1016_j_tibtech_2020_05_004 crossref_primary_10_1002_advs_202203433 crossref_primary_10_1186_s13068_022_02247_2 crossref_primary_10_1016_j_eti_2021_101364 crossref_primary_10_1016_j_envpol_2023_120999 crossref_primary_10_1002_cbic_202000775 crossref_primary_10_1021_acs_jafc_4c00521 crossref_primary_10_1080_07388551_2021_1895053 crossref_primary_10_1016_j_chemosphere_2021_133356 crossref_primary_10_3390_biom13121716 crossref_primary_10_1016_j_jprot_2023_105047 |
Cites_doi | 10.1021/acs.jpclett.5b00225 10.1038/s41598-017-13734-0 10.1002/bit.24588 10.1186/1475-2859-7-32 10.1111/j.1574-4976.2005.00010.x 10.1128/AEM.65.12.5515-5521.1999 10.1021/ja982270b 10.1021/acssuschemeng.8b05107 10.1021/acssuschemeng.8b02529 10.1111/1751-7915.12422 10.1002/adsc.201300960 10.1007/s00396-014-3301-1 10.1099/00221287-148-12-4003 10.1016/j.ijbiomac.2017.10.024 10.1039/C6GC02050J 10.1128/AEM.07530-11 10.1073/pnas.95.22.12809 10.1021/acscatal.9b00531 10.1186/1472-6750-13-38 10.1039/C7GC03295A 10.1016/j.synthmet.2007.07.018 10.1074/jbc.M204571200 10.1093/nar/gkv343 10.1016/j.synthmet.2006.10.001 10.1021/bi990729o 10.1039/C7GC03776G 10.1021/la0155799 10.1093/nar/gkn369 10.1038/s41598-017-17765-5 10.1016/j.enzmictec.2009.08.004 10.2174/138620706779026079 10.1016/j.molcatb.2011.01.016 10.1038/s41598-018-35633-8 10.1007/s00018-014-1824-8 10.1046/j.1432-1327.2000.01166.x 10.1016/j.chembiol.2013.01.001 10.1007/s12010-014-1147-0 10.1016/j.tibtech.2006.03.006 10.1038/nprot.2006.202 10.1021/bi101107c 10.1111/j.1742-4658.2009.07336.x 10.1016/j.chembiol.2007.08.010 10.1016/j.chembiol.2010.07.010 10.1021/acs.jcim.8b00840 10.1016/j.fbr.2013.07.001 10.1021/acssynbio.8b00509 10.1002/prot.24232 10.1093/protein/gzs056 10.1021/jacs.9b05230 10.1371/journal.pone.0061985 10.1021/acscatal.6b01460 10.1016/0160-9327(93)90101-8 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
DOI | 10.1039/c9gc02475a |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Sustainability Science Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Sustainability Science Abstracts Environment Abstracts METADEX Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database CrossRef AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1463-9270 |
EndPage | 5385 |
ExternalDocumentID | 10_1039_C9GC02475A c9gc02475a |
GroupedDBID | -JG 0-7 0R~ 29I 4.4 5GY 705 70~ 7~J AAEMU AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K COF CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3I M4U N9A O9- OK1 P2P R7B RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SLH VH6 AAYXX AFRZK AKMSF ALUYA CITATION R56 7SR 7ST 7U6 8BQ 8FD C1K JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c387t-72dede8f54bc236fe7356903112d2b2ef6ac830d15cc21154ebb69769161309f3 |
ISSN | 1463-9262 1463-9270 |
IngestDate | Thu Jul 10 19:03:21 EDT 2025 Mon Jun 30 12:06:25 EDT 2025 Tue Jul 01 01:41:20 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Tue Dec 17 20:59:35 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-72dede8f54bc236fe7356903112d2b2ef6ac830d15cc21154ebb69769161309f3 |
Notes | 10.1039/c9gc02475a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5008-5482 0000-0002-2812-895X 0000-0002-4580-1114 0000-0002-0057-0180 0000-0002-1584-2863 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2019/gc/c9gc02475a |
PQID | 2299102062 |
PQPubID | 2047490 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1039_C9GC02475A crossref_primary_10_1039_C9GC02475A rsc_primary_c9gc02475a proquest_miscellaneous_2335123669 proquest_journals_2299102062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190930 |
PublicationDateYYYYMMDD | 2019-09-30 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190930 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Green chemistry : an international journal and green chemistry resource : GC |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Hu (C9GC02475A-(cit52)/*[position()=1]) 2014; 174 Hakulinen (C9GC02475A-(cit49)/*[position()=1]) 2002; 9 Scheiblbrandner (C9GC02475A-(cit19)/*[position()=1]) 2017; 7 Sekretaryova (C9GC02475A-(cit2)/*[position()=1]) 2019; 141 Monza (C9GC02475A-(cit31)/*[position()=1]) 2015; 6 Zumárraga (C9GC02475A-(cit20)/*[position()=1]) 2007; 14 Mateljak (C9GC02475A-(cit25)/*[position()=1]) 2019; 9 Camarero (C9GC02475A-(cit24)/*[position()=1]) 2012; 78 Kunamneni (C9GC02475A-(cit26)/*[position()=1]) 2008; 7 Mateljak (C9GC02475A-(cit36)/*[position()=1]) 2019; 8 Hino (C9GC02475A-(cit15)/*[position()=1]) 2006; 156 Franco (C9GC02475A-(cit8)/*[position()=1]) 2018; 6 Wallraf (C9GC02475A-(cit18)/*[position()=1]) 2018; 20 Frappier (C9GC02475A-(cit29)/*[position()=1]) 2015; 43 Mao (C9GC02475A-(cit58)/*[position()=1]) 2010; 47 Otterbein (C9GC02475A-(cit40)/*[position()=1]) 2000; 267 Chattopadhyay (C9GC02475A-(cit43)/*[position()=1]) 2000; 39 de Salas (C9GC02475A-(cit17)/*[position()=1]) 2016; 11 Rivera-Hoyos (C9GC02475A-(cit4)/*[position()=1]) 2013; 27 Christensen (C9GC02475A-(cit42)/*[position()=1]) 2013; 8 Soden (C9GC02475A-(cit39)/*[position()=1]) 2002; 148 Rodríguez-Padrón (C9GC02475A-(cit7)/*[position()=1]) 2018; 20 Santiago (C9GC02475A-(cit32)/*[position()=1]) 2016; 6 Gonzalez-Perez (C9GC02475A-(cit22)/*[position()=1]) 2012; 3 Greenfield (C9GC02475A-(cit44)/*[position()=1]) 2006; 1 Zhang (C9GC02475A-(cit13)/*[position()=1]) 2014; 292 Michaelson (C9GC02475A-(cit56)/*[position()=1]) 1993; 17 Vasil'eva (C9GC02475A-(cit14)/*[position()=1]) 2007; 157 Maté (C9GC02475A-(cit23)/*[position()=1]) 2010; 17 Bleve (C9GC02475A-(cit51)/*[position()=1]) 2013; 26 Autore (C9GC02475A-(cit53)/*[position()=1]) 2009; 45 Mehra (C9GC02475A-(cit1)/*[position()=1]) 2018; 8 Pardo (C9GC02475A-(cit5)/*[position()=1]) 2012; 109 Riva (C9GC02475A-(cit6)/*[position()=1]) 2006; 24 Pardo (C9GC02475A-(cit21)/*[position()=1]) 2018; 8 Neill (C9GC02475A-(cit55)/*[position()=1]) Gromiha (C9GC02475A-(cit34)/*[position()=1]) 2013; 81 Giver (C9GC02475A-(cit46)/*[position()=1]) 1998; 95 Mogharabi (C9GC02475A-(cit11)/*[position()=1]) 2014; 356 Andberg (C9GC02475A-(cit48)/*[position()=1]) 2009; 276 Puente-Santiago (C9GC02475A-(cit10)/*[position()=1]) 2019; 7 Hartner (C9GC02475A-(cit38)/*[position()=1]) 2008; 36 Orlikowska (C9GC02475A-(cit41)/*[position()=1]) 2018; 107 Shumakovich (C9GC02475A-(cit12)/*[position()=1]) 2011; 69 Mate (C9GC02475A-(cit9)/*[position()=1]) 2017; 10 Alessandra (C9GC02475A-(cit27)/*[position()=1]) 2010; 1 Julió Plana (C9GC02475A-(cit45)/*[position()=1]) 2019; 59 Liu (C9GC02475A-(cit54)/*[position()=1]) 1999; 121 Sousa (C9GC02475A-(cit57)/*[position()=1]) 2016; 18 Piontek (C9GC02475A-(cit47)/*[position()=1]) 2002; 277 Wei (C9GC02475A-(cit16)/*[position()=1]) 2002; 18 Mate (C9GC02475A-(cit28)/*[position()=1]) 2013; 20 Alcalde (C9GC02475A-(cit35)/*[position()=1]) 2006; 9 Baldrian (C9GC02475A-(cit3)/*[position()=1]) 2006; 30 Mate (C9GC02475A-(cit37)/*[position()=1]) 2013; 13 Gelo-Pujic (C9GC02475A-(cit50)/*[position()=1]) 1999; 65 Kataoka (C9GC02475A-(cit30)/*[position()=1]) 2011; 50 Pardo (C9GC02475A-(cit33)/*[position()=1]) 2015; 72 |
References_xml | – doi: Neill Greenwood Knapp – volume: 6 start-page: 1447 year: 2015 ident: C9GC02475A-(cit31)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00225 – volume: 1 start-page: 252 year: 2010 ident: C9GC02475A-(cit27)/*[position()=1] publication-title: Bioeng. Bugs – volume: 7 start-page: 1 year: 2017 ident: C9GC02475A-(cit19)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-13734-0 – volume: 109 start-page: 2978 year: 2012 ident: C9GC02475A-(cit5)/*[position()=1] publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.24588 – volume: 7 start-page: 1 year: 2008 ident: C9GC02475A-(cit26)/*[position()=1] publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-7-32 – volume: 30 start-page: 215 year: 2006 ident: C9GC02475A-(cit3)/*[position()=1] publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-4976.2005.00010.x – volume: 65 start-page: 5515 year: 1999 ident: C9GC02475A-(cit50)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.12.5515-5521.1999 – volume: 121 start-page: 71 year: 1999 ident: C9GC02475A-(cit54)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982270b – volume: 7 start-page: 1474 year: 2019 ident: C9GC02475A-(cit10)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05107 – volume: 6 start-page: 11058 year: 2018 ident: C9GC02475A-(cit8)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b02529 – volume: 10 start-page: 1457 year: 2017 ident: C9GC02475A-(cit9)/*[position()=1] publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12422 – volume: 356 start-page: 897 year: 2014 ident: C9GC02475A-(cit11)/*[position()=1] publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201300960 – volume: 292 start-page: 2549 year: 2014 ident: C9GC02475A-(cit13)/*[position()=1] publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-014-3301-1 – volume: 148 start-page: 4003 year: 2002 ident: C9GC02475A-(cit39)/*[position()=1] publication-title: Microbiology doi: 10.1099/00221287-148-12-4003 – volume: 107 start-page: 1629 year: 2018 ident: C9GC02475A-(cit41)/*[position()=1] publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.024 – volume: 18 start-page: 6063 year: 2016 ident: C9GC02475A-(cit57)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C6GC02050J – volume: 78 start-page: 1370 year: 2012 ident: C9GC02475A-(cit24)/*[position()=1] publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.07530-11 – volume: 95 start-page: 12809 year: 1998 ident: C9GC02475A-(cit46)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.22.12809 – volume: 9 start-page: 4561 year: 2019 ident: C9GC02475A-(cit25)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.9b00531 – volume: 13 start-page: 38 year: 2013 ident: C9GC02475A-(cit37)/*[position()=1] publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-13-38 – volume: 47 start-page: 1 year: 2010 ident: C9GC02475A-(cit58)/*[position()=1] publication-title: Ranliao Yu Ranse – volume: 20 start-page: 225 year: 2018 ident: C9GC02475A-(cit7)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC03295A – volume: 157 start-page: 684 year: 2007 ident: C9GC02475A-(cit14)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/j.synthmet.2007.07.018 – volume: 277 start-page: 37663 year: 2002 ident: C9GC02475A-(cit47)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.M204571200 – volume: 43 start-page: W395 year: 2015 ident: C9GC02475A-(cit29)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv343 – volume: 156 start-page: 1327 year: 2006 ident: C9GC02475A-(cit15)/*[position()=1] publication-title: Synth. Met. doi: 10.1016/j.synthmet.2006.10.001 – volume: 9 start-page: 601 year: 2002 ident: C9GC02475A-(cit49)/*[position()=1] publication-title: Nat. Struct. Biol. – volume: 11 start-page: 1 year: 2016 ident: C9GC02475A-(cit17)/*[position()=1] publication-title: PLoS One – volume: 39 start-page: 263 year: 2000 ident: C9GC02475A-(cit43)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi990729o – ident: C9GC02475A-(cit55)/*[position()=1] – volume: 20 start-page: 2801 year: 2018 ident: C9GC02475A-(cit18)/*[position()=1] publication-title: Green Chem. doi: 10.1039/C7GC03776G – volume: 18 start-page: 917 year: 2002 ident: C9GC02475A-(cit16)/*[position()=1] publication-title: Langmuir doi: 10.1021/la0155799 – volume: 36 start-page: 1 year: 2008 ident: C9GC02475A-(cit38)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn369 – volume: 8 start-page: 1 year: 2018 ident: C9GC02475A-(cit21)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-017-17765-5 – volume: 45 start-page: 507 year: 2009 ident: C9GC02475A-(cit53)/*[position()=1] publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2009.08.004 – volume: 9 start-page: 719 year: 2006 ident: C9GC02475A-(cit35)/*[position()=1] publication-title: Comb. Chem. High Throughput Screening doi: 10.2174/138620706779026079 – volume: 69 start-page: 83 year: 2011 ident: C9GC02475A-(cit12)/*[position()=1] publication-title: J. Mol. Catal. B: Enzym. doi: 10.1016/j.molcatb.2011.01.016 – volume: 8 start-page: 1 year: 2018 ident: C9GC02475A-(cit1)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-018-35633-8 – volume: 72 start-page: 897 year: 2015 ident: C9GC02475A-(cit33)/*[position()=1] publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-014-1824-8 – volume: 267 start-page: 1619 year: 2000 ident: C9GC02475A-(cit40)/*[position()=1] publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2000.01166.x – volume: 20 start-page: 223 year: 2013 ident: C9GC02475A-(cit28)/*[position()=1] publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2013.01.001 – volume: 174 start-page: 2007 year: 2014 ident: C9GC02475A-(cit52)/*[position()=1] publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-014-1147-0 – volume: 24 start-page: 219 year: 2006 ident: C9GC02475A-(cit6)/*[position()=1] publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2006.03.006 – volume: 3 start-page: 172 year: 2012 ident: C9GC02475A-(cit22)/*[position()=1] publication-title: Bioeng. Bugs – volume: 1 start-page: 2876 year: 2006 ident: C9GC02475A-(cit44)/*[position()=1] publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.202 – volume: 50 start-page: 558 year: 2011 ident: C9GC02475A-(cit30)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi101107c – volume: 276 start-page: 6285 year: 2009 ident: C9GC02475A-(cit48)/*[position()=1] publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.07336.x – volume: 14 start-page: 1 year: 2007 ident: C9GC02475A-(cit20)/*[position()=1] publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2007.08.010 – volume: 17 start-page: 1030 year: 2010 ident: C9GC02475A-(cit23)/*[position()=1] publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2010.07.010 – volume: 59 start-page: 441 year: 2019 ident: C9GC02475A-(cit45)/*[position()=1] publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00840 – volume: 27 start-page: 67 year: 2013 ident: C9GC02475A-(cit4)/*[position()=1] publication-title: Fungal Biol. Rev. doi: 10.1016/j.fbr.2013.07.001 – volume: 8 start-page: 833 year: 2019 ident: C9GC02475A-(cit36)/*[position()=1] publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.8b00509 – volume: 81 start-page: 715 year: 2013 ident: C9GC02475A-(cit34)/*[position()=1] publication-title: Proteins: Struct., Funct., Bioinf. doi: 10.1002/prot.24232 – volume: 26 start-page: 1 year: 2013 ident: C9GC02475A-(cit51)/*[position()=1] publication-title: Protein Eng., Des. Sel. doi: 10.1093/protein/gzs056 – volume: 141 start-page: 11304 year: 2019 ident: C9GC02475A-(cit2)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05230 – volume: 8 year: 2013 ident: C9GC02475A-(cit42)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0061985 – volume: 6 start-page: 5415 year: 2016 ident: C9GC02475A-(cit32)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.6b01460 – volume: 17 start-page: 121 year: 1993 ident: C9GC02475A-(cit56)/*[position()=1] publication-title: Endeavour doi: 10.1016/0160-9327(93)90101-8 |
SSID | ssj0011764 |
Score | 2.477126 |
Snippet | Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5374 |
SubjectTerms | Aniline anionic surfactants Aspergillus oryzae Biocatalysts Chemical synthesis Computer applications Computer simulation Directed evolution dyeing dyes Enzymes fabrics Fungi Green chemistry High temperature Laccase Organic chemistry Oxidation pH effects polyaniline Polyanilines Polymerization Redox potential Saccharomyces cerevisiae Secretion Stability Substrates synthesis temperature |
Title | Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry |
URI | https://www.proquest.com/docview/2299102062 https://www.proquest.com/docview/2335123669 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QAcEBQqCgMZwQWVbK2dj_pYVd3GVI0DrdRbFDtOVSlqqjaV6P6x_Xt7duzEjB0Gl6iKvyq_X957tt_7GaGvYDTCKE0yL8rYEBYoFPRgIISXZZSkaRJxmWm2z5vwau5fL4JFq3XnRC3tS34mbh_NK_kfqcI7kKvKkv0Hydadwgv4DfKFJ0gYnk-SsUMmWOU5gpUCjd_LE5ixnb4UwyRFQdm24PsqwUNFYkAPeXVyoAiL84Mnf-uQWOWQrgq9qXPYlToIcefkWAl7P5zr1OrYnaZI7zIka81E0Ww2WooKNeTyQYOtOUPQLS_rfdtU9n6pNE_tYMt8tWngeZtU7i_PizqCaAWANhlI1wWM38QsA3pWybKozgC2hkfA7nUMmA3MqNWzH1KPkeqqEau_qwxri1PW25wFNPI90OSBo5nVO8fK29K_LEifKgJWwZYCvJcocOykjQ24-RlfzKfTeDZZzI7QCYH1CSjYk9Fk9mNaH2ANIs1cVv9hy4xL2XnT95--ULPAOdra22e0lzN7hV6a5QkeVVh7jVpy3UbPxlZSbfTCwVwbdSZNniQ0M4Zi9wYdnGq4yHCCK2hiA01cFthAE8oqaH7HNTAxoAQ_BCZ2gIkBmNgBJq7B9BbNLyaz8ZVnbvnwBB1GpReRVKZymAU-F4SGmYxoEDKwNQOSEk5AVyRiSPvpAFQIUeRRkvMQnGhY14D_xTLaQcfrYi3fIcz9gPsEJlak0NtA8sgnnKW-D2uaTPp-F32z8x0LQ4GvbmLJYx2KQVk8ZpdjLZtRF32p624q4pdHa51ascXmO9rFBFw88Nv7Iemiz3UxTII6i0vWsthDHUoDRXwUsi7qgLjrMRp0vH9C4w_oefOdnKLjcruXH8FLLvkng8h7Pd3D8w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+a+fungal+laccase+to+develop+a+robust%2C+versatile+and+highly-expressed+biocatalyst+for+sustainable+chemistry&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=de+Salas%2C+Felipe&rft.au=Aza%2C+Pablo&rft.au=Gilabert%2C+Joan+F&rft.au=Santiago%2C+Gerard&rft.date=2019-09-30&rft.issn=1463-9270&rft.volume=21&rft.issue=19+p.5374-5385&rft.spage=5374&rft.epage=5385&rft_id=info:doi/10.1039%2Fc9gc02475a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon |