Hydrate seeding effect on the metastability of CH4 hydrate
Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH 4 hydrate. To verify the crystal structure of CH 4 hydrate formed from the CP hydrate seeds, the hyd...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 37; no. 2; pp. 341 - 349 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2020
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-019-0451-3 |
Cover
Abstract | Cyclopentane (CP) hydrate seeds can lead to nucleation of CH
4
hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH
4
hydrate. To verify the crystal structure of CH
4
hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH
4
hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH
4
hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters. |
---|---|
AbstractList | Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters. KCI Citation Count: 8 Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH 4 hydrate. To verify the crystal structure of CH 4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH 4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH 4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters. Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters. |
Author | Ahn, Yun-Ho Baek, Seungjun Lee, Wonhyeong Lee, Jae W. Min, Juwon Kang, Dong Woo |
Author_xml | – sequence: 1 givenname: Seungjun surname: Baek fullname: Baek, Seungjun organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 2 givenname: Wonhyeong surname: Lee fullname: Lee, Wonhyeong organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 3 givenname: Juwon surname: Min fullname: Min, Juwon organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 4 givenname: Yun-Ho surname: Ahn fullname: Ahn, Yun-Ho organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 5 givenname: Dong Woo surname: Kang fullname: Kang, Dong Woo organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 6 givenname: Jae W. surname: Lee fullname: Lee, Jae W. email: jaewlee@kaist.ac.kr organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002553275$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnjysTjZfW2-lqBUKgtRzyGazbfqR1CQ99N-76wqCoKf3MM8zM7wjNHDeGYSuMdxhAHEfMS4xzQFPcqAM5-QMDfFEsFwUBQzQEArGc4wxu0CjGDcAjPEChuhhfqqDSiaLxtTWrTLTNEanzLssrU22N0nFpCq7s-mU-SabzWm27pVLdN6oXTRX3zlG70-Py9k8X7w-v8ymi1yTUqScAwVGhdCsoaxWtSCVqiaU17zEVV0CIUKR2lRl044MsKoiosUKDRg0GE3G6Lbf60Ijt9pKr-xXrrzcBjl9W75IzikRJWnZm549BP9xNDHJjT8G174nC0LLghNBOgr3lA4-xmAaeQh2r8JJYpBdnbKvU7Z1yq5O2Tnil6NtUsl6l4Kyu3_Nojdje8WtTPj56W_pE-tqiS8 |
CitedBy_id | crossref_primary_10_3390_cryst14030243 crossref_primary_10_1016_j_cej_2021_128512 crossref_primary_10_1016_j_energy_2024_130631 crossref_primary_10_1021_acs_jpcc_9b11459 crossref_primary_10_1016_j_fuel_2024_132118 crossref_primary_10_1039_D4GC00390J crossref_primary_10_1016_j_rser_2023_113217 crossref_primary_10_1021_acs_energyfuels_4c01206 crossref_primary_10_1021_acs_energyfuels_4c05572 crossref_primary_10_1021_acssuschemeng_1c00807 crossref_primary_10_1016_j_apenergy_2024_124367 crossref_primary_10_1016_j_apenergy_2024_123987 crossref_primary_10_3390_molecules28093731 crossref_primary_10_1007_s11814_024_00116_2 crossref_primary_10_1016_j_ces_2021_117319 crossref_primary_10_1016_j_jcou_2022_102005 crossref_primary_10_1021_acs_energyfuels_3c01362 crossref_primary_10_1007_s11814_022_1301_2 |
Cites_doi | 10.1016/j.ensm.2019.06.007 10.1016/j.ces.2013.06.058 10.1016/j.jcrysgro.2016.06.023 10.1021/acs.energyfuels.5b01246 10.1021/jp907796d 10.1021/la3048714 10.1016/S0022-0248(02)02461-2 10.1021/acs.langmuir.7b03901 10.1016/j.jcis.2009.09.052 10.1021/ie070627r 10.1021/ja0655791 10.1039/C7CE00770A 10.1016/0921-4526(93)90108-I 10.5194/acp-13-4451-2013 10.1080/10916466.2012.656872 10.1007/s11814-016-0172-9 10.1021/acs.jpcc.9b04125 10.1016/S0022-0248(02)01134-X 10.1038/nature03457 10.1021/j100895a017 10.1016/0001-8686(93)80012-Z 10.1021/acs.energyfuels.8b00795 10.1021/la101309j 10.1016/S0378-3812(96)03229-3 10.1007/s11814-017-0153-7 10.1021/acs.energyfuels.5b00768 10.1007/s11814-016-0318-9 10.1016/S0022-0248(02)01576-2 10.1039/C5RA08335D 10.1016/j.apenergy.2017.05.108 10.1016/S0378-3812(97)00164-7 10.1021/acs.energyfuels.8b03210 10.1126/science.1174010 10.1021/ef900122n 10.1021/la00035a073 10.1039/C4CE01625D 10.1016/B978-075064682-6/50012-3 |
ContentType | Journal Article |
Copyright | The Korean Institute of Chemical Engineers 2020 2020© The Korean Institute of Chemical Engineers 2020 |
Copyright_xml | – notice: The Korean Institute of Chemical Engineers 2020 – notice: 2020© The Korean Institute of Chemical Engineers 2020 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-019-0451-3 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 349 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6643783 10_1007_s11814_019_0451_3 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ 85H AABYN AAFGU AAGCJ AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU UNUBA |
ID | FETCH-LOGICAL-c387t-60405477c5f45dad73bab946d681bd80337a3deb8fd73e05bb37dad2c010c0ec3 |
IEDL.DBID | AGYKE |
ISSN | 0256-1115 |
IngestDate | Wed Jan 31 06:58:39 EST 2024 Fri Jul 25 11:07:12 EDT 2025 Tue Jul 01 03:29:39 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Fri Feb 21 02:37:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Methane Hydrates Hydrate Seed Crystals Hydrate Nucleation Metastable Zone Width Cyclopentane Hydrates |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-60405477c5f45dad73bab946d681bd80337a3deb8fd73e05bb37dad2c010c0ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2348263733 |
PQPubID | 2044390 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6643783 proquest_journals_2348263733 crossref_primary_10_1007_s11814_019_0451_3 crossref_citationtrail_10_1007_s11814_019_0451_3 springer_journals_10_1007_s11814_019_0451_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | WalshM RKohC ASloanE DSumA KWuD TScience200932610951:CAS:528:DC%2BD1MXhsVentLvN10.1126/science.1174010 E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008). ChaM JLeeHLeeJ WJ. Phys. Chem.2013117235151:CAS:528:DC%2BC3sXhs1CgtL7F ShiauL DJ. Cryst. Growth2016450501:CAS:528:DC%2BC28XhtVCkt7zN10.1016/j.jcrysgro.2016.06.023 MohebbiVNaderifarABehbahaniR MMoshfeghianMPetrol. Sci. Technol.20143214181:CAS:528:DC%2BC2cXlvFWnsLo%3D10.1080/10916466.2012.656872 MayE FLimV WMetaxasP JDuJ WStanwixP LRowlandDJohnsM LHaandrikmanGCrosbyDAmanZ MLangmuir20183431861:CAS:528:DC%2BC1cXjtleju7o%3D10.1021/acs.langmuir.7b03901 LeeHLeeJ WKimD YParkJSeoY TZengHMoudrakovskiI LRatcliffeC IRipmeesterJ ANature20054347431:CAS:528:DC%2BD2MXivFCguro%3D10.1038/nature03457 MohebbiVBehbahaniR MNaderifarAKorean J. Chem. Eng.2017347061:CAS:528:DC%2BC2sXos1WhtQ%3D%3D10.1007/s11814-016-0318-9 AhnY-HMoonSKohD-YHongSLeeHLeeJ WParkYEnergy Storage Mater.20202465510.1016/j.ensm.2019.06.007 TohidiBDaneshAToddA CBurgassR WOstergaardK KFluid Phase Equilib.19971382411:CAS:528:DyaK2sXnvFShtLk%3D10.1016/S0378-3812(97)00164-7 KimD YParkJLeeJ WRipmeesterJ ALeeHJ. Am. Chem. Soc.2006128153601:CAS:528:DC%2BD28XhtFykur3O10.1021/ja0655791 VollhardtDZillerMRetterULangmuir1993932081:CAS:528:DyaK3sXmsFKqur8%3D10.1021/la00035a073 KashchievDFiroozabadiAJ. Cryst. Growth20032504991:CAS:528:DC%2BD3sXhtlyisLg%3D10.1016/S0022-0248(02)02461-2 J. M. Smith, H. C. van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005). ChaMShinKLeeHKorean J. Chem. Eng.20173425141:CAS:528:DC%2BC2sXhtFaktLfO10.1007/s11814-017-0153-7 BaekSAhnY HZhangJ SMinJLeeHLeeJ WAppl. Energy2017202321:CAS:528:DC%2BC2sXptFers7k%3D10.1016/j.apenergy.2017.05.108 ZhangJ SLeeJ WEnergy Fuel20092330451:CAS:528:DC%2BD1MXltVSqsL0%3D10.1021/ef900122n MinJAhnY-HBaekSShinKChaMLeeJ WJ. Phys. Chem. C2019123207051:CAS:528:DC%2BC1MXhsFSht7zK10.1021/acs.jpcc.9b04125 SkrotzkiJConnollyPSchnaiterMSaathoffHMohlerOWagnerRNiemandMEbertVLeisnerTAtmos. Chem. and Phys.201313445110.5194/acp-13-4451-2013 VollhardtDAdv. Colloid Interface19934711:CAS:528:DyaK2cXhsVCqtr0%3D10.1016/0001-8686(93)80012-Z D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000). SongJ HCouzisALeeJ WLangmuir20102691871:CAS:528:DC%2BC3cXmtFKltrY%3D10.1021/la101309j WitherspoonP ASarafD NJ. Phys. Chem.19656937521:CAS:528:DyaF2MXkvFemt7s%3D10.1021/j100895a017 PotdarSLeeJ WLeeSKorean J. Chem. Eng.20163332161:CAS:528:DC%2BC28XhsVSlsL3M10.1007/s11814-016-0172-9 ZhangJ SLeeSLeeJ WInd. Eng. Chem. Res.20074663531:CAS:528:DC%2BD2sXptFGhs74%3D10.1021/ie070627r LekvamKBishnoiP RFluid Phase Equilib.19971312971:CAS:528:DyaK2sXivFyrtLY%3D10.1016/S0378-3812(96)03229-3 KashchievDFiroozabadiAJ. Cryst. Growth20022412201:CAS:528:DC%2BD38XktVWiu7k%3D10.1016/S0022-0248(02)01134-X ZhangJ SLoCCouzisASomasundaranPWuJLeeJ WJ. Phys. Chem. C2009113174181:CAS:528:DC%2BD1MXhtFaltLbM10.1021/jp907796d BaekSMinJLeeJ WRsc Adv.20155588131:CAS:528:DC%2BC2MXhtVyht7fL10.1039/C5RA08335D BaekSMinJAhnY HChaMLeeJ WEnergy Fuel2019335231:CAS:528:DC%2BC1cXitFKnurrN10.1021/acs.energyfuels.8b03210 RodriguezcarvajalJPhysica B1993192551:CAS:528:DyaK2cXht1arurc%3D10.1016/0921-4526(93)90108-I HounslowM JWynnE J WKuboMPittKChem. Eng. Sci.20131017311:CAS:528:DC%2BC3sXhtlGltL3P10.1016/j.ces.2013.06.058 KashchievDFiroozabadiAJ. Cryst. Growth20022434761:CAS:528:DC%2BD38Xms1Crtr4%3D10.1016/S0022-0248(02)01576-2 AmanZ MOlcottKPfeifferKSloanE DSumA KKohC ALangmuir20132926761:CAS:528:DC%2BC3sXhslamsL4%3D10.1021/la3048714 LeeWBaekSKimJ DLeeJ WEnergy Fuel20152942451:CAS:528:DC%2BC2MXhtVSjtLnL10.1021/acs.energyfuels.5b00768 YangH YCrystengcomm2015175771:CAS:528:DC%2BC2cXhvVKlur7K10.1039/C4CE01625D SowaBMaedaNEnergy Fuel20152956921:CAS:528:DC%2BC2MXhtlelsrjI10.1021/acs.energyfuels.5b01246 AhujaAIqbalAIqbalMLeeJ WMorrisJ FEnergy Fuel20183258771:CAS:528:DC%2BC1cXosFSmtLg%3D10.1021/acs.energyfuels.8b00795 ZhangJ SLoCSomasundaranPLeeJ WJ. Colloid Interface Sci.20103412861:CAS:528:DC%2BD1MXhsVCrsrvI10.1016/j.jcis.2009.09.052 YangH YFlorenceA JCrystengcomm20171939661:CAS:528:DC%2BC2sXpvVKnt7c%3D10.1039/C7CE00770A Y-H Ahn (451_CR1) 2020; 24 L D Shiau (451_CR19) 2016; 450 J S Zhang (451_CR25) 2009; 113 B Tohidi (451_CR28) 1997; 138 J S Zhang (451_CR22) 2009; 23 451_CR33 H Y Yang (451_CR17) 2017; 19 451_CR32 D Vollhardt (451_CR40) 1993; 9 J Min (451_CR5) 2019; 123 W Lee (451_CR9) 2015; 29 J Rodriguezcarvajal (451_CR24) 1993; 192 K Lekvam (451_CR36) 1997; 131 S Potdar (451_CR3) 2016; 33 D Kashchiev (451_CR16) 2002; 241 V Mohebbi (451_CR13) 2017; 34 H Y Yang (451_CR18) 2015; 17 B Sowa (451_CR20) 2015; 29 M Cha (451_CR4) 2017; 34 M J Hounslow (451_CR38) 2013; 101 V Mohebbi (451_CR37) 2014; 32 S Baek (451_CR6) 2015; 5 P A Witherspoon (451_CR35) 1965; 69 451_CR27 A Ahuja (451_CR11) 2018; 32 S Baek (451_CR10) 2019; 33 D Y Kim (451_CR29) 2006; 128 D Kashchiev (451_CR15) 2003; 250 J H Song (451_CR26) 2010; 26 M J Cha (451_CR7) 2013; 117 H Lee (451_CR31) 2005; 434 J Skrotzki (451_CR34) 2013; 13 D Vollhardt (451_CR39) 1993; 47 Z M Aman (451_CR30) 2013; 29 J S Zhang (451_CR8) 2010; 341 D Kashchiev (451_CR14) 2002; 243 J S Zhang (451_CR12) 2007; 46 M R Walsh (451_CR2) 2009; 326 S Baek (451_CR23) 2017; 202 E F May (451_CR21) 2018; 34 |
References_xml | – reference: ZhangJ SLoCCouzisASomasundaranPWuJLeeJ WJ. Phys. Chem. C2009113174181:CAS:528:DC%2BD1MXhtFaltLbM10.1021/jp907796d – reference: SongJ HCouzisALeeJ WLangmuir20102691871:CAS:528:DC%2BC3cXmtFKltrY%3D10.1021/la101309j – reference: KashchievDFiroozabadiAJ. Cryst. Growth20032504991:CAS:528:DC%2BD3sXhtlyisLg%3D10.1016/S0022-0248(02)02461-2 – reference: MinJAhnY-HBaekSShinKChaMLeeJ WJ. Phys. Chem. C2019123207051:CAS:528:DC%2BC1MXhsFSht7zK10.1021/acs.jpcc.9b04125 – reference: WalshM RKohC ASloanE DSumA KWuD TScience200932610951:CAS:528:DC%2BD1MXhsVentLvN10.1126/science.1174010 – reference: MayE FLimV WMetaxasP JDuJ WStanwixP LRowlandDJohnsM LHaandrikmanGCrosbyDAmanZ MLangmuir20183431861:CAS:528:DC%2BC1cXjtleju7o%3D10.1021/acs.langmuir.7b03901 – reference: HounslowM JWynnE J WKuboMPittKChem. Eng. Sci.20131017311:CAS:528:DC%2BC3sXhtlGltL3P10.1016/j.ces.2013.06.058 – reference: AhnY-HMoonSKohD-YHongSLeeHLeeJ WParkYEnergy Storage Mater.20202465510.1016/j.ensm.2019.06.007 – reference: VollhardtDZillerMRetterULangmuir1993932081:CAS:528:DyaK3sXmsFKqur8%3D10.1021/la00035a073 – reference: BaekSMinJAhnY HChaMLeeJ WEnergy Fuel2019335231:CAS:528:DC%2BC1cXitFKnurrN10.1021/acs.energyfuels.8b03210 – reference: AhujaAIqbalAIqbalMLeeJ WMorrisJ FEnergy Fuel20183258771:CAS:528:DC%2BC1cXosFSmtLg%3D10.1021/acs.energyfuels.8b00795 – reference: BaekSMinJLeeJ WRsc Adv.20155588131:CAS:528:DC%2BC2MXhtVyht7fL10.1039/C5RA08335D – reference: VollhardtDAdv. Colloid Interface19934711:CAS:528:DyaK2cXhsVCqtr0%3D10.1016/0001-8686(93)80012-Z – reference: LeeWBaekSKimJ DLeeJ WEnergy Fuel20152942451:CAS:528:DC%2BC2MXhtVSjtLnL10.1021/acs.energyfuels.5b00768 – reference: E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008). – reference: AmanZ MOlcottKPfeifferKSloanE DSumA KKohC ALangmuir20132926761:CAS:528:DC%2BC3sXhslamsL4%3D10.1021/la3048714 – reference: KimD YParkJLeeJ WRipmeesterJ ALeeHJ. Am. Chem. Soc.2006128153601:CAS:528:DC%2BD28XhtFykur3O10.1021/ja0655791 – reference: SowaBMaedaNEnergy Fuel20152956921:CAS:528:DC%2BC2MXhtlelsrjI10.1021/acs.energyfuels.5b01246 – reference: ZhangJ SLoCSomasundaranPLeeJ WJ. Colloid Interface Sci.20103412861:CAS:528:DC%2BD1MXhsVCrsrvI10.1016/j.jcis.2009.09.052 – reference: LeeHLeeJ WKimD YParkJSeoY TZengHMoudrakovskiI LRatcliffeC IRipmeesterJ ANature20054347431:CAS:528:DC%2BD2MXivFCguro%3D10.1038/nature03457 – reference: MohebbiVNaderifarABehbahaniR MMoshfeghianMPetrol. Sci. Technol.20143214181:CAS:528:DC%2BC2cXlvFWnsLo%3D10.1080/10916466.2012.656872 – reference: SkrotzkiJConnollyPSchnaiterMSaathoffHMohlerOWagnerRNiemandMEbertVLeisnerTAtmos. Chem. and Phys.201313445110.5194/acp-13-4451-2013 – reference: RodriguezcarvajalJPhysica B1993192551:CAS:528:DyaK2cXht1arurc%3D10.1016/0921-4526(93)90108-I – reference: PotdarSLeeJ WLeeSKorean J. Chem. Eng.20163332161:CAS:528:DC%2BC28XhsVSlsL3M10.1007/s11814-016-0172-9 – reference: ChaM JLeeHLeeJ WJ. Phys. Chem.2013117235151:CAS:528:DC%2BC3sXhs1CgtL7F – reference: YangH YCrystengcomm2015175771:CAS:528:DC%2BC2cXhvVKlur7K10.1039/C4CE01625D – reference: D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000). – reference: MohebbiVBehbahaniR MNaderifarAKorean J. Chem. Eng.2017347061:CAS:528:DC%2BC2sXos1WhtQ%3D%3D10.1007/s11814-016-0318-9 – reference: J. M. Smith, H. C. van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005). – reference: TohidiBDaneshAToddA CBurgassR WOstergaardK KFluid Phase Equilib.19971382411:CAS:528:DyaK2sXnvFShtLk%3D10.1016/S0378-3812(97)00164-7 – reference: ShiauL DJ. Cryst. Growth2016450501:CAS:528:DC%2BC28XhtVCkt7zN10.1016/j.jcrysgro.2016.06.023 – reference: LekvamKBishnoiP RFluid Phase Equilib.19971312971:CAS:528:DyaK2sXivFyrtLY%3D10.1016/S0378-3812(96)03229-3 – reference: YangH YFlorenceA JCrystengcomm20171939661:CAS:528:DC%2BC2sXpvVKnt7c%3D10.1039/C7CE00770A – reference: ZhangJ SLeeJ WEnergy Fuel20092330451:CAS:528:DC%2BD1MXltVSqsL0%3D10.1021/ef900122n – reference: BaekSAhnY HZhangJ SMinJLeeHLeeJ WAppl. Energy2017202321:CAS:528:DC%2BC2sXptFers7k%3D10.1016/j.apenergy.2017.05.108 – reference: WitherspoonP ASarafD NJ. Phys. Chem.19656937521:CAS:528:DyaF2MXkvFemt7s%3D10.1021/j100895a017 – reference: ZhangJ SLeeSLeeJ WInd. Eng. Chem. Res.20074663531:CAS:528:DC%2BD2sXptFGhs74%3D10.1021/ie070627r – reference: KashchievDFiroozabadiAJ. Cryst. Growth20022412201:CAS:528:DC%2BD38XktVWiu7k%3D10.1016/S0022-0248(02)01134-X – reference: KashchievDFiroozabadiAJ. Cryst. Growth20022434761:CAS:528:DC%2BD38Xms1Crtr4%3D10.1016/S0022-0248(02)01576-2 – reference: ChaMShinKLeeHKorean J. Chem. Eng.20173425141:CAS:528:DC%2BC2sXhtFaktLfO10.1007/s11814-017-0153-7 – volume: 24 start-page: 655 year: 2020 ident: 451_CR1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.007 – volume: 101 start-page: 731 year: 2013 ident: 451_CR38 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.06.058 – volume: 450 start-page: 50 year: 2016 ident: 451_CR19 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2016.06.023 – volume: 29 start-page: 5692 year: 2015 ident: 451_CR20 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.5b01246 – volume: 113 start-page: 17418 year: 2009 ident: 451_CR25 publication-title: J. Phys. Chem. C doi: 10.1021/jp907796d – volume: 29 start-page: 2676 year: 2013 ident: 451_CR30 publication-title: Langmuir doi: 10.1021/la3048714 – volume: 250 start-page: 499 year: 2003 ident: 451_CR15 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)02461-2 – volume: 34 start-page: 3186 year: 2018 ident: 451_CR21 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b03901 – volume: 341 start-page: 286 year: 2010 ident: 451_CR8 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2009.09.052 – volume: 46 start-page: 6353 year: 2007 ident: 451_CR12 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070627r – volume: 128 start-page: 15360 year: 2006 ident: 451_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0655791 – volume: 19 start-page: 3966 year: 2017 ident: 451_CR17 publication-title: Crystengcomm doi: 10.1039/C7CE00770A – volume: 192 start-page: 55 year: 1993 ident: 451_CR24 publication-title: Physica B doi: 10.1016/0921-4526(93)90108-I – volume: 13 start-page: 4451 year: 2013 ident: 451_CR34 publication-title: Atmos. Chem. and Phys. doi: 10.5194/acp-13-4451-2013 – volume: 32 start-page: 1418 year: 2014 ident: 451_CR37 publication-title: Petrol. Sci. Technol. doi: 10.1080/10916466.2012.656872 – volume: 33 start-page: 3216 year: 2016 ident: 451_CR3 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-016-0172-9 – volume: 123 start-page: 20705 year: 2019 ident: 451_CR5 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04125 – volume: 241 start-page: 220 year: 2002 ident: 451_CR16 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01134-X – volume: 434 start-page: 743 year: 2005 ident: 451_CR31 publication-title: Nature doi: 10.1038/nature03457 – volume: 69 start-page: 3752 year: 1965 ident: 451_CR35 publication-title: J. Phys. Chem. doi: 10.1021/j100895a017 – volume: 47 start-page: 1 year: 1993 ident: 451_CR39 publication-title: Adv. Colloid Interface doi: 10.1016/0001-8686(93)80012-Z – volume: 32 start-page: 5877 year: 2018 ident: 451_CR11 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.8b00795 – volume: 26 start-page: 9187 year: 2010 ident: 451_CR26 publication-title: Langmuir doi: 10.1021/la101309j – ident: 451_CR27 – volume: 131 start-page: 297 year: 1997 ident: 451_CR36 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(96)03229-3 – volume: 34 start-page: 2514 year: 2017 ident: 451_CR4 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-017-0153-7 – volume: 29 start-page: 4245 year: 2015 ident: 451_CR9 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.5b00768 – volume: 34 start-page: 706 year: 2017 ident: 451_CR13 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-016-0318-9 – volume: 243 start-page: 476 year: 2002 ident: 451_CR14 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(02)01576-2 – volume: 5 start-page: 58813 year: 2015 ident: 451_CR6 publication-title: Rsc Adv. doi: 10.1039/C5RA08335D – volume: 202 start-page: 32 year: 2017 ident: 451_CR23 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.108 – volume: 117 start-page: 23515 year: 2013 ident: 451_CR7 publication-title: J. Phys. Chem. – volume: 138 start-page: 241 year: 1997 ident: 451_CR28 publication-title: Fluid Phase Equilib. doi: 10.1016/S0378-3812(97)00164-7 – volume: 33 start-page: 523 year: 2019 ident: 451_CR10 publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.8b03210 – volume: 326 start-page: 1095 year: 2009 ident: 451_CR2 publication-title: Science doi: 10.1126/science.1174010 – volume: 23 start-page: 3045 year: 2009 ident: 451_CR22 publication-title: Energy Fuel doi: 10.1021/ef900122n – volume: 9 start-page: 3208 year: 1993 ident: 451_CR40 publication-title: Langmuir doi: 10.1021/la00035a073 – volume: 17 start-page: 577 year: 2015 ident: 451_CR18 publication-title: Crystengcomm doi: 10.1039/C4CE01625D – ident: 451_CR33 – ident: 451_CR32 doi: 10.1016/B978-075064682-6/50012-3 |
SSID | ssj0055620 |
Score | 2.3219764 |
Snippet | Cyclopentane (CP) hydrate seeds can lead to nucleation of CH
4
hydrate with a lower supersaturation; the concept of nucleation potential was applied to... Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 341 |
SubjectTerms | Biotechnology Catalysis Chemistry Chemistry and Materials Science Crystal structure Industrial Chemistry/Chemical Engineering Materials Science Methane hydrates Nucleation Parameter estimation Separation Technology Sodium dodecyl sulfate Stainless steel Stainless steels Steel structures Supersaturation Surface energy Thermodynamics Walls 화학공학 |
Title | Hydrate seeding effect on the metastability of CH4 hydrate |
URI | https://link.springer.com/article/10.1007/s11814-019-0451-3 https://www.proquest.com/docview/2348263733 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002553275 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2020, 37(2), 239, pp.341-349 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6i5QA7DMaYVsYqa-LEFJTGsZ3sVipKAYkTleBk-Vdg6paiNhzgr-e5iVdAA4lTDn5O4mf7vc9-z58B9uLcWqFUHPWUMlHqeBpl6KjRGLpc5LH1DCk-2-Kcj8bp6SW7bM5xz0O2ewhJLiz18rAbOiOfMeE381kvoi1YZb0sz9qw2j--OjsKBpihS6-3VjzFHiKeEMz830ueuaNWOSueIc0XwdGFzxluwEX42zrVZHJwV-kD8_CCyPGdzdmEjw0GJf160HyCFVduwdogXP22BR-esBR-hl-je-sJJci89nSkzgEh05IgeiR_XaUQYi6SbO_JtCCDUUpu6irbMB4eXQxGUXPlQmRoJqqI45xmqRCGFSmzygqqlc5TbjnCW5vFlApFrdNZgUUuZlpTgWKJwWWdiZ2hX6BdTkv3FYgyOUNzYXiBkMsg8DCcaqYUS7VO4sJ1IA6al6bhI_fXYvyRSyZlryKJKpJeRZJ2YP9flduajOMt4R_YnXJifktPoe2f11M5mUlcKJxI7gOWGQrtht6WzeSdy8QT_nAqKBb_DJ23LH71izvvkv4G64lfuy8ywHehXc3u3HcEOJXu4oAeHh6ed5uB3YXWOOk_Asns76w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYoDIUBQQFRnhZiAkVK49hO2FBFFaB0aqVull8BVEhRW4b-e855UIoAiSnDnRPpHN999p2_Q-jcj43hUvpeS0rthZaFXgSBGpyhjXnsG8eQ4qoteiwZhHdDOizvcU-ravcqJZl76sVlNwhGrmLCHebTlkdqaA2wQOTaFgyC68r9UgjoxcGKI9gDvFOlMn96xVIwqmWTdAlnfkuN5hGns4U2S6iIr4u53UYrNmugervq0NZAG1_IBHfQVTI3jvcBT4uAhItSDTzOMIA8_GpnEpBgXgs7x-MUt5MQPxVDdtGgc9NvJ17ZGcHTJOIzj8HSoyHnmqYhNdJwoqSKQ2YYoFAT-YRwSYxVUQoi61OlCAe1QMPuS_tWkz20mo0zu4-w1DGFVa1ZCshIAz7QjCgqJQ2VCvzUNpFfmUjokjbcda94EQvCY2dVAVYVzqqCNNHF55C3gjPjL-UzsLsY6WfhmK7d83EsRhMBeP5WMJdXjEDpqJoWUa6xqQgcLw8jnID4spqqhfjXLx78S_sU1ZP-Q1d0b3v3h2g9cNvtvGj7CK3OJu_2GDDJTJ3k_-AHceHTZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-wMdBfOLbIJ6Uxe1mk-x6K9WyVSkeLPQW8lqV6ra068F_72QfVkUFT3vIJAszSeZLZvINQid-bAyX0vcaUmovtCz0InDUsBnamMe-cQwpLtuiy5JeeN2n_arO6aTOdq9DkuWbBsfSlOXnI5OeTx--gWNy2RPuYp82PDKL5mE3briJ3gua9VZMwbmXlyyObA-wTx3W_GmIL45pNhunXzDntzBp4X3aq2ilgo24Wdp5Dc3YbB0ttupqbeto-ROx4Aa6SN6M44DAk9I54TJtAw8zDIAPv9hcAios8mLf8DDFrSTEj2WXTdRrX923Eq-qkuBpEvHcY7AMaci5pmlIjTScKKnikBkGiNREPiFcEmNVlEKT9alShINYoOEkpn2ryRaay4aZ3UZY6pjCCtcsBZSkAStoRhSVkoZKBX5qd5Bfq0joikLcVbJ4FlPyY6dVAVoVTquC7KDTjy6jkj_jL-Fj0LsY6CfhWK_d92EoBmMB2L4jmIsxRiC0X5tFVOttIgLH0cMIJ9B8Vptq2vzrH3f_JX2EFu4u2-K2073ZQ0uBO3kX-dv7aC4fv9oDgCe5Oiym4DsAUNej |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrate+seeding+effect+on+the+metastability+of+CH4+hydrate&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Baek+Seungjun&rft.au=Lee%2C+Wonhyeong&rft.au=Min+Juwon&rft.au=Yun-Ho%2C+Ahn&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=37&rft.issue=2&rft.spage=341&rft.epage=349&rft_id=info:doi/10.1007%2Fs11814-019-0451-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |