Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry

Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered...

Full description

Saved in:
Bibliographic Details
Published inGreen chemistry : an international journal and green chemistry resource : GC Vol. 21; no. 19; pp. 5374 - 5385
Main Authors de Salas, Felipe, Aza, Pablo, Gilabert, Joan F, Santiago, Gerard, Kilic, Sibel, Sener, Mehmet E, Vind, Jesper, Guallar, Víctor, Martínez, Angel T, Camarero, Susana
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 30.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering ( Saccharomyces cerevisiae ) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved k cat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application. From laccase design to application of the overexpressed biocatalyst in an industrial environment for eco-friendly synthesis of polyaniline and dyes.
AbstractList Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering ( Saccharomyces cerevisiae ) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved k cat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application. From laccase design to application of the overexpressed biocatalyst in an industrial environment for eco-friendly synthesis of polyaniline and dyes.
Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (Saccharomyces cerevisiae) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved kcat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application.
Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering ( Saccharomyces cerevisiae ) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved k cat values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application.
Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive polyaniline using a high-redox potential laccase from our collection of recombinant fungal variants. Still, the oxidation of aniline is hindered by the reaction conditions (low pH and presence of anionic surfactants). Thus, we tackle here the directed evolution of the enzyme assisted by computational simulation aiming at improving aniline oxidation at the required polymerization conditions while maintaining the enzyme's substrate promiscuity. Simultaneously, its secretion by the host used for the engineering (Saccharomyces cerevisiae) was enhanced. Then, the improved laccase variant was overproduced in the industrial host Aspergillus oryzae and assayed for one-pot synthesis of polyaniline and naphtol-derived dyes whose textile dyeing properties were verified in an industrial environment. Finally, modification of its C-terminal tail further enhanced laccase stability by flexibilization of the region. The resulting biocatalyst displays noticeable stability at high temperature and extreme pH while shows improved kcₐₜ values on the different substrates tested. Moreover, it is remarkably produced in S. cerevisiae at rates not formerly reported in the literature. These facts, together with the overexpression in A. oryzae opens new scenarios for its further development and application.
Author Camarero, Susana
Santiago, Gerard
Vind, Jesper
de Salas, Felipe
Kilic, Sibel
Sener, Mehmet E
Aza, Pablo
Guallar, Víctor
Martínez, Angel T
Gilabert, Joan F
AuthorAffiliation ICREA
Barcelona Supercomputing Center
Centro de Investigaciones Biológicas
Novozymes A/S
Nostrum Biodiscovery
Setas Kimya San AS
AuthorAffiliation_xml – sequence: 0
  name: Novozymes A/S
– sequence: 0
  name: Nostrum Biodiscovery
– sequence: 0
  name: ICREA
– sequence: 0
  name: Barcelona Supercomputing Center
– sequence: 0
  name: Setas Kimya San AS
– sequence: 0
  name: Centro de Investigaciones Biológicas
Author_xml – sequence: 1
  givenname: Felipe
  surname: de Salas
  fullname: de Salas, Felipe
– sequence: 2
  givenname: Pablo
  surname: Aza
  fullname: Aza, Pablo
– sequence: 3
  givenname: Joan F
  surname: Gilabert
  fullname: Gilabert, Joan F
– sequence: 4
  givenname: Gerard
  surname: Santiago
  fullname: Santiago, Gerard
– sequence: 5
  givenname: Sibel
  surname: Kilic
  fullname: Kilic, Sibel
– sequence: 6
  givenname: Mehmet E
  surname: Sener
  fullname: Sener, Mehmet E
– sequence: 7
  givenname: Jesper
  surname: Vind
  fullname: Vind, Jesper
– sequence: 8
  givenname: Víctor
  surname: Guallar
  fullname: Guallar, Víctor
– sequence: 9
  givenname: Angel T
  surname: Martínez
  fullname: Martínez, Angel T
– sequence: 10
  givenname: Susana
  surname: Camarero
  fullname: Camarero, Susana
BookMark eNptkc1LJDEQxYMoOH5cvAsBLyL2mo_u9OQogzsuCHvZPTfpdKUnEpMxSYv93xudRUH2VAX1e6-Kekdo3wcPCJ1R8oMSLm-0HDVhdduoPbSgteCVZC3Z_-wFO0RHKT0SQmkr6gWa7_xoPUC0fsTBYIXN5EflsFNaqwQ4BzzAC7iwLbMY-inla_wCMalsHWDlB7yx48bNFbxuI6QEA-5t0CorN6eMTYg4FZGyXvVFoDfwZFOO8wk6MMolOP1Xj9Hfn3d_VvfVw-_1r9XtQ6X5ss1VywYYYGmauteMCwMtb4QknFI2sJ6BEUovORloozWjtKmh74VshaSCciINP0aXO99tDM8TpNyV_RqcUx7ClDrGeUOLs5AFvfiGPoYp-nJdx5iUlDAiWKHIjtIxpBTBdNrm8o3gc1TWdZR071l0K7lefWRxWyRX3yTbaJ9UnP8Pn-_gmPQn9xUsfwM02ZZz
CitedBy_id crossref_primary_10_3390_jof7050359
crossref_primary_10_1016_j_gce_2020_09_002
crossref_primary_10_1128_AEM_00778_20
crossref_primary_10_3390_ijms22031157
crossref_primary_10_1016_j_chemosphere_2020_127371
crossref_primary_10_1016_j_chemosphere_2021_129671
crossref_primary_10_1021_acs_est_1c08042
crossref_primary_10_1186_s13068_024_02566_6
crossref_primary_10_3390_molecules25092221
crossref_primary_10_1016_j_indcrop_2022_115658
crossref_primary_10_1016_j_procbio_2023_09_008
crossref_primary_10_1016_j_jenvman_2022_114676
crossref_primary_10_1016_j_ijbiomac_2024_129484
crossref_primary_10_1186_s12896_023_00789_3
crossref_primary_10_1002_cctc_202301109
crossref_primary_10_1016_j_biortech_2022_127040
crossref_primary_10_1021_acs_orglett_0c01792
crossref_primary_10_1002_prot_25952
crossref_primary_10_1016_j_tibtech_2020_05_004
crossref_primary_10_1002_advs_202203433
crossref_primary_10_1186_s13068_022_02247_2
crossref_primary_10_1016_j_eti_2021_101364
crossref_primary_10_1016_j_envpol_2023_120999
crossref_primary_10_1002_cbic_202000775
crossref_primary_10_1021_acs_jafc_4c00521
crossref_primary_10_1080_07388551_2021_1895053
crossref_primary_10_1016_j_chemosphere_2021_133356
crossref_primary_10_3390_biom13121716
crossref_primary_10_1016_j_jprot_2023_105047
Cites_doi 10.1021/acs.jpclett.5b00225
10.1038/s41598-017-13734-0
10.1002/bit.24588
10.1186/1475-2859-7-32
10.1111/j.1574-4976.2005.00010.x
10.1128/AEM.65.12.5515-5521.1999
10.1021/ja982270b
10.1021/acssuschemeng.8b05107
10.1021/acssuschemeng.8b02529
10.1111/1751-7915.12422
10.1002/adsc.201300960
10.1007/s00396-014-3301-1
10.1099/00221287-148-12-4003
10.1016/j.ijbiomac.2017.10.024
10.1039/C6GC02050J
10.1128/AEM.07530-11
10.1073/pnas.95.22.12809
10.1021/acscatal.9b00531
10.1186/1472-6750-13-38
10.1039/C7GC03295A
10.1016/j.synthmet.2007.07.018
10.1074/jbc.M204571200
10.1093/nar/gkv343
10.1016/j.synthmet.2006.10.001
10.1021/bi990729o
10.1039/C7GC03776G
10.1021/la0155799
10.1093/nar/gkn369
10.1038/s41598-017-17765-5
10.1016/j.enzmictec.2009.08.004
10.2174/138620706779026079
10.1016/j.molcatb.2011.01.016
10.1038/s41598-018-35633-8
10.1007/s00018-014-1824-8
10.1046/j.1432-1327.2000.01166.x
10.1016/j.chembiol.2013.01.001
10.1007/s12010-014-1147-0
10.1016/j.tibtech.2006.03.006
10.1038/nprot.2006.202
10.1021/bi101107c
10.1111/j.1742-4658.2009.07336.x
10.1016/j.chembiol.2007.08.010
10.1016/j.chembiol.2010.07.010
10.1021/acs.jcim.8b00840
10.1016/j.fbr.2013.07.001
10.1021/acssynbio.8b00509
10.1002/prot.24232
10.1093/protein/gzs056
10.1021/jacs.9b05230
10.1371/journal.pone.0061985
10.1021/acscatal.6b01460
10.1016/0160-9327(93)90101-8
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
DOI 10.1039/c9gc02475a
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Sustainability Science Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Sustainability Science Abstracts
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
CrossRef
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1463-9270
EndPage 5385
ExternalDocumentID 10_1039_C9GC02475A
c9gc02475a
GroupedDBID -JG
0-7
0R~
29I
4.4
5GY
705
70~
7~J
AAEMU
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
M4U
N9A
O9-
OK1
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
R56
7SR
7ST
7U6
8BQ
8FD
C1K
JG9
7S9
L.6
ID FETCH-LOGICAL-c387t-72dede8f54bc236fe7356903112d2b2ef6ac830d15cc21154ebb69769161309f3
ISSN 1463-9262
1463-9270
IngestDate Thu Jul 10 19:03:21 EDT 2025
Mon Jun 30 12:06:25 EDT 2025
Tue Jul 01 01:41:20 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Tue Dec 17 20:59:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-72dede8f54bc236fe7356903112d2b2ef6ac830d15cc21154ebb69769161309f3
Notes 10.1039/c9gc02475a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5008-5482
0000-0002-2812-895X
0000-0002-4580-1114
0000-0002-0057-0180
0000-0002-1584-2863
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2019/gc/c9gc02475a
PQID 2299102062
PQPubID 2047490
PageCount 12
ParticipantIDs crossref_citationtrail_10_1039_C9GC02475A
crossref_primary_10_1039_C9GC02475A
rsc_primary_c9gc02475a
proquest_miscellaneous_2335123669
proquest_journals_2299102062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190930
PublicationDateYYYYMMDD 2019-09-30
PublicationDate_xml – month: 9
  year: 2019
  text: 20190930
  day: 30
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Green chemistry : an international journal and green chemistry resource : GC
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Hu (C9GC02475A-(cit52)/*[position()=1]) 2014; 174
Hakulinen (C9GC02475A-(cit49)/*[position()=1]) 2002; 9
Scheiblbrandner (C9GC02475A-(cit19)/*[position()=1]) 2017; 7
Sekretaryova (C9GC02475A-(cit2)/*[position()=1]) 2019; 141
Monza (C9GC02475A-(cit31)/*[position()=1]) 2015; 6
Zumárraga (C9GC02475A-(cit20)/*[position()=1]) 2007; 14
Mateljak (C9GC02475A-(cit25)/*[position()=1]) 2019; 9
Camarero (C9GC02475A-(cit24)/*[position()=1]) 2012; 78
Kunamneni (C9GC02475A-(cit26)/*[position()=1]) 2008; 7
Mateljak (C9GC02475A-(cit36)/*[position()=1]) 2019; 8
Hino (C9GC02475A-(cit15)/*[position()=1]) 2006; 156
Franco (C9GC02475A-(cit8)/*[position()=1]) 2018; 6
Wallraf (C9GC02475A-(cit18)/*[position()=1]) 2018; 20
Frappier (C9GC02475A-(cit29)/*[position()=1]) 2015; 43
Mao (C9GC02475A-(cit58)/*[position()=1]) 2010; 47
Otterbein (C9GC02475A-(cit40)/*[position()=1]) 2000; 267
Chattopadhyay (C9GC02475A-(cit43)/*[position()=1]) 2000; 39
de Salas (C9GC02475A-(cit17)/*[position()=1]) 2016; 11
Rivera-Hoyos (C9GC02475A-(cit4)/*[position()=1]) 2013; 27
Christensen (C9GC02475A-(cit42)/*[position()=1]) 2013; 8
Soden (C9GC02475A-(cit39)/*[position()=1]) 2002; 148
Rodríguez-Padrón (C9GC02475A-(cit7)/*[position()=1]) 2018; 20
Santiago (C9GC02475A-(cit32)/*[position()=1]) 2016; 6
Gonzalez-Perez (C9GC02475A-(cit22)/*[position()=1]) 2012; 3
Greenfield (C9GC02475A-(cit44)/*[position()=1]) 2006; 1
Zhang (C9GC02475A-(cit13)/*[position()=1]) 2014; 292
Michaelson (C9GC02475A-(cit56)/*[position()=1]) 1993; 17
Vasil'eva (C9GC02475A-(cit14)/*[position()=1]) 2007; 157
Maté (C9GC02475A-(cit23)/*[position()=1]) 2010; 17
Bleve (C9GC02475A-(cit51)/*[position()=1]) 2013; 26
Autore (C9GC02475A-(cit53)/*[position()=1]) 2009; 45
Mehra (C9GC02475A-(cit1)/*[position()=1]) 2018; 8
Pardo (C9GC02475A-(cit5)/*[position()=1]) 2012; 109
Riva (C9GC02475A-(cit6)/*[position()=1]) 2006; 24
Pardo (C9GC02475A-(cit21)/*[position()=1]) 2018; 8
Neill (C9GC02475A-(cit55)/*[position()=1])
Gromiha (C9GC02475A-(cit34)/*[position()=1]) 2013; 81
Giver (C9GC02475A-(cit46)/*[position()=1]) 1998; 95
Mogharabi (C9GC02475A-(cit11)/*[position()=1]) 2014; 356
Andberg (C9GC02475A-(cit48)/*[position()=1]) 2009; 276
Puente-Santiago (C9GC02475A-(cit10)/*[position()=1]) 2019; 7
Hartner (C9GC02475A-(cit38)/*[position()=1]) 2008; 36
Orlikowska (C9GC02475A-(cit41)/*[position()=1]) 2018; 107
Shumakovich (C9GC02475A-(cit12)/*[position()=1]) 2011; 69
Mate (C9GC02475A-(cit9)/*[position()=1]) 2017; 10
Alessandra (C9GC02475A-(cit27)/*[position()=1]) 2010; 1
Julió Plana (C9GC02475A-(cit45)/*[position()=1]) 2019; 59
Liu (C9GC02475A-(cit54)/*[position()=1]) 1999; 121
Sousa (C9GC02475A-(cit57)/*[position()=1]) 2016; 18
Piontek (C9GC02475A-(cit47)/*[position()=1]) 2002; 277
Wei (C9GC02475A-(cit16)/*[position()=1]) 2002; 18
Mate (C9GC02475A-(cit28)/*[position()=1]) 2013; 20
Alcalde (C9GC02475A-(cit35)/*[position()=1]) 2006; 9
Baldrian (C9GC02475A-(cit3)/*[position()=1]) 2006; 30
Mate (C9GC02475A-(cit37)/*[position()=1]) 2013; 13
Gelo-Pujic (C9GC02475A-(cit50)/*[position()=1]) 1999; 65
Kataoka (C9GC02475A-(cit30)/*[position()=1]) 2011; 50
Pardo (C9GC02475A-(cit33)/*[position()=1]) 2015; 72
References_xml – doi: Neill Greenwood Knapp
– volume: 6
  start-page: 1447
  year: 2015
  ident: C9GC02475A-(cit31)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00225
– volume: 1
  start-page: 252
  year: 2010
  ident: C9GC02475A-(cit27)/*[position()=1]
  publication-title: Bioeng. Bugs
– volume: 7
  start-page: 1
  year: 2017
  ident: C9GC02475A-(cit19)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13734-0
– volume: 109
  start-page: 2978
  year: 2012
  ident: C9GC02475A-(cit5)/*[position()=1]
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.24588
– volume: 7
  start-page: 1
  year: 2008
  ident: C9GC02475A-(cit26)/*[position()=1]
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-7-32
– volume: 30
  start-page: 215
  year: 2006
  ident: C9GC02475A-(cit3)/*[position()=1]
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-4976.2005.00010.x
– volume: 65
  start-page: 5515
  year: 1999
  ident: C9GC02475A-(cit50)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.12.5515-5521.1999
– volume: 121
  start-page: 71
  year: 1999
  ident: C9GC02475A-(cit54)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja982270b
– volume: 7
  start-page: 1474
  year: 2019
  ident: C9GC02475A-(cit10)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05107
– volume: 6
  start-page: 11058
  year: 2018
  ident: C9GC02475A-(cit8)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b02529
– volume: 10
  start-page: 1457
  year: 2017
  ident: C9GC02475A-(cit9)/*[position()=1]
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12422
– volume: 356
  start-page: 897
  year: 2014
  ident: C9GC02475A-(cit11)/*[position()=1]
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201300960
– volume: 292
  start-page: 2549
  year: 2014
  ident: C9GC02475A-(cit13)/*[position()=1]
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-014-3301-1
– volume: 148
  start-page: 4003
  year: 2002
  ident: C9GC02475A-(cit39)/*[position()=1]
  publication-title: Microbiology
  doi: 10.1099/00221287-148-12-4003
– volume: 107
  start-page: 1629
  year: 2018
  ident: C9GC02475A-(cit41)/*[position()=1]
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.024
– volume: 18
  start-page: 6063
  year: 2016
  ident: C9GC02475A-(cit57)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C6GC02050J
– volume: 78
  start-page: 1370
  year: 2012
  ident: C9GC02475A-(cit24)/*[position()=1]
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.07530-11
– volume: 95
  start-page: 12809
  year: 1998
  ident: C9GC02475A-(cit46)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.22.12809
– volume: 9
  start-page: 4561
  year: 2019
  ident: C9GC02475A-(cit25)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00531
– volume: 13
  start-page: 38
  year: 2013
  ident: C9GC02475A-(cit37)/*[position()=1]
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-13-38
– volume: 47
  start-page: 1
  year: 2010
  ident: C9GC02475A-(cit58)/*[position()=1]
  publication-title: Ranliao Yu Ranse
– volume: 20
  start-page: 225
  year: 2018
  ident: C9GC02475A-(cit7)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC03295A
– volume: 157
  start-page: 684
  year: 2007
  ident: C9GC02475A-(cit14)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2007.07.018
– volume: 277
  start-page: 37663
  year: 2002
  ident: C9GC02475A-(cit47)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M204571200
– volume: 43
  start-page: W395
  year: 2015
  ident: C9GC02475A-(cit29)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv343
– volume: 156
  start-page: 1327
  year: 2006
  ident: C9GC02475A-(cit15)/*[position()=1]
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2006.10.001
– volume: 9
  start-page: 601
  year: 2002
  ident: C9GC02475A-(cit49)/*[position()=1]
  publication-title: Nat. Struct. Biol.
– volume: 11
  start-page: 1
  year: 2016
  ident: C9GC02475A-(cit17)/*[position()=1]
  publication-title: PLoS One
– volume: 39
  start-page: 263
  year: 2000
  ident: C9GC02475A-(cit43)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi990729o
– ident: C9GC02475A-(cit55)/*[position()=1]
– volume: 20
  start-page: 2801
  year: 2018
  ident: C9GC02475A-(cit18)/*[position()=1]
  publication-title: Green Chem.
  doi: 10.1039/C7GC03776G
– volume: 18
  start-page: 917
  year: 2002
  ident: C9GC02475A-(cit16)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la0155799
– volume: 36
  start-page: 1
  year: 2008
  ident: C9GC02475A-(cit38)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn369
– volume: 8
  start-page: 1
  year: 2018
  ident: C9GC02475A-(cit21)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17765-5
– volume: 45
  start-page: 507
  year: 2009
  ident: C9GC02475A-(cit53)/*[position()=1]
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2009.08.004
– volume: 9
  start-page: 719
  year: 2006
  ident: C9GC02475A-(cit35)/*[position()=1]
  publication-title: Comb. Chem. High Throughput Screening
  doi: 10.2174/138620706779026079
– volume: 69
  start-page: 83
  year: 2011
  ident: C9GC02475A-(cit12)/*[position()=1]
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2011.01.016
– volume: 8
  start-page: 1
  year: 2018
  ident: C9GC02475A-(cit1)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-35633-8
– volume: 72
  start-page: 897
  year: 2015
  ident: C9GC02475A-(cit33)/*[position()=1]
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-014-1824-8
– volume: 267
  start-page: 1619
  year: 2000
  ident: C9GC02475A-(cit40)/*[position()=1]
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1327.2000.01166.x
– volume: 20
  start-page: 223
  year: 2013
  ident: C9GC02475A-(cit28)/*[position()=1]
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2013.01.001
– volume: 174
  start-page: 2007
  year: 2014
  ident: C9GC02475A-(cit52)/*[position()=1]
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-014-1147-0
– volume: 24
  start-page: 219
  year: 2006
  ident: C9GC02475A-(cit6)/*[position()=1]
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2006.03.006
– volume: 3
  start-page: 172
  year: 2012
  ident: C9GC02475A-(cit22)/*[position()=1]
  publication-title: Bioeng. Bugs
– volume: 1
  start-page: 2876
  year: 2006
  ident: C9GC02475A-(cit44)/*[position()=1]
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.202
– volume: 50
  start-page: 558
  year: 2011
  ident: C9GC02475A-(cit30)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi101107c
– volume: 276
  start-page: 6285
  year: 2009
  ident: C9GC02475A-(cit48)/*[position()=1]
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2009.07336.x
– volume: 14
  start-page: 1
  year: 2007
  ident: C9GC02475A-(cit20)/*[position()=1]
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2007.08.010
– volume: 17
  start-page: 1030
  year: 2010
  ident: C9GC02475A-(cit23)/*[position()=1]
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2010.07.010
– volume: 59
  start-page: 441
  year: 2019
  ident: C9GC02475A-(cit45)/*[position()=1]
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00840
– volume: 27
  start-page: 67
  year: 2013
  ident: C9GC02475A-(cit4)/*[position()=1]
  publication-title: Fungal Biol. Rev.
  doi: 10.1016/j.fbr.2013.07.001
– volume: 8
  start-page: 833
  year: 2019
  ident: C9GC02475A-(cit36)/*[position()=1]
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.8b00509
– volume: 81
  start-page: 715
  year: 2013
  ident: C9GC02475A-(cit34)/*[position()=1]
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.24232
– volume: 26
  start-page: 1
  year: 2013
  ident: C9GC02475A-(cit51)/*[position()=1]
  publication-title: Protein Eng., Des. Sel.
  doi: 10.1093/protein/gzs056
– volume: 141
  start-page: 11304
  year: 2019
  ident: C9GC02475A-(cit2)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05230
– volume: 8
  year: 2013
  ident: C9GC02475A-(cit42)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0061985
– volume: 6
  start-page: 5415
  year: 2016
  ident: C9GC02475A-(cit32)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01460
– volume: 17
  start-page: 121
  year: 1993
  ident: C9GC02475A-(cit56)/*[position()=1]
  publication-title: Endeavour
  doi: 10.1016/0160-9327(93)90101-8
SSID ssj0011764
Score 2.477126
Snippet Fungal laccases can play an important role as biocatalysts in organic chemistry to replace chemical synthesis. In a previous work we synthesized conductive...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5374
SubjectTerms Aniline
anionic surfactants
Aspergillus oryzae
Biocatalysts
Chemical synthesis
Computer applications
Computer simulation
Directed evolution
dyeing
dyes
Enzymes
fabrics
Fungi
Green chemistry
High temperature
Laccase
Organic chemistry
Oxidation
pH effects
polyaniline
Polyanilines
Polymerization
Redox potential
Saccharomyces cerevisiae
Secretion
Stability
Substrates
synthesis
temperature
Title Engineering of a fungal laccase to develop a robust, versatile and highly-expressed biocatalyst for sustainable chemistry
URI https://www.proquest.com/docview/2299102062
https://www.proquest.com/docview/2335123669
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67QAcEBQqCgMZwQWVbK2dj_pYVd3GVI0DrdRbFDtOVSlqqjaV6P6x_Xt7duzEjB0Gl6iKvyq_X957tt_7GaGvYDTCKE0yL8rYEBYoFPRgIISXZZSkaRJxmWm2z5vwau5fL4JFq3XnRC3tS34mbh_NK_kfqcI7kKvKkv0Hydadwgv4DfKFJ0gYnk-SsUMmWOU5gpUCjd_LE5ixnb4UwyRFQdm24PsqwUNFYkAPeXVyoAiL84Mnf-uQWOWQrgq9qXPYlToIcefkWAl7P5zr1OrYnaZI7zIka81E0Ww2WooKNeTyQYOtOUPQLS_rfdtU9n6pNE_tYMt8tWngeZtU7i_PizqCaAWANhlI1wWM38QsA3pWybKozgC2hkfA7nUMmA3MqNWzH1KPkeqqEau_qwxri1PW25wFNPI90OSBo5nVO8fK29K_LEifKgJWwZYCvJcocOykjQ24-RlfzKfTeDZZzI7QCYH1CSjYk9Fk9mNaH2ANIs1cVv9hy4xL2XnT95--ULPAOdra22e0lzN7hV6a5QkeVVh7jVpy3UbPxlZSbfTCwVwbdSZNniQ0M4Zi9wYdnGq4yHCCK2hiA01cFthAE8oqaH7HNTAxoAQ_BCZ2gIkBmNgBJq7B9BbNLyaz8ZVnbvnwBB1GpReRVKZymAU-F4SGmYxoEDKwNQOSEk5AVyRiSPvpAFQIUeRRkvMQnGhY14D_xTLaQcfrYi3fIcz9gPsEJlak0NtA8sgnnKW-D2uaTPp-F32z8x0LQ4GvbmLJYx2KQVk8ZpdjLZtRF32p624q4pdHa51ascXmO9rFBFw88Nv7Iemiz3UxTII6i0vWsthDHUoDRXwUsi7qgLjrMRp0vH9C4w_oefOdnKLjcruXH8FLLvkng8h7Pd3D8w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+of+a+fungal+laccase+to+develop+a+robust%2C+versatile+and+highly-expressed+biocatalyst+for+sustainable+chemistry&rft.jtitle=Green+chemistry+%3A+an+international+journal+and+green+chemistry+resource+%3A+GC&rft.au=de+Salas%2C+Felipe&rft.au=Aza%2C+Pablo&rft.au=Gilabert%2C+Joan+F&rft.au=Santiago%2C+Gerard&rft.date=2019-09-30&rft.issn=1463-9270&rft.volume=21&rft.issue=19+p.5374-5385&rft.spage=5374&rft.epage=5385&rft_id=info:doi/10.1039%2Fc9gc02475a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9262&client=summon