Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters

Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by usi...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 295; p. 133813
Main Authors Deng, Chuxiong, Tian, Si, Li, Zhongwu, Li, Ke
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters. [Display omitted] •Spatial-temporal evolution of PM2.5 and ozone pollution was investigated.•The annual mean PM2.5 showed a significant decrease from 2015 to 2020.•Ozone was increased by 2.02 μg m−3 yr−1 in 2015–2020.•The government should pay more attention to collaborative control of air pollution.
AbstractList Despite China's public commitment to emphasise air pollution investigation and control, trends in PM₂.₅ and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM₂.₅ and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM₂.₅ and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM₂.₅ concentrations from 2015 to 2020, with a decline rate of 2.8 μg m⁻³ yr⁻¹. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m⁻³ yr⁻¹ over the 6 years. The annual mean PM₂.₅ concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM₂.₅ was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM₂.₅ reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM₂.₅ and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM₂.₅. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters.
Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters.Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters.
Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters remain unclear. This study quantifies the spatiotemporal variations in PM2.5 and surface ozone at the scale of Chinese urban clusters by using a long-term integrated dataset from 2015 to 2020. Nonlinear Granger causality testing was used to explore the spatial association patterns of PM2.5 and ozone pollution in five megacity cluster regions. The results show a significant downward trend in annual mean PM2.5 concentrations from 2015 to 2020, with a decline rate of 2.8 μg m-3 yr-1. By contrast, surface ozone concentrations increased at a rate of 2.1 μg m-3 yr-1 over the 6 years. The annual mean PM2.5 concentrations in urban clusters show significant spatial clustering characteristics, mainly in Beijing-Tianjin-Hebei (BTH), Fenwei Plain (FWP), Northern slope of Tianshan Mountains urban cluster (NSTM), Sichuan Basin urban cluster (SCB), and Yangtze River Delta (YRD). Surface ozone shows severe summertime pollution and distributional variability, with increased ozone pollution in major urban clusters. The highest increases were observed in BTH, Yangtze River midstream urban cluster (YRMR), YRD, and Pearl River Delta (PRD). Nonlinear Granger causality tests showed that PM2.5 was a nonlinear Granger cause of ozone, further supporting the literature's findings that PM2.5 reduction promoted photochemical reaction rates and stimulated ozone production. The nonlinear test statistic passed the significance test in magnitude and statistical significance. FWP was an exception, with no significant long-term nonlinear causal link between PM2.5 and ozone. This study highlights the challenges of compounded air pollution caused primarily by ozone and secondary PM2.5. These results have implications for the design of synergistic pollution abatement policies for coupled urban clusters. [Display omitted] •Spatial-temporal evolution of PM2.5 and ozone pollution was investigated.•The annual mean PM2.5 showed a significant decrease from 2015 to 2020.•Ozone was increased by 2.02 μg m−3 yr−1 in 2015–2020.•The government should pay more attention to collaborative control of air pollution.
ArticleNumber 133813
Author Li, Zhongwu
Tian, Si
Deng, Chuxiong
Li, Ke
Author_xml – sequence: 1
  givenname: Chuxiong
  surname: Deng
  fullname: Deng, Chuxiong
  email: dcxppd@hunnu.edu.cn
  organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
– sequence: 2
  givenname: Si
  surname: Tian
  fullname: Tian, Si
  email: tiansi1217@163.com
  organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
– sequence: 3
  givenname: Zhongwu
  surname: Li
  fullname: Li, Zhongwu
  email: lzw17002@hunnu.edu.cn
  organization: School of Geographic Sciences, Hunan Normal University, Changsha, Hunan, 410081, PR China
– sequence: 4
  givenname: Ke
  orcidid: 0000-0002-1314-7293
  surname: Li
  fullname: Li, Ke
  email: like@hunnu.edu.cn
  organization: Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education of China), Key Laboratory of Applied Statistics and Data Science, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan, 410081, PR China
BookMark eNqNkEtP4zAURi0EEoWZ_-DZsUnwI3aS1QhVvKQikJjZzMZyb25UV6kdbBeJ-fWklAVi1dXdfOdc6ZyRYx88EvKLs5Izri_XJaxwE9K4woilYEKUXMqGyyMy403dFly0zTGZMVapQiupTslZSmvGJli1M_LvebTZhYybMUQ7UFjZaCFjdCk7SDT09OlBlIpa39Hwf3pOIXhAn-OO84k6T-cr5zEh3cal9RSGbZoE6Qc56e2Q8OfnPSd_b67_zO-KxePt_fxqUYBs6lzoZS16bIWwjbW8Vgx0U1XY67riy05VUmpVd3oJrO6xk1IAw160kldS8AZaeU4u9t4xhpctpmw2LgEOg_UYtskILXWjGGfygKnQjLWqEtO03U8hhpQi9maMbmPjm-HM7NKbtfmS3uzSm336if39jQWXP3JN1dxwkGG-N-AU7tVhNAkcTt07FxGy6YI7wPIO5g-qGA
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_174557
crossref_primary_10_1021_acs_estlett_3c00053
crossref_primary_10_1016_j_atmosenv_2025_121150
crossref_primary_10_1016_j_atmosres_2024_107696
crossref_primary_10_1007_s11356_023_28321_2
crossref_primary_10_1007_s11869_022_01228_6
crossref_primary_10_3390_atmos13111834
crossref_primary_10_1016_j_jhazmat_2024_136047
crossref_primary_10_1016_j_atmosenv_2024_120587
crossref_primary_10_3390_atmos13111839
crossref_primary_10_1016_j_envres_2025_121283
crossref_primary_10_1088_1755_1315_1223_1_012005
crossref_primary_10_1080_09603123_2023_2280157
crossref_primary_10_3390_atmos14010135
crossref_primary_10_1016_j_apr_2023_101838
crossref_primary_10_1016_j_rsase_2024_101359
crossref_primary_10_1016_j_jclepro_2022_134890
crossref_primary_10_1016_j_scs_2024_105689
crossref_primary_10_1007_s10653_022_01381_y
crossref_primary_10_3390_atmos14020292
crossref_primary_10_1016_j_scitotenv_2023_162071
crossref_primary_10_1016_j_atmosenv_2024_120390
crossref_primary_10_1088_1748_9326_ad7869
crossref_primary_10_1007_s00477_024_02705_3
crossref_primary_10_1007_s11270_023_06345_1
crossref_primary_10_1016_j_jenvman_2022_116379
crossref_primary_10_3390_su16177391
crossref_primary_10_1007_s11356_024_35259_6
crossref_primary_10_1016_j_catcom_2022_106581
crossref_primary_10_1016_j_apr_2023_101841
crossref_primary_10_1016_j_envpol_2023_122189
crossref_primary_10_3390_atmos14040609
crossref_primary_10_3390_toxics13020123
crossref_primary_10_1016_j_apr_2023_101888
crossref_primary_10_1007_s11869_023_01466_2
crossref_primary_10_3389_fenvs_2022_984879
crossref_primary_10_1007_s11356_023_27522_z
crossref_primary_10_1016_j_jenvman_2023_117614
crossref_primary_10_3390_atmos15121499
crossref_primary_10_3390_ijerph20053810
crossref_primary_10_1016_j_envpol_2023_121509
crossref_primary_10_3390_rs17030528
Cites_doi 10.1002/2015JD023250
10.5194/acp-18-5293-2018
10.5194/acp-20-5963-2020
10.1016/j.scitotenv.2020.139542
10.1016/j.envpol.2020.114694
10.1093/nsr/nwaa032
10.1016/j.atmosres.2013.07.011
10.1016/j.jes.2017.08.011
10.1016/j.scitotenv.2021.145392
10.1080/07474939608800353
10.1016/j.apenergy.2020.115246
10.1038/s41467-020-15319-4
10.1073/pnas.1907956116
10.1016/j.scitotenv.2021.148474
10.1016/j.envpol.2020.115775
10.1016/j.apr.2018.08.014
10.5194/acp-17-9485-2017
10.1016/j.envint.2019.105145
10.1016/j.scitotenv.2016.12.127
10.1007/s11442-015-1216-5
10.1016/j.envpol.2021.117138
10.1016/j.scitotenv.2021.149603
10.1016/j.scitotenv.2018.11.105
10.1073/pnas.1900125116
10.1016/j.chemosphere.2020.129441
10.1016/j.scitotenv.2020.142394
10.1016/j.atmosenv.2017.11.014
10.5194/acp-9-8813-2009
10.1016/j.chemosphere.2020.126735
10.1002/2015JD023926
10.5194/acp-20-13455-2020
10.5194/acp-18-14095-2018
10.1073/pnas.1614453114
10.1016/j.envpol.2021.117899
10.1016/j.scitotenv.2020.140837
10.1016/j.chemosphere.2015.12.118
10.1016/j.atmosenv.2019.117215
10.1029/2020GL087978
10.1088/1748-9326/aae718
10.3390/atmos10070352
10.1016/j.landurbplan.2017.02.014
10.1016/j.jenvman.2021.113529
10.1016/j.envres.2016.05.014
10.1016/j.envint.2015.11.003
10.1016/j.jempfin.2009.08.003
10.1073/pnas.1812168116
10.1016/j.envpol.2021.117783
10.3390/ijerph16234824
10.1038/s41893-020-0581-y
10.5194/acp-19-11031-2019
10.1038/s41561-019-0464-x
10.1016/j.envpol.2021.116635
10.1016/j.jedc.2005.08.008
10.1016/j.scitotenv.2020.143775
10.1016/j.jenvman.2019.109603
10.1016/j.scitotenv.2016.10.081
10.1016/j.scitotenv.2017.06.099
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.chemosphere.2022.133813
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1298
ExternalDocumentID 10_1016_j_chemosphere_2022_133813
S004565352200306X
GeographicLocations China
Yangtze River
GeographicLocations_xml – name: Yangtze River
– name: China
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
J1W
K-O
KCYFY
KOM
LY3
LY9
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
WUQ
XPP
Y6R
ZCG
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c387t-6b72fe922a8aa1750c6844ef6741bd5433657d6bc07fed332c0ef293143218c93
IEDL.DBID .~1
ISSN 0045-6535
1879-1298
IngestDate Fri Jul 11 07:08:22 EDT 2025
Fri Jul 11 03:32:42 EDT 2025
Thu Apr 24 23:02:28 EDT 2025
Tue Jul 01 02:08:15 EDT 2025
Fri Feb 23 02:39:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ozone
Non-linear granger causality testing
Urban clusters
PM2.5
Spatiotemporal characteristics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-6b72fe922a8aa1750c6844ef6741bd5433657d6bc07fed332c0ef293143218c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1314-7293
PQID 2626009542
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636850103
proquest_miscellaneous_2626009542
crossref_primary_10_1016_j_chemosphere_2022_133813
crossref_citationtrail_10_1016_j_chemosphere_2022_133813
elsevier_sciencedirect_doi_10_1016_j_chemosphere_2022_133813
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Chemosphere (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Feng, Ning, Lei, Sun, Liu, Wang (bib13) 2019; 252
Ma, Shao, Zhang, Dai, Xie (bib27) 2021; 792
Zhang, Cao (bib53) 2015; 5
Zhao, Yin, Yu, Kang, Qin, Dong (bib56) 2020; 264
Liu, Qi, Ni, Dong, Ma, Xue, Zhang, Wang (bib25) 2021; 772
An, Huang, Zhang, Tie, Li, Cao, Zhou, Shi, Han, Gu, Ji (bib1) 2019; 116
Wu, Wang, Liang, Yao (bib45) 2021; 285
Shen, Zhang, Fang, Ji, Li, Zhao (bib31) 2019; 655
Xu, Xue, Lei, Huang, Zhao, Cheng, Ren, Wang (bib47) 2020; 223
Zheng, Tong, Li, Liu, Hong, Geng, Li, Li, Peng, Qi, Yan, Zhang, Zhao, Zheng, He, Zhang (bib59) 2018; 18
Yan, Ren, Kong, Ye, Liao (bib48) 2020; 272
Fang (bib11) 2015; 25
Sicard, Serra, Rossello (bib34) 2016; 149
Gao, Tie, Xu, Huang, Mao, Zhou, Chang (bib15) 2017; 603
Li, Jacob, Liao, Zhu, Shah, Shen, Bates, Zhang, Zhai (bib21) 2019; 12
Zhang, Zheng, Tong, Shao, Wang, Zhang, Xu, Wang, He, Liu, Ding, Lei, Li, Wang, Zhang, Wang, Cheng, Liu, Shi, Yan, Geng, Hong, Li, Liu, Zheng, Cao, Ding, Gao, Fu, Huo, Liu, Liu, Yang, He, Hao (bib52) 2019; 116
Ling, Qing, Jian, Lishu, Liang, Qian, Wang, Ge, Hong, Qiang, Sen, Zhou, Li (bib22) 2021; 298
Liu, Liu, Xue, Lv, Meng, Yang, Xue, Yu, He (bib23) 2018; 173
Ma, Ban, Wang, Zhang, Yang, He, Li, Shi, Li (bib26) 2021; 276
Wang, Qiu, Cao, Peng, Zhang, Yan, Li (bib39) 2021; 757
Xiao, Ma, Li, Liu (bib46) 2015; 10
Tao, Zhang, Cao, Zhang (bib38) 2017; 17
Zhao, Zhou, Han, Locke (bib58) 2019; 133
Shi, Huang, Li, Ying, Zhang, Hu (bib32) 2020; 20
Yin, Liu, Hu, Liu, Wang, Gao, Xu, Zhang, Su (bib49) 2021; 289
Miao, Che, Zhang, Liu (bib28) 2021; 268
Tang, Li, Wang, Xin, Ren (bib37) 2009; 9
Silver, Reddington, Arnold, Spracklen (bib35) 2018; 13
Liu, Guo, Zeng, Lyu, Wang, Zeren, Yang, Zhang, Zhao, Li, Zhang (bib24) 2021; 801
Du, Li, Wang, Yang, Chen, Wei (bib10) 2021; 288
Chen, Zhu, Liao, Yang, Yue (bib6) 2020; 744
Jin, Holloway (bib18) 2015; 120
Hiemstra, Jones (bib17) 1994; 49
Wang, Qiao, Zhang (bib40) 2020; 254
Li, Jacob, Liao, Shen, Zhang, Bates (bib20) 2019; 116
Li, Zhang, Zheng, Chen, Wu, Guo, Zhang, Zheng, Li, He (bib19) 2018; 18
Diks, Panchenko (bib9) 2006; 30
Sun, Zhou, Wai, Yuan, Xu, Zhou, Qi, Wang (bib36) 2013; 134
Zhu, Liao (bib62) 2016; 121
Bauwens, Compernolle, Stavrakou, Muller, van Gent, Eskes, Levelt, van der A, Veefkind, Vlietinck, Yu, Zehner (bib3) 2020; 47
Chen, Shen, Li, Peng, Cheng, Ma (bib5) 2019; 16
Zhu, Chen, Liao, Yang, Yang, Yue (bib61) 2021; 48
Sicard, De Marco, Agathokleous, Feng, Xu, Paoletti, Rodriguez, Calatayud (bib33) 2020; 735
Zhu, Chen, Liao, Dang (bib60) 2019; 10
Zhao, Chen, Liu, Zhang, Shao, Zhang (bib55) 2021; 270
Fang, Yu (bib12) 2017; 162
Wang, Gao, Wang, Song, Gong, Ji, Wang, Liu, Tang, Huo, Tian, Li, Li, Yang, Chu, Petaja, Kerminen, He, Hao, Kulmala, Wang, Zhang (bib42) 2020; 7
Francis, Mougoue, Panchenko (bib14) 2010; 17
Wang, Xue, Brimblecombe, Lam, Li, Zhang (bib41) 2017; 575
Zhang, Ding, Wang, Chen (bib54) 2017; 21
Ni, Luo, Gao, Gao, Jiang, Huang, Fan, Fu, Chen (bib29) 2020; 20
Wang, Fang (bib44) 2016; 148
Zhai, Jacob, Wang, Shen, Li, Zhang, Gui, Zhao, Liao (bib51) 2019; 19
Schnell, Prather (bib30) 2017; 114
Zhao, Yu, Yin (bib63) 2016; 86
Yue, He, Huang, Yin, Bryan (bib50) 2020; 11
Wang, Bao, Wang, Hu, Shi, Wang, Zhao, Jiang, Zheng, Wu, Russell, Wang, Hao (bib43) 2017; 580
Baek, Brock (bib2) 1992
He, Pan, Tanaka (bib16) 2020; 3
Zhao, Yu, Qin, Yin, Dong, He (bib57) 2019; 10
Broock, Scheinkman, Dechert, LeBaron (bib4) 1996; 15
Dang, Liao, Fu (bib8) 2021; 754
Cheng, Wang, Gong, Li, Yang, Wang (bib7) 2018; 67
Broock (10.1016/j.chemosphere.2022.133813_bib4) 1996; 15
Liu (10.1016/j.chemosphere.2022.133813_bib23) 2018; 173
Zhu (10.1016/j.chemosphere.2022.133813_bib60) 2019; 10
Du (10.1016/j.chemosphere.2022.133813_bib10) 2021; 288
Liu (10.1016/j.chemosphere.2022.133813_bib24) 2021; 801
Yin (10.1016/j.chemosphere.2022.133813_bib49) 2021; 289
Sicard (10.1016/j.chemosphere.2022.133813_bib33) 2020; 735
Zhu (10.1016/j.chemosphere.2022.133813_bib61) 2021; 48
Zheng (10.1016/j.chemosphere.2022.133813_bib59) 2018; 18
He (10.1016/j.chemosphere.2022.133813_bib16) 2020; 3
Sicard (10.1016/j.chemosphere.2022.133813_bib34) 2016; 149
Wang (10.1016/j.chemosphere.2022.133813_bib44) 2016; 148
Zhao (10.1016/j.chemosphere.2022.133813_bib55) 2021; 270
Xiao (10.1016/j.chemosphere.2022.133813_bib46) 2015; 10
Fang (10.1016/j.chemosphere.2022.133813_bib12) 2017; 162
Ma (10.1016/j.chemosphere.2022.133813_bib26) 2021; 276
Wang (10.1016/j.chemosphere.2022.133813_bib43) 2017; 580
Yan (10.1016/j.chemosphere.2022.133813_bib48) 2020; 272
Zhao (10.1016/j.chemosphere.2022.133813_bib63) 2016; 86
Schnell (10.1016/j.chemosphere.2022.133813_bib30) 2017; 114
Francis (10.1016/j.chemosphere.2022.133813_bib14) 2010; 17
Xu (10.1016/j.chemosphere.2022.133813_bib47) 2020; 223
Fang (10.1016/j.chemosphere.2022.133813_bib11) 2015; 25
Wang (10.1016/j.chemosphere.2022.133813_bib40) 2020; 254
Zhang (10.1016/j.chemosphere.2022.133813_bib52) 2019; 116
Zhao (10.1016/j.chemosphere.2022.133813_bib58) 2019; 133
Chen (10.1016/j.chemosphere.2022.133813_bib6) 2020; 744
Zhang (10.1016/j.chemosphere.2022.133813_bib53) 2015; 5
Sun (10.1016/j.chemosphere.2022.133813_bib36) 2013; 134
Bauwens (10.1016/j.chemosphere.2022.133813_bib3) 2020; 47
Zhu (10.1016/j.chemosphere.2022.133813_bib62) 2016; 121
Miao (10.1016/j.chemosphere.2022.133813_bib28) 2021; 268
Shi (10.1016/j.chemosphere.2022.133813_bib32) 2020; 20
Cheng (10.1016/j.chemosphere.2022.133813_bib7) 2018; 67
Li (10.1016/j.chemosphere.2022.133813_bib19) 2018; 18
Ma (10.1016/j.chemosphere.2022.133813_bib27) 2021; 792
Li (10.1016/j.chemosphere.2022.133813_bib20) 2019; 116
Dang (10.1016/j.chemosphere.2022.133813_bib8) 2021; 754
Wang (10.1016/j.chemosphere.2022.133813_bib41) 2017; 575
An (10.1016/j.chemosphere.2022.133813_bib1) 2019; 116
Shen (10.1016/j.chemosphere.2022.133813_bib31) 2019; 655
Silver (10.1016/j.chemosphere.2022.133813_bib35) 2018; 13
Yue (10.1016/j.chemosphere.2022.133813_bib50) 2020; 11
Jin (10.1016/j.chemosphere.2022.133813_bib18) 2015; 120
Wang (10.1016/j.chemosphere.2022.133813_bib39) 2021; 757
Tao (10.1016/j.chemosphere.2022.133813_bib38) 2017; 17
Zhai (10.1016/j.chemosphere.2022.133813_bib51) 2019; 19
Ling (10.1016/j.chemosphere.2022.133813_bib22) 2021; 298
Hiemstra (10.1016/j.chemosphere.2022.133813_bib17) 1994; 49
Wang (10.1016/j.chemosphere.2022.133813_bib42) 2020; 7
Zhao (10.1016/j.chemosphere.2022.133813_bib57) 2019; 10
Wu (10.1016/j.chemosphere.2022.133813_bib45) 2021; 285
Baek (10.1016/j.chemosphere.2022.133813_bib2) 1992
Ni (10.1016/j.chemosphere.2022.133813_bib29) 2020; 20
Diks (10.1016/j.chemosphere.2022.133813_bib9) 2006; 30
Feng (10.1016/j.chemosphere.2022.133813_bib13) 2019; 252
Zhang (10.1016/j.chemosphere.2022.133813_bib54) 2017; 21
Liu (10.1016/j.chemosphere.2022.133813_bib25) 2021; 772
Zhao (10.1016/j.chemosphere.2022.133813_bib56) 2020; 264
Chen (10.1016/j.chemosphere.2022.133813_bib5) 2019; 16
Tang (10.1016/j.chemosphere.2022.133813_bib37) 2009; 9
Gao (10.1016/j.chemosphere.2022.133813_bib15) 2017; 603
Li (10.1016/j.chemosphere.2022.133813_bib21) 2019; 12
References_xml – volume: 270
  start-page: 12
  year: 2021
  ident: bib55
  article-title: Coordinated control of PM2.5 and O-3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan
  publication-title: Chemosphere
– volume: 288
  start-page: 10
  year: 2021
  ident: bib10
  article-title: Sources of PM2.5 and its responses to emission reduction strategies in the central plains economic region in China: implications for the impacts of COVID-19
  publication-title: Environ. Pollut.
– volume: 116
  start-page: 8657
  year: 2019
  end-page: 8666
  ident: bib1
  article-title: Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 792
  start-page: 13
  year: 2021
  ident: bib27
  article-title: Sensitivity of PM2.5 and O-3 pollution episodes to meteorological factors over the North China Plain
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 5963
  year: 2020
  end-page: 5976
  ident: bib29
  article-title: Spatial-temporal variations and process analysis of O-3 pollution in Hangzhou during the G20 summit
  publication-title: Atmos. Chem. Phys.
– volume: 276
  start-page: 9
  year: 2021
  ident: bib26
  article-title: Random forest model based fine scale spatiotemporal O-3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017
  publication-title: Environ. Pollut.
– volume: 9
  start-page: 8813
  year: 2009
  end-page: 8823
  ident: bib37
  article-title: Surface ozone trend details and interpretations in Beijing, 2001-2006
  publication-title: Atmos. Chem. Phys.
– volume: 19
  start-page: 11031
  year: 2019
  end-page: 11041
  ident: bib51
  article-title: Fine particulate matter (PM2.5) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology
  publication-title: Atmos. Chem. Phys.
– volume: 10
  start-page: 15
  year: 2019
  ident: bib60
  article-title: Correlations between PM2.5 and ozone over China and associated underlying reasons
  publication-title: Atmosphere
– volume: 272
  start-page: 10
  year: 2020
  ident: bib48
  article-title: The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression
  publication-title: Appl. Energy
– volume: 116
  start-page: 24463
  year: 2019
  end-page: 24469
  ident: bib52
  article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 114
  start-page: 2854
  year: 2017
  end-page: 2859
  ident: bib30
  article-title: Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 801
  start-page: 13
  year: 2021
  ident: bib24
  article-title: Photochemical ozone pollution in five Chinese megacities in summer 2018
  publication-title: Sci. Total Environ.
– volume: 580
  start-page: 283
  year: 2017
  end-page: 296
  ident: bib43
  article-title: Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 11
  year: 2015
  ident: bib46
  article-title: The impact of winter heating on air pollution in China
  publication-title: PLoS One
– volume: 47
  start-page: 9
  year: 2020
  ident: bib3
  article-title: Impact of coronavirus outbreak on NO(2)Pollution assessed using TROPOMI and OMI observations
  publication-title: Geophys. Res. Lett.
– volume: 252
  start-page: 13
  year: 2019
  ident: bib13
  article-title: Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan" on air quality improvements from 2013 to 2017
  publication-title: J. Environ. Manag.
– volume: 162
  start-page: 126
  year: 2017
  end-page: 136
  ident: bib12
  article-title: Urban agglomeration: an evolving concept of an emerging phenomenon
  publication-title: Landsc. urban plan.
– volume: 134
  start-page: 24
  year: 2013
  end-page: 34
  ident: bib36
  article-title: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: implication of source contribution
  publication-title: Atmos. Res.
– volume: 17
  start-page: 9485
  year: 2017
  end-page: 9518
  ident: bib38
  article-title: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China
  publication-title: Atmos. Chem. Phys.
– volume: 15
  start-page: 197
  year: 1996
  end-page: 235
  ident: bib4
  article-title: A test for independence based on the correlation dimension
  publication-title: Economet. Rev.
– volume: 121
  start-page: 1978
  year: 2016
  end-page: 2001
  ident: bib62
  article-title: Future ozone air quality and radiative forcing over China owing to future changes in emissions under the Representative Concentration Pathways (RCPs)
  publication-title: J. Geophys. Res. Atmos.
– volume: 7
  start-page: 1331
  year: 2020
  end-page: 1339
  ident: bib42
  article-title: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017
  publication-title: Natl. Sci. Rev.
– volume: 20
  start-page: 13455
  year: 2020
  end-page: 13466
  ident: bib32
  article-title: Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China
  publication-title: Atmos. Chem. Phys.
– volume: 49
  start-page: 1639
  year: 1994
  end-page: 1664
  ident: bib17
  article-title: Testing for linear and nonlinear Granger causality in the stock price‐volume relation
  publication-title: J. Finance
– volume: 17
  start-page: 23
  year: 2010
  end-page: 38
  ident: bib14
  article-title: Is there a symmetric nonlinear causal relationship between large and small firms?
  publication-title: J. Empir. Finance
– year: 1992
  ident: bib2
  article-title: A General Test for Nonlinear Granger Causality: Bivariate Model
– volume: 30
  start-page: 1647
  year: 2006
  end-page: 1669
  ident: bib9
  article-title: A new statistic and practical guidelines for nonparametric Granger causality testing
  publication-title: J. Econ. Dynam. Control
– volume: 772
  start-page: 11
  year: 2021
  ident: bib25
  article-title: How to apply O-3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning
  publication-title: Sci. Total Environ.
– volume: 289
  start-page: 11
  year: 2021
  ident: bib49
  article-title: Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O-3 in Wuhan, China
  publication-title: Environ. Pollut.
– volume: 86
  start-page: 92
  year: 2016
  end-page: 106
  ident: bib63
  article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center
  publication-title: Environ. Int.
– volume: 298
  start-page: 11
  year: 2021
  ident: bib22
  article-title: Strategies towards PM2.5 attainment for non-compliant cities in China: a case study
  publication-title: J. Environ. Manag.
– volume: 21
  start-page: 665
  year: 2017
  end-page: 678
  ident: bib54
  article-title: Observational study on salt dust aerosol optical properties using the ground-based and satellite remote sensing
  publication-title: J. Remote Sens.
– volume: 149
  start-page: 122
  year: 2016
  end-page: 144
  ident: bib34
  article-title: Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012
  publication-title: Environ. Res.
– volume: 67
  start-page: 179
  year: 2018
  end-page: 190
  ident: bib7
  article-title: Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China
  publication-title: J. Environ. Sci.
– volume: 116
  start-page: 422
  year: 2019
  end-page: 427
  ident: bib20
  article-title: Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 12
  start-page: 906
  year: 2019
  end-page: 910
  ident: bib21
  article-title: A two-pollutant strategy for improving ozone and particulate air quality in China
  publication-title: Nat. Geosci.
– volume: 18
  start-page: 5293
  year: 2018
  end-page: 5306
  ident: bib19
  article-title: Nitrate-driven urban haze pollution during summertime over the North China Plain
  publication-title: Atmos. Chem. Phys.
– volume: 48
  start-page: 11
  year: 2021
  ident: bib61
  article-title: Enhanced PM2.5 decreases and O-3 increases in China during COVID-19 lockdown by aerosol-radiation feedback
  publication-title: Geophys. Res. Lett.
– volume: 25
  start-page: 1003
  year: 2015
  end-page: 1024
  ident: bib11
  article-title: Important progress and future direction of studies on China's urban agglomerations
  publication-title: J. Geogr. Sci.
– volume: 5
  start-page: 12
  year: 2015
  ident: bib53
  article-title: Fine particulate matter (PM2.5) in China at a city level
  publication-title: Sci. Rep.
– volume: 120
  start-page: 7229
  year: 2015
  end-page: 7246
  ident: bib18
  article-title: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument
  publication-title: J. Geophys. Res. Atmos.
– volume: 268
  start-page: 10
  year: 2021
  ident: bib28
  article-title: Relationship between summertime concurring PM2.5 and O-3 pollution and boundary layer height differs between Beijing and Shanghai, China
  publication-title: Environ. Pollut.
– volume: 18
  start-page: 14095
  year: 2018
  end-page: 14111
  ident: bib59
  article-title: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions
  publication-title: Atmos. Chem. Phys.
– volume: 744
  year: 2020
  ident: bib6
  article-title: Meteorological influences on PM2.5 and O-3 trends and associated health burden since China's clean air actions
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 10
  year: 2020
  ident: bib50
  article-title: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China
  publication-title: Nat. Commun.
– volume: 655
  start-page: 13
  year: 2019
  end-page: 26
  ident: bib31
  article-title: Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China
  publication-title: Sci. Total Environ.
– volume: 264
  start-page: 10
  year: 2020
  ident: bib56
  article-title: PM2.5 and O-3 pollution during 2015-2019 over 367 Chinese cities: spatiotemporal variations, meteorological and topographical impacts
  publication-title: Environ. Pollut.
– volume: 735
  start-page: 10
  year: 2020
  ident: bib33
  article-title: Amplified ozone pollution in cities during the COVID-19 lockdown
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 374
  year: 2019
  end-page: 385
  ident: bib57
  article-title: Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China
  publication-title: Atmos. Pollut. Res.
– volume: 148
  start-page: 148
  year: 2016
  end-page: 162
  ident: bib44
  article-title: Spatial-temporal characteristics and determinants of PM2.5 in the bohai rim urban agglomeration
  publication-title: Chemosphere
– volume: 223
  start-page: 10
  year: 2020
  ident: bib47
  article-title: Spatiotemporal variation in the impact of meteorological conditions on PM2.5 pollution in China from 2000 to 2017
  publication-title: Atmos. Environ.
– volume: 575
  start-page: 1582
  year: 2017
  end-page: 1596
  ident: bib41
  article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects
  publication-title: Sci. Total Environ.
– volume: 16
  start-page: 17
  year: 2019
  ident: bib5
  article-title: Temporal and spatial features of the correlation between PM2.5 and O-3 concentrations in China
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 603
  start-page: 425
  year: 2017
  end-page: 433
  ident: bib15
  article-title: Long-term trend of O-3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors
  publication-title: Sci. Total Environ.
– volume: 285
  start-page: 10
  year: 2021
  ident: bib45
  article-title: Exploring common factors influencing PM2.5 and O-3 concentrations in the Pearl River Delta: tradeoffs and synergies
  publication-title: Environ. Pollut.
– volume: 3
  start-page: 9
  year: 2020
  ident: bib16
  article-title: The short-term impacts of COVID-19 lockdown on urban air pollution in China
  publication-title: Nat. Sustain.
– volume: 173
  start-page: 223
  year: 2018
  end-page: 230
  ident: bib23
  article-title: Ground-level ozone pollution and its health impacts in China
  publication-title: Atmos. Environ.
– volume: 754
  start-page: 9
  year: 2021
  ident: bib8
  article-title: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017
  publication-title: Sci. Total Environ.
– volume: 757
  start-page: 9
  year: 2021
  ident: bib39
  article-title: Policy-driven changes in the health risk of PM2.5 and O-3 exposure in China during 2013-2018
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 8
  year: 2018
  ident: bib35
  article-title: Substantial changes in air pollution across China during 2015-2017
  publication-title: Environ. Res. Lett.
– volume: 254
  start-page: 11
  year: 2020
  ident: bib40
  article-title: Modeling PM2.5 and O-3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China
  publication-title: Chemosphere
– volume: 133
  start-page: 13
  year: 2019
  ident: bib58
  article-title: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities
  publication-title: Environ. Int.
– volume: 120
  start-page: 7229
  year: 2015
  ident: 10.1016/j.chemosphere.2022.133813_bib18
  article-title: Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD023250
– volume: 18
  start-page: 5293
  year: 2018
  ident: 10.1016/j.chemosphere.2022.133813_bib19
  article-title: Nitrate-driven urban haze pollution during summertime over the North China Plain
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-5293-2018
– year: 1992
  ident: 10.1016/j.chemosphere.2022.133813_bib2
– volume: 20
  start-page: 5963
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib29
  article-title: Spatial-temporal variations and process analysis of O-3 pollution in Hangzhou during the G20 summit
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-5963-2020
– volume: 735
  start-page: 10
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib33
  article-title: Amplified ozone pollution in cities during the COVID-19 lockdown
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139542
– volume: 264
  start-page: 10
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib56
  article-title: PM2.5 and O-3 pollution during 2015-2019 over 367 Chinese cities: spatiotemporal variations, meteorological and topographical impacts
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114694
– volume: 7
  start-page: 1331
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib42
  article-title: Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwaa032
– volume: 134
  start-page: 24
  year: 2013
  ident: 10.1016/j.chemosphere.2022.133813_bib36
  article-title: Simultaneous measurement of particulate and gaseous pollutants in an urban city in North China Plain during the heating period: implication of source contribution
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.07.011
– volume: 67
  start-page: 179
  year: 2018
  ident: 10.1016/j.chemosphere.2022.133813_bib7
  article-title: Regionalization based on spatial and seasonal variation in ground-level ozone concentrations across China
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2017.08.011
– volume: 772
  start-page: 11
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib25
  article-title: How to apply O-3 and PM2.5 collaborative control to practical management in China: a study based on meta-analysis and machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.145392
– volume: 15
  start-page: 197
  year: 1996
  ident: 10.1016/j.chemosphere.2022.133813_bib4
  article-title: A test for independence based on the correlation dimension
  publication-title: Economet. Rev.
  doi: 10.1080/07474939608800353
– volume: 272
  start-page: 10
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib48
  article-title: The heterogeneous effects of socioeconomic determinants on PM2.5 concentrations using a two-step panel quantile regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115246
– volume: 11
  start-page: 10
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib50
  article-title: Stronger policy required to substantially reduce deaths from PM2.5 pollution in China
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15319-4
– volume: 5
  start-page: 12
  year: 2015
  ident: 10.1016/j.chemosphere.2022.133813_bib53
  article-title: Fine particulate matter (PM2.5) in China at a city level
  publication-title: Sci. Rep.
– volume: 116
  start-page: 24463
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib52
  article-title: Drivers of improved PM2.5 air quality in China from 2013 to 2017
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1907956116
– volume: 792
  start-page: 13
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib27
  article-title: Sensitivity of PM2.5 and O-3 pollution episodes to meteorological factors over the North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148474
– volume: 268
  start-page: 10
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib28
  article-title: Relationship between summertime concurring PM2.5 and O-3 pollution and boundary layer height differs between Beijing and Shanghai, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115775
– volume: 10
  start-page: 374
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib57
  article-title: Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2018.08.014
– volume: 48
  start-page: 11
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib61
  article-title: Enhanced PM2.5 decreases and O-3 increases in China during COVID-19 lockdown by aerosol-radiation feedback
  publication-title: Geophys. Res. Lett.
– volume: 17
  start-page: 9485
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib38
  article-title: A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-17-9485-2017
– volume: 133
  start-page: 13
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib58
  article-title: Spatiotemporal variation in PM2.5 concentrations and their relationship with socioeconomic factors in China's major cities
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105145
– volume: 580
  start-page: 283
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib43
  article-title: Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.127
– volume: 25
  start-page: 1003
  year: 2015
  ident: 10.1016/j.chemosphere.2022.133813_bib11
  article-title: Important progress and future direction of studies on China's urban agglomerations
  publication-title: J. Geogr. Sci.
  doi: 10.1007/s11442-015-1216-5
– volume: 285
  start-page: 10
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib45
  article-title: Exploring common factors influencing PM2.5 and O-3 concentrations in the Pearl River Delta: tradeoffs and synergies
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117138
– volume: 801
  start-page: 13
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib24
  article-title: Photochemical ozone pollution in five Chinese megacities in summer 2018
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149603
– volume: 655
  start-page: 13
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib31
  article-title: Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.105
– volume: 116
  start-page: 8657
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib1
  article-title: Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1900125116
– volume: 270
  start-page: 12
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib55
  article-title: Coordinated control of PM2.5 and O-3 is urgently needed in China after implementation of the "Air pollution prevention and control action plan
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129441
– volume: 754
  start-page: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib8
  article-title: Quantifying the anthropogenic and meteorological influences on summertime surface ozone in China over 2012-2017
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142394
– volume: 173
  start-page: 223
  year: 2018
  ident: 10.1016/j.chemosphere.2022.133813_bib23
  article-title: Ground-level ozone pollution and its health impacts in China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.11.014
– volume: 9
  start-page: 8813
  year: 2009
  ident: 10.1016/j.chemosphere.2022.133813_bib37
  article-title: Surface ozone trend details and interpretations in Beijing, 2001-2006
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-9-8813-2009
– volume: 254
  start-page: 11
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib40
  article-title: Modeling PM2.5 and O-3 with aerosol feedbacks using WRF/Chem over the Sichuan Basin, southwestern China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126735
– volume: 121
  start-page: 1978
  year: 2016
  ident: 10.1016/j.chemosphere.2022.133813_bib62
  article-title: Future ozone air quality and radiative forcing over China owing to future changes in emissions under the Representative Concentration Pathways (RCPs)
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2015JD023926
– volume: 20
  start-page: 13455
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib32
  article-title: Sensitivity analysis of the surface ozone and fine particulate matter to meteorological parameters in China
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-13455-2020
– volume: 18
  start-page: 14095
  year: 2018
  ident: 10.1016/j.chemosphere.2022.133813_bib59
  article-title: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-14095-2018
– volume: 49
  start-page: 1639
  year: 1994
  ident: 10.1016/j.chemosphere.2022.133813_bib17
  article-title: Testing for linear and nonlinear Granger causality in the stock price‐volume relation
  publication-title: J. Finance
– volume: 114
  start-page: 2854
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib30
  article-title: Co-occurrence of extremes in surface ozone, particulate matter, and temperature over eastern North America
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1614453114
– volume: 289
  start-page: 11
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib49
  article-title: Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O-3 in Wuhan, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117899
– volume: 744
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib6
  article-title: Meteorological influences on PM2.5 and O-3 trends and associated health burden since China's clean air actions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140837
– volume: 148
  start-page: 148
  year: 2016
  ident: 10.1016/j.chemosphere.2022.133813_bib44
  article-title: Spatial-temporal characteristics and determinants of PM2.5 in the bohai rim urban agglomeration
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.12.118
– volume: 223
  start-page: 10
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib47
  article-title: Spatiotemporal variation in the impact of meteorological conditions on PM2.5 pollution in China from 2000 to 2017
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2019.117215
– volume: 47
  start-page: 9
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib3
  article-title: Impact of coronavirus outbreak on NO(2)Pollution assessed using TROPOMI and OMI observations
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL087978
– volume: 13
  start-page: 8
  year: 2018
  ident: 10.1016/j.chemosphere.2022.133813_bib35
  article-title: Substantial changes in air pollution across China during 2015-2017
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aae718
– volume: 10
  start-page: 15
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib60
  article-title: Correlations between PM2.5 and ozone over China and associated underlying reasons
  publication-title: Atmosphere
  doi: 10.3390/atmos10070352
– volume: 162
  start-page: 126
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib12
  article-title: Urban agglomeration: an evolving concept of an emerging phenomenon
  publication-title: Landsc. urban plan.
  doi: 10.1016/j.landurbplan.2017.02.014
– volume: 298
  start-page: 11
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib22
  article-title: Strategies towards PM2.5 attainment for non-compliant cities in China: a case study
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113529
– volume: 149
  start-page: 122
  year: 2016
  ident: 10.1016/j.chemosphere.2022.133813_bib34
  article-title: Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999-2012
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2016.05.014
– volume: 86
  start-page: 92
  year: 2016
  ident: 10.1016/j.chemosphere.2022.133813_bib63
  article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.11.003
– volume: 17
  start-page: 23
  year: 2010
  ident: 10.1016/j.chemosphere.2022.133813_bib14
  article-title: Is there a symmetric nonlinear causal relationship between large and small firms?
  publication-title: J. Empir. Finance
  doi: 10.1016/j.jempfin.2009.08.003
– volume: 116
  start-page: 422
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib20
  article-title: Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1812168116
– volume: 10
  start-page: 11
  year: 2015
  ident: 10.1016/j.chemosphere.2022.133813_bib46
  article-title: The impact of winter heating on air pollution in China
  publication-title: PLoS One
– volume: 21
  start-page: 665
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib54
  article-title: Observational study on salt dust aerosol optical properties using the ground-based and satellite remote sensing
  publication-title: J. Remote Sens.
– volume: 288
  start-page: 10
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib10
  article-title: Sources of PM2.5 and its responses to emission reduction strategies in the central plains economic region in China: implications for the impacts of COVID-19
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117783
– volume: 16
  start-page: 17
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib5
  article-title: Temporal and spatial features of the correlation between PM2.5 and O-3 concentrations in China
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph16234824
– volume: 3
  start-page: 9
  year: 2020
  ident: 10.1016/j.chemosphere.2022.133813_bib16
  article-title: The short-term impacts of COVID-19 lockdown on urban air pollution in China
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0581-y
– volume: 19
  start-page: 11031
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib51
  article-title: Fine particulate matter (PM2.5) trends in China, 2013-2018: separating contributions from anthropogenic emissions and meteorology
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-11031-2019
– volume: 12
  start-page: 906
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib21
  article-title: A two-pollutant strategy for improving ozone and particulate air quality in China
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0464-x
– volume: 276
  start-page: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib26
  article-title: Random forest model based fine scale spatiotemporal O-3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.116635
– volume: 30
  start-page: 1647
  year: 2006
  ident: 10.1016/j.chemosphere.2022.133813_bib9
  article-title: A new statistic and practical guidelines for nonparametric Granger causality testing
  publication-title: J. Econ. Dynam. Control
  doi: 10.1016/j.jedc.2005.08.008
– volume: 757
  start-page: 9
  year: 2021
  ident: 10.1016/j.chemosphere.2022.133813_bib39
  article-title: Policy-driven changes in the health risk of PM2.5 and O-3 exposure in China during 2013-2018
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143775
– volume: 252
  start-page: 13
  year: 2019
  ident: 10.1016/j.chemosphere.2022.133813_bib13
  article-title: Defending blue sky in China: effectiveness of the "air pollution prevention and control action plan" on air quality improvements from 2013 to 2017
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.109603
– volume: 575
  start-page: 1582
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib41
  article-title: Ozone pollution in China: a review of concentrations, meteorological influences, chemical precursors, and effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.10.081
– volume: 603
  start-page: 425
  year: 2017
  ident: 10.1016/j.chemosphere.2022.133813_bib15
  article-title: Long-term trend of O-3 in a mega City (Shanghai), China: characteristics, causes, and interactions with precursors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.06.099
SSID ssj0001659
Score 2.545958
Snippet Despite China's public commitment to emphasise air pollution investigation and control, trends in PM2.5 and ozone concentrations in Chinese urban clusters...
Despite China's public commitment to emphasise air pollution investigation and control, trends in PM₂.₅ and ozone concentrations in Chinese urban clusters...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 133813
SubjectTerms air pollution
basins
China
cities
data collection
Non-linear granger causality testing
Ozone
photochemical reactions
PM2.5
pollution control
river deltas
rivers
Spatiotemporal characteristics
summer
topographic slope
Urban clusters
Yangtze River
Title Spatiotemporal characteristics of PM2.5 and ozone concentrations in Chinese urban clusters
URI https://dx.doi.org/10.1016/j.chemosphere.2022.133813
https://www.proquest.com/docview/2626009542
https://www.proquest.com/docview/2636850103
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9Eqe2LtGpRq7JCX3Mm-5lAX-RQri1KoRUOX5bdzS6cnImYu4f60L-9O_nwo9AilDwl7MAyM8z8hsz8BuBjEXxWeKFikSN8wvNAE1MwnxQFZi8fTCZwOPn8Qk4u-ZepmK7AeJiFwbbKPvZ3Mb2N1v2X416bx7ezGc74IhpBANEC3ylOsHOFXj769djmkUnRQWAuEjy9DkePPV5RLzd1g_P7yJhJ6Qgrtoz9LUf9Ea3bFHT2FjZ67EhOuuu9gxVfbcLr8bCybRNenbYc1D-34Op72yndE0_NiXvOy0zqQL6d05EgpipJfV9XnjgcYKx6Ft2GzCqCu7V948nyzpqKuPkSSRWabbg8O_0xniT9GoXEsVwtEmkVDb6g1OTGRLSQOplz7oOMYMKWgjMmhSqldakKvmSMutSHiAIikor53xXsPaxW8R47QLIydUZZxV18pEmNyq2gnhVe2lzZsAv5oDjteo5xXHUx10Mz2bV-onONOtedzneBPojedkQbLxH6NFhHP_MaHRPCS8SPBovqaCn8VWIqXy8bTbHOi-iT03-dQfJ-3JOx93_X-ABv8K1ro9yH1cXd0h9EqLOwh60vH8Layeevk4vfXIn_qg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9wwDBbdla19GVu3se6nC3tNm9ixnUBfytFyXXvHYC0cezG2Y8ONW1Kau4ftr5-VOF076CiMvCUWCMlIn4j0CeBT6V1WOi5DkcNdkheeJrpkLilLzF7O64zjcPJ0JiaX-ec5n2_AeJiFwbbKGPv7mN5F6_jmIFrz4GqxwBlfRCMIIDrgO38Em8hOxUeweXR6NpndBORM8B4F5zxBgSew96fNK5jmR9PiCD-SZlK6j0Vbxu5LU38F7C4LnTyDpxE-kqNew-ew4eod2BoPW9t24PFxR0P98wV8-9o1S0fuqSWxd6mZSePJlynd50TXFWl-NbUjFmcY60ik25JFTXC9tmsdWV8bXRO7XCOvQvsSLk-OL8aTJG5SSCwr5CoRRlLvSkp1oXUADKkVRZ47LwKeMBXPGRNcVsLYVHpXMUZt6nwAAgFMBQhgS_YKRnXQ4zWQrEqtlkbmNjxCp1oWhlPHSidMIY3fhWIwnLKRZhy3XSzV0E_2Xd2yuUKbq97mu0BvRK96ro2HCB0O3lF3Lo4KOeEh4nuDR1XwFP4t0bVr1q2iWOoFAJrTf51B_n5clfHm_9T4CFuTi-m5Oj-dnb2FbfzSd1W-g9Hqeu3eB-SzMh_izf4NFkICag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+characteristics+of+PM2.5+and+ozone+concentrations+in+Chinese+urban+clusters&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Deng%2C+Chuxiong&rft.au=Tian%2C+Si&rft.au=Li%2C+Zhongwu&rft.au=Li%2C+Ke&rft.date=2022-05-01&rft.issn=1879-1298&rft.eissn=1879-1298&rft.volume=295&rft.spage=133813&rft_id=info:doi/10.1016%2Fj.chemosphere.2022.133813&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon