Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters
Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by usi...
Saved in:
Published in | Chemosphere (Oxford) Vol. 295; p. 133813 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters.
[Display omitted]
•Spatial-temporal evolution of PM2.5 and ozone pollution was investigated.•The annual mean PM2.5 showed a significant decrease from 2015 to 2020.•Ozone was increased by 2.02 μg m−3 yr−1 in 2015–2020.•The government should pay more attention to collaborative control of air pollution. |
---|---|
AbstractList | Despite China's public commitment to emphasise air pollution investigation and control, trends in PM₂.₅ and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM₂.₅ and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM₂.₅ and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM₂.₅ concentrations from 2015 to 2020, with a decline rate of 2.8 μg m⁻³ yr⁻¹. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m⁻³ yr⁻¹ over the 6 years. The annual mean PM₂.₅ concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM₂.₅ was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM₂.₅ reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM₂.₅ and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM₂.₅. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters. Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters.Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters. Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters. [Display omitted] •Spatial-temporal evolution of PM2.5 and ozone pollution was investigated.•The annual mean PM2.5 showed a significant decrease from 2015 to 2020.•Ozone was increased by 2.02 μg m−3 yr−1 in 2015–2020.•The government should pay more attention to collaborative control of air pollution. |
ArticleNumber | 133813 |
Author | Li, Zhongwu Tian, Si Deng, Chuxiong Li, Ke |
Author_xml | – sequence: 1 givenname: Chuxiong surname: Deng fullname: Deng, Chuxiong email: dcxppd@hunnu.edu.cn organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China – sequence: 2 givenname: Si surname: Tian fullname: Tian, Si email: tiansi1217@163.com organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China – sequence: 3 givenname: Zhongwu surname: Li fullname: Li, Zhongwu email: lzw17002@hunnu.edu.cn organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China – sequence: 4 givenname: Ke orcidid: 0000-0002-1314-7293 surname: Li fullname: Li, Ke email: like@hunnu.edu.cn organization: Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education of China), Key Laboratory of Applied Statistics and Data Science, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, 410081, PR China |
BookMark | eNqNkEtP4zAURi0EEoWZ_-DZsUnwI3aS1QhVvKQikJjZzMZyb25UV6kdbBeJ-fWklAVi1dXdfOdc6ZyRYx88EvKLs5Izri_XJaxwE9K4woilYEKUXMqGyyMy403dFly0zTGZMVapQiupTslZSmvGJli1M_LvebTZhYybMUQ7UFjZaCFjdCk7SDT09OlBlIpa39Hwf3pOIXhAn-OO84k6T-cr5zEh3cal9RSGbZoE6Qc56e2Q8OfnPSd_b67_zO-KxePt_fxqUYBs6lzoZS16bIWwjbW8Vgx0U1XY67riy05VUmpVd3oJrO6xk1IAw160kldS8AZaeU4u9t4xhpctpmw2LgEOg_UYtskILXWjGGfygKnQjLWqEtO03U8hhpQi9maMbmPjm-HM7NKbtfmS3uzSm336if39jQWXP3JN1dxwkGG-N-AU7tVhNAkcTt07FxGy6YI7wPIO5g-qGA |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_174557 crossref_primary_10_1021_acs_estlett_3c00053 crossref_primary_10_1016_j_atmosenv_2025_121150 crossref_primary_10_1016_j_atmosres_2024_107696 crossref_primary_10_1007_s11356_023_28321_2 crossref_primary_10_1007_s11869_022_01228_6 crossref_primary_10_3390_atmos13111834 crossref_primary_10_1016_j_jhazmat_2024_136047 crossref_primary_10_1016_j_atmosenv_2024_120587 crossref_primary_10_3390_atmos13111839 crossref_primary_10_1016_j_envres_2025_121283 crossref_primary_10_1088_1755_1315_1223_1_012005 crossref_primary_10_1080_09603123_2023_2280157 crossref_primary_10_3390_atmos14010135 crossref_primary_10_1016_j_apr_2023_101838 crossref_primary_10_1016_j_rsase_2024_101359 crossref_primary_10_1016_j_jclepro_2022_134890 crossref_primary_10_1016_j_scs_2024_105689 crossref_primary_10_1007_s10653_022_01381_y crossref_primary_10_3390_atmos14020292 crossref_primary_10_1016_j_scitotenv_2023_162071 crossref_primary_10_1016_j_atmosenv_2024_120390 crossref_primary_10_1088_1748_9326_ad7869 crossref_primary_10_1007_s00477_024_02705_3 crossref_primary_10_1007_s11270_023_06345_1 crossref_primary_10_1016_j_jenvman_2022_116379 crossref_primary_10_3390_su16177391 crossref_primary_10_1007_s11356_024_35259_6 crossref_primary_10_1016_j_catcom_2022_106581 crossref_primary_10_1016_j_apr_2023_101841 crossref_primary_10_1016_j_envpol_2023_122189 crossref_primary_10_3390_atmos14040609 crossref_primary_10_3390_toxics13020123 crossref_primary_10_1016_j_apr_2023_101888 crossref_primary_10_1007_s11869_023_01466_2 crossref_primary_10_3389_fenvs_2022_984879 crossref_primary_10_1007_s11356_023_27522_z crossref_primary_10_1016_j_jenvman_2023_117614 crossref_primary_10_3390_atmos15121499 crossref_primary_10_3390_ijerph20053810 crossref_primary_10_1016_j_envpol_2023_121509 crossref_primary_10_3390_rs17030528 |
Cites_doi | 10.1002/2015JD023250 10.5194/acp-18-5293-2018 10.5194/acp-20-5963-2020 10.1016/j.scitotenv.2020.139542 10.1016/j.envpol.2020.114694 10.1093/nsr/nwaa032 10.1016/j.atmosres.2013.07.011 10.1016/j.jes.2017.08.011 10.1016/j.scitotenv.2021.145392 10.1080/07474939608800353 10.1016/j.apenergy.2020.115246 10.1038/s41467-020-15319-4 10.1073/pnas.1907956116 10.1016/j.scitotenv.2021.148474 10.1016/j.envpol.2020.115775 10.1016/j.apr.2018.08.014 10.5194/acp-17-9485-2017 10.1016/j.envint.2019.105145 10.1016/j.scitotenv.2016.12.127 10.1007/s11442-015-1216-5 10.1016/j.envpol.2021.117138 10.1016/j.scitotenv.2021.149603 10.1016/j.scitotenv.2018.11.105 10.1073/pnas.1900125116 10.1016/j.chemosphere.2020.129441 10.1016/j.scitotenv.2020.142394 10.1016/j.atmosenv.2017.11.014 10.5194/acp-9-8813-2009 10.1016/j.chemosphere.2020.126735 10.1002/2015JD023926 10.5194/acp-20-13455-2020 10.5194/acp-18-14095-2018 10.1073/pnas.1614453114 10.1016/j.envpol.2021.117899 10.1016/j.scitotenv.2020.140837 10.1016/j.chemosphere.2015.12.118 10.1016/j.atmosenv.2019.117215 10.1029/2020GL087978 10.1088/1748-9326/aae718 10.3390/atmos10070352 10.1016/j.landurbplan.2017.02.014 10.1016/j.jenvman.2021.113529 10.1016/j.envres.2016.05.014 10.1016/j.envint.2015.11.003 10.1016/j.jempfin.2009.08.003 10.1073/pnas.1812168116 10.1016/j.envpol.2021.117783 10.3390/ijerph16234824 10.1038/s41893-020-0581-y 10.5194/acp-19-11031-2019 10.1038/s41561-019-0464-x 10.1016/j.envpol.2021.116635 10.1016/j.jedc.2005.08.008 10.1016/j.scitotenv.2020.143775 10.1016/j.jenvman.2019.109603 10.1016/j.scitotenv.2016.10.081 10.1016/j.scitotenv.2017.06.099 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2022.133813 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
ExternalDocumentID | 10_1016_j_chemosphere_2022_133813 S004565352200306X |
GeographicLocations | China Yangtze River |
GeographicLocations_xml | – name: Yangtze River – name: China |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c387t-6b72fe922a8aa1750c6844ef6741bd5433657d6bc07fed332c0ef293143218c93 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Fri Jul 11 07:08:22 EDT 2025 Fri Jul 11 03:32:42 EDT 2025 Thu Apr 24 23:02:28 EDT 2025 Tue Jul 01 02:08:15 EDT 2025 Fri Feb 23 02:39:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ozone Non-linear granger causality testing Urban clusters PM2.5 Spatiotemporal characteristics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-6b72fe922a8aa1750c6844ef6741bd5433657d6bc07fed332c0ef293143218c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1314-7293 |
PQID | 2626009542 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636850103 proquest_miscellaneous_2626009542 crossref_primary_10_1016_j_chemosphere_2022_133813 crossref_citationtrail_10_1016_j_chemosphere_2022_133813 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_133813 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Chemosphere (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Feng, Ning, Lei, Sun, Liu, Wang (bib13) 2019; 252 Ma, Shao, Zhang, Dai, Xie (bib27) 2021; 792 Zhang, Cao (bib53) 2015; 5 Zhao, Yin, Yu, Kang, Qin, Dong (bib56) 2020; 264 Liu, Qi, Ni, Dong, Ma, Xue, Zhang, Wang (bib25) 2021; 772 An, Huang, Zhang, Tie, Li, Cao, Zhou, Shi, Han, Gu, Ji (bib1) 2019; 116 Wu, Wang, Liang, Yao (bib45) 2021; 285 Shen, Zhang, Fang, Ji, Li, Zhao (bib31) 2019; 655 Xu, Xue, Lei, Huang, Zhao, Cheng, Ren, Wang (bib47) 2020; 223 Zheng, Tong, Li, Liu, Hong, Geng, Li, Li, Peng, Qi, Yan, Zhang, Zhao, Zheng, He, Zhang (bib59) 2018; 18 Yan, Ren, Kong, Ye, Liao (bib48) 2020; 272 Fang (bib11) 2015; 25 Sicard, Serra, Rossello (bib34) 2016; 149 Gao, Tie, Xu, Huang, Mao, Zhou, Chang (bib15) 2017; 603 Li, Jacob, Liao, Zhu, Shah, Shen, Bates, Zhang, Zhai (bib21) 2019; 12 Zhang, Zheng, Tong, Shao, Wang, Zhang, Xu, Wang, He, Liu, Ding, Lei, Li, Wang, Zhang, Wang, Cheng, Liu, Shi, Yan, Geng, Hong, Li, Liu, Zheng, Cao, Ding, Gao, Fu, Huo, Liu, Liu, Yang, He, Hao (bib52) 2019; 116 Ling, Qing, Jian, Lishu, Liang, Qian, Wang, Ge, Hong, Qiang, Sen, Zhou, Li (bib22) 2021; 298 Liu, Liu, Xue, Lv, Meng, Yang, Xue, Yu, He (bib23) 2018; 173 Ma, Ban, Wang, Zhang, Yang, He, Li, Shi, Li (bib26) 2021; 276 Wang, Qiu, Cao, Peng, Zhang, Yan, Li (bib39) 2021; 757 Xiao, Ma, Li, Liu (bib46) 2015; 10 Tao, Zhang, Cao, Zhang (bib38) 2017; 17 Zhao, Zhou, Han, Locke (bib58) 2019; 133 Shi, Huang, Li, Ying, Zhang, Hu (bib32) 2020; 20 Yin, Liu, Hu, Liu, Wang, Gao, Xu, Zhang, Su (bib49) 2021; 289 Miao, Che, Zhang, Liu (bib28) 2021; 268 Tang, Li, Wang, Xin, Ren (bib37) 2009; 9 Silver, Reddington, Arnold, Spracklen (bib35) 2018; 13 Liu, Guo, Zeng, Lyu, Wang, Zeren, Yang, Zhang, Zhao, Li, Zhang (bib24) 2021; 801 Du, Li, Wang, Yang, Chen, Wei (bib10) 2021; 288 Chen, Zhu, Liao, Yang, Yue (bib6) 2020; 744 Jin, Holloway (bib18) 2015; 120 Hiemstra, Jones (bib17) 1994; 49 Wang, Qiao, Zhang (bib40) 2020; 254 Li, Jacob, Liao, Shen, Zhang, Bates (bib20) 2019; 116 Li, Zhang, Zheng, Chen, Wu, Guo, Zhang, Zheng, Li, He (bib19) 2018; 18 Diks, Panchenko (bib9) 2006; 30 Sun, Zhou, Wai, Yuan, Xu, Zhou, Qi, Wang (bib36) 2013; 134 Zhu, Liao (bib62) 2016; 121 Bauwens, Compernolle, Stavrakou, Muller, van Gent, Eskes, Levelt, van der A, Veefkind, Vlietinck, Yu, Zehner (bib3) 2020; 47 Chen, Shen, Li, Peng, Cheng, Ma (bib5) 2019; 16 Zhu, Chen, Liao, Yang, Yang, Yue (bib61) 2021; 48 Sicard, De Marco, Agathokleous, Feng, Xu, Paoletti, Rodriguez, Calatayud (bib33) 2020; 735 Zhu, Chen, Liao, Dang (bib60) 2019; 10 Zhao, Chen, Liu, Zhang, Shao, Zhang (bib55) 2021; 270 Fang, Yu (bib12) 2017; 162 Wang, Gao, Wang, Song, Gong, Ji, Wang, Liu, Tang, Huo, Tian, Li, Li, Yang, Chu, Petaja, Kerminen, He, Hao, Kulmala, Wang, Zhang (bib42) 2020; 7 Francis, Mougoue, Panchenko (bib14) 2010; 17 Wang, Xue, Brimblecombe, Lam, Li, Zhang (bib41) 2017; 575 Zhang, Ding, Wang, Chen (bib54) 2017; 21 Ni, Luo, Gao, Gao, Jiang, Huang, Fan, Fu, Chen (bib29) 2020; 20 Wang, Fang (bib44) 2016; 148 Zhai, Jacob, Wang, Shen, Li, Zhang, Gui, Zhao, Liao (bib51) 2019; 19 Schnell, Prather (bib30) 2017; 114 Zhao, Yu, Yin (bib63) 2016; 86 Yue, He, Huang, Yin, Bryan (bib50) 2020; 11 Wang, Bao, Wang, Hu, Shi, Wang, Zhao, Jiang, Zheng, Wu, Russell, Wang, Hao (bib43) 2017; 580 Baek, Brock (bib2) 1992 He, Pan, Tanaka (bib16) 2020; 3 Zhao, Yu, Qin, Yin, Dong, He (bib57) 2019; 10 Broock, Scheinkman, Dechert, LeBaron (bib4) 1996; 15 Dang, Liao, Fu (bib8) 2021; 754 Cheng, Wang, Gong, Li, Yang, Wang (bib7) 2018; 67 Broock (10.1016/j.chemosphere.2022.133813_bib4) 1996; 15 Liu (10.1016/j.chemosphere.2022.133813_bib23) 2018; 173 Zhu (10.1016/j.chemosphere.2022.133813_bib60) 2019; 10 Du (10.1016/j.chemosphere.2022.133813_bib10) 2021; 288 Liu (10.1016/j.chemosphere.2022.133813_bib24) 2021; 801 Yin (10.1016/j.chemosphere.2022.133813_bib49) 2021; 289 Sicard (10.1016/j.chemosphere.2022.133813_bib33) 2020; 735 Zhu (10.1016/j.chemosphere.2022.133813_bib61) 2021; 48 Zheng (10.1016/j.chemosphere.2022.133813_bib59) 2018; 18 He (10.1016/j.chemosphere.2022.133813_bib16) 2020; 3 Sicard (10.1016/j.chemosphere.2022.133813_bib34) 2016; 149 Wang (10.1016/j.chemosphere.2022.133813_bib44) 2016; 148 Zhao (10.1016/j.chemosphere.2022.133813_bib55) 2021; 270 Xiao (10.1016/j.chemosphere.2022.133813_bib46) 2015; 10 Fang (10.1016/j.chemosphere.2022.133813_bib12) 2017; 162 Ma (10.1016/j.chemosphere.2022.133813_bib26) 2021; 276 Wang (10.1016/j.chemosphere.2022.133813_bib43) 2017; 580 Yan (10.1016/j.chemosphere.2022.133813_bib48) 2020; 272 Zhao (10.1016/j.chemosphere.2022.133813_bib63) 2016; 86 Schnell (10.1016/j.chemosphere.2022.133813_bib30) 2017; 114 Francis (10.1016/j.chemosphere.2022.133813_bib14) 2010; 17 Xu (10.1016/j.chemosphere.2022.133813_bib47) 2020; 223 Fang (10.1016/j.chemosphere.2022.133813_bib11) 2015; 25 Wang (10.1016/j.chemosphere.2022.133813_bib40) 2020; 254 Zhang (10.1016/j.chemosphere.2022.133813_bib52) 2019; 116 Zhao (10.1016/j.chemosphere.2022.133813_bib58) 2019; 133 Chen (10.1016/j.chemosphere.2022.133813_bib6) 2020; 744 Zhang (10.1016/j.chemosphere.2022.133813_bib53) 2015; 5 Sun (10.1016/j.chemosphere.2022.133813_bib36) 2013; 134 Bauwens (10.1016/j.chemosphere.2022.133813_bib3) 2020; 47 Zhu (10.1016/j.chemosphere.2022.133813_bib62) 2016; 121 Miao (10.1016/j.chemosphere.2022.133813_bib28) 2021; 268 Shi (10.1016/j.chemosphere.2022.133813_bib32) 2020; 20 Cheng (10.1016/j.chemosphere.2022.133813_bib7) 2018; 67 Li (10.1016/j.chemosphere.2022.133813_bib19) 2018; 18 Ma (10.1016/j.chemosphere.2022.133813_bib27) 2021; 792 Li (10.1016/j.chemosphere.2022.133813_bib20) 2019; 116 Dang (10.1016/j.chemosphere.2022.133813_bib8) 2021; 754 Wang (10.1016/j.chemosphere.2022.133813_bib41) 2017; 575 An (10.1016/j.chemosphere.2022.133813_bib1) 2019; 116 Shen (10.1016/j.chemosphere.2022.133813_bib31) 2019; 655 Silver (10.1016/j.chemosphere.2022.133813_bib35) 2018; 13 Yue (10.1016/j.chemosphere.2022.133813_bib50) 2020; 11 Jin (10.1016/j.chemosphere.2022.133813_bib18) 2015; 120 Wang (10.1016/j.chemosphere.2022.133813_bib39) 2021; 757 Tao (10.1016/j.chemosphere.2022.133813_bib38) 2017; 17 Zhai (10.1016/j.chemosphere.2022.133813_bib51) 2019; 19 Ling (10.1016/j.chemosphere.2022.133813_bib22) 2021; 298 Hiemstra (10.1016/j.chemosphere.2022.133813_bib17) 1994; 49 Wang (10.1016/j.chemosphere.2022.133813_bib42) 2020; 7 Zhao (10.1016/j.chemosphere.2022.133813_bib57) 2019; 10 Wu (10.1016/j.chemosphere.2022.133813_bib45) 2021; 285 Baek (10.1016/j.chemosphere.2022.133813_bib2) 1992 Ni (10.1016/j.chemosphere.2022.133813_bib29) 2020; 20 Diks (10.1016/j.chemosphere.2022.133813_bib9) 2006; 30 Feng (10.1016/j.chemosphere.2022.133813_bib13) 2019; 252 Zhang (10.1016/j.chemosphere.2022.133813_bib54) 2017; 21 Liu (10.1016/j.chemosphere.2022.133813_bib25) 2021; 772 Zhao (10.1016/j.chemosphere.2022.133813_bib56) 2020; 264 Chen (10.1016/j.chemosphere.2022.133813_bib5) 2019; 16 Tang (10.1016/j.chemosphere.2022.133813_bib37) 2009; 9 Gao (10.1016/j.chemosphere.2022.133813_bib15) 2017; 603 Li (10.1016/j.chemosphere.2022.133813_bib21) 2019; 12 |
References_xml | – volume: 270 start-page: 12 year: 2021 ident: bib55 article-title: Coordinated control of PM2.5 and O-3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan publication-title: Chemosphere – volume: 288 start-page: 10 year: 2021 ident: bib10 article-title: Sources of PM2.5 and its responses to emission reduction strategies in the central plains economic region in China: implications for the impacts of COVID-19 publication-title: Environ. Pollut. – volume: 116 start-page: 8657 year: 2019 end-page: 8666 ident: bib1 article-title: Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 792 start-page: 13 year: 2021 ident: bib27 article-title: Sensitivity of PM2.5 and O-3 pollution episodes to meteorological factors over the North China Plain publication-title: Sci. Total Environ. – volume: 20 start-page: 5963 year: 2020 end-page: 5976 ident: bib29 article-title: Spatial-temporal variations and process analysis of O-3 pollution in Hangzhou during the G20 summit publication-title: Atmos. Chem. Phys. – volume: 276 start-page: 9 year: 2021 ident: bib26 article-title: Random forest model based fine scale spatiotemporal O-3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017 publication-title: Environ. Pollut. – volume: 9 start-page: 8813 year: 2009 end-page: 8823 ident: bib37 article-title: Surface ozone trend details and interpretations in Beijing, 2001-2006 publication-title: Atmos. Chem. Phys. – volume: 19 start-page: 11031 year: 2019 end-page: 11041 ident: bib51 article-title: Fine particulate matter (PM2.5) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology publication-title: Atmos. Chem. Phys. – volume: 10 start-page: 15 year: 2019 ident: bib60 article-title: Correlations between PM2.5 and ozone over China and associated underlying reasons publication-title: Atmosphere – volume: 272 start-page: 10 year: 2020 ident: bib48 article-title: The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression publication-title: Appl. Energy – volume: 116 start-page: 24463 year: 2019 end-page: 24469 ident: bib52 article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017 publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 114 start-page: 2854 year: 2017 end-page: 2859 ident: bib30 article-title: Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 801 start-page: 13 year: 2021 ident: bib24 article-title: Photochemical ozone pollution in five Chinese megacities in summer 2018 publication-title: Sci. Total Environ. – volume: 580 start-page: 283 year: 2017 end-page: 296 ident: bib43 article-title: Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes publication-title: Sci. Total Environ. – volume: 10 start-page: 11 year: 2015 ident: bib46 article-title: The impact of winter heating on air pollution in China publication-title: PLoS One – volume: 47 start-page: 9 year: 2020 ident: bib3 article-title: Impact of coronavirus outbreak on NO(2)Pollution assessed using TROPOMI and OMI observations publication-title: Geophys. Res. Lett. – volume: 252 start-page: 13 year: 2019 ident: bib13 article-title: Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan" on air quality improvements from 2013 to 2017 publication-title: J. Environ. Manag. – volume: 162 start-page: 126 year: 2017 end-page: 136 ident: bib12 article-title: Urban agglomeration: an evolving concept of an emerging phenomenon publication-title: Landsc. urban plan. – volume: 134 start-page: 24 year: 2013 end-page: 34 ident: bib36 article-title: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: implication of source contribution publication-title: Atmos. Res. – volume: 17 start-page: 9485 year: 2017 end-page: 9518 ident: bib38 article-title: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China publication-title: Atmos. Chem. Phys. – volume: 15 start-page: 197 year: 1996 end-page: 235 ident: bib4 article-title: A test for independence based on the correlation dimension publication-title: Economet. Rev. – volume: 121 start-page: 1978 year: 2016 end-page: 2001 ident: bib62 article-title: Future ozone air quality and radiative forcing over China owing to future changes in emissions under the Representative Concentration Pathways (RCPs) publication-title: J. Geophys. Res. Atmos. – volume: 7 start-page: 1331 year: 2020 end-page: 1339 ident: bib42 article-title: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017 publication-title: Natl. Sci. Rev. – volume: 20 start-page: 13455 year: 2020 end-page: 13466 ident: bib32 article-title: Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China publication-title: Atmos. Chem. Phys. – volume: 49 start-page: 1639 year: 1994 end-page: 1664 ident: bib17 article-title: Testing for linear and nonlinear Granger causality in the stock price‐volume relation publication-title: J. Finance – volume: 17 start-page: 23 year: 2010 end-page: 38 ident: bib14 article-title: Is there a symmetric nonlinear causal relationship between large and small firms? publication-title: J. Empir. Finance – year: 1992 ident: bib2 article-title: A General Test for Nonlinear Granger Causality: Bivariate Model – volume: 30 start-page: 1647 year: 2006 end-page: 1669 ident: bib9 article-title: A new statistic and practical guidelines for nonparametric Granger causality testing publication-title: J. Econ. Dynam. Control – volume: 772 start-page: 11 year: 2021 ident: bib25 article-title: How to apply O-3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning publication-title: Sci. Total Environ. – volume: 289 start-page: 11 year: 2021 ident: bib49 article-title: Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O-3 in Wuhan, China publication-title: Environ. Pollut. – volume: 86 start-page: 92 year: 2016 end-page: 106 ident: bib63 article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center publication-title: Environ. Int. – volume: 298 start-page: 11 year: 2021 ident: bib22 article-title: Strategies towards PM2.5 attainment for non-compliant cities in China: a case study publication-title: J. Environ. Manag. – volume: 21 start-page: 665 year: 2017 end-page: 678 ident: bib54 article-title: Observational study on salt dust aerosol optical properties using the ground-based and satellite remote sensing publication-title: J. Remote Sens. – volume: 149 start-page: 122 year: 2016 end-page: 144 ident: bib34 article-title: Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012 publication-title: Environ. Res. – volume: 67 start-page: 179 year: 2018 end-page: 190 ident: bib7 article-title: Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China publication-title: J. Environ. Sci. – volume: 116 start-page: 422 year: 2019 end-page: 427 ident: bib20 article-title: Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 12 start-page: 906 year: 2019 end-page: 910 ident: bib21 article-title: A two-pollutant strategy for improving ozone and particulate air quality in China publication-title: Nat. Geosci. – volume: 18 start-page: 5293 year: 2018 end-page: 5306 ident: bib19 article-title: Nitrate-driven urban haze pollution during summertime over the North China Plain publication-title: Atmos. Chem. Phys. – volume: 48 start-page: 11 year: 2021 ident: bib61 article-title: Enhanced PM2.5 decreases and O-3 increases in China during COVID-19 lockdown by aerosol-radiation feedback publication-title: Geophys. Res. Lett. – volume: 25 start-page: 1003 year: 2015 end-page: 1024 ident: bib11 article-title: Important progress and future direction of studies on China's urban agglomerations publication-title: J. Geogr. Sci. – volume: 5 start-page: 12 year: 2015 ident: bib53 article-title: Fine particulate matter (PM2.5) in China at a city level publication-title: Sci. Rep. – volume: 120 start-page: 7229 year: 2015 end-page: 7246 ident: bib18 article-title: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument publication-title: J. Geophys. Res. Atmos. – volume: 268 start-page: 10 year: 2021 ident: bib28 article-title: Relationship between summertime concurring PM2.5 and O-3 pollution and boundary layer height differs between Beijing and Shanghai, China publication-title: Environ. Pollut. – volume: 18 start-page: 14095 year: 2018 end-page: 14111 ident: bib59 article-title: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions publication-title: Atmos. Chem. Phys. – volume: 744 year: 2020 ident: bib6 article-title: Meteorological influences on PM2.5 and O-3 trends and associated health burden since China's clean air actions publication-title: Sci. Total Environ. – volume: 11 start-page: 10 year: 2020 ident: bib50 article-title: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China publication-title: Nat. Commun. – volume: 655 start-page: 13 year: 2019 end-page: 26 ident: bib31 article-title: Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China publication-title: Sci. Total Environ. – volume: 264 start-page: 10 year: 2020 ident: bib56 article-title: PM2.5 and O-3 pollution during 2015-2019 over 367 Chinese cities: spatiotemporal variations, meteorological and topographical impacts publication-title: Environ. Pollut. – volume: 735 start-page: 10 year: 2020 ident: bib33 article-title: Amplified ozone pollution in cities during the COVID-19 lockdown publication-title: Sci. Total Environ. – volume: 10 start-page: 374 year: 2019 end-page: 385 ident: bib57 article-title: Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China publication-title: Atmos. Pollut. Res. – volume: 148 start-page: 148 year: 2016 end-page: 162 ident: bib44 article-title: Spatial-temporal characteristics and determinants of PM2.5 in the bohai rim urban agglomeration publication-title: Chemosphere – volume: 223 start-page: 10 year: 2020 ident: bib47 article-title: Spatiotemporal variation in the impact of meteorological conditions on PM2.5 pollution in China from 2000 to 2017 publication-title: Atmos. Environ. – volume: 575 start-page: 1582 year: 2017 end-page: 1596 ident: bib41 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. – volume: 16 start-page: 17 year: 2019 ident: bib5 article-title: Temporal and spatial features of the correlation between PM2.5 and O-3 concentrations in China publication-title: Int. J. Environ. Res. Publ. Health – volume: 603 start-page: 425 year: 2017 end-page: 433 ident: bib15 article-title: Long-term trend of O-3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors publication-title: Sci. Total Environ. – volume: 285 start-page: 10 year: 2021 ident: bib45 article-title: Exploring common factors influencing PM2.5 and O-3 concentrations in the Pearl River Delta: tradeoffs and synergies publication-title: Environ. Pollut. – volume: 3 start-page: 9 year: 2020 ident: bib16 article-title: The short-term impacts of COVID-19 lockdown on urban air pollution in China publication-title: Nat. Sustain. – volume: 173 start-page: 223 year: 2018 end-page: 230 ident: bib23 article-title: Ground-level ozone pollution and its health impacts in China publication-title: Atmos. Environ. – volume: 754 start-page: 9 year: 2021 ident: bib8 article-title: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017 publication-title: Sci. Total Environ. – volume: 757 start-page: 9 year: 2021 ident: bib39 article-title: Policy-driven changes in the health risk of PM2.5 and O-3 exposure in China during 2013-2018 publication-title: Sci. Total Environ. – volume: 13 start-page: 8 year: 2018 ident: bib35 article-title: Substantial changes in air pollution across China during 2015-2017 publication-title: Environ. Res. Lett. – volume: 254 start-page: 11 year: 2020 ident: bib40 article-title: Modeling PM2.5 and O-3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China publication-title: Chemosphere – volume: 133 start-page: 13 year: 2019 ident: bib58 article-title: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities publication-title: Environ. Int. – volume: 120 start-page: 7229 year: 2015 ident: 10.1016/j.chemosphere.2022.133813_bib18 article-title: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023250 – volume: 18 start-page: 5293 year: 2018 ident: 10.1016/j.chemosphere.2022.133813_bib19 article-title: Nitrate-driven urban haze pollution during summertime over the North China Plain publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-5293-2018 – year: 1992 ident: 10.1016/j.chemosphere.2022.133813_bib2 – volume: 20 start-page: 5963 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib29 article-title: Spatial-temporal variations and process analysis of O-3 pollution in Hangzhou during the G20 summit publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-5963-2020 – volume: 735 start-page: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib33 article-title: Amplified ozone pollution in cities during the COVID-19 lockdown publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139542 – volume: 264 start-page: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib56 article-title: PM2.5 and O-3 pollution during 2015-2019 over 367 Chinese cities: spatiotemporal variations, meteorological and topographical impacts publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114694 – volume: 7 start-page: 1331 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib42 article-title: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwaa032 – volume: 134 start-page: 24 year: 2013 ident: 10.1016/j.chemosphere.2022.133813_bib36 article-title: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: implication of source contribution publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.07.011 – volume: 67 start-page: 179 year: 2018 ident: 10.1016/j.chemosphere.2022.133813_bib7 article-title: Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.08.011 – volume: 772 start-page: 11 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib25 article-title: How to apply O-3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145392 – volume: 15 start-page: 197 year: 1996 ident: 10.1016/j.chemosphere.2022.133813_bib4 article-title: A test for independence based on the correlation dimension publication-title: Economet. Rev. doi: 10.1080/07474939608800353 – volume: 272 start-page: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib48 article-title: The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115246 – volume: 11 start-page: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib50 article-title: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China publication-title: Nat. Commun. doi: 10.1038/s41467-020-15319-4 – volume: 5 start-page: 12 year: 2015 ident: 10.1016/j.chemosphere.2022.133813_bib53 article-title: Fine particulate matter (PM2.5) in China at a city level publication-title: Sci. Rep. – volume: 116 start-page: 24463 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib52 article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017 publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1907956116 – volume: 792 start-page: 13 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib27 article-title: Sensitivity of PM2.5 and O-3 pollution episodes to meteorological factors over the North China Plain publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148474 – volume: 268 start-page: 10 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib28 article-title: Relationship between summertime concurring PM2.5 and O-3 pollution and boundary layer height differs between Beijing and Shanghai, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115775 – volume: 10 start-page: 374 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib57 article-title: Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.08.014 – volume: 48 start-page: 11 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib61 article-title: Enhanced PM2.5 decreases and O-3 increases in China during COVID-19 lockdown by aerosol-radiation feedback publication-title: Geophys. Res. Lett. – volume: 17 start-page: 9485 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib38 article-title: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-17-9485-2017 – volume: 133 start-page: 13 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib58 article-title: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105145 – volume: 580 start-page: 283 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib43 article-title: Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.127 – volume: 25 start-page: 1003 year: 2015 ident: 10.1016/j.chemosphere.2022.133813_bib11 article-title: Important progress and future direction of studies on China's urban agglomerations publication-title: J. Geogr. Sci. doi: 10.1007/s11442-015-1216-5 – volume: 285 start-page: 10 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib45 article-title: Exploring common factors influencing PM2.5 and O-3 concentrations in the Pearl River Delta: tradeoffs and synergies publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117138 – volume: 801 start-page: 13 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib24 article-title: Photochemical ozone pollution in five Chinese megacities in summer 2018 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149603 – volume: 655 start-page: 13 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib31 article-title: Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.105 – volume: 116 start-page: 8657 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib1 article-title: Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1900125116 – volume: 270 start-page: 12 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib55 article-title: Coordinated control of PM2.5 and O-3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129441 – volume: 754 start-page: 9 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib8 article-title: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142394 – volume: 173 start-page: 223 year: 2018 ident: 10.1016/j.chemosphere.2022.133813_bib23 article-title: Ground-level ozone pollution and its health impacts in China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.014 – volume: 9 start-page: 8813 year: 2009 ident: 10.1016/j.chemosphere.2022.133813_bib37 article-title: Surface ozone trend details and interpretations in Beijing, 2001-2006 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-9-8813-2009 – volume: 254 start-page: 11 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib40 article-title: Modeling PM2.5 and O-3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126735 – volume: 121 start-page: 1978 year: 2016 ident: 10.1016/j.chemosphere.2022.133813_bib62 article-title: Future ozone air quality and radiative forcing over China owing to future changes in emissions under the Representative Concentration Pathways (RCPs) publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2015JD023926 – volume: 20 start-page: 13455 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib32 article-title: Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-13455-2020 – volume: 18 start-page: 14095 year: 2018 ident: 10.1016/j.chemosphere.2022.133813_bib59 article-title: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-18-14095-2018 – volume: 49 start-page: 1639 year: 1994 ident: 10.1016/j.chemosphere.2022.133813_bib17 article-title: Testing for linear and nonlinear Granger causality in the stock price‐volume relation publication-title: J. Finance – volume: 114 start-page: 2854 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib30 article-title: Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1614453114 – volume: 289 start-page: 11 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib49 article-title: Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O-3 in Wuhan, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117899 – volume: 744 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib6 article-title: Meteorological influences on PM2.5 and O-3 trends and associated health burden since China's clean air actions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140837 – volume: 148 start-page: 148 year: 2016 ident: 10.1016/j.chemosphere.2022.133813_bib44 article-title: Spatial-temporal characteristics and determinants of PM2.5 in the bohai rim urban agglomeration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.118 – volume: 223 start-page: 10 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib47 article-title: Spatiotemporal variation in the impact of meteorological conditions on PM2.5 pollution in China from 2000 to 2017 publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2019.117215 – volume: 47 start-page: 9 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib3 article-title: Impact of coronavirus outbreak on NO(2)Pollution assessed using TROPOMI and OMI observations publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL087978 – volume: 13 start-page: 8 year: 2018 ident: 10.1016/j.chemosphere.2022.133813_bib35 article-title: Substantial changes in air pollution across China during 2015-2017 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aae718 – volume: 10 start-page: 15 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib60 article-title: Correlations between PM2.5 and ozone over China and associated underlying reasons publication-title: Atmosphere doi: 10.3390/atmos10070352 – volume: 162 start-page: 126 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib12 article-title: Urban agglomeration: an evolving concept of an emerging phenomenon publication-title: Landsc. urban plan. doi: 10.1016/j.landurbplan.2017.02.014 – volume: 298 start-page: 11 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib22 article-title: Strategies towards PM2.5 attainment for non-compliant cities in China: a case study publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.113529 – volume: 149 start-page: 122 year: 2016 ident: 10.1016/j.chemosphere.2022.133813_bib34 article-title: Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012 publication-title: Environ. Res. doi: 10.1016/j.envres.2016.05.014 – volume: 86 start-page: 92 year: 2016 ident: 10.1016/j.chemosphere.2022.133813_bib63 article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center publication-title: Environ. Int. doi: 10.1016/j.envint.2015.11.003 – volume: 17 start-page: 23 year: 2010 ident: 10.1016/j.chemosphere.2022.133813_bib14 article-title: Is there a symmetric nonlinear causal relationship between large and small firms? publication-title: J. Empir. Finance doi: 10.1016/j.jempfin.2009.08.003 – volume: 116 start-page: 422 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib20 article-title: Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1812168116 – volume: 10 start-page: 11 year: 2015 ident: 10.1016/j.chemosphere.2022.133813_bib46 article-title: The impact of winter heating on air pollution in China publication-title: PLoS One – volume: 21 start-page: 665 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib54 article-title: Observational study on salt dust aerosol optical properties using the ground-based and satellite remote sensing publication-title: J. Remote Sens. – volume: 288 start-page: 10 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib10 article-title: Sources of PM2.5 and its responses to emission reduction strategies in the central plains economic region in China: implications for the impacts of COVID-19 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117783 – volume: 16 start-page: 17 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib5 article-title: Temporal and spatial features of the correlation between PM2.5 and O-3 concentrations in China publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph16234824 – volume: 3 start-page: 9 year: 2020 ident: 10.1016/j.chemosphere.2022.133813_bib16 article-title: The short-term impacts of COVID-19 lockdown on urban air pollution in China publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0581-y – volume: 19 start-page: 11031 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib51 article-title: Fine particulate matter (PM2.5) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-11031-2019 – volume: 12 start-page: 906 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib21 article-title: A two-pollutant strategy for improving ozone and particulate air quality in China publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0464-x – volume: 276 start-page: 9 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib26 article-title: Random forest model based fine scale spatiotemporal O-3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.116635 – volume: 30 start-page: 1647 year: 2006 ident: 10.1016/j.chemosphere.2022.133813_bib9 article-title: A new statistic and practical guidelines for nonparametric Granger causality testing publication-title: J. Econ. Dynam. Control doi: 10.1016/j.jedc.2005.08.008 – volume: 757 start-page: 9 year: 2021 ident: 10.1016/j.chemosphere.2022.133813_bib39 article-title: Policy-driven changes in the health risk of PM2.5 and O-3 exposure in China during 2013-2018 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143775 – volume: 252 start-page: 13 year: 2019 ident: 10.1016/j.chemosphere.2022.133813_bib13 article-title: Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan" on air quality improvements from 2013 to 2017 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109603 – volume: 575 start-page: 1582 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib41 article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.081 – volume: 603 start-page: 425 year: 2017 ident: 10.1016/j.chemosphere.2022.133813_bib15 article-title: Long-term trend of O-3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.099 |
SSID | ssj0001659 |
Score | 2.545958 |
Snippet | Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters... Despite China's public commitment to emphasise air pollution investigation and control, trends in PM₂.₅ and ozone concentrations in Chinese urban clusters... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 133813 |
SubjectTerms | air pollution basins China cities data collection Non-linear granger causality testing Ozone photochemical reactions PM2.5 pollution control river deltas rivers Spatiotemporal characteristics summer topographic slope Urban clusters Yangtze River |
Title | Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters |
URI | https://dx.doi.org/10.1016/j.chemosphere.2022.133813 https://www.proquest.com/docview/2626009542 https://www.proquest.com/docview/2636850103 |
Volume | 295 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9Eqe2LtGpRq7JCX3Mm-5lAX-RQri1KoRUOX5bdzS6cnImYu4f60L-9O_nwo9AilDwl7MAyM8z8hsz8BuBjEXxWeKFikSN8wvNAE1MwnxQFZi8fTCZwOPn8Qk4u-ZepmK7AeJiFwbbKPvZ3Mb2N1v2X416bx7ezGc74IhpBANEC3ylOsHOFXj769djmkUnRQWAuEjy9DkePPV5RLzd1g_P7yJhJ6Qgrtoz9LUf9Ea3bFHT2FjZ67EhOuuu9gxVfbcLr8bCybRNenbYc1D-34Op72yndE0_NiXvOy0zqQL6d05EgpipJfV9XnjgcYKx6Ft2GzCqCu7V948nyzpqKuPkSSRWabbg8O_0xniT9GoXEsVwtEmkVDb6g1OTGRLSQOplz7oOMYMKWgjMmhSqldakKvmSMutSHiAIikor53xXsPaxW8R47QLIydUZZxV18pEmNyq2gnhVe2lzZsAv5oDjteo5xXHUx10Mz2bV-onONOtedzneBPojedkQbLxH6NFhHP_MaHRPCS8SPBovqaCn8VWIqXy8bTbHOi-iT03-dQfJ-3JOx93_X-ABv8K1ro9yH1cXd0h9EqLOwh60vH8Layeevk4vfXIn_qg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9wwDBbdla19GVu3se6nC3tNm9ixnUBfytFyXXvHYC0cezG2Y8ONW1Kau4ftr5-VOF076CiMvCUWCMlIn4j0CeBT6V1WOi5DkcNdkheeJrpkLilLzF7O64zjcPJ0JiaX-ec5n2_AeJiFwbbKGPv7mN5F6_jmIFrz4GqxwBlfRCMIIDrgO38Em8hOxUeweXR6NpndBORM8B4F5zxBgSew96fNK5jmR9PiCD-SZlK6j0Vbxu5LU38F7C4LnTyDpxE-kqNew-ew4eod2BoPW9t24PFxR0P98wV8-9o1S0fuqSWxd6mZSePJlynd50TXFWl-NbUjFmcY60ik25JFTXC9tmsdWV8bXRO7XCOvQvsSLk-OL8aTJG5SSCwr5CoRRlLvSkp1oXUADKkVRZ47LwKeMBXPGRNcVsLYVHpXMUZt6nwAAgFMBQhgS_YKRnXQ4zWQrEqtlkbmNjxCp1oWhlPHSidMIY3fhWIwnLKRZhy3XSzV0E_2Xd2yuUKbq97mu0BvRK96ro2HCB0O3lF3Lo4KOeEh4nuDR1XwFP4t0bVr1q2iWOoFAJrTf51B_n5clfHm_9T4CFuTi-m5Oj-dnb2FbfzSd1W-g9Hqeu3eB-SzMh_izf4NFkICag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+characteristics+of+PM2.5+and+ozone+concentrations+in+Chinese+urban+clusters&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Deng%2C+Chuxiong&rft.au=Tian%2C+Si&rft.au=Li%2C+Zhongwu&rft.au=Li%2C+Ke&rft.date=2022-05-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=295&rft.spage=133813&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.133813&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |