Inertial Sensing for Human Motion Analysis: Enabling Sensor-to-Body Calibration Through an Anatomical and Functional Combined Approach

The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 33; pp. 1855 - 1864
Main Authors Scattolini, Mara, Tigrini, Andrea, Verdini, Federica, Burattini, Laura, Fioretti, Sandro, Mengarelli, Alessandro
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement.
AbstractList The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement.The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement.
The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame needs to be aligned with the underlying anatomical one. Although during the years different approaches have been proposed, a common consensus has not been reached. Further, inertial sensor positioning on human segments can affect frame definition and kinematics estimation. Thus, the aim of the present work is to define an anatomical calibration procedure for lower limb joints kinematics, robust with respect to sensor misalignment, and based on a limited set of movements, with static and functional assumptions. To this purpose, straight walking and turning motor tasks in six healthy subjects were considered, and results were compared with those provided by an optoelectronic system. Three sensor placements have been also evaluated to test the procedure with respect to sensor positioning. After offset removal, an average RMSE ≤2.5 deg in gait, and ≤2 deg in turning for all the configurations were obtained, outperforming results from previous approaches. Average offset values resulted about 6 deg for hip and ankle, whereas negligible for the knee. Outcomes of this study enable a simple and accurate measurement of clinically meaningful joints kinematics, also without a strict sensor placement.
Author Burattini, Laura
Scattolini, Mara
Fioretti, Sandro
Mengarelli, Alessandro
Tigrini, Andrea
Verdini, Federica
Author_xml – sequence: 1
  givenname: Mara
  orcidid: 0000-0003-2060-6942
  surname: Scattolini
  fullname: Scattolini, Mara
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 2
  givenname: Andrea
  orcidid: 0000-0002-1600-2137
  surname: Tigrini
  fullname: Tigrini, Andrea
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 3
  givenname: Federica
  orcidid: 0000-0003-4252-3224
  surname: Verdini
  fullname: Verdini, Federica
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 4
  givenname: Laura
  orcidid: 0000-0002-9474-7046
  surname: Burattini
  fullname: Burattini, Laura
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 5
  givenname: Sandro
  orcidid: 0000-0002-7783-3065
  surname: Fioretti
  fullname: Fioretti, Sandro
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
– sequence: 6
  givenname: Alessandro
  orcidid: 0000-0002-6087-6763
  surname: Mengarelli
  fullname: Mengarelli, Alessandro
  email: a.mengarelli@staff.univpm.it
  organization: Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40333092$$D View this record in MEDLINE/PubMed
BookMark eNpNkc1uEzEUhS1URH_gBRBCXrKZ4P8Zs2ujlEYqINGwtjweO3E1Ywd7ZpEX4LnxJKFidX2t75yre881uAgxWADeY7TAGMnPm-9PP1cLgghfUC7qhtJX4Apz3lSIYHQxvymrGCXoElzn_IwQrgWv34BLhiilSJIr8GcdbBq97uGTDdmHLXQxwYdp0AF-i6OPAd4G3R-yz1_gKui2n5mZjakaY3UXuwNc6t63SR_pzS7FabuD-igc4-BNMdehg_dTMDNS2mUcWh9sB2_3-xS12b0Fr53us313rjfg1_1qs3yoHn98XS9vHytDm3qseMdrghvRdYgb3kjKqW2bTkjutK2dYK52NWsZN45oTrhArGmopA5ZI3jb0huwPvl2UT-rffKDTgcVtVfHj5i2SpdzmN4qgTCvKXeOU8l4J6WWuIymjHDSCtkUr08nr7LC78nmUQ0-G9v3Otg4ZVXujqkUgtGCfjyjUzvY7mXwvxwKQE6ASTHnZN0LgpGaw1bHsNUctjqHXUQfTiJvrf1PICUhgtC_2mOkXw
CODEN ITNSB3
Cites_doi 10.3390/s20030715
10.1016/j.jbiomech.2009.06.025
10.1201/9781003525592
10.1016/j.gaitpost.2017.10.024
10.1016/j.gaitpost.2008.04.003
10.3390/s140406891
10.3390/s22155657
10.3233/jpd-201914
10.1016/j.jbiomech.2024.112225
10.1109/ICORR.2011.5975346
10.1007/978-3-319-14418-4_162
10.1109/TBME.2020.3037820
10.1016/j.gaitpost.2004.05.003
10.1016/0021-9290(94)90191-0
10.3390/s140100356
10.1016/j.jbiomech.2020.109832
10.1109/MeMeA60663.2024.10596886
10.1109/TBME.2006.875664
10.3390/s150819302
10.1007/s00415-020-09696-5
10.1109/JBHI.2016.2639537
10.1016/0268-0033(95)91394-T
10.1115/1.3138397
10.1016/j.medengphy.2018.12.021
10.1016/j.gaitpost.2016.11.008
10.1109/IEMBS.2006.260705
10.1016/S0021-9290(01)00222-6
10.1016/j.gaitpost.2015.10.022
10.3390/s23187987
10.1109/TNSRE.2020.2987155
10.1016/j.measurement.2014.03.004
10.1016/j.jbiomech.2007.12.003
10.1097/NPT.0000000000000242
10.1109/JSEN.2019.2939981
10.1109/JSEN.2021.3137305
10.1016/j.jbiomech.2019.01.027
10.1109/EMBC.2016.7591923
10.1016/j.jbiomech.2019.07.022
10.3390/s21186307
10.1016/j.jbiomech.2005.05.013
10.1016/j.procs.2022.01.303
10.3390/s19153320
10.1016/j.jbmt.2020.06.008
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1109/TNSRE.2025.3567833
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL) - NZ
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1864
ExternalDocumentID oai_doaj_org_article_6015735ff53945d99a9118634252b698
40333092
10_1109_TNSRE_2025_3567833
10992262
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Project Vitality—Project Code ECS00000041, CUP I33C22001330007—funded under the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.5— “Creation and Strengthening of Innovation Ecosystems,” Construction of “Territorial Leaders in Research and Development”—Innovation Ecosystems—Project “Innovation, Digitalization, and Sustainability for the Diffused Economy in Central Italy—VITALITY” Call
  grantid: 3277 of 30/12/2021
– fundername: European Union—NextGenerationEU
  grantid: 0001057 of 23/06/2022
– fundername: Italian Ministry of University
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c387t-5d572186dd05c589353eb8d695fae7f64f7f74b45cf2a52560488393f0ec65bb3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:16:36 EDT 2025
Fri Jul 11 18:27:45 EDT 2025
Sat May 31 02:14:08 EDT 2025
Sun Jul 06 05:07:03 EDT 2025
Wed Aug 27 02:02:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c387t-5d572186dd05c589353eb8d695fae7f64f7f74b45cf2a52560488393f0ec65bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7783-3065
0000-0003-2060-6942
0000-0002-9474-7046
0000-0002-6087-6763
0000-0003-4252-3224
0000-0002-1600-2137
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10992262
PMID 40333092
PQID 3201396643
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3201396643
crossref_primary_10_1109_TNSRE_2025_3567833
doaj_primary_oai_doaj_org_article_6015735ff53945d99a9118634252b698
pubmed_primary_40333092
ieee_primary_10992262
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
Berme (ref35) 1990
Premerlani (ref37) 2009; 1
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref24
  doi: 10.3390/s20030715
– ident: ref15
  doi: 10.1016/j.jbiomech.2009.06.025
– ident: ref1
  doi: 10.1201/9781003525592
– ident: ref5
  doi: 10.1016/j.gaitpost.2017.10.024
– ident: ref39
  doi: 10.1016/j.gaitpost.2008.04.003
– ident: ref41
  doi: 10.3390/s140406891
– ident: ref27
  doi: 10.3390/s22155657
– ident: ref43
  doi: 10.3233/jpd-201914
– ident: ref13
  doi: 10.1016/j.jbiomech.2024.112225
– ident: ref10
  doi: 10.1109/ICORR.2011.5975346
– ident: ref14
  doi: 10.1007/978-3-319-14418-4_162
– ident: ref30
  doi: 10.1109/TBME.2020.3037820
– ident: ref3
  doi: 10.1016/j.gaitpost.2004.05.003
– ident: ref33
  doi: 10.1016/0021-9290(94)90191-0
– ident: ref29
  doi: 10.3390/s140100356
– ident: ref25
  doi: 10.1016/j.jbiomech.2020.109832
– ident: ref7
  doi: 10.1109/MeMeA60663.2024.10596886
– volume: 1
  start-page: 1
  year: 2009
  ident: ref37
  article-title: Direction cosine matrix IMU: Theory
  publication-title: Diy Drone: USA
– year: 1990
  ident: ref35
  article-title: Biomechanics of human movement: Applications in rehabilitation, sports and ergonomics
– ident: ref8
  doi: 10.1109/TBME.2006.875664
– ident: ref9
  doi: 10.3390/s150819302
– ident: ref31
  doi: 10.1007/s00415-020-09696-5
– ident: ref45
  doi: 10.1109/JBHI.2016.2639537
– ident: ref2
  doi: 10.1016/0268-0033(95)91394-T
– ident: ref34
  doi: 10.1115/1.3138397
– ident: ref19
  doi: 10.1016/j.medengphy.2018.12.021
– ident: ref6
  doi: 10.1016/j.gaitpost.2016.11.008
– ident: ref44
  doi: 10.1109/IEMBS.2006.260705
– ident: ref4
  doi: 10.1016/S0021-9290(01)00222-6
– ident: ref21
  doi: 10.1016/j.gaitpost.2015.10.022
– ident: ref23
  doi: 10.3390/s23187987
– ident: ref36
  doi: 10.1109/TNSRE.2020.2987155
– ident: ref18
  doi: 10.1016/j.measurement.2014.03.004
– ident: ref40
  doi: 10.1016/j.jbiomech.2007.12.003
– ident: ref32
  doi: 10.1097/NPT.0000000000000242
– ident: ref20
  doi: 10.1109/JSEN.2019.2939981
– ident: ref12
  doi: 10.1109/JSEN.2021.3137305
– ident: ref16
  doi: 10.1016/j.jbiomech.2019.01.027
– ident: ref22
  doi: 10.1109/EMBC.2016.7591923
– ident: ref17
  doi: 10.1016/j.jbiomech.2019.07.022
– ident: ref11
  doi: 10.3390/s21186307
– ident: ref26
  doi: 10.1016/j.jbiomech.2005.05.013
– ident: ref38
  doi: 10.1016/j.procs.2022.01.303
– ident: ref42
  doi: 10.3390/s19153320
– ident: ref28
  doi: 10.1016/j.jbmt.2020.06.008
SSID ssj0017657
Score 2.4449184
Snippet The use of inertial measurement units is gaining attention to estimate human joint kinematics. However, to obtain clinically meaningful results, sensor frame...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1855
SubjectTerms Accelerometry - instrumentation
Adult
Algorithms
Ankle
Ankle Joint - physiology
Biomechanical Phenomena
Calibration
Estimation
Female
Gait - physiology
gait analysis
Healthy Volunteers
Hip
Humans
Iron
Joints - anatomy & histology
Joints - physiology
joints kinematics
Kinematics
Knee
Knee Joint - physiology
Legged locomotion
Lower Extremity - anatomy & histology
Lower Extremity - physiology
Male
MIMU
Movement - physiology
Radio frequency
Reproducibility of Results
sensor-to-segment alignment
Turning
Walking - physiology
Wearable devices
Young Adult
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xT90wELYqJpaqLVBS2sqVCktlCHHOjrtB9Z5oJRjgIbFZdmx3SxCEoX-gv7t3ToIeA2LpkCGREzu5z77vHPs7xr6GGGRKWovStFqgP9bCx-NaIFaUaVyWDKfVFhfq7Lr-dQM3a6m-aE3YKA88frgjDBhAS0gJpKkhGOOwezZKItYqj4-j0Rd93hxMTf8PtMoan9idsVpZlfN2mdIcrS6uLhcYGFZwKAGHaimfuKSs3D-lWnmedWbvs3zDXk-0kZ-MzX3LXsXuHdtflwjmq1EfgB_wyyfq21vs78-OVk9jmStart795shUeZ6-5-c5iw-ftUm-8wVtpqIyVLa_E0MvTvvwh9MmLj_CBavKyX24yzcOfZYcwLPAl-gmp_bgSINRdwz8ZJIt32bXy8Xqx5mY8i-IVjZ6EBBAU8qqEEpoAYkNyOiboAwkF3VSddJJ176GNlUOiDuhhaWRqYytAu_lDtvo-i7uMt4iVKLCgyiQN8fOBSehidBWDaLEFezbbAJ7O8ps2ByelMZmg1kymJ0MVrBTstJjSZLIzhcQOHYCjn0JOAXbJhuvVUcSvaoq2JfZ6Ba7Gv0_cV3sH-4t4gj5skIOV7D3Ixoe765LKWVpqg__o2l7bJNed5zp-cg2hruH-Am5z-A_Z5j_A6UV-z8
  priority: 102
  providerName: Directory of Open Access Journals
Title Inertial Sensing for Human Motion Analysis: Enabling Sensor-to-Body Calibration Through an Anatomical and Functional Combined Approach
URI https://ieeexplore.ieee.org/document/10992262
https://www.ncbi.nlm.nih.gov/pubmed/40333092
https://www.proquest.com/docview/3201396643
https://doaj.org/article/6015735ff53945d99a9118634252b698
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJy48C4RHZSTggrxN49iOubVoVwWJPbRbqTfLTw5ICSrZA_wAfjczdrJqkSpxWGk3ctaJ5rNnxjPzDSFvQww8JaVYrb1ioI8Vc_GoZYAVqTubKcMx22ItTy_aL5ficipWz7UwMcacfBYX-DXH8sPgt3hUdohRHDAXYMe9C55bKdbahQyUzLSesIJhJt7Uc4VMrQ836_OzJfiCjVhwAbszx-45bc3Bl9fNDYWUefunRiu325xZ96wekPX81CXl5PtiO7qF__0PoeN_v9ZDcn-yQulxgc0jcif2j8m764zDdFPoBuh7enaDzPsJ-fO5x2RsGHOO2e_9NwqGL83RAPo1NwWiM9XJR7rE2iwcg2OHKzYO7GQIvyjWhLmCPpgq9wqiNt84DpnBAH4FugKtOz0PbFzgxMdAjycW9H1ysVpuPp2yqZ0D87xTIxNBKOyAFUItvAA7SfDouiC1SDaqJNukkmpdK3xqrEBTDADDNU919FI4x5-SvX7o43NCPSAvSvigReX0kbXBctFF4ZsOQGcr8mGWqflRWDtM9nZqbTIYDILBTGCoyAmKfTcSGbfzBZCSmRawAcdVKC5SEly3ImhtQU10ksOe1ziAdUX2UbLXpitCrcibGUUGVi6GY2wfh-1PAxgF81uCSViRZwVeu7tncL645V9fknv4BuUs6BXZG6-28TVYR6M7yKcKB3lt_AXYVQpU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOcCFZ4HwNBJwQdmmcSaOubVoV1to99Bupd4sPzkgJahkD_AD-N3MOMmqRarEYaVs5MSJ5rNnJjPzDWPvfPAiRinzQjmZoz6WuQ37VY5YqVVjEmU4ZVus6uV59eUCLsZi9VQLE0JIyWdhRocplu87t6FPZXsUxUFzAXfc26j4oRzKtbZBA1knYk9cwziXKIupRqZQe-vV2ekcvcESZgJwfxbUP6cqBHrzqrymkhJz_9hq5WarM2mfxX22mp57SDr5Ptv0duZ-_0Pp-N8v9oDdG-1QfjAA5yG7FdpH7P1VzmG-HggH-Ad-eo3O-zH7c9RSOjaOOaP89_YbR9OXp3gAP0ltgfhEdvKJz6k6i8bQ2O4y77v8sPO_OFWF2QF_OFXqFsRNurDvEocB_vN8gXp3fB7cutCND54fjDzou-x8MV9_XuZjQ4fciUb2OXiQ1APL-wIcoKUEItjG1wqiCTLWVZRRVrYCF0sDZIwhZIQSsQiuBmvFE7bTdm14xrhD7IUaf2RTWbVvjDcCmgCubBB2JmMfJ5nqHwNvh07-TqF0AoMmMOgRDBk7JLFvRxLndjqBUtLjEtbouoIUECMIVYFXyqCiaGqBu15pEdgZ2yXJXpluEGrG3k4o0rh2KSBj2tBtfmrEKBrgNRqFGXs6wGt79QTO5zfc9Q27s1yfHOvjo9XXF-wuvc3wZegl2-kvN-EV2kq9fZ1WyF-Xywyp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inertial+Sensing+for+Human+Motion+Analysis%3A+Enabling+Sensor-to-Body+Calibration+Through+an+Anatomical+and+Functional+Combined+Approach&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Scattolini%2C+Mara&rft.au=Tigrini%2C+Andrea&rft.au=Verdini%2C+Federica&rft.au=Burattini%2C+Laura&rft.date=2025-01-01&rft.eissn=1558-0210&rft.volume=33&rft.spage=1853&rft_id=info:doi/10.1109%2FTNSRE.2025.3567833&rft_id=info%3Apmid%2F40333092&rft.externalDocID=40333092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon