Effects of Multisession High-Definition Transcranial Direct Current Stimulation on Resting-State Brain Network Connectivity and Efficiency Under Running-Induced Fatigue

This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults ra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 2170 - 2179
Main Authors Yu, Changxiao, Zhan, Jianglong, Shen, Bin, Zhou, Junhong, Fu, Weijie
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity (<inline-formula> <tex-math notation="LaTeX">{p} =0.019 </tex-math></inline-formula>), clustering coefficient (<inline-formula> <tex-math notation="LaTeX">{p} =0.036 </tex-math></inline-formula>), and local efficiency (<inline-formula> <tex-math notation="LaTeX">{p} =0.020 </tex-math></inline-formula>) in the theta band, and the global efficiency (<inline-formula> <tex-math notation="LaTeX">{p} =0.020 </tex-math></inline-formula>) in the gamma band relative to the baseline values. The <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>HR (<inline-formula> <tex-math notation="LaTeX">{p} \lt 0.001 </tex-math></inline-formula>) and <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>RPE values (<inline-formula> <tex-math notation="LaTeX">{p} =0.019 </tex-math></inline-formula>) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
AbstractList This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-blind, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity (p = 0.019), clustering coefficient (p = 0.036), and local efficiency (p = 0.020) in the theta band, and the global efficiency (p = 0.020) in the gamma band relative to the baseline values. The ΔHR (p < 0.001) and ΔRPE values (p = 0.019) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-blind, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity (p = 0.019), clustering coefficient (p = 0.036), and local efficiency (p = 0.020) in the theta band, and the global efficiency (p = 0.020) in the gamma band relative to the baseline values. The ΔHR (p < 0.001) and ΔRPE values (p = 0.019) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity (<inline-formula> <tex-math notation="LaTeX">{p} =0.019 </tex-math></inline-formula>), clustering coefficient (<inline-formula> <tex-math notation="LaTeX">{p} =0.036 </tex-math></inline-formula>), and local efficiency (<inline-formula> <tex-math notation="LaTeX">{p} =0.020 </tex-math></inline-formula>) in the theta band, and the global efficiency (<inline-formula> <tex-math notation="LaTeX">{p} =0.020 </tex-math></inline-formula>) in the gamma band relative to the baseline values. The <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>HR (<inline-formula> <tex-math notation="LaTeX">{p} \lt 0.001 </tex-math></inline-formula>) and <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>RPE values (<inline-formula> <tex-math notation="LaTeX">{p} =0.019 </tex-math></inline-formula>) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity ( <tex-math notation="LaTeX">${p} =0.019$ </tex-math>), clustering coefficient ( <tex-math notation="LaTeX">${p} =0.036$ </tex-math>), and local efficiency ( <tex-math notation="LaTeX">${p} =0.020$ </tex-math>) in the theta band, and the global efficiency ( <tex-math notation="LaTeX">${p} =0.020$ </tex-math>) in the gamma band relative to the baseline values. The <tex-math notation="LaTeX">$\Delta $ </tex-math>HR ( <tex-math notation="LaTeX">${p} \lt 0.001$ </tex-math>) and <tex-math notation="LaTeX">$\Delta $ </tex-math>RPE values ( <tex-math notation="LaTeX">${p} =0.019$ </tex-math>) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network connectivity and efficiency under running-induced fatigue. This double-masked, randomized, and sham-controlled study involved 24 male adults randomly assigned to the HD-tDCS or sham-tDCS group. Participants completed a running-induced fatigue protocol at a personalized running speed before and after the intervention, and heart rate (HR) and Borg rating of perceived exertion (RPE) were monitored. Resting-state electroencephalography (EEG) signals from 28 channels were recorded before the intervention and after fatigue was induced. Brain network connectivity was characterized using average functional connectivity measured using the phase locking value, and network efficiency was assessed using graph theoretical indices. Compared with the sham-tDCS group, the HD-tDCS group showed significantly increased averaged functional connectivity ( ${p} =0.019$ ), clustering coefficient ( ${p} =0.036$ ), and local efficiency ( ${p} =0.020$ ) in the theta band, and the global efficiency ( ${p} =0.020$ ) in the gamma band relative to the baseline values. The $\Delta $ HR ( ${p} \lt 0.001$ ) and $\Delta $ RPE values ( ${p} =0.019$ ) significantly decreased in the HD-tDCS group relative to sham-tDCS group and baseline values. Multiple sessions of anodal HD-tDCS targeting the primary motor cortex can enhance resting-state brain network connectivity and efficiency in the theta and gamma bands under running-induced fatigue, and reduce the perceived effort during running.
Author Zhou, Junhong
Fu, Weijie
Shen, Bin
Yu, Changxiao
Zhan, Jianglong
Author_xml – sequence: 1
  givenname: Changxiao
  surname: Yu
  fullname: Yu, Changxiao
  email: yuchangxiao@hmc.edu.cn
  organization: School of Rehabilitation Science, Hangzhou Medical College, Hangzhou, China
– sequence: 2
  givenname: Jianglong
  orcidid: 0009-0007-6121-137X
  surname: Zhan
  fullname: Zhan, Jianglong
  email: zhanjianglong4@163.com
  organization: Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
– sequence: 3
  givenname: Bin
  surname: Shen
  fullname: Shen, Bin
  email: shenbin614@163.com
  organization: Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
– sequence: 4
  givenname: Junhong
  orcidid: 0000-0002-7931-7646
  surname: Zhou
  fullname: Zhou, Junhong
  email: junhongzhou@hsl.harvard.edu
  organization: Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
– sequence: 5
  givenname: Weijie
  orcidid: 0000-0002-7552-0452
  surname: Fu
  fullname: Fu, Weijie
  email: fuweijie@sus.edu.cn
  organization: Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40434858$$D View this record in MEDLINE/PubMed
BookMark eNpFkttuEzEURUeoiF7gBxBCfuRlgq_jmUdIUxqpFClJny3HcxxcJnaxPaD8EZ-Jc6FIln1srb2PdLwvqzMfPFTVW4InhODu4-p-uZhNKKZiwoTkjLQvqgsiRFtjSvDZvma85ozi8-oypUeMiWyEfFWdc8wZb0V7Uf2ZWQsmJxQs-joO2SVIyQWPbt3me30N1nmX9_dV1D6Zsjk9oGsXiwhNxxjBZ7TMbjsO-sCVtYCUnd_Uy6wzoM9RO4_uIf8O8QeaBu-L1P1yeYe071Hp74wDb3bowfcQ0WL0fq-e-3400KOb4rsZ4XX10uohwZvTeVU93MxW09v67tuX-fTTXW1YK3MtLLFaGoJZazkDbCzvcGON0W2pu8ZIWra10G3LWW8o10AoFQC21926DPGqmh99-6Af1VN0Wx13KminDg8hbpSO2ZkBFCOGYt03wKTl2PC1phIwsV1nGimEKF4fjl5PMfwcy1TU1iUDw6A9hDEpRglrcMM7WdD3J3Rcb6F_bvzvpwpAj4CJIaUI9hkhWO3joA5xUPs4qFMciujdUeQA4L-AYNJISdhfyey0CA
CODEN ITNSB3
Cites_doi 10.1007/s00221-020-05827-6
10.1371/journal.pone.0151687
10.3791/50309
10.3389/fnhum.2021.614950
10.1093/cercor/bhae226
10.3389/fnhum.2020.00243
10.1093/gerona/glw011
10.1016/j.bjpt.2024.101088
10.1080/17461390200072505
10.1161/strokeaha.123.044892
10.2165/00007256-200434020-00004
10.1103/physreve.94.062308
10.1371/journal.pone.0144916
10.1038/nrn3140
10.1371/journal.pone.0211902
10.1136/bjsports-2012-091658
10.1016/j.rehab.2011.01.001
10.1152/jn.00715.2019
10.1016/j.brs.2009.03.005
10.1152/jn.00497.2015
10.3233/rnn-2007-00375
10.3390/biology10100962
10.1016/j.jneumeth.2010.05.007
10.7554/elife.07578
10.31887/dcns.2013.15.3/osporns
10.1113/ep088186
10.1523/jneurosci.3789-14.2015
10.1016/j.cortex.2015.08.019
10.3389/fpsyt.2020.00585
10.1016/j.brainres.2010.05.086
10.1016/j.ijpsycho.2013.10.006
10.1016/j.pain.0000000000000006
10.1519/jsc.0000000000001956
10.1152/physrev.2001.81.4.1725
10.3389/fnsys.2014.00132
10.1016/j.clinph.2019.06.234
10.1016/b978-0-12-805353-9.00139-x
10.1016/j.brs.2012.09.010
10.3389/fphys.2023.1263309
10.3389/fnhum.2015.00039
10.1016/j.tins.2007.05.001
10.1109/tnsre.2016.2627058
10.1007/s11571-017-9447-z
10.3390/brainsci12010058
10.1152/jn.00903.2006
10.1089/brain.2011.0008
10.1055/a-1198-8525
10.1016/j.brs.2017.09.017
10.1016/j.neuroimage.2009.10.003
10.3389/fpsyg.2018.01867
10.3389/fnhum.2013.00575
10.1136/bjsports-2020-102955
10.1016/j.neuroimage.2016.06.003
10.1249/mss.0000000000001086
10.1016/j.brs.2023.08.025
10.1016/j.neuroimage.2007.02.008
10.1016/j.jneumeth.2003.10.009
10.1103/physreve.71.065103
10.1113/jphysiol.2002.027938
10.3389/fnhum.2022.758891
10.1103/physrevlett.87.198701
10.1519/jsc.0000000000003242
10.1038/s41598-021-92670-6
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1109/TNSRE.2025.3574318
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 2179
ExternalDocumentID oai_doaj_org_article_31c20ad6e37f40c4ba27e01f99c67555
40434858
10_1109_TNSRE_2025_3574318
11016771
Genre orig-research
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research and Innovation Grant for Graduate Students, Shanghai University of Sport
  grantid: YJSCX-2023-019
  funderid: 10.13039/501100018877
– fundername: 2024 Shanghai Oriental Talent Plan Top Talent Project
  grantid: BJJY2024013
– fundername: National Natural Science Foundation of China
  grantid: 12272238; 11932013
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c387t-5f1fa7c1038f43e0cf4906fcca80cf96c7296cb5a8843dc24ae1225eefda9b743
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:31:11 EDT 2025
Fri Jul 11 17:13:03 EDT 2025
Sat Aug 02 01:40:54 EDT 2025
Thu Jul 03 08:20:18 EDT 2025
Wed Aug 27 01:47:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-5f1fa7c1038f43e0cf4906fcca80cf96c7296cb5a8843dc24ae1225eefda9b743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7552-0452
0009-0007-6121-137X
0000-0002-7931-7646
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11016771
PMID 40434858
PQID 3213606497
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3213606497
pubmed_primary_40434858
doaj_primary_oai_doaj_org_article_31c20ad6e37f40c4ba27e01f99c67555
crossref_primary_10_1109_TNSRE_2025_3574318
ieee_primary_11016771
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref63
  doi: 10.1007/s00221-020-05827-6
– ident: ref4
  doi: 10.1371/journal.pone.0151687
– ident: ref28
  doi: 10.3791/50309
– ident: ref44
  doi: 10.3389/fnhum.2021.614950
– ident: ref30
  doi: 10.1093/cercor/bhae226
– ident: ref36
  doi: 10.3389/fnhum.2020.00243
– ident: ref11
  doi: 10.1093/gerona/glw011
– ident: ref54
  doi: 10.1016/j.bjpt.2024.101088
– ident: ref2
  doi: 10.1080/17461390200072505
– ident: ref25
  doi: 10.1161/strokeaha.123.044892
– ident: ref3
  doi: 10.2165/00007256-200434020-00004
– ident: ref38
  doi: 10.1103/physreve.94.062308
– ident: ref55
  doi: 10.1371/journal.pone.0144916
– ident: ref19
  doi: 10.1038/nrn3140
– ident: ref10
  doi: 10.1371/journal.pone.0211902
– ident: ref53
  doi: 10.1136/bjsports-2012-091658
– ident: ref5
  doi: 10.1016/j.rehab.2011.01.001
– ident: ref12
  doi: 10.1152/jn.00715.2019
– ident: ref29
  doi: 10.1016/j.brs.2009.03.005
– ident: ref14
  doi: 10.1152/jn.00497.2015
– ident: ref22
  doi: 10.3233/rnn-2007-00375
– ident: ref27
  doi: 10.3390/biology10100962
– ident: ref20
  doi: 10.1016/j.jneumeth.2010.05.007
– ident: ref48
  doi: 10.7554/elife.07578
– ident: ref41
  doi: 10.31887/dcns.2013.15.3/osporns
– ident: ref6
  doi: 10.1113/ep088186
– ident: ref17
  doi: 10.1523/jneurosci.3789-14.2015
– ident: ref35
  doi: 10.1016/j.cortex.2015.08.019
– ident: ref24
  doi: 10.3389/fpsyt.2020.00585
– ident: ref45
  doi: 10.1016/j.brainres.2010.05.086
– ident: ref49
  doi: 10.1016/j.ijpsycho.2013.10.006
– ident: ref57
  doi: 10.1016/j.pain.0000000000000006
– ident: ref62
  doi: 10.1519/jsc.0000000000001956
– ident: ref1
  doi: 10.1152/physrev.2001.81.4.1725
– ident: ref16
  doi: 10.3389/fnsys.2014.00132
– ident: ref33
  doi: 10.1016/j.clinph.2019.06.234
– ident: ref58
  doi: 10.1016/b978-0-12-805353-9.00139-x
– ident: ref21
  doi: 10.1016/j.brs.2012.09.010
– ident: ref7
  doi: 10.3389/fphys.2023.1263309
– ident: ref37
  doi: 10.3389/fnhum.2015.00039
– ident: ref50
  doi: 10.1016/j.tins.2007.05.001
– ident: ref32
  doi: 10.1109/tnsre.2016.2627058
– ident: ref34
  doi: 10.1007/s11571-017-9447-z
– ident: ref47
  doi: 10.3390/brainsci12010058
– ident: ref26
  doi: 10.1152/jn.00903.2006
– ident: ref42
  doi: 10.1089/brain.2011.0008
– ident: ref52
  doi: 10.1055/a-1198-8525
– ident: ref9
  doi: 10.1016/j.brs.2017.09.017
– ident: ref40
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: ref59
  doi: 10.3389/fpsyg.2018.01867
– ident: ref51
  doi: 10.3389/fnhum.2013.00575
– ident: ref23
  doi: 10.1136/bjsports-2020-102955
– ident: ref15
  doi: 10.1016/j.neuroimage.2016.06.003
– ident: ref56
  doi: 10.1249/mss.0000000000001086
– ident: ref46
  doi: 10.1016/j.brs.2023.08.025
– ident: ref18
  doi: 10.1016/j.neuroimage.2007.02.008
– ident: ref31
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref39
  doi: 10.1103/physreve.71.065103
– ident: ref13
  doi: 10.1113/jphysiol.2002.027938
– ident: ref8
  doi: 10.3389/fnhum.2022.758891
– ident: ref43
  doi: 10.1103/physrevlett.87.198701
– ident: ref60
  doi: 10.1519/jsc.0000000000003242
– ident: ref61
  doi: 10.1038/s41598-021-92670-6
SSID ssj0017657
Score 2.438511
Snippet This study aimed to investigate the effects of five-session high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain network...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 2170
SubjectTerms Adult
Brain - physiology
Brain - physiopathology
brain network
Central nervous system
Double-Blind Method
Electrodes
Electroencephalography
Fatigue
Fatigue - physiopathology
functional connectivity
Heart Rate
Humans
Male
Motors
Nerve Net - physiology
Nerve Net - physiopathology
neural efficiency
neuronal excitability
Protocols
Recording
Rest
Running - physiology
Somatosensory
Sports
Transcranial direct current stimulation
Transcranial Direct Current Stimulation - methods
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQlALhpUECLsjUid9HCruqkNjDdiv1ZjmOXfVAtmJ3_xM_s2M7W9oD4oIURVGU93z2zDjj7yPkvbK9VVFKGqO1FEERqfWYuFp0xallvg0qz3f-sVCn5-L7hby4I_WVa8IqPXD9cMe8DR3zg4pcJ8GC6H2nI2uTtQFjXVnYS9Hn7ZOp6f-BVoXjE5uzoIJ3bD9dhtnj1eJsOcPEsJOfucz-09xzSYW5f5Ja-XvUWbzP_DF5NIWN8KU-7hPyII6H5MNdimBYVX4A-AjLe-zbT8nvSlG8gXWCMuF2U8k4IBd50G8xXY2lcAuK4wq4QlBC7QxhInCCs-3Vz0nqC3BZZnaO8ZKWYBVOstAELGpJOZTimVBlKcCPA8wKT0We5AlFZwmWu6KURLNwSIgDzPG6l7t4RM7ns9XXUzopNNDAjd5Smdrkdcgk60nwyEISlqmEqDC4bVXA0F2FXnpjBB9CJ3xssQOJMQ3e9vjxn5GDcT3GFwR6r3kYlFfotAX2Bb7v0N6sxx5IGcNTQz7tjeSuKxGHKwkMs66Y1GWTusmkDTnJdrw9MpNolx0ILTdBy_0LWg05yij4c7s80qF125B3e1g4bIz5D4sf43q3cbxrOWaEwuqGPK94uT070xgJI83L__For8jD_Lp1LOg1Odj-2sU3GB1t-7elIdwALzgMjw
  priority: 102
  providerName: Directory of Open Access Journals
Title Effects of Multisession High-Definition Transcranial Direct Current Stimulation on Resting-State Brain Network Connectivity and Efficiency Under Running-Induced Fatigue
URI https://ieeexplore.ieee.org/document/11016771
https://www.ncbi.nlm.nih.gov/pubmed/40434858
https://www.proquest.com/docview/3213606497
https://doaj.org/article/31c20ad6e37f40c4ba27e01f99c67555
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgT1z4XCB8rAYJuKB0k9hx4iMLrVZI9NDtSnuLHGe8Wq1IEU0u_CJ-JjN2WhaklZCqKKrSpNE8j2fsmfeEeKtNazSWZYpoTEqgwNRYSlwNTcU-z2zuNPc7f13q03P15aK8mJrVQy8MIobiM5zxadjL7zZu5KWy45xTzYo7xu9S5habtfZbBpUOtJ40glWqZJHtOmQyc7xenq3mlAsW5UyWPGWySh_Tyqiapd5vTEiBt38SWrk95gxzz-KBWO7-dSw5uZ6NQztzP_8hdPzv13oo7k9RKHyMsHkk7mD_WLy7yTgM60g3AO9h9ReZ9xPxKzIeb2HjIfTvbiO3B3DNSPoZ_VUf6sAgzIOODoRxiL4VJj4oOBuuvk3KYUCfFZN99JdpiH3hhHUrYBkr1CHU4riocgG272AeaC-4ZxSCbBOsxiC8lLIOicMOFnTfyxEPxflivv50mk6CD6mTdTWkpc-9rRxztnslMXNemUx7AllN50Y7ygS0a0tb10p2rlAWc_JHiL6zpiXDPhUH_abH5wJaW0nXaaspBlDkWmxbeHJXLTk0XdfSJ-LDzurN98jr0YR8KDNNgEvDcGkmuCTihIGxv5I5ucMXZMdmGuKNzF2R2U6jrOhRTrW2qDDLvTGOsrKyTMQh2_7P4yazJ-LNDmcNjW3esLE9bsZtI4tcUoKpTJWIZxGA-1_v4Pvilru-FPf4DeJq0StxMPwY8TXFT0N7FNYdjsLo-Q2AihmG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6hcoALz0LDc5CAC3Jqe9dr75FCogBtDmkq9Wat17NVhXAQiS_8In4mM7tOKEiVkKLIihI71nw7D-_M9wnxWpvGaCyKBNGYhECBibFUuBoKxT5LbeY0zzufzPXsTH0-L86HYfUwC4OIofkMx3wY9vLblev5UdlhxqVmyRPjNynwF3kc19ptGpQ6EHvSGlaJknm6nZFJzeFyfrqYUDWYF2NZcNBknT4mllEVi71fCUmBuX-QWrk-6wzRZ3pXzLf_OzadfB33m2bsfv5D6fjfN3ZP3BnyUHgfgXNf3MDugXhzlXMYlpFwAN7C4i8674fiV-Q8XsPKQ5jgXUd2D-CukeQj-ssudIJBiISO3gjlEL0rDIxQcLq5_DZohwG9Fkz30V0kIfuFI1augHnsUYfQjeOizgXYroVJIL7gqVEIwk2w6IP0UsJKJA5bmNJ5L3rcF2fTyfLDLBkkHxInq3KTFD7ztnTM2u6VxNR5ZVLtCWYVHRvtqBbQrilsVSnZulxZzMgjIfrWmoYM-0jsdasODwQ0tpSu1VZTFqDIudgm9-SwGnJpuqqkH4l3W6vX3yOzRx0qotTUAS41w6Ue4DISRwyM3TeZlTt8QHash0Vey8zlqW01ypIu5VRj8xLTzBvjqC4ripHYZ9v_udxg9pF4tcVZTaubt2xsh6t-Xcs8k1RiKlOOxOMIwN2vt_B9cs1ZX4pbs-XJcX38af7lqbjNdxOfHT0Te5sfPT6nbGrTvAhr6DeoSBvb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Multisession+High-Definition+Transcranial+Direct+Current+Stimulation+on+Resting-State+Brain+Network+Connectivity+and+Efficiency+under+Running-Induced+Fatigue&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Yu%2C+Changxiao&rft.au=Zhan%2C+Jianglong&rft.au=Shen%2C+Bin&rft.au=Zhou%2C+Junhong&rft.date=2025-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=PP&rft_id=info:doi/10.1109%2FTNSRE.2025.3574318&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon