The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual
Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to...
Saved in:
Published in | Journal of neurophysiology Vol. 125; no. 2; pp. 358 - 384 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.02.2021
|
Series | Higher Neural Functions and Behavior |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.
Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.
NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. |
---|---|
AbstractList | Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features.Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details.NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been examined in group-averaged data, study of individuals provides an opportunity to discover features that emerge at a higher spatial resolution. Here, functional connectivity MRI was used to examine the cerebellum of two intensively sampled individuals (each scanned 31 times). Connectivity to somatomotor cortex showed the expected crossed laterality and topography of the body maps. A surprising discovery was connectivity to the primary visual cortex along the vermis with evidence for representation of the central field. Within the hemispheres, each individual displayed a hierarchical progression from the inverted anterior lobe somatomotor map through to higher-order association zones. The hierarchy ended at Crus I/II and then progressed in reverse order through to the upright somatomotor map in the posterior lobe. Evidence for a third set of networks was found in the most posterior extent of the cerebellum. Detailed analysis of the higher-order association networks revealed robust representations of two distinct networks linked to the default network, multiple networks linked to cognitive control, as well as a separate representation of a language network. Although idiosyncratic spatial details emerged between subjects, each network could be detected in both individuals, and seed regions placed within the cerebellum recapitulated the full extent of the spatially specific cerebral networks. The observation of multiple networks in juxtaposed regions at the Crus I/II apex confirms the importance of this zone to higher-order cognitive function and reveals new organizational details. NEW & NOTEWORTHY Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones representing distinct networks. In addition, individuals reveal idiosyncratic organizational features. |
Author | Xue, Aihuiping Kong, Ru Braga, Rodrigo M. Buckner, Randy L. Angeli, Peter A. DiNicola, Lauren M. Yeo, B. T. Thomas Yang, Qing Eldaief, Mark C. |
Author_xml | – sequence: 1 givenname: Aihuiping surname: Xue fullname: Xue, Aihuiping organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore – sequence: 2 givenname: Ru surname: Kong fullname: Kong, Ru organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore – sequence: 3 givenname: Qing surname: Yang fullname: Yang, Qing organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore – sequence: 4 givenname: Mark C. surname: Eldaief fullname: Eldaief, Mark C. organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts – sequence: 5 givenname: Peter A. orcidid: 0000-0002-0208-5808 surname: Angeli fullname: Angeli, Peter A. organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts – sequence: 6 givenname: Lauren M. orcidid: 0000-0001-7562-0755 surname: DiNicola fullname: DiNicola, Lauren M. organization: Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts – sequence: 7 givenname: Rodrigo M. surname: Braga fullname: Braga, Rodrigo M. organization: Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois – sequence: 8 givenname: Randy L. surname: Buckner fullname: Buckner, Randy L. organization: Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts – sequence: 9 givenname: B. T. Thomas surname: Yeo fullname: Yeo, B. T. Thomas organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore, Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore, N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33427596$$D View this record in MEDLINE/PubMed |
BookMark | eNptUctuFDEQtFAQ2SQcuSIfuczix_gxFyQU8ZIicUnOlsfTzno1Y4exZ9Hm6_FuEgRRTra7q6vcVWfoJKYICL2jZE2pYB-3cU2IkHTNCCOv0KrWWENFp0_QipB650SpU3SW85YQogRhb9Ap5y1TopMrtLveAB6g2DDCgNN8a2O4tyWkiJPHpTY3y2QjdjBDD-O4TBhyCZMtFd7vcYhlDjEHh_0S3WHOjtilGKE-dqHs8e9QNiEeqUIcam1Y7HiBXns7Znj7eJ6jm69fri-_N1c_v_24_HzVOK5VaUTXDRTAC8ekUIJz8MBbsF7KnnrXUat8LwXVqtfKSsLUAOA63Ws6gOIdP0efHnjvln6CwUH9rh3N3Vw3mPcm2WD-78SwMbdpZ1TXatrKSvDhkWBOv5a6uplCdtUIGyEt2bBWSd1ywnSFvv9X66_Ik9kVwB8Abk45z-CNC-XodZUOo6HEHCI122iOkZpDpHWqeTb1RPwy_g98sqai |
CitedBy_id | crossref_primary_10_3171_2022_8_PEDS22294 crossref_primary_10_3390_brainsci12111501 crossref_primary_10_1007_s12311_023_01532_6 crossref_primary_10_1126_sciadv_adp0453 crossref_primary_10_1038_s44159_022_00127_y crossref_primary_10_1016_j_dib_2023_109013 crossref_primary_10_1162_netn_a_00323 crossref_primary_10_1162_nol_e_00152 crossref_primary_10_1371_journal_pone_0291558 crossref_primary_10_1038_s42003_023_05553_z crossref_primary_10_31083_j_jin2310195 crossref_primary_10_1016_j_nicl_2023_103316 crossref_primary_10_3389_fnins_2025_1405637 crossref_primary_10_1152_jn_00165_2022 crossref_primary_10_1007_s12311_022_01456_7 crossref_primary_10_1016_j_cobeha_2021_04_010 crossref_primary_10_1016_j_neuroimage_2023_120503 crossref_primary_10_1152_jn_00387_2023 crossref_primary_10_1016_j_cobeha_2023_101310 crossref_primary_10_1016_j_neurot_2024_e00367 crossref_primary_10_1162_imag_a_00165 crossref_primary_10_1016_j_neuroimage_2023_120360 crossref_primary_10_1016_j_bpsc_2024_12_016 crossref_primary_10_1038_s41386_024_01941_z crossref_primary_10_1002_hbm_26113 crossref_primary_10_1093_scan_nsaf019 crossref_primary_10_1016_j_cobeha_2021_02_014 crossref_primary_10_1038_s41380_024_02769_1 crossref_primary_10_1038_s41582_023_00874_3 crossref_primary_10_1016_j_neuron_2022_08_012 crossref_primary_10_1162_nol_a_00126 crossref_primary_10_1007_s00415_023_11859_z crossref_primary_10_3389_fnsys_2023_1165307 crossref_primary_10_3389_fnins_2021_748561 crossref_primary_10_1007_s00221_021_06049_0 crossref_primary_10_1186_s12967_023_04164_w crossref_primary_10_1038_s41598_024_59699_9 crossref_primary_10_1152_jn_00277_2023 crossref_primary_10_1016_j_neuroimage_2023_120010 crossref_primary_10_1007_s11682_024_00849_y crossref_primary_10_1016_j_cortex_2024_06_011 crossref_primary_10_1007_s12311_023_01596_4 crossref_primary_10_1016_j_comppsych_2023_152445 crossref_primary_10_1038_s44220_024_00297_z crossref_primary_10_3389_fnhum_2021_683277 crossref_primary_10_1016_j_bbr_2025_115457 crossref_primary_10_1186_s12967_023_04844_7 crossref_primary_10_1212_WNL_0000000000207161 crossref_primary_10_3389_fneur_2022_806298 crossref_primary_10_1152_jn_00164_2024 crossref_primary_10_1111_pcn_13707 crossref_primary_10_1126_sciadv_adq4037 crossref_primary_10_1007_s12311_022_01495_0 crossref_primary_10_1038_s41583_024_00895_x crossref_primary_10_1152_jn_00231_2024 crossref_primary_10_1016_j_bpsc_2024_11_010 crossref_primary_10_1038_s41398_024_02857_4 crossref_primary_10_1080_02699052_2022_2158231 crossref_primary_10_1038_s41537_023_00375_8 crossref_primary_10_3389_fpsyt_2023_1218321 crossref_primary_10_1016_j_bbr_2023_114749 crossref_primary_10_1073_pnas_2204900119 crossref_primary_10_1002_cne_25318 crossref_primary_10_1016_j_tics_2025_01_004 crossref_primary_10_1162_imag_a_00271 crossref_primary_10_1093_texcom_tgac022 crossref_primary_10_1152_jn_00308_2023 crossref_primary_10_1038_s41537_024_00434_8 crossref_primary_10_1126_sciadv_adi0616 crossref_primary_10_1016_j_neuron_2023_05_029 crossref_primary_10_1016_j_cobeha_2023_101302 crossref_primary_10_1016_j_cobeha_2021_03_029 crossref_primary_10_1038_s42003_024_06965_1 |
Cites_doi | 10.1016/S0074-7742(08)60346-3 10.1093/brain/121.4.561 10.1006/nimg.1998.0396 10.1093/brain/66.4.289 10.1016/j.neuroimage.2018.01.082 10.1002/hbm.1025 10.1152/jn.00529.2019 10.1016/j.tics.2017.11.002 10.1016/j.neuroimage.2020.116624 10.1371/journal.pone.0047515 10.1523/JNEUROSCI.1868-09.2009 10.1002/ana.20604 10.1162/jocn.1989.1.2.153 10.1016/j.neuron.2017.06.038 10.1176/appi.ajp.2018.18040429 10.1038/nrn2201 10.1038/nature15693 10.1016/j.cub.2018.08.059 10.1016/j.neuroimage.2011.09.015 10.1016/j.neuroimage.2005.03.035 10.1146/annurev.neuro.31.060407.125606 10.1016/j.neuropsychologia.2018.09.011 10.1093/cercor/bhm225 10.1016/j.cub.2012.09.011 10.1038/s41593-019-0436-x 10.1073/pnas.89.12.5675 10.1016/j.neuroimage.2013.05.039 10.1016/j.neuroimage.2007.12.025 10.1152/jn.00598.2012 10.1523/JNEUROSCI.2364-11.2011 10.1016/0166-2236(93)90072-T 10.1016/j.neuroimage.2014.04.030 10.1002/mrm.1910340409 10.1016/j.cub.2019.04.012 10.1111/j.1749-6632.2002.tb07588.x 10.1037/0735-7044.103.5.998 10.1152/jn.00339.2011 10.1146/annurev-neuro-070918-050258 10.1038/s41583-019-0212-7 10.1006/cbmr.1996.0014 10.1152/jn.1980.44.6.1058 10.1073/pnas.1608282113 10.1152/jn.00338.2011 10.1002/mrm.23097 10.1016/j.neuroimage.2017.05.011 10.1093/cercor/bhu239 10.1152/jn.00753.2019 10.1016/j.neuron.2013.10.044 10.1016/j.neuroimage.2011.08.056 10.1016/j.neuron.2017.07.011 10.1016/j.neuron.2018.10.010 10.1152/jn.00781.2018 10.1371/journal.pone.0210028 10.7554/eLife.36652 10.1038/nn.3423 10.1002/cne.902650207 10.1016/j.neuroimage.2013.04.001 10.1016/j.neuron.2015.06.037 10.1093/cercor/bhy123 10.1371/journal.pone.0133402 10.1523/JNEUROSCI.23-23-08432.2003 10.1523/JNEUROSCI.21-02-00700.2001 10.1152/jn.00106.2011 10.3389/fncom.2019.00061 10.1006/nimg.1999.0516 10.1016/j.neuron.2014.09.007 10.1073/pnas.1506214112 10.1073/pnas.2002896117 10.1037/0735-7044.100.4.443 10.1016/j.neuroimage.2008.08.039 10.1073/pnas.2005238117 10.1093/cercor/bhp135 10.1073/pnas.89.13.5951 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuron.2011.09.006 10.1016/j.neuron.2019.04.021 10.1002/hbm.22194 10.1016/j.neuroimage.2012.01.021 10.1016/j.neuroimage.2013.07.035 10.1152/jn.1944.7.6.331 10.1016/j.neuroimage.2006.07.029 10.1038/nature17637 10.1146/annurev.ne.13.030190.001521 10.1152/jn.00808.2018 |
ContentType | Journal Article |
Copyright | Copyright © 2021 the Authors 2021 American Physiological Society |
Copyright_xml | – notice: Copyright © 2021 the Authors 2021 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1152/jn.00561.2020 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | WITHIN-INDIVIDUAL CEREBELLUM |
EISSN | 1522-1598 |
EndPage | 384 |
ExternalDocumentID | PMC7948146 33427596 10_1152_jn_00561_2020 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: HHS | National Institutes of Health (NIH) grantid: S10OD020039 – fundername: NIH HHS grantid: S10 OD020039 – fundername: HHS | National Institutes of Health (NIH) grantid: R00MH117226 – fundername: National Science Foundation (NSF) grantid: DGE1745303 – fundername: HHS | National Institutes of Health (NIH) grantid: R01MH124004 – fundername: NIMH NIH HHS grantid: R00 MH117226 – fundername: HHS | National Institutes of Health (NIH) grantid: P50MH106435 – fundername: ; ; grantid: R01MH124004; P50MH106435; R00MH117226; S10OD020039 – fundername: ; ; grantid: DGE1745303 |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 5PM AETEA |
ID | FETCH-LOGICAL-c387t-599d1eef5c2657533efe34eaf66b1fc91a7fb65187b87a6027deec98b81de7393 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Thu Aug 21 13:56:47 EDT 2025 Fri Jul 11 05:30:37 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 Tue Jul 01 00:33:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | association cortex Bayesian default network |
Language | English |
License | Licensed under Creative Commons Attribution CC-BY 4.0. Published by the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-599d1eef5c2657533efe34eaf66b1fc91a7fb65187b87a6027deec98b81de7393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7562-0755 0000-0002-0208-5808 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7948146 |
PMID | 33427596 |
PQID | 2476843028 |
PQPubID | 23479 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7948146 proquest_miscellaneous_2476843028 pubmed_primary_33427596 crossref_citationtrail_10_1152_jn_00561_2020 crossref_primary_10_1152_jn_00561_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda, MD |
PublicationSeriesTitle | Higher Neural Functions and Behavior |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2021 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 Sultan F (B86) 1993; 34 B25 B69 B26 B27 B28 B29 B70 B71 B72 B73 B30 B74 B31 B75 B32 B76 B33 B77 B34 B78 B35 B79 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B80 B81 B82 B83 B40 B84 B41 B85 B42 B43 B87 B44 B45 B46 B48 B49 B50 B51 B52 B10 B54 B11 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 Xu J (B47) 2012; 20 B17 B18 B19 B60 B61 B62 B63 |
References_xml | – ident: B2 doi: 10.1016/S0074-7742(08)60346-3 – ident: B7 doi: 10.1093/brain/121.4.561 – ident: B58 doi: 10.1006/nimg.1998.0396 – ident: B25 doi: 10.1093/brain/66.4.289 – ident: B14 doi: 10.1016/j.neuroimage.2018.01.082 – ident: B68 doi: 10.1002/hbm.1025 – ident: B39 doi: 10.1152/jn.00529.2019 – ident: B71 doi: 10.1016/j.tics.2017.11.002 – ident: B70 doi: 10.1016/j.neuroimage.2020.116624 – ident: B29 doi: 10.1371/journal.pone.0047515 – ident: B27 doi: 10.1523/JNEUROSCI.1868-09.2009 – ident: B77 doi: 10.1002/ana.20604 – ident: B74 doi: 10.1162/jocn.1989.1.2.153 – ident: B34 doi: 10.1016/j.neuron.2017.06.038 – ident: B76 doi: 10.1176/appi.ajp.2018.18040429 – ident: B20 doi: 10.1038/nrn2201 – ident: B83 doi: 10.1038/nature15693 – ident: B80 doi: 10.1016/j.cub.2018.08.059 – ident: B55 doi: 10.1016/j.neuroimage.2011.09.015 – ident: B49 doi: 10.1016/j.neuroimage.2005.03.035 – volume: 34 start-page: 79 year: 1993 ident: B86 publication-title: J Hirnforsch – ident: B3 doi: 10.1146/annurev.neuro.31.060407.125606 – ident: B66 doi: 10.1016/j.neuropsychologia.2018.09.011 – ident: B62 doi: 10.1093/cercor/bhm225 – ident: B31 doi: 10.1016/j.cub.2012.09.011 – ident: B15 doi: 10.1038/s41593-019-0436-x – ident: B44 doi: 10.1073/pnas.89.12.5675 – ident: B23 doi: 10.1016/j.neuroimage.2013.05.039 – ident: B52 doi: 10.1016/j.neuroimage.2007.12.025 – ident: B75 doi: 10.1152/jn.00598.2012 – ident: B30 doi: 10.1523/JNEUROSCI.2364-11.2011 – ident: B6 doi: 10.1016/0166-2236(93)90072-T – ident: B51 doi: 10.1016/j.neuroimage.2014.04.030 – ident: B19 doi: 10.1002/mrm.1910340409 – ident: B42 doi: 10.1016/j.cub.2019.04.012 – ident: B87 doi: 10.1111/j.1749-6632.2002.tb07588.x – ident: B5 doi: 10.1037/0735-7044.103.5.998 – ident: B13 doi: 10.1152/jn.00339.2011 – ident: B10 doi: 10.1146/annurev-neuro-070918-050258 – ident: B38 doi: 10.1038/s41583-019-0212-7 – ident: B56 doi: 10.1006/cbmr.1996.0014 – ident: B81 doi: 10.1152/jn.1980.44.6.1058 – ident: B67 doi: 10.1073/pnas.1608282113 – ident: B59 doi: 10.1152/jn.00338.2011 – ident: B46 doi: 10.1002/mrm.23097 – ident: B78 doi: 10.1016/j.neuroimage.2017.05.011 – ident: B64 doi: 10.1093/cercor/bhu239 – ident: B40 doi: 10.1152/jn.00753.2019 – ident: B8 doi: 10.1016/j.neuron.2013.10.044 – ident: B57 doi: 10.1016/j.neuroimage.2011.08.056 – ident: B35 doi: 10.1016/j.neuron.2017.07.011 – ident: B41 doi: 10.1016/j.neuron.2018.10.010 – ident: B84 doi: 10.1152/jn.00781.2018 – ident: B17 doi: 10.1371/journal.pone.0210028 – ident: B72 doi: 10.7554/eLife.36652 – ident: B21 doi: 10.1038/nn.3423 – ident: B85 doi: 10.1002/cne.902650207 – ident: B22 doi: 10.1016/j.neuroimage.2013.04.001 – ident: B32 doi: 10.1016/j.neuron.2015.06.037 – ident: B43 doi: 10.1093/cercor/bhy123 – ident: B16 doi: 10.1371/journal.pone.0133402 – volume: 20 start-page: 2306 year: 2012 ident: B47 publication-title: Proc Int Soc Mag Reson Med – ident: B73 doi: 10.1523/JNEUROSCI.23-23-08432.2003 – ident: B18 doi: 10.1523/JNEUROSCI.21-02-00700.2001 – ident: B69 doi: 10.1152/jn.00106.2011 – ident: B79 doi: 10.3389/fncom.2019.00061 – ident: B61 doi: 10.1006/nimg.1999.0516 – ident: B24 doi: 10.1016/j.neuron.2014.09.007 – ident: B65 doi: 10.1073/pnas.1506214112 – ident: B1 doi: 10.1073/pnas.2002896117 – ident: B4 doi: 10.1037/0735-7044.100.4.443 – ident: B12 doi: 10.1016/j.neuroimage.2008.08.039 – ident: B37 doi: 10.1073/pnas.2005238117 – ident: B28 doi: 10.1093/cercor/bhp135 – ident: B45 doi: 10.1073/pnas.89.13.5951 – ident: B48 doi: 10.1016/j.neuroimage.2013.05.041 – ident: B60 doi: 10.1016/j.neuron.2011.09.006 – ident: B11 doi: 10.1016/j.neuron.2019.04.021 – ident: B9 doi: 10.1002/hbm.22194 – ident: B54 doi: 10.1016/j.neuroimage.2012.01.021 – ident: B63 doi: 10.1016/j.neuroimage.2013.07.035 – ident: B26 doi: 10.1152/jn.1944.7.6.331 – ident: B50 doi: 10.1016/j.neuroimage.2006.07.029 – ident: B33 doi: 10.1038/nature17637 – ident: B82 doi: 10.1146/annurev.ne.13.030190.001521 – ident: B36 doi: 10.1152/jn.00808.2018 |
SSID | ssj0007502 |
Score | 2.5862331 |
Snippet | Stable, within-individual maps of cerebellar organization reveal orderly macroscale representations of the cerebral cortex with local juxtaposed zones... Distinct regions of the cerebellum connect to separate regions of the cerebral cortex forming a complex topography. Although cerebellar organization has been... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 358 |
SubjectTerms | Cerebellum - physiology Connectome Female Humans Magnetic Resonance Imaging Young Adult |
Title | The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33427596 https://www.proquest.com/docview/2476843028 https://pubmed.ncbi.nlm.nih.gov/PMC7948146 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEpNxkJ7WVkNI7jJI8T6jTBGAy1Ut8i23G2TFsydQnS-PUc35KUbdLgJaocy436fT0594PQh4xOVSGnNBBMRAHNWBrwNAGbp8hUKHjBKNOFwt8O2f6CflnGyyGtyFSXtGJH_r6xruR_UIU1wFVXyf4Dsv2hsACfAV-4AsJwvTPGNgcU1MZmVFXpI_92Ap9UK6XjC935tu6pATqqVTurul1VNcC0rd9uzikodeaLdDMltJfWJUJWfeXWLfqs6YxpHCVrnvplZ12m1Umnx2Qf9xLe5QL_7HrB41zXR6Nds7OCV6r0VUXOp-u8FCT0ic2DYAWjF1QnK2vVDWteGts6aEc7MpKtke3xfl3mx7qH7Gm9Y9qagslPpsPLzQf0D7_ne4uDg3w-W87vowcEjAo97-Lr0dBbHnQnExv3T-U7ssbk09rh6xrMNbPk7-zakboyf4weOVzwriXNE3RP1U_R5m7N2-b8Cm_hHz1Qm-gX8Ah7HuExj3BTYgAfGx7hgUe45xEWV7jnER54hMc8wpZH5qiBR8_QYm82_7wfuHkcgYzSpA3iLCtCpcpYEh2uiyJVqogqXjImwlJmIU9KweIwTUSacDYlSaGUzFIBNpHSnRefo426qdVLhFUiCsl5kcE9GoYyZVzPZQCBwYjMaDFBH_1vnEvXrF7PTDnLjdEak_y0zg0kuYZkgrb67Re2S8ttG997wHKQozo4xmvVdJc5oTokHYG6PUEvLID9UVFESRJnbIKSNWj7DbpH-_qdujoxvdoT3Q2Jsld3-N7X6OHwz3mDNtpVp96CxtuKd4aofwAg8LTL |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+detailed+organization+of+the+human+cerebellum+estimated+by+intrinsic+functional+connectivity+within+the+individual&rft.jtitle=Journal+of+neurophysiology&rft.au=Xue%2C+Aihuiping&rft.au=Kong%2C+Ru&rft.au=Yang%2C+Qing&rft.au=Eldaief%2C+Mark+C&rft.date=2021-02-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=125&rft.issue=2&rft.spage=358&rft_id=info:doi/10.1152%2Fjn.00561.2020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |