Inertial Sensing for Human Motion Analysis: Enabling Sensor-to-Body Calibration Through an Anatomical and Functional Combined Approach
The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 1855 - 1864 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement. |
---|---|
AbstractList | The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement.The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement. The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement. |
Author | Burattini, Laura Scattolini, Mara Fioretti, Sandro Mengarelli, Alessandro Tigrini, Andrea Verdini, Federica |
Author_xml | – sequence: 1 givenname: Mara orcidid: 0000-0003-2060-6942 surname: Scattolini fullname: Scattolini, Mara organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 2 givenname: Andrea orcidid: 0000-0002-1600-2137 surname: Tigrini fullname: Tigrini, Andrea organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 3 givenname: Federica orcidid: 0000-0003-4252-3224 surname: Verdini fullname: Verdini, Federica organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 4 givenname: Laura orcidid: 0000-0002-9474-7046 surname: Burattini fullname: Burattini, Laura organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 5 givenname: Sandro orcidid: 0000-0002-7783-3065 surname: Fioretti fullname: Fioretti, Sandro organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy – sequence: 6 givenname: Alessandro orcidid: 0000-0002-6087-6763 surname: Mengarelli fullname: Mengarelli, Alessandro email: a.mengarelli@staff.univpm.it organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40333092$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkc1uEzEUhS1URH_gBRBCXrKZ4P8Zs2ujlEYqINGwtjweO3E1Ywd7ZpEX4LnxJKFidX2t75yre881uAgxWADeY7TAGMnPm-9PP1cLgghfUC7qhtJX4Apz3lSIYHQxvymrGCXoElzn_IwQrgWv34BLhiilSJIr8GcdbBq97uGTDdmHLXQxwYdp0AF-i6OPAd4G3R-yz1_gKui2n5mZjakaY3UXuwNc6t63SR_pzS7FabuD-igc4-BNMdehg_dTMDNS2mUcWh9sB2_3-xS12b0Fr53us313rjfg1_1qs3yoHn98XS9vHytDm3qseMdrghvRdYgb3kjKqW2bTkjutK2dYK52NWsZN45oTrhArGmopA5ZI3jb0huwPvl2UT-rffKDTgcVtVfHj5i2SpdzmN4qgTCvKXeOU8l4J6WWuIymjHDSCtkUr08nr7LC78nmUQ0-G9v3Otg4ZVXujqkUgtGCfjyjUzvY7mXwvxwKQE6ASTHnZN0LgpGaw1bHsNUctjqHXUQfTiJvrf1PICUhgtC_2mOkXw |
CODEN | ITNSB3 |
Cites_doi | 10.3390/s20030715 10.1016/j.jbiomech.2009.06.025 10.1201/9781003525592 10.1016/j.gaitpost.2017.10.024 10.1016/j.gaitpost.2008.04.003 10.3390/s140406891 10.3390/s22155657 10.3233/jpd-201914 10.1016/j.jbiomech.2024.112225 10.1109/ICORR.2011.5975346 10.1007/978-3-319-14418-4_162 10.1109/TBME.2020.3037820 10.1016/j.gaitpost.2004.05.003 10.1016/0021-9290(94)90191-0 10.3390/s140100356 10.1016/j.jbiomech.2020.109832 10.1109/MeMeA60663.2024.10596886 10.1109/TBME.2006.875664 10.3390/s150819302 10.1007/s00415-020-09696-5 10.1109/JBHI.2016.2639537 10.1016/0268-0033(95)91394-T 10.1115/1.3138397 10.1016/j.medengphy.2018.12.021 10.1016/j.gaitpost.2016.11.008 10.1109/IEMBS.2006.260705 10.1016/S0021-9290(01)00222-6 10.1016/j.gaitpost.2015.10.022 10.3390/s23187987 10.1109/TNSRE.2020.2987155 10.1016/j.measurement.2014.03.004 10.1016/j.jbiomech.2007.12.003 10.1097/NPT.0000000000000242 10.1109/JSEN.2019.2939981 10.1109/JSEN.2021.3137305 10.1016/j.jbiomech.2019.01.027 10.1109/EMBC.2016.7591923 10.1016/j.jbiomech.2019.07.022 10.3390/s21186307 10.1016/j.jbiomech.2005.05.013 10.1016/j.procs.2022.01.303 10.3390/s19153320 10.1016/j.jbmt.2020.06.008 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1109/TNSRE.2025.3567833 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) - NZ CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1864 |
ExternalDocumentID | oai_doaj_org_article_6015735ff53945d99a9118634252b698 40333092 10_1109_TNSRE_2025_3567833 10992262 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Project Vitality—Project Code ECS00000041, CUP I33C22001330007—funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5— “Creation and Strengthening of Innovation Ecosystems,” Construction of “Territorial Leaders in Research and Development”—Innovation Ecosystems—Project “Innovation, Digitalization, and Sustainability for the Diffused Economy in Central Italy—VITALITY” Call grantid: 3277 of 30/12/2021 – fundername: European Union—NextGenerationEU grantid: 0001057 of 23/06/2022 – fundername: Italian Ministry of University |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c387t-5d572186dd05c589353eb8d695fae7f64f7f74b45cf2a52560488393f0ec65bb3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Wed Aug 27 01:16:36 EDT 2025 Fri Jul 11 18:27:45 EDT 2025 Sat May 31 02:14:08 EDT 2025 Sun Jul 06 05:07:03 EDT 2025 Wed Aug 27 02:02:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-5d572186dd05c589353eb8d695fae7f64f7f74b45cf2a52560488393f0ec65bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7783-3065 0000-0003-2060-6942 0000-0002-9474-7046 0000-0002-6087-6763 0000-0003-4252-3224 0000-0002-1600-2137 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10992262 |
PMID | 40333092 |
PQID | 3201396643 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3201396643 crossref_primary_10_1109_TNSRE_2025_3567833 doaj_primary_oai_doaj_org_article_6015735ff53945d99a9118634252b698 pubmed_primary_40333092 ieee_primary_10992262 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 Berme (ref35) 1990 Premerlani (ref37) 2009; 1 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref24 doi: 10.3390/s20030715 – ident: ref15 doi: 10.1016/j.jbiomech.2009.06.025 – ident: ref1 doi: 10.1201/9781003525592 – ident: ref5 doi: 10.1016/j.gaitpost.2017.10.024 – ident: ref39 doi: 10.1016/j.gaitpost.2008.04.003 – ident: ref41 doi: 10.3390/s140406891 – ident: ref27 doi: 10.3390/s22155657 – ident: ref43 doi: 10.3233/jpd-201914 – ident: ref13 doi: 10.1016/j.jbiomech.2024.112225 – ident: ref10 doi: 10.1109/ICORR.2011.5975346 – ident: ref14 doi: 10.1007/978-3-319-14418-4_162 – ident: ref30 doi: 10.1109/TBME.2020.3037820 – ident: ref3 doi: 10.1016/j.gaitpost.2004.05.003 – ident: ref33 doi: 10.1016/0021-9290(94)90191-0 – ident: ref29 doi: 10.3390/s140100356 – ident: ref25 doi: 10.1016/j.jbiomech.2020.109832 – ident: ref7 doi: 10.1109/MeMeA60663.2024.10596886 – volume: 1 start-page: 1 year: 2009 ident: ref37 article-title: Direction cosine matrix IMU: Theory publication-title: Diy Drone: USA – year: 1990 ident: ref35 article-title: Biomechanics of human movement: Applications in rehabilitation, sports and ergonomics – ident: ref8 doi: 10.1109/TBME.2006.875664 – ident: ref9 doi: 10.3390/s150819302 – ident: ref31 doi: 10.1007/s00415-020-09696-5 – ident: ref45 doi: 10.1109/JBHI.2016.2639537 – ident: ref2 doi: 10.1016/0268-0033(95)91394-T – ident: ref34 doi: 10.1115/1.3138397 – ident: ref19 doi: 10.1016/j.medengphy.2018.12.021 – ident: ref6 doi: 10.1016/j.gaitpost.2016.11.008 – ident: ref44 doi: 10.1109/IEMBS.2006.260705 – ident: ref4 doi: 10.1016/S0021-9290(01)00222-6 – ident: ref21 doi: 10.1016/j.gaitpost.2015.10.022 – ident: ref23 doi: 10.3390/s23187987 – ident: ref36 doi: 10.1109/TNSRE.2020.2987155 – ident: ref18 doi: 10.1016/j.measurement.2014.03.004 – ident: ref40 doi: 10.1016/j.jbiomech.2007.12.003 – ident: ref32 doi: 10.1097/NPT.0000000000000242 – ident: ref20 doi: 10.1109/JSEN.2019.2939981 – ident: ref12 doi: 10.1109/JSEN.2021.3137305 – ident: ref16 doi: 10.1016/j.jbiomech.2019.01.027 – ident: ref22 doi: 10.1109/EMBC.2016.7591923 – ident: ref17 doi: 10.1016/j.jbiomech.2019.07.022 – ident: ref11 doi: 10.3390/s21186307 – ident: ref26 doi: 10.1016/j.jbiomech.2005.05.013 – ident: ref38 doi: 10.1016/j.procs.2022.01.303 – ident: ref42 doi: 10.3390/s19153320 – ident: ref28 doi: 10.1016/j.jbmt.2020.06.008 |
SSID | ssj0017657 |
Score | 2.4449184 |
Snippet | The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame... |
SourceID | doaj proquest pubmed crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 1855 |
SubjectTerms | Accelerometry - instrumentation Adult Algorithms Ankle Ankle Joint - physiology Biomechanical Phenomena Calibration Estimation Female Gait - physiology gait analysis Healthy Volunteers Hip Humans Iron Joints - anatomy & histology Joints - physiology joints kinematics Kinematics Knee Knee Joint - physiology Legged locomotion Lower Extremity - anatomy & histology Lower Extremity - physiology Male MIMU Movement - physiology Radio frequency Reproducibility of Results sensor-to-segment alignment Turning Walking - physiology Wearable devices Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xT90wELYqJpaqLVBS2sqVCktlCHHOjrtB9Z5oJRjgIbFZdmx3SxCEoX-gv7t3ToIeA2LpkCGREzu5z77vHPs7xr6GGGRKWovStFqgP9bCx-NaIFaUaVyWDKfVFhfq7Lr-dQM3a6m-aE3YKA88frgjDBhAS0gJpKkhGOOwezZKItYqj4-j0Rd93hxMTf8PtMoan9idsVpZlfN2mdIcrS6uLhcYGFZwKAGHaimfuKSs3D-lWnmedWbvs3zDXk-0kZ-MzX3LXsXuHdtflwjmq1EfgB_wyyfq21vs78-OVk9jmStart795shUeZ6-5-c5iw-ftUm-8wVtpqIyVLa_E0MvTvvwh9MmLj_CBavKyX24yzcOfZYcwLPAl-gmp_bgSINRdwz8ZJIt32bXy8Xqx5mY8i-IVjZ6EBBAU8qqEEpoAYkNyOiboAwkF3VSddJJ176GNlUOiDuhhaWRqYytAu_lDtvo-i7uMt4iVKLCgyiQN8fOBSehidBWDaLEFezbbAJ7O8ps2ByelMZmg1kymJ0MVrBTstJjSZLIzhcQOHYCjn0JOAXbJhuvVUcSvaoq2JfZ6Ba7Gv0_cV3sH-4t4gj5skIOV7D3Ixoe765LKWVpqg__o2l7bJNed5zp-cg2hruH-Am5z-A_Z5j_A6UV-z8 priority: 102 providerName: Directory of Open Access Journals |
Title | Inertial Sensing for Human Motion Analysis: Enabling Sensor-to-Body Calibration Through an Anatomical and Functional Combined Approach |
URI | https://ieeexplore.ieee.org/document/10992262 https://www.ncbi.nlm.nih.gov/pubmed/40333092 https://www.proquest.com/docview/3201396643 https://doaj.org/article/6015735ff53945d99a9118634252b698 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJy48C4RHZSTggrxN49iOubVoVwWJPbRbqTfLTw5ICSrZA_wAfjczdrJqkSpxWGk3ctaJ5rNnxjPzDSFvQww8JaVYrb1ioI8Vc_GoZYAVqTubKcMx22ItTy_aL5ficipWz7UwMcacfBYX-DXH8sPgt3hUdohRHDAXYMe9C55bKdbahQyUzLSesIJhJt7Uc4VMrQ836_OzJfiCjVhwAbszx-45bc3Bl9fNDYWUefunRiu325xZ96wekPX81CXl5PtiO7qF__0PoeN_v9ZDcn-yQulxgc0jcif2j8m764zDdFPoBuh7enaDzPsJ-fO5x2RsGHOO2e_9NwqGL83RAPo1NwWiM9XJR7rE2iwcg2OHKzYO7GQIvyjWhLmCPpgq9wqiNt84DpnBAH4FugKtOz0PbFzgxMdAjycW9H1ysVpuPp2yqZ0D87xTIxNBKOyAFUItvAA7SfDouiC1SDaqJNukkmpdK3xqrEBTDADDNU919FI4x5-SvX7o43NCPSAvSvigReX0kbXBctFF4ZsOQGcr8mGWqflRWDtM9nZqbTIYDILBTGCoyAmKfTcSGbfzBZCSmRawAcdVKC5SEly3ImhtQU10ksOe1ziAdUX2UbLXpitCrcibGUUGVi6GY2wfh-1PAxgF81uCSViRZwVeu7tncL645V9fknv4BuUs6BXZG6-28TVYR6M7yKcKB3lt_AXYVQpU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOcCFZ4HwNBJwQdmmcSaOubVoV1to99Bupd4sPzkgJahkD_AD-N3MOMmqRarEYaVs5MSJ5rNnJjPzDWPvfPAiRinzQjmZoz6WuQ37VY5YqVVjEmU4ZVus6uV59eUCLsZi9VQLE0JIyWdhRocplu87t6FPZXsUxUFzAXfc26j4oRzKtbZBA1knYk9cwziXKIupRqZQe-vV2ekcvcESZgJwfxbUP6cqBHrzqrymkhJz_9hq5WarM2mfxX22mp57SDr5Ptv0duZ-_0Pp-N8v9oDdG-1QfjAA5yG7FdpH7P1VzmG-HggH-Ad-eo3O-zH7c9RSOjaOOaP89_YbR9OXp3gAP0ltgfhEdvKJz6k6i8bQ2O4y77v8sPO_OFWF2QF_OFXqFsRNurDvEocB_vN8gXp3fB7cutCND54fjDzou-x8MV9_XuZjQ4fciUb2OXiQ1APL-wIcoKUEItjG1wqiCTLWVZRRVrYCF0sDZIwhZIQSsQiuBmvFE7bTdm14xrhD7IUaf2RTWbVvjDcCmgCubBB2JmMfJ5nqHwNvh07-TqF0AoMmMOgRDBk7JLFvRxLndjqBUtLjEtbouoIUECMIVYFXyqCiaGqBu15pEdgZ2yXJXpluEGrG3k4o0rh2KSBj2tBtfmrEKBrgNRqFGXs6wGt79QTO5zfc9Q27s1yfHOvjo9XXF-wuvc3wZegl2-kvN-EV2kq9fZ1WyF-Xywyp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Sensing+for+Human+Motion+Analysis%3A+Enabling+Sensor-to-Body+Calibration+Through+an+Anatomical+and+Functional+Combined+Approach&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Scattolini%2C+Mara&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Burattini%2C+Laura&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=1853&rft_id=info:doi/10.1109%2FTNSRE.2025.3567833&rft_id=info%3Apmid%2F40333092&rft.externalDocID=40333092 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |