The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual

Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 125; no. 2; pp. 358 - 384
Main Authors Xue, Aihuiping, Kong, Ru, Yang, Qing, Eldaief, Mark C., Angeli, Peter A., DiNicola, Lauren M., Braga, Rodrigo M., Buckner, Randy L., Yeo, B. T. Thomas
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.02.2021
SeriesHigher Neural Functions and Behavior
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
AbstractList Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
Author Xue, Aihuiping
Kong, Ru
Braga, Rodrigo M.
Buckner, Randy L.
Angeli, Peter A.
DiNicola, Lauren M.
Yeo, B. T. Thomas
Yang, Qing
Eldaief, Mark C.
Author_xml – sequence: 1
  givenname: Aihuiping
  surname: Xue
  fullname: Xue, Aihuiping
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
– sequence: 2
  givenname: Ru
  surname: Kong
  fullname: Kong, Ru
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
– sequence: 3
  givenname: Qing
  surname: Yang
  fullname: Yang, Qing
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
– sequence: 4
  givenname: Mark C.
  surname: Eldaief
  fullname: Eldaief, Mark C.
  organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts
– sequence: 5
  givenname: Peter A.
  orcidid: 0000-0002-0208-5808
  surname: Angeli
  fullname: Angeli, Peter A.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
– sequence: 6
  givenname: Lauren M.
  orcidid: 0000-0001-7562-0755
  surname: DiNicola
  fullname: DiNicola, Lauren M.
  organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts
– sequence: 7
  givenname: Rodrigo M.
  surname: Braga
  fullname: Braga, Rodrigo M.
  organization: Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
– sequence: 8
  givenname: Randy L.
  surname: Buckner
  fullname: Buckner, Randy L.
  organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
– sequence: 9
  givenname: B. T. Thomas
  surname: Yeo
  fullname: Yeo, B. T. Thomas
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33427596$$D View this record in MEDLINE/PubMed
BookMark eNptUctuFDEQtFAQ2SQcuSIfuczix_gxFyQU8ZIicUnOlsfTzno1Y4exZ9Hm6_FuEgRRTra7q6vcVWfoJKYICL2jZE2pYB-3cU2IkHTNCCOv0KrWWENFp0_QipB650SpU3SW85YQogRhb9Ap5y1TopMrtLveAB6g2DDCgNN8a2O4tyWkiJPHpTY3y2QjdjBDD-O4TBhyCZMtFd7vcYhlDjEHh_0S3WHOjtilGKE-dqHs8e9QNiEeqUIcam1Y7HiBXns7Znj7eJ6jm69fri-_N1c_v_24_HzVOK5VaUTXDRTAC8ekUIJz8MBbsF7KnnrXUat8LwXVqtfKSsLUAOA63Ws6gOIdP0efHnjvln6CwUH9rh3N3Vw3mPcm2WD-78SwMbdpZ1TXatrKSvDhkWBOv5a6uplCdtUIGyEt2bBWSd1ywnSFvv9X66_Ik9kVwB8Abk45z-CNC-XodZUOo6HEHCI122iOkZpDpHWqeTb1RPwy_g98sqai
CitedBy_id crossref_primary_10_3171_2022_8_PEDS22294
crossref_primary_10_3390_brainsci12111501
crossref_primary_10_1007_s12311_023_01532_6
crossref_primary_10_1126_sciadv_adp0453
crossref_primary_10_1038_s44159_022_00127_y
crossref_primary_10_1016_j_dib_2023_109013
crossref_primary_10_1162_netn_a_00323
crossref_primary_10_1162_nol_e_00152
crossref_primary_10_1371_journal_pone_0291558
crossref_primary_10_1038_s42003_023_05553_z
crossref_primary_10_31083_j_jin2310195
crossref_primary_10_1016_j_nicl_2023_103316
crossref_primary_10_3389_fnins_2025_1405637
crossref_primary_10_1152_jn_00165_2022
crossref_primary_10_1007_s12311_022_01456_7
crossref_primary_10_1016_j_cobeha_2021_04_010
crossref_primary_10_1016_j_neuroimage_2023_120503
crossref_primary_10_1152_jn_00387_2023
crossref_primary_10_1016_j_cobeha_2023_101310
crossref_primary_10_1016_j_neurot_2024_e00367
crossref_primary_10_1162_imag_a_00165
crossref_primary_10_1016_j_neuroimage_2023_120360
crossref_primary_10_1016_j_bpsc_2024_12_016
crossref_primary_10_1038_s41386_024_01941_z
crossref_primary_10_1002_hbm_26113
crossref_primary_10_1093_scan_nsaf019
crossref_primary_10_1016_j_cobeha_2021_02_014
crossref_primary_10_1038_s41380_024_02769_1
crossref_primary_10_1038_s41582_023_00874_3
crossref_primary_10_1016_j_neuron_2022_08_012
crossref_primary_10_1162_nol_a_00126
crossref_primary_10_1007_s00415_023_11859_z
crossref_primary_10_3389_fnsys_2023_1165307
crossref_primary_10_3389_fnins_2021_748561
crossref_primary_10_1007_s00221_021_06049_0
crossref_primary_10_1186_s12967_023_04164_w
crossref_primary_10_1038_s41598_024_59699_9
crossref_primary_10_1152_jn_00277_2023
crossref_primary_10_1016_j_neuroimage_2023_120010
crossref_primary_10_1007_s11682_024_00849_y
crossref_primary_10_1016_j_cortex_2024_06_011
crossref_primary_10_1007_s12311_023_01596_4
crossref_primary_10_1016_j_comppsych_2023_152445
crossref_primary_10_1038_s44220_024_00297_z
crossref_primary_10_3389_fnhum_2021_683277
crossref_primary_10_1016_j_bbr_2025_115457
crossref_primary_10_1186_s12967_023_04844_7
crossref_primary_10_1212_WNL_0000000000207161
crossref_primary_10_3389_fneur_2022_806298
crossref_primary_10_1152_jn_00164_2024
crossref_primary_10_1111_pcn_13707
crossref_primary_10_1126_sciadv_adq4037
crossref_primary_10_1007_s12311_022_01495_0
crossref_primary_10_1038_s41583_024_00895_x
crossref_primary_10_1152_jn_00231_2024
crossref_primary_10_1016_j_bpsc_2024_11_010
crossref_primary_10_1038_s41398_024_02857_4
crossref_primary_10_1080_02699052_2022_2158231
crossref_primary_10_1038_s41537_023_00375_8
crossref_primary_10_3389_fpsyt_2023_1218321
crossref_primary_10_1016_j_bbr_2023_114749
crossref_primary_10_1073_pnas_2204900119
crossref_primary_10_1002_cne_25318
crossref_primary_10_1016_j_tics_2025_01_004
crossref_primary_10_1162_imag_a_00271
crossref_primary_10_1093_texcom_tgac022
crossref_primary_10_1152_jn_00308_2023
crossref_primary_10_1038_s41537_024_00434_8
crossref_primary_10_1126_sciadv_adi0616
crossref_primary_10_1016_j_neuron_2023_05_029
crossref_primary_10_1016_j_cobeha_2023_101302
crossref_primary_10_1016_j_cobeha_2021_03_029
crossref_primary_10_1038_s42003_024_06965_1
Cites_doi 10.1016/S0074-7742(08)60346-3
10.1093/brain/121.4.561
10.1006/nimg.1998.0396
10.1093/brain/66.4.289
10.1016/j.neuroimage.2018.01.082
10.1002/hbm.1025
10.1152/jn.00529.2019
10.1016/j.tics.2017.11.002
10.1016/j.neuroimage.2020.116624
10.1371/journal.pone.0047515
10.1523/JNEUROSCI.1868-09.2009
10.1002/ana.20604
10.1162/jocn.1989.1.2.153
10.1016/j.neuron.2017.06.038
10.1176/appi.ajp.2018.18040429
10.1038/nrn2201
10.1038/nature15693
10.1016/j.cub.2018.08.059
10.1016/j.neuroimage.2011.09.015
10.1016/j.neuroimage.2005.03.035
10.1146/annurev.neuro.31.060407.125606
10.1016/j.neuropsychologia.2018.09.011
10.1093/cercor/bhm225
10.1016/j.cub.2012.09.011
10.1038/s41593-019-0436-x
10.1073/pnas.89.12.5675
10.1016/j.neuroimage.2013.05.039
10.1016/j.neuroimage.2007.12.025
10.1152/jn.00598.2012
10.1523/JNEUROSCI.2364-11.2011
10.1016/0166-2236(93)90072-T
10.1016/j.neuroimage.2014.04.030
10.1002/mrm.1910340409
10.1016/j.cub.2019.04.012
10.1111/j.1749-6632.2002.tb07588.x
10.1037/0735-7044.103.5.998
10.1152/jn.00339.2011
10.1146/annurev-neuro-070918-050258
10.1038/s41583-019-0212-7
10.1006/cbmr.1996.0014
10.1152/jn.1980.44.6.1058
10.1073/pnas.1608282113
10.1152/jn.00338.2011
10.1002/mrm.23097
10.1016/j.neuroimage.2017.05.011
10.1093/cercor/bhu239
10.1152/jn.00753.2019
10.1016/j.neuron.2013.10.044
10.1016/j.neuroimage.2011.08.056
10.1016/j.neuron.2017.07.011
10.1016/j.neuron.2018.10.010
10.1152/jn.00781.2018
10.1371/journal.pone.0210028
10.7554/eLife.36652
10.1038/nn.3423
10.1002/cne.902650207
10.1016/j.neuroimage.2013.04.001
10.1016/j.neuron.2015.06.037
10.1093/cercor/bhy123
10.1371/journal.pone.0133402
10.1523/JNEUROSCI.23-23-08432.2003
10.1523/JNEUROSCI.21-02-00700.2001
10.1152/jn.00106.2011
10.3389/fncom.2019.00061
10.1006/nimg.1999.0516
10.1016/j.neuron.2014.09.007
10.1073/pnas.1506214112
10.1073/pnas.2002896117
10.1037/0735-7044.100.4.443
10.1016/j.neuroimage.2008.08.039
10.1073/pnas.2005238117
10.1093/cercor/bhp135
10.1073/pnas.89.13.5951
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuron.2011.09.006
10.1016/j.neuron.2019.04.021
10.1002/hbm.22194
10.1016/j.neuroimage.2012.01.021
10.1016/j.neuroimage.2013.07.035
10.1152/jn.1944.7.6.331
10.1016/j.neuroimage.2006.07.029
10.1038/nature17637
10.1146/annurev.ne.13.030190.001521
10.1152/jn.00808.2018
ContentType Journal Article
Copyright Copyright © 2021 the Authors 2021 American Physiological Society
Copyright_xml – notice: Copyright © 2021 the Authors 2021 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1152/jn.00561.2020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate WITHIN-INDIVIDUAL CEREBELLUM
EISSN 1522-1598
EndPage 384
ExternalDocumentID PMC7948146
33427596
10_1152_jn_00561_2020
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: HHS | National Institutes of Health (NIH)
  grantid: S10OD020039
– fundername: NIH HHS
  grantid: S10 OD020039
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R00MH117226
– fundername: National Science Foundation (NSF)
  grantid: DGE1745303
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R01MH124004
– fundername: NIMH NIH HHS
  grantid: R00 MH117226
– fundername: HHS | National Institutes of Health (NIH)
  grantid: P50MH106435
– fundername: ; ;
  grantid: R01MH124004; P50MH106435; R00MH117226; S10OD020039
– fundername: ; ;
  grantid: DGE1745303
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
AETEA
ID FETCH-LOGICAL-c387t-599d1eef5c2657533efe34eaf66b1fc91a7fb65187b87a6027deec98b81de7393
ISSN 0022-3077
1522-1598
IngestDate Thu Aug 21 13:56:47 EDT 2025
Fri Jul 11 05:30:37 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
Tue Jul 01 00:33:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords association cortex
Bayesian
default network
Language English
License Licensed under Creative Commons Attribution CC-BY 4.0. Published by the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-599d1eef5c2657533efe34eaf66b1fc91a7fb65187b87a6027deec98b81de7393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7562-0755
0000-0002-0208-5808
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7948146
PMID 33427596
PQID 2476843028
PQPubID 23479
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948146
proquest_miscellaneous_2476843028
pubmed_primary_33427596
crossref_citationtrail_10_1152_jn_00561_2020
crossref_primary_10_1152_jn_00561_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda, MD
PublicationSeriesTitle Higher Neural Functions and Behavior
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2021
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
Sultan F (B86) 1993; 34
B25
B69
B26
B27
B28
B29
B70
B71
B72
B73
B30
B74
B31
B75
B32
B76
B33
B77
B34
B78
B35
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B80
B81
B82
B83
B40
B84
B41
B85
B42
B43
B87
B44
B45
B46
B48
B49
B50
B51
B52
B10
B54
B11
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
Xu J (B47) 2012; 20
B17
B18
B19
B60
B61
B62
B63
References_xml – ident: B2
  doi: 10.1016/S0074-7742(08)60346-3
– ident: B7
  doi: 10.1093/brain/121.4.561
– ident: B58
  doi: 10.1006/nimg.1998.0396
– ident: B25
  doi: 10.1093/brain/66.4.289
– ident: B14
  doi: 10.1016/j.neuroimage.2018.01.082
– ident: B68
  doi: 10.1002/hbm.1025
– ident: B39
  doi: 10.1152/jn.00529.2019
– ident: B71
  doi: 10.1016/j.tics.2017.11.002
– ident: B70
  doi: 10.1016/j.neuroimage.2020.116624
– ident: B29
  doi: 10.1371/journal.pone.0047515
– ident: B27
  doi: 10.1523/JNEUROSCI.1868-09.2009
– ident: B77
  doi: 10.1002/ana.20604
– ident: B74
  doi: 10.1162/jocn.1989.1.2.153
– ident: B34
  doi: 10.1016/j.neuron.2017.06.038
– ident: B76
  doi: 10.1176/appi.ajp.2018.18040429
– ident: B20
  doi: 10.1038/nrn2201
– ident: B83
  doi: 10.1038/nature15693
– ident: B80
  doi: 10.1016/j.cub.2018.08.059
– ident: B55
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: B49
  doi: 10.1016/j.neuroimage.2005.03.035
– volume: 34
  start-page: 79
  year: 1993
  ident: B86
  publication-title: J Hirnforsch
– ident: B3
  doi: 10.1146/annurev.neuro.31.060407.125606
– ident: B66
  doi: 10.1016/j.neuropsychologia.2018.09.011
– ident: B62
  doi: 10.1093/cercor/bhm225
– ident: B31
  doi: 10.1016/j.cub.2012.09.011
– ident: B15
  doi: 10.1038/s41593-019-0436-x
– ident: B44
  doi: 10.1073/pnas.89.12.5675
– ident: B23
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: B52
  doi: 10.1016/j.neuroimage.2007.12.025
– ident: B75
  doi: 10.1152/jn.00598.2012
– ident: B30
  doi: 10.1523/JNEUROSCI.2364-11.2011
– ident: B6
  doi: 10.1016/0166-2236(93)90072-T
– ident: B51
  doi: 10.1016/j.neuroimage.2014.04.030
– ident: B19
  doi: 10.1002/mrm.1910340409
– ident: B42
  doi: 10.1016/j.cub.2019.04.012
– ident: B87
  doi: 10.1111/j.1749-6632.2002.tb07588.x
– ident: B5
  doi: 10.1037/0735-7044.103.5.998
– ident: B13
  doi: 10.1152/jn.00339.2011
– ident: B10
  doi: 10.1146/annurev-neuro-070918-050258
– ident: B38
  doi: 10.1038/s41583-019-0212-7
– ident: B56
  doi: 10.1006/cbmr.1996.0014
– ident: B81
  doi: 10.1152/jn.1980.44.6.1058
– ident: B67
  doi: 10.1073/pnas.1608282113
– ident: B59
  doi: 10.1152/jn.00338.2011
– ident: B46
  doi: 10.1002/mrm.23097
– ident: B78
  doi: 10.1016/j.neuroimage.2017.05.011
– ident: B64
  doi: 10.1093/cercor/bhu239
– ident: B40
  doi: 10.1152/jn.00753.2019
– ident: B8
  doi: 10.1016/j.neuron.2013.10.044
– ident: B57
  doi: 10.1016/j.neuroimage.2011.08.056
– ident: B35
  doi: 10.1016/j.neuron.2017.07.011
– ident: B41
  doi: 10.1016/j.neuron.2018.10.010
– ident: B84
  doi: 10.1152/jn.00781.2018
– ident: B17
  doi: 10.1371/journal.pone.0210028
– ident: B72
  doi: 10.7554/eLife.36652
– ident: B21
  doi: 10.1038/nn.3423
– ident: B85
  doi: 10.1002/cne.902650207
– ident: B22
  doi: 10.1016/j.neuroimage.2013.04.001
– ident: B32
  doi: 10.1016/j.neuron.2015.06.037
– ident: B43
  doi: 10.1093/cercor/bhy123
– ident: B16
  doi: 10.1371/journal.pone.0133402
– volume: 20
  start-page: 2306
  year: 2012
  ident: B47
  publication-title: Proc Int Soc Mag Reson Med
– ident: B73
  doi: 10.1523/JNEUROSCI.23-23-08432.2003
– ident: B18
  doi: 10.1523/JNEUROSCI.21-02-00700.2001
– ident: B69
  doi: 10.1152/jn.00106.2011
– ident: B79
  doi: 10.3389/fncom.2019.00061
– ident: B61
  doi: 10.1006/nimg.1999.0516
– ident: B24
  doi: 10.1016/j.neuron.2014.09.007
– ident: B65
  doi: 10.1073/pnas.1506214112
– ident: B1
  doi: 10.1073/pnas.2002896117
– ident: B4
  doi: 10.1037/0735-7044.100.4.443
– ident: B12
  doi: 10.1016/j.neuroimage.2008.08.039
– ident: B37
  doi: 10.1073/pnas.2005238117
– ident: B28
  doi: 10.1093/cercor/bhp135
– ident: B45
  doi: 10.1073/pnas.89.13.5951
– ident: B48
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: B60
  doi: 10.1016/j.neuron.2011.09.006
– ident: B11
  doi: 10.1016/j.neuron.2019.04.021
– ident: B9
  doi: 10.1002/hbm.22194
– ident: B54
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: B63
  doi: 10.1016/j.neuroimage.2013.07.035
– ident: B26
  doi: 10.1152/jn.1944.7.6.331
– ident: B50
  doi: 10.1016/j.neuroimage.2006.07.029
– ident: B33
  doi: 10.1038/nature17637
– ident: B82
  doi: 10.1146/annurev.ne.13.030190.001521
– ident: B36
  doi: 10.1152/jn.00808.2018
SSID ssj0007502
Score 2.5862331
Snippet Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones...
Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 358
SubjectTerms Cerebellum - physiology
Connectome
Female
Humans
Magnetic Resonance Imaging
Young Adult
Title The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual
URI https://www.ncbi.nlm.nih.gov/pubmed/33427596
https://www.proquest.com/docview/2476843028
https://pubmed.ncbi.nlm.nih.gov/PMC7948146
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpNxkJ7WVkNI7jJI8T6jTBGAy1Ut8i23G2TFsydQnS-PUc35KUbdLgJaocy436fT0594PQh4xOVSGnNBBMRAHNWBrwNAGbp8hUKHjBKNOFwt8O2f6CflnGyyGtyFSXtGJH_r6xruR_UIU1wFVXyf4Dsv2hsACfAV-4AsJwvTPGNgcU1MZmVFXpI_92Ap9UK6XjC935tu6pATqqVTurul1VNcC0rd9uzikodeaLdDMltJfWJUJWfeXWLfqs6YxpHCVrnvplZ12m1Umnx2Qf9xLe5QL_7HrB41zXR6Nds7OCV6r0VUXOp-u8FCT0ic2DYAWjF1QnK2vVDWteGts6aEc7MpKtke3xfl3mx7qH7Gm9Y9qagslPpsPLzQf0D7_ne4uDg3w-W87vowcEjAo97-Lr0dBbHnQnExv3T-U7ssbk09rh6xrMNbPk7-zakboyf4weOVzwriXNE3RP1U_R5m7N2-b8Cm_hHz1Qm-gX8Ah7HuExj3BTYgAfGx7hgUe45xEWV7jnER54hMc8wpZH5qiBR8_QYm82_7wfuHkcgYzSpA3iLCtCpcpYEh2uiyJVqogqXjImwlJmIU9KweIwTUSacDYlSaGUzFIBNpHSnRefo426qdVLhFUiCsl5kcE9GoYyZVzPZQCBwYjMaDFBH_1vnEvXrF7PTDnLjdEak_y0zg0kuYZkgrb67Re2S8ttG997wHKQozo4xmvVdJc5oTokHYG6PUEvLID9UVFESRJnbIKSNWj7DbpH-_qdujoxvdoT3Q2Jsld3-N7X6OHwz3mDNtpVp96CxtuKd4aofwAg8LTL
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+detailed+organization+of+the+human+cerebellum+estimated+by+intrinsic+functional+connectivity+within+the+individual&rft.jtitle=Journal+of+neurophysiology&rft.au=Xue%2C+Aihuiping&rft.au=Kong%2C+Ru&rft.au=Yang%2C+Qing&rft.au=Eldaief%2C+Mark+C&rft.date=2021-02-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=125&rft.issue=2&rft.spage=358&rft_id=info:doi/10.1152%2Fjn.00561.2020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon