Hydrate seeding effect on the metastability of CH4 hydrate

Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH 4 hydrate. To verify the crystal structure of CH 4 hydrate formed from the CP hydrate seeds, the hyd...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 37; no. 2; pp. 341 - 349
Main Authors Baek, Seungjun, Lee, Wonhyeong, Min, Juwon, Ahn, Yun-Ho, Kang, Dong Woo, Lee, Jae W.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-019-0451-3

Cover

Abstract Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH 4 hydrate. To verify the crystal structure of CH 4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH 4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH 4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters.
AbstractList Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters. KCI Citation Count: 8
Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH 4 hydrate. To verify the crystal structure of CH 4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH 4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH 4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters.
Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate the metastable zone width (MSZW) of CH4 hydrate. To verify the crystal structure of CH4 hydrate formed from the CP hydrate seeds, the hydrate samples were analyzed by high resolution powder diffraction (HRPD). 1 wt% of CP hydrates in the system reduced the MSZW of CH4 hydrate from 3.39 K to 1.32 K, and showed synergetic performance with sodium dodecyl sulfate (SDS). From the hydrate nucleation theory, SDS is able to decrease the effective surface energy for heterogeneous nucleation on the stainless steel wall, but the CP hydrate seeds provide new nucleation sites with even lower surface energy than that of the stainless steel wall. Hence, the nucleation rate depends on the amount of CP hydrate seeds, and the kinetic parameter can be estimated from the concentration of nucleation sites on the CP hydrate seeds. Also, the MSZW of CH4 hydrate was satisfactorily correlated with the amount of CP hydrate seeds by the cumulative nucleation potentials using estimated kinetic parameters.
Author Ahn, Yun-Ho
Baek, Seungjun
Lee, Wonhyeong
Lee, Jae W.
Min, Juwon
Kang, Dong Woo
Author_xml – sequence: 1
  givenname: Seungjun
  surname: Baek
  fullname: Baek, Seungjun
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 2
  givenname: Wonhyeong
  surname: Lee
  fullname: Lee, Wonhyeong
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 3
  givenname: Juwon
  surname: Min
  fullname: Min, Juwon
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 4
  givenname: Yun-Ho
  surname: Ahn
  fullname: Ahn, Yun-Ho
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 5
  givenname: Dong Woo
  surname: Kang
  fullname: Kang, Dong Woo
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
– sequence: 6
  givenname: Jae W.
  surname: Lee
  fullname: Lee, Jae W.
  email: jaewlee@kaist.ac.kr
  organization: Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002553275$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnjysTjZfW2-lqBUKgtRzyGazbfqR1CQ99N-76wqCoKf3MM8zM7wjNHDeGYSuMdxhAHEfMS4xzQFPcqAM5-QMDfFEsFwUBQzQEArGc4wxu0CjGDcAjPEChuhhfqqDSiaLxtTWrTLTNEanzLssrU22N0nFpCq7s-mU-SabzWm27pVLdN6oXTRX3zlG70-Py9k8X7w-v8ymi1yTUqScAwVGhdCsoaxWtSCVqiaU17zEVV0CIUKR2lRl044MsKoiosUKDRg0GE3G6Lbf60Ijt9pKr-xXrrzcBjl9W75IzikRJWnZm549BP9xNDHJjT8G174nC0LLghNBOgr3lA4-xmAaeQh2r8JJYpBdnbKvU7Z1yq5O2Tnil6NtUsl6l4Kyu3_Nojdje8WtTPj56W_pE-tqiS8
CitedBy_id crossref_primary_10_3390_cryst14030243
crossref_primary_10_1016_j_cej_2021_128512
crossref_primary_10_1016_j_energy_2024_130631
crossref_primary_10_1021_acs_jpcc_9b11459
crossref_primary_10_1016_j_fuel_2024_132118
crossref_primary_10_1039_D4GC00390J
crossref_primary_10_1016_j_rser_2023_113217
crossref_primary_10_1021_acs_energyfuels_4c01206
crossref_primary_10_1021_acs_energyfuels_4c05572
crossref_primary_10_1021_acssuschemeng_1c00807
crossref_primary_10_1016_j_apenergy_2024_124367
crossref_primary_10_1016_j_apenergy_2024_123987
crossref_primary_10_3390_molecules28093731
crossref_primary_10_1007_s11814_024_00116_2
crossref_primary_10_1016_j_ces_2021_117319
crossref_primary_10_1016_j_jcou_2022_102005
crossref_primary_10_1021_acs_energyfuels_3c01362
crossref_primary_10_1007_s11814_022_1301_2
Cites_doi 10.1016/j.ensm.2019.06.007
10.1016/j.ces.2013.06.058
10.1016/j.jcrysgro.2016.06.023
10.1021/acs.energyfuels.5b01246
10.1021/jp907796d
10.1021/la3048714
10.1016/S0022-0248(02)02461-2
10.1021/acs.langmuir.7b03901
10.1016/j.jcis.2009.09.052
10.1021/ie070627r
10.1021/ja0655791
10.1039/C7CE00770A
10.1016/0921-4526(93)90108-I
10.5194/acp-13-4451-2013
10.1080/10916466.2012.656872
10.1007/s11814-016-0172-9
10.1021/acs.jpcc.9b04125
10.1016/S0022-0248(02)01134-X
10.1038/nature03457
10.1021/j100895a017
10.1016/0001-8686(93)80012-Z
10.1021/acs.energyfuels.8b00795
10.1021/la101309j
10.1016/S0378-3812(96)03229-3
10.1007/s11814-017-0153-7
10.1021/acs.energyfuels.5b00768
10.1007/s11814-016-0318-9
10.1016/S0022-0248(02)01576-2
10.1039/C5RA08335D
10.1016/j.apenergy.2017.05.108
10.1016/S0378-3812(97)00164-7
10.1021/acs.energyfuels.8b03210
10.1126/science.1174010
10.1021/ef900122n
10.1021/la00035a073
10.1039/C4CE01625D
10.1016/B978-075064682-6/50012-3
ContentType Journal Article
Copyright The Korean Institute of Chemical Engineers 2020
2020© The Korean Institute of Chemical Engineers 2020
Copyright_xml – notice: The Korean Institute of Chemical Engineers 2020
– notice: 2020© The Korean Institute of Chemical Engineers 2020
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-019-0451-3
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 349
ExternalDocumentID oai_kci_go_kr_ARTI_6643783
10_1007_s11814_019_0451_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
85H
AABYN
AAFGU
AAGCJ
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
UNUBA
ID FETCH-LOGICAL-c387t-60405477c5f45dad73bab946d681bd80337a3deb8fd73e05bb37dad2c010c0ec3
IEDL.DBID AGYKE
ISSN 0256-1115
IngestDate Wed Jan 31 06:58:39 EST 2024
Fri Jul 25 11:07:12 EDT 2025
Tue Jul 01 03:29:39 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Fri Feb 21 02:37:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Methane Hydrates
Hydrate Seed Crystals
Hydrate Nucleation
Metastable Zone Width
Cyclopentane Hydrates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-60405477c5f45dad73bab946d681bd80337a3deb8fd73e05bb37dad2c010c0ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2348263733
PQPubID 2044390
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6643783
proquest_journals_2348263733
crossref_primary_10_1007_s11814_019_0451_3
crossref_citationtrail_10_1007_s11814_019_0451_3
springer_journals_10_1007_s11814_019_0451_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References WalshM RKohC ASloanE DSumA KWuD TScience200932610951:CAS:528:DC%2BD1MXhsVentLvN10.1126/science.1174010
E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008).
ChaM JLeeHLeeJ WJ. Phys. Chem.2013117235151:CAS:528:DC%2BC3sXhs1CgtL7F
ShiauL DJ. Cryst. Growth2016450501:CAS:528:DC%2BC28XhtVCkt7zN10.1016/j.jcrysgro.2016.06.023
MohebbiVNaderifarABehbahaniR MMoshfeghianMPetrol. Sci. Technol.20143214181:CAS:528:DC%2BC2cXlvFWnsLo%3D10.1080/10916466.2012.656872
MayE FLimV WMetaxasP JDuJ WStanwixP LRowlandDJohnsM LHaandrikmanGCrosbyDAmanZ MLangmuir20183431861:CAS:528:DC%2BC1cXjtleju7o%3D10.1021/acs.langmuir.7b03901
LeeHLeeJ WKimD YParkJSeoY TZengHMoudrakovskiI LRatcliffeC IRipmeesterJ ANature20054347431:CAS:528:DC%2BD2MXivFCguro%3D10.1038/nature03457
MohebbiVBehbahaniR MNaderifarAKorean J. Chem. Eng.2017347061:CAS:528:DC%2BC2sXos1WhtQ%3D%3D10.1007/s11814-016-0318-9
AhnY-HMoonSKohD-YHongSLeeHLeeJ WParkYEnergy Storage Mater.20202465510.1016/j.ensm.2019.06.007
TohidiBDaneshAToddA CBurgassR WOstergaardK KFluid Phase Equilib.19971382411:CAS:528:DyaK2sXnvFShtLk%3D10.1016/S0378-3812(97)00164-7
KimD YParkJLeeJ WRipmeesterJ ALeeHJ. Am. Chem. Soc.2006128153601:CAS:528:DC%2BD28XhtFykur3O10.1021/ja0655791
VollhardtDZillerMRetterULangmuir1993932081:CAS:528:DyaK3sXmsFKqur8%3D10.1021/la00035a073
KashchievDFiroozabadiAJ. Cryst. Growth20032504991:CAS:528:DC%2BD3sXhtlyisLg%3D10.1016/S0022-0248(02)02461-2
J. M. Smith, H. C. van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005).
ChaMShinKLeeHKorean J. Chem. Eng.20173425141:CAS:528:DC%2BC2sXhtFaktLfO10.1007/s11814-017-0153-7
BaekSAhnY HZhangJ SMinJLeeHLeeJ WAppl. Energy2017202321:CAS:528:DC%2BC2sXptFers7k%3D10.1016/j.apenergy.2017.05.108
ZhangJ SLeeJ WEnergy Fuel20092330451:CAS:528:DC%2BD1MXltVSqsL0%3D10.1021/ef900122n
MinJAhnY-HBaekSShinKChaMLeeJ WJ. Phys. Chem. C2019123207051:CAS:528:DC%2BC1MXhsFSht7zK10.1021/acs.jpcc.9b04125
SkrotzkiJConnollyPSchnaiterMSaathoffHMohlerOWagnerRNiemandMEbertVLeisnerTAtmos. Chem. and Phys.201313445110.5194/acp-13-4451-2013
VollhardtDAdv. Colloid Interface19934711:CAS:528:DyaK2cXhsVCqtr0%3D10.1016/0001-8686(93)80012-Z
D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000).
SongJ HCouzisALeeJ WLangmuir20102691871:CAS:528:DC%2BC3cXmtFKltrY%3D10.1021/la101309j
WitherspoonP ASarafD NJ. Phys. Chem.19656937521:CAS:528:DyaF2MXkvFemt7s%3D10.1021/j100895a017
PotdarSLeeJ WLeeSKorean J. Chem. Eng.20163332161:CAS:528:DC%2BC28XhsVSlsL3M10.1007/s11814-016-0172-9
ZhangJ SLeeSLeeJ WInd. Eng. Chem. Res.20074663531:CAS:528:DC%2BD2sXptFGhs74%3D10.1021/ie070627r
LekvamKBishnoiP RFluid Phase Equilib.19971312971:CAS:528:DyaK2sXivFyrtLY%3D10.1016/S0378-3812(96)03229-3
KashchievDFiroozabadiAJ. Cryst. Growth20022412201:CAS:528:DC%2BD38XktVWiu7k%3D10.1016/S0022-0248(02)01134-X
ZhangJ SLoCCouzisASomasundaranPWuJLeeJ WJ. Phys. Chem. C2009113174181:CAS:528:DC%2BD1MXhtFaltLbM10.1021/jp907796d
BaekSMinJLeeJ WRsc Adv.20155588131:CAS:528:DC%2BC2MXhtVyht7fL10.1039/C5RA08335D
BaekSMinJAhnY HChaMLeeJ WEnergy Fuel2019335231:CAS:528:DC%2BC1cXitFKnurrN10.1021/acs.energyfuels.8b03210
RodriguezcarvajalJPhysica B1993192551:CAS:528:DyaK2cXht1arurc%3D10.1016/0921-4526(93)90108-I
HounslowM JWynnE J WKuboMPittKChem. Eng. Sci.20131017311:CAS:528:DC%2BC3sXhtlGltL3P10.1016/j.ces.2013.06.058
KashchievDFiroozabadiAJ. Cryst. Growth20022434761:CAS:528:DC%2BD38Xms1Crtr4%3D10.1016/S0022-0248(02)01576-2
AmanZ MOlcottKPfeifferKSloanE DSumA KKohC ALangmuir20132926761:CAS:528:DC%2BC3sXhslamsL4%3D10.1021/la3048714
LeeWBaekSKimJ DLeeJ WEnergy Fuel20152942451:CAS:528:DC%2BC2MXhtVSjtLnL10.1021/acs.energyfuels.5b00768
YangH YCrystengcomm2015175771:CAS:528:DC%2BC2cXhvVKlur7K10.1039/C4CE01625D
SowaBMaedaNEnergy Fuel20152956921:CAS:528:DC%2BC2MXhtlelsrjI10.1021/acs.energyfuels.5b01246
AhujaAIqbalAIqbalMLeeJ WMorrisJ FEnergy Fuel20183258771:CAS:528:DC%2BC1cXosFSmtLg%3D10.1021/acs.energyfuels.8b00795
ZhangJ SLoCSomasundaranPLeeJ WJ. Colloid Interface Sci.20103412861:CAS:528:DC%2BD1MXhsVCrsrvI10.1016/j.jcis.2009.09.052
YangH YFlorenceA JCrystengcomm20171939661:CAS:528:DC%2BC2sXpvVKnt7c%3D10.1039/C7CE00770A
Y-H Ahn (451_CR1) 2020; 24
L D Shiau (451_CR19) 2016; 450
J S Zhang (451_CR25) 2009; 113
B Tohidi (451_CR28) 1997; 138
J S Zhang (451_CR22) 2009; 23
451_CR33
H Y Yang (451_CR17) 2017; 19
451_CR32
D Vollhardt (451_CR40) 1993; 9
J Min (451_CR5) 2019; 123
W Lee (451_CR9) 2015; 29
J Rodriguezcarvajal (451_CR24) 1993; 192
K Lekvam (451_CR36) 1997; 131
S Potdar (451_CR3) 2016; 33
D Kashchiev (451_CR16) 2002; 241
V Mohebbi (451_CR13) 2017; 34
H Y Yang (451_CR18) 2015; 17
B Sowa (451_CR20) 2015; 29
M Cha (451_CR4) 2017; 34
M J Hounslow (451_CR38) 2013; 101
V Mohebbi (451_CR37) 2014; 32
S Baek (451_CR6) 2015; 5
P A Witherspoon (451_CR35) 1965; 69
451_CR27
A Ahuja (451_CR11) 2018; 32
S Baek (451_CR10) 2019; 33
D Y Kim (451_CR29) 2006; 128
D Kashchiev (451_CR15) 2003; 250
J H Song (451_CR26) 2010; 26
M J Cha (451_CR7) 2013; 117
H Lee (451_CR31) 2005; 434
J Skrotzki (451_CR34) 2013; 13
D Vollhardt (451_CR39) 1993; 47
Z M Aman (451_CR30) 2013; 29
J S Zhang (451_CR8) 2010; 341
D Kashchiev (451_CR14) 2002; 243
J S Zhang (451_CR12) 2007; 46
M R Walsh (451_CR2) 2009; 326
S Baek (451_CR23) 2017; 202
E F May (451_CR21) 2018; 34
References_xml – reference: ZhangJ SLoCCouzisASomasundaranPWuJLeeJ WJ. Phys. Chem. C2009113174181:CAS:528:DC%2BD1MXhtFaltLbM10.1021/jp907796d
– reference: SongJ HCouzisALeeJ WLangmuir20102691871:CAS:528:DC%2BC3cXmtFKltrY%3D10.1021/la101309j
– reference: KashchievDFiroozabadiAJ. Cryst. Growth20032504991:CAS:528:DC%2BD3sXhtlyisLg%3D10.1016/S0022-0248(02)02461-2
– reference: MinJAhnY-HBaekSShinKChaMLeeJ WJ. Phys. Chem. C2019123207051:CAS:528:DC%2BC1MXhsFSht7zK10.1021/acs.jpcc.9b04125
– reference: WalshM RKohC ASloanE DSumA KWuD TScience200932610951:CAS:528:DC%2BD1MXhsVentLvN10.1126/science.1174010
– reference: MayE FLimV WMetaxasP JDuJ WStanwixP LRowlandDJohnsM LHaandrikmanGCrosbyDAmanZ MLangmuir20183431861:CAS:528:DC%2BC1cXjtleju7o%3D10.1021/acs.langmuir.7b03901
– reference: HounslowM JWynnE J WKuboMPittKChem. Eng. Sci.20131017311:CAS:528:DC%2BC3sXhtlGltL3P10.1016/j.ces.2013.06.058
– reference: AhnY-HMoonSKohD-YHongSLeeHLeeJ WParkYEnergy Storage Mater.20202465510.1016/j.ensm.2019.06.007
– reference: VollhardtDZillerMRetterULangmuir1993932081:CAS:528:DyaK3sXmsFKqur8%3D10.1021/la00035a073
– reference: BaekSMinJAhnY HChaMLeeJ WEnergy Fuel2019335231:CAS:528:DC%2BC1cXitFKnurrN10.1021/acs.energyfuels.8b03210
– reference: AhujaAIqbalAIqbalMLeeJ WMorrisJ FEnergy Fuel20183258771:CAS:528:DC%2BC1cXosFSmtLg%3D10.1021/acs.energyfuels.8b00795
– reference: BaekSMinJLeeJ WRsc Adv.20155588131:CAS:528:DC%2BC2MXhtVyht7fL10.1039/C5RA08335D
– reference: VollhardtDAdv. Colloid Interface19934711:CAS:528:DyaK2cXhsVCqtr0%3D10.1016/0001-8686(93)80012-Z
– reference: LeeWBaekSKimJ DLeeJ WEnergy Fuel20152942451:CAS:528:DC%2BC2MXhtVSjtLnL10.1021/acs.energyfuels.5b00768
– reference: E. D. Sloan and C. A. Koh, Clathrate hydrates of natural gases, CRC Press (Taylor & Francis Group) (2008).
– reference: AmanZ MOlcottKPfeifferKSloanE DSumA KKohC ALangmuir20132926761:CAS:528:DC%2BC3sXhslamsL4%3D10.1021/la3048714
– reference: KimD YParkJLeeJ WRipmeesterJ ALeeHJ. Am. Chem. Soc.2006128153601:CAS:528:DC%2BD28XhtFykur3O10.1021/ja0655791
– reference: SowaBMaedaNEnergy Fuel20152956921:CAS:528:DC%2BC2MXhtlelsrjI10.1021/acs.energyfuels.5b01246
– reference: ZhangJ SLoCSomasundaranPLeeJ WJ. Colloid Interface Sci.20103412861:CAS:528:DC%2BD1MXhsVCrsrvI10.1016/j.jcis.2009.09.052
– reference: LeeHLeeJ WKimD YParkJSeoY TZengHMoudrakovskiI LRatcliffeC IRipmeesterJ ANature20054347431:CAS:528:DC%2BD2MXivFCguro%3D10.1038/nature03457
– reference: MohebbiVNaderifarABehbahaniR MMoshfeghianMPetrol. Sci. Technol.20143214181:CAS:528:DC%2BC2cXlvFWnsLo%3D10.1080/10916466.2012.656872
– reference: SkrotzkiJConnollyPSchnaiterMSaathoffHMohlerOWagnerRNiemandMEbertVLeisnerTAtmos. Chem. and Phys.201313445110.5194/acp-13-4451-2013
– reference: RodriguezcarvajalJPhysica B1993192551:CAS:528:DyaK2cXht1arurc%3D10.1016/0921-4526(93)90108-I
– reference: PotdarSLeeJ WLeeSKorean J. Chem. Eng.20163332161:CAS:528:DC%2BC28XhsVSlsL3M10.1007/s11814-016-0172-9
– reference: ChaM JLeeHLeeJ WJ. Phys. Chem.2013117235151:CAS:528:DC%2BC3sXhs1CgtL7F
– reference: YangH YCrystengcomm2015175771:CAS:528:DC%2BC2cXhvVKlur7K10.1039/C4CE01625D
– reference: D. Kashchiev, Nucleation: Basic Theory with Applications, Butterworth-Heinmann (2000).
– reference: MohebbiVBehbahaniR MNaderifarAKorean J. Chem. Eng.2017347061:CAS:528:DC%2BC2sXos1WhtQ%3D%3D10.1007/s11814-016-0318-9
– reference: J. M. Smith, H. C. van Ness and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, McGraw-Hill (2005).
– reference: TohidiBDaneshAToddA CBurgassR WOstergaardK KFluid Phase Equilib.19971382411:CAS:528:DyaK2sXnvFShtLk%3D10.1016/S0378-3812(97)00164-7
– reference: ShiauL DJ. Cryst. Growth2016450501:CAS:528:DC%2BC28XhtVCkt7zN10.1016/j.jcrysgro.2016.06.023
– reference: LekvamKBishnoiP RFluid Phase Equilib.19971312971:CAS:528:DyaK2sXivFyrtLY%3D10.1016/S0378-3812(96)03229-3
– reference: YangH YFlorenceA JCrystengcomm20171939661:CAS:528:DC%2BC2sXpvVKnt7c%3D10.1039/C7CE00770A
– reference: ZhangJ SLeeJ WEnergy Fuel20092330451:CAS:528:DC%2BD1MXltVSqsL0%3D10.1021/ef900122n
– reference: BaekSAhnY HZhangJ SMinJLeeHLeeJ WAppl. Energy2017202321:CAS:528:DC%2BC2sXptFers7k%3D10.1016/j.apenergy.2017.05.108
– reference: WitherspoonP ASarafD NJ. Phys. Chem.19656937521:CAS:528:DyaF2MXkvFemt7s%3D10.1021/j100895a017
– reference: ZhangJ SLeeSLeeJ WInd. Eng. Chem. Res.20074663531:CAS:528:DC%2BD2sXptFGhs74%3D10.1021/ie070627r
– reference: KashchievDFiroozabadiAJ. Cryst. Growth20022412201:CAS:528:DC%2BD38XktVWiu7k%3D10.1016/S0022-0248(02)01134-X
– reference: KashchievDFiroozabadiAJ. Cryst. Growth20022434761:CAS:528:DC%2BD38Xms1Crtr4%3D10.1016/S0022-0248(02)01576-2
– reference: ChaMShinKLeeHKorean J. Chem. Eng.20173425141:CAS:528:DC%2BC2sXhtFaktLfO10.1007/s11814-017-0153-7
– volume: 24
  start-page: 655
  year: 2020
  ident: 451_CR1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.007
– volume: 101
  start-page: 731
  year: 2013
  ident: 451_CR38
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.06.058
– volume: 450
  start-page: 50
  year: 2016
  ident: 451_CR19
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2016.06.023
– volume: 29
  start-page: 5692
  year: 2015
  ident: 451_CR20
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.5b01246
– volume: 113
  start-page: 17418
  year: 2009
  ident: 451_CR25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907796d
– volume: 29
  start-page: 2676
  year: 2013
  ident: 451_CR30
  publication-title: Langmuir
  doi: 10.1021/la3048714
– volume: 250
  start-page: 499
  year: 2003
  ident: 451_CR15
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)02461-2
– volume: 34
  start-page: 3186
  year: 2018
  ident: 451_CR21
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b03901
– volume: 341
  start-page: 286
  year: 2010
  ident: 451_CR8
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2009.09.052
– volume: 46
  start-page: 6353
  year: 2007
  ident: 451_CR12
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie070627r
– volume: 128
  start-page: 15360
  year: 2006
  ident: 451_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0655791
– volume: 19
  start-page: 3966
  year: 2017
  ident: 451_CR17
  publication-title: Crystengcomm
  doi: 10.1039/C7CE00770A
– volume: 192
  start-page: 55
  year: 1993
  ident: 451_CR24
  publication-title: Physica B
  doi: 10.1016/0921-4526(93)90108-I
– volume: 13
  start-page: 4451
  year: 2013
  ident: 451_CR34
  publication-title: Atmos. Chem. and Phys.
  doi: 10.5194/acp-13-4451-2013
– volume: 32
  start-page: 1418
  year: 2014
  ident: 451_CR37
  publication-title: Petrol. Sci. Technol.
  doi: 10.1080/10916466.2012.656872
– volume: 33
  start-page: 3216
  year: 2016
  ident: 451_CR3
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-016-0172-9
– volume: 123
  start-page: 20705
  year: 2019
  ident: 451_CR5
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04125
– volume: 241
  start-page: 220
  year: 2002
  ident: 451_CR16
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01134-X
– volume: 434
  start-page: 743
  year: 2005
  ident: 451_CR31
  publication-title: Nature
  doi: 10.1038/nature03457
– volume: 69
  start-page: 3752
  year: 1965
  ident: 451_CR35
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100895a017
– volume: 47
  start-page: 1
  year: 1993
  ident: 451_CR39
  publication-title: Adv. Colloid Interface
  doi: 10.1016/0001-8686(93)80012-Z
– volume: 32
  start-page: 5877
  year: 2018
  ident: 451_CR11
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.8b00795
– volume: 26
  start-page: 9187
  year: 2010
  ident: 451_CR26
  publication-title: Langmuir
  doi: 10.1021/la101309j
– ident: 451_CR27
– volume: 131
  start-page: 297
  year: 1997
  ident: 451_CR36
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(96)03229-3
– volume: 34
  start-page: 2514
  year: 2017
  ident: 451_CR4
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-017-0153-7
– volume: 29
  start-page: 4245
  year: 2015
  ident: 451_CR9
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.5b00768
– volume: 34
  start-page: 706
  year: 2017
  ident: 451_CR13
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-016-0318-9
– volume: 243
  start-page: 476
  year: 2002
  ident: 451_CR14
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(02)01576-2
– volume: 5
  start-page: 58813
  year: 2015
  ident: 451_CR6
  publication-title: Rsc Adv.
  doi: 10.1039/C5RA08335D
– volume: 202
  start-page: 32
  year: 2017
  ident: 451_CR23
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.108
– volume: 117
  start-page: 23515
  year: 2013
  ident: 451_CR7
  publication-title: J. Phys. Chem.
– volume: 138
  start-page: 241
  year: 1997
  ident: 451_CR28
  publication-title: Fluid Phase Equilib.
  doi: 10.1016/S0378-3812(97)00164-7
– volume: 33
  start-page: 523
  year: 2019
  ident: 451_CR10
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.8b03210
– volume: 326
  start-page: 1095
  year: 2009
  ident: 451_CR2
  publication-title: Science
  doi: 10.1126/science.1174010
– volume: 23
  start-page: 3045
  year: 2009
  ident: 451_CR22
  publication-title: Energy Fuel
  doi: 10.1021/ef900122n
– volume: 9
  start-page: 3208
  year: 1993
  ident: 451_CR40
  publication-title: Langmuir
  doi: 10.1021/la00035a073
– volume: 17
  start-page: 577
  year: 2015
  ident: 451_CR18
  publication-title: Crystengcomm
  doi: 10.1039/C4CE01625D
– ident: 451_CR33
– ident: 451_CR32
  doi: 10.1016/B978-075064682-6/50012-3
SSID ssj0055620
Score 2.3219764
Snippet Cyclopentane (CP) hydrate seeds can lead to nucleation of CH 4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to...
Cyclopentane (CP) hydrate seeds can lead to nucleation of CH4 hydrate with a lower supersaturation; the concept of nucleation potential was applied to estimate...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Biotechnology
Catalysis
Chemistry
Chemistry and Materials Science
Crystal structure
Industrial Chemistry/Chemical Engineering
Materials Science
Methane hydrates
Nucleation
Parameter estimation
Separation Technology
Sodium dodecyl sulfate
Stainless steel
Stainless steels
Steel structures
Supersaturation
Surface energy
Thermodynamics
Walls
화학공학
Title Hydrate seeding effect on the metastability of CH4 hydrate
URI https://link.springer.com/article/10.1007/s11814-019-0451-3
https://www.proquest.com/docview/2348263733
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002553275
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2020, 37(2), 239, pp.341-349
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6i5QA7DMaYVsYqa-LEFJTGsZ3sVipKAYkTleBk-Vdg6paiNhzgr-e5iVdAA4lTDn5O4mf7vc9-z58B9uLcWqFUHPWUMlHqeBpl6KjRGLpc5LH1DCk-2-Kcj8bp6SW7bM5xz0O2ewhJLiz18rAbOiOfMeE381kvoi1YZb0sz9qw2j--OjsKBpihS6-3VjzFHiKeEMz830ueuaNWOSueIc0XwdGFzxluwEX42zrVZHJwV-kD8_CCyPGdzdmEjw0GJf160HyCFVduwdogXP22BR-esBR-hl-je-sJJci89nSkzgEh05IgeiR_XaUQYi6SbO_JtCCDUUpu6irbMB4eXQxGUXPlQmRoJqqI45xmqRCGFSmzygqqlc5TbjnCW5vFlApFrdNZgUUuZlpTgWKJwWWdiZ2hX6BdTkv3FYgyOUNzYXiBkMsg8DCcaqYUS7VO4sJ1IA6al6bhI_fXYvyRSyZlryKJKpJeRZJ2YP9flduajOMt4R_YnXJifktPoe2f11M5mUlcKJxI7gOWGQrtht6WzeSdy8QT_nAqKBb_DJ23LH71izvvkv4G64lfuy8ywHehXc3u3HcEOJXu4oAeHh6ed5uB3YXWOOk_Asns76w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYoDIUBQQFRnhZiAkVK49hO2FBFFaB0aqVull8BVEhRW4b-e855UIoAiSnDnRPpHN999p2_Q-jcj43hUvpeS0rthZaFXgSBGpyhjXnsG8eQ4qoteiwZhHdDOizvcU-ravcqJZl76sVlNwhGrmLCHebTlkdqaA2wQOTaFgyC68r9UgjoxcGKI9gDvFOlMn96xVIwqmWTdAlnfkuN5hGns4U2S6iIr4u53UYrNmugervq0NZAG1_IBHfQVTI3jvcBT4uAhItSDTzOMIA8_GpnEpBgXgs7x-MUt5MQPxVDdtGgc9NvJ17ZGcHTJOIzj8HSoyHnmqYhNdJwoqSKQ2YYoFAT-YRwSYxVUQoi61OlCAe1QMPuS_tWkz20mo0zu4-w1DGFVa1ZCshIAz7QjCgqJQ2VCvzUNpFfmUjokjbcda94EQvCY2dVAVYVzqqCNNHF55C3gjPjL-UzsLsY6WfhmK7d83EsRhMBeP5WMJdXjEDpqJoWUa6xqQgcLw8jnID4spqqhfjXLx78S_sU1ZP-Q1d0b3v3h2g9cNvtvGj7CK3OJu_2GDDJTJ3k_-AHceHTZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-wMdBfOLbIJ6Uxe1mk-x6K9WyVSkeLPQW8lqV6ra068F_72QfVkUFT3vIJAszSeZLZvINQid-bAyX0vcaUmovtCz0InDUsBnamMe-cQwpLtuiy5JeeN2n_arO6aTOdq9DkuWbBsfSlOXnI5OeTx--gWNy2RPuYp82PDKL5mE3briJ3gua9VZMwbmXlyyObA-wTx3W_GmIL45pNhunXzDntzBp4X3aq2ilgo24Wdp5Dc3YbB0ttupqbeto-ROx4Aa6SN6M44DAk9I54TJtAw8zDIAPv9hcAios8mLf8DDFrSTEj2WXTdRrX923Eq-qkuBpEvHcY7AMaci5pmlIjTScKKnikBkGiNREPiFcEmNVlEKT9alShINYoOEkpn2ryRaay4aZ3UZY6pjCCtcsBZSkAStoRhSVkoZKBX5qd5Bfq0joikLcVbJ4FlPyY6dVAVoVTquC7KDTjy6jkj_jL-Fj0LsY6CfhWK_d92EoBmMB2L4jmIsxRiC0X5tFVOttIgLH0cMIJ9B8Vptq2vzrH3f_JX2EFu4u2-K2073ZQ0uBO3kX-dv7aC4fv9oDgCe5Oiym4DsAUNej
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrate+seeding+effect+on+the+metastability+of+CH4+hydrate&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Baek+Seungjun&rft.au=Lee%2C+Wonhyeong&rft.au=Min+Juwon&rft.au=Yun-Ho%2C+Ahn&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=37&rft.issue=2&rft.spage=341&rft.epage=349&rft_id=info:doi/10.1007%2Fs11814-019-0451-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon