The effects of ethanol on the structural stability of acetylcholine receptor and the activity of various molecular forms of acetylcholinesterase
The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of Torpedo californica. In t...
Saved in:
Published in | Biochimica et biophysica acta Vol. 992; no. 3; pp. 333 - 340 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.09.1989
Elsevier North-Holland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of
Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (
t
d) of receptor transition at 57°C, but a decrease in the enthalpy change (
ΔH
d) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol α-bungarotoxin also caused a decrease in
ΔH
d. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of α-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200–1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200–2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids. |
---|---|
AbstractList | The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of
Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (
t
d) of receptor transition at 57°C, but a decrease in the enthalpy change (
ΔH
d) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol α-bungarotoxin also caused a decrease in
ΔH
d. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of α-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200–1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200–2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids. The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (td) of receptor transition at 57 degrees C, but a decrease in the enthalpy change (delta Hd) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol alpha-bungarotoxin also caused a decrease in delta Hd. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of alpha-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200-1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200-2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids.The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (td) of receptor transition at 57 degrees C, but a decrease in the enthalpy change (delta Hd) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol alpha-bungarotoxin also caused a decrease in delta Hd. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of alpha-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200-1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200-2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids. The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of acetylcholinesterase (AchE) were investigated, using the receptor and the enzyme isolated from the electric organ of Torpedo californica. In the presence of ethanol up to 200 mM, the thermogram of AchR-enriched membranes exhibited no significant decrease in the temperature (td) of receptor transition at 57 degrees C, but a decrease in the enthalpy change (delta Hd) indicated a slight ethanol-induced structural perturbation. The presence of 12.5 nmol alpha-bungarotoxin also caused a decrease in delta Hd. A complete loss of the receptor transition was observed at a higher concentration 500 nmol of alpha-bungarotoxin and no recovery of the transition was found with the addition of 200 mM ethanol. The results suggested a noncompetitive interaction of ethanol with the receptor. In the presence of 200-1000 mM ethanol, the activity of two soluble forms of AchE, a higher (117 S) aggregate and a lower (10 S) aggregate was not significantly affected. Comparing the activity of these two aggregates over a wide concentration range of ethanol (200-2000 mM) revealed no obvious difference in the level of ethanol effect between them. However, after removal of ethanol, the higher aggregate form of AchE exhibited a greater recoverability of the activity, suggesting a possible slightly greater structure-functional stability for it. Studies of soluble AchE and membrane-bound AchE showed that the presence of 200 or 600 mM ethanol caused a greater level of inhibition in membrane-bound enzyme than in soluble enzyme, possible due to a disruption of protein-lipid interaction needed to maintain the conformation of membrane-bound AchE. Interestingly, at a much higher concentration of ethanol (2.0 M), membrane-bound AchE became more resistant to ethanol than did the soluble forms of AchE. In this case, the effective concentration of ethanol felt by the enzyme was expected to be less for membrane-bound AchE, owing to ethanol's solubility in lipids. |
Author | Chen, Chang-Hwei Baker, Gary M. |
Author_xml | – sequence: 1 givenname: Gary M. surname: Baker fullname: Baker, Gary M. organization: Wadsworth Center for Laboratories and Research, New York State Health Department, The State University of New York at Albany, Albany, NY U.S.A – sequence: 2 givenname: Chang-Hwei surname: Chen fullname: Chen, Chang-Hwei organization: Wadsworth Center for Laboratories and Research, New York State Health Department, The State University of New York at Albany, Albany, NY U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19285090$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/2775789$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2KFDEUhYOMjD2jb6BQG0UXpUmq0qm4EGQYf2DAzbgOqeSGjqSSNkk19FvMI5uaLkZQ0GxuyP3OueGeC3QWYgCEnhP8lmCyfYc73Lc92bLXg3gjMBZdyx-hDRk4bQeMt2do84A8QRc5_8D1MMHO0TnlnPFBbNDd7Q4asBZ0yU20DZSdCtE3MTSldnJJsy5zUr5e1ei8K8cFUxrK0etd9C5Ak0DDvsTUqGDuZUoXd1jRg0ouzrmZogc9e5UaG9OU_3LJBZLK8BQ9tspneLbWS_T90_Xt1Zf25tvnr1cfb1rdDby0vaGdoYL3esAjs7hjZEtG0lM8Qr9UUd-MsJTyjo1GGDVYDUCVNj1jmnSX6NXJd5_iz7lOl5PLGrxXAep3JRcU92K7gC9WcB4nMHKf3KTSUa4rrP2Xa19lrbxNKmiXHzAi6MCwwJXrT5xOMecE9jeC5RKoXNKSS1pyEPI-UMmr7P0fMu2KKi6GkpTz_xN_OImhbvLgIMmsHQQNxtXMijTR_dvgF9j-vBQ |
CODEN | BBACAQ |
CitedBy_id | crossref_primary_10_1007_BF00968011 crossref_primary_10_1016_S0278_5846_98_00013_X crossref_primary_10_1016_0020_711X_91_90154_F crossref_primary_10_1016_j_abb_2005_03_002 crossref_primary_10_1016_S0278_5846_97_00039_0 crossref_primary_10_1177_0960327117698540 crossref_primary_10_1016_0301_4622_92_80041_3 crossref_primary_10_1016_j_cbi_2023_110789 crossref_primary_10_1002_ptr_1451 crossref_primary_10_1006_abbi_1997_0543 crossref_primary_10_1016_0020_711X_91_90185_P crossref_primary_10_1016_0926_6917_95_90025_X crossref_primary_10_1016_0305_0491_94_00131_D |
Cites_doi | 10.1146/annurev.ne.05.030182.000421 10.1016/0003-2697(78)90586-9 10.1021/bi00546a010 10.1016/0005-2744(78)90205-X 10.1139/y77-103 10.1016/S0021-9258(18)33712-8 10.1016/0378-4274(81)90159-4 10.1097/00000542-198606000-00004 10.1038/284060a0 10.1007/BF00964990 10.1111/j.1749-6632.1987.tb48656.x 10.1152/physrev.1984.64.4.1162 10.1016/S0021-9258(18)32600-0 10.1016/0076-6879(79)56057-1 10.1038/227680a0 10.1111/j.1432-1033.1971.tb01555.x 10.1016/0040-6031(74)85033-1 10.1021/bi00891a003 10.1016/S0006-291X(77)80184-8 10.1159/000469242 10.1016/0006-2952(61)90145-9 10.1021/j150605a030 10.1016/0166-2236(87)90033-6 10.1111/j.1432-1033.1976.tb10840.x 10.1016/S0021-9673(01)88183-8 10.1146/annurev.cb.01.110185.001533 10.1021/bi00856a012 10.1111/j.1432-1033.1976.tb10255.x 10.1016/0014-5793(72)80538-6 |
ContentType | Journal Article |
Copyright | 1989 1991 INIST-CNRS |
Copyright_xml | – notice: 1989 – notice: 1991 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/0304-4165(89)90093-7 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 340 |
ExternalDocumentID | 2775789 19285090 10_1016_0304_4165_89_90093_7 0304416589900937 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: AA07048 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. F5P H~9 IQODW K-O MVM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM CGR CUY CVF ECM EIF NPM PKN 7X8 |
ID | FETCH-LOGICAL-c387t-4d23d2974c80b5f035161b1420be4b1429f03d9f22735bd9da8fcee2acd455c13 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Fri Jul 11 06:00:51 EDT 2025 Wed Feb 19 02:32:35 EST 2025 Mon Jul 21 09:18:02 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Tue Jul 01 00:21:47 EDT 2025 Fri Feb 23 02:32:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | AchE AchR SDS Ethanol T. californica DSC Ach t d Acetylcholinesterase Acetylcholine receptor Neurotransmission Molecular form Temperature Stability Molecular structure Enzyme Torpedo californica Molecular interaction Vertebrata Membrane receptor Enzymatic activity Pisces Acetylcholine Conformation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-4d23d2974c80b5f035161b1420be4b1429f03d9f22735bd9da8fcee2acd455c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 2775789 |
PQID | 79204961 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_79204961 pubmed_primary_2775789 pascalfrancis_primary_19285090 crossref_primary_10_1016_0304_4165_89_90093_7 crossref_citationtrail_10_1016_0304_4165_89_90093_7 elsevier_sciencedirect_doi_10_1016_0304_4165_89_90093_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1989-09-15 |
PublicationDateYYYYMMDD | 1989-09-15 |
PublicationDate_xml | – month: 09 year: 1989 text: 1989-09-15 day: 15 |
PublicationDecade | 1980 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 1989 |
Publisher | Elsevier B.V Elsevier North-Holland |
Publisher_xml | – name: Elsevier B.V – name: North-Holland – name: Elsevier |
References | Taylor, Schumacher, McPhee-Quigley, Friedmann, Taylor (BIB8) 1987; 10 Chem (BIB21) 1981; 85 Yphantis (BIB24) 1964; 3 Stroud, Finer-Moore (BIB9) 1985; 1 Sun, Seaman (BIB33) 1980; 5 Christopher, Kurlansik, Millar, Chingell (BIB18) 1978; 525 Erickson, Graham (BIB1) 1973; 185 Cabral, Schatz (BIB17) 1979; 56 Taylor, Allmond, Himel (BIB19) 1983; 257 Massoulie, Bon (BIB7) 1982; 5 Janoff, Miller (BIB32) 1982; Vol. 4 Chin, Goldstein (BIB31) 1985; Vol. 3 Clark, Kalant, Carmichael (BIB2) 1977; 55 Lieberthal, Oldfield, Shanley (BIB6) 1979 Delegeane, McNamee (BIB11) 1980; 19 Markwell, Haas, Bieber, Tolbert (BIB12) 1978; 87 Lee, Heinemann, Taylor (BIB15) 1982; 257 Bon, Huet, Lemonnier, Rieger, Massoulie (BIB23) 1976; 68 Miller, Firestone, Forman (BIB10) 1987; 492 Cohen, Weber, Huchet, Changeux (BIB26) 1972; 26 Grafius, Bond, Millar (BIB28) 1971; 22 Popot, Changeux (BIB14) 1984; 64 Bradley, Peper, Sterz (BIB5) 1980; 284 Farach, Martinez-Carrion (BIB13) 1983; 258 Owasoyo, Iramain (BIB4) 1981; 9 Sihotang (BIB29) 1976; 63 Laemmli (BIB16) 1970; 227 Ross, Goldberg (BIB20) 1974; 10 Firestone, Sauter, Braswell, Miller (BIB25) 1986; 64 Grafius, Millar (BIB27) 1967; 4 Beauregard, Roufogalis (BIB30) 1977; 77 Tabakoff, Hoffman, Liljequist (BIB3) 1987; 37 Ellman, Courtney, Andres, Featherstone (BIB22) 1961; 7 Sun (10.1016/0304-4165(89)90093-7_BIB33) 1980; 5 Lieberthal (10.1016/0304-4165(89)90093-7_BIB6) 1979 Grafius (10.1016/0304-4165(89)90093-7_BIB28) 1971; 22 Clark (10.1016/0304-4165(89)90093-7_BIB2) 1977; 55 Grafius (10.1016/0304-4165(89)90093-7_BIB27) 1967; 4 Firestone (10.1016/0304-4165(89)90093-7_BIB25) 1986; 64 Chin (10.1016/0304-4165(89)90093-7_BIB31) 1985; Vol. 3 Massoulie (10.1016/0304-4165(89)90093-7_BIB7) 1982; 5 Miller (10.1016/0304-4165(89)90093-7_BIB10) 1987; 492 Farach (10.1016/0304-4165(89)90093-7_BIB13) 1983; 258 Tabakoff (10.1016/0304-4165(89)90093-7_BIB3) 1987; 37 Chem (10.1016/0304-4165(89)90093-7_BIB21) 1981; 85 Owasoyo (10.1016/0304-4165(89)90093-7_BIB4) 1981; 9 Ellman (10.1016/0304-4165(89)90093-7_BIB22) 1961; 7 Janoff (10.1016/0304-4165(89)90093-7_BIB32) 1982; Vol. 4 Christopher (10.1016/0304-4165(89)90093-7_BIB18) 1978; 525 Yphantis (10.1016/0304-4165(89)90093-7_BIB24) 1964; 3 Ross (10.1016/0304-4165(89)90093-7_BIB20) 1974; 10 Markwell (10.1016/0304-4165(89)90093-7_BIB12) 1978; 87 Lee (10.1016/0304-4165(89)90093-7_BIB15) 1982; 257 Laemmli (10.1016/0304-4165(89)90093-7_BIB16) 1970; 227 Bon (10.1016/0304-4165(89)90093-7_BIB23) 1976; 68 Bradley (10.1016/0304-4165(89)90093-7_BIB5) 1980; 284 Beauregard (10.1016/0304-4165(89)90093-7_BIB30) 1977; 77 Delegeane (10.1016/0304-4165(89)90093-7_BIB11) 1980; 19 Cabral (10.1016/0304-4165(89)90093-7_BIB17) 1979; 56 Erickson (10.1016/0304-4165(89)90093-7_BIB1) 1973; 185 Taylor (10.1016/0304-4165(89)90093-7_BIB8) 1987; 10 Sihotang (10.1016/0304-4165(89)90093-7_BIB29) 1976; 63 Taylor (10.1016/0304-4165(89)90093-7_BIB19) 1983; 257 Cohen (10.1016/0304-4165(89)90093-7_BIB26) 1972; 26 Popot (10.1016/0304-4165(89)90093-7_BIB14) 1984; 64 Stroud (10.1016/0304-4165(89)90093-7_BIB9) 1985; 1 |
References_xml | – volume: 22 start-page: 382 year: 1971 end-page: 390 ident: BIB28 publication-title: Eur. J. Biochem. – volume: 284 start-page: 60 year: 1980 end-page: 62 ident: BIB5 publication-title: Nature – volume: 258 start-page: 4166 year: 1983 end-page: 4170 ident: BIB13 publication-title: J. Biol. Chem. – volume: 87 start-page: 206 year: 1978 end-page: 210 ident: BIB12 publication-title: Anal. Biochem. – volume: 7 start-page: 88 year: 1961 end-page: 95 ident: BIB22 publication-title: Biochem. Pharmacol. – volume: 257 start-page: 275 year: 1983 end-page: 284 ident: BIB19 publication-title: J. Chromatogr. – volume: 5 start-page: 537 year: 1980 end-page: 545 ident: BIB33 publication-title: Neurochem. Res. – volume: 19 start-page: 890 year: 1980 end-page: 895 ident: BIB11 publication-title: Biochemistry – volume: 37 start-page: 70 year: 1987 end-page: 86 ident: BIB3 publication-title: Enzyme – volume: 85 start-page: 603 year: 1981 end-page: 608 ident: BIB21 publication-title: J. Phys. Chem. – volume: 68 start-page: 523 year: 1976 end-page: 530 ident: BIB23 publication-title: Eur. J. Biochem. – volume: Vol. 3 start-page: 1 year: 1985 end-page: 38 ident: BIB31 publication-title: Membrane Fluidity in Biology – volume: Vol. 4 start-page: 417 year: 1982 end-page: 476 ident: BIB32 publication-title: Biological Membranes – start-page: 797 year: 1979 ident: BIB6 publication-title: Alcohol and Aldehyde Metabolizing Systems IV – volume: 64 start-page: 694 year: 1986 end-page: 702 ident: BIB25 publication-title: Anesthesiology – volume: 5 start-page: 57 year: 1982 end-page: 106 ident: BIB7 publication-title: Annu. Rev. Neurosci. – volume: 1 start-page: 317 year: 1985 end-page: 351 ident: BIB9 publication-title: Annu. Rev. Cell Biol. – volume: 227 start-page: 680 year: 1970 end-page: 685 ident: BIB16 publication-title: Nature – volume: 525 start-page: 112 year: 1978 end-page: 121 ident: BIB18 publication-title: Biochim. Biophys. Acta – volume: 10 start-page: 93 year: 1987 end-page: 95 ident: BIB8 publication-title: Trends Neurochem. Sci. – volume: 9 start-page: 267 year: 1981 end-page: 270 ident: BIB4 publication-title: Toxicol. Lett. – volume: 3 start-page: 297 year: 1964 end-page: 317 ident: BIB24 publication-title: Biochemistry – volume: 185 start-page: 583 year: 1973 end-page: 593 ident: BIB1 publication-title: J. Pharmacol. Exp. Ther. – volume: 10 start-page: 143 year: 1974 end-page: 151 ident: BIB20 publication-title: Thermochimia – volume: 64 start-page: 1162 year: 1984 end-page: 1239 ident: BIB14 publication-title: Physiol. Rev. – volume: 492 start-page: 71 year: 1987 end-page: 86 ident: BIB10 publication-title: Ann. N.Y. Acad. Sci. – volume: 77 start-page: 211 year: 1977 end-page: 219 ident: BIB30 publication-title: Biochem. Biophys. Res. Commun. – volume: 4 start-page: 1034 year: 1967 end-page: 1046 ident: BIB27 publication-title: Biochemistry – volume: 63 start-page: 519 year: 1976 end-page: 524 ident: BIB29 publication-title: Eur. J. Biochem. – volume: 55 start-page: 758 year: 1977 end-page: 768 ident: BIB2 publication-title: Can. J. Physiol. Pharmacol. – volume: 56 start-page: 602 year: 1979 end-page: 613 ident: BIB17 publication-title: Methods Enzymol. – volume: 257 start-page: 12283 year: 1982 end-page: 12291 ident: BIB15 publication-title: J. Biol. Chem. – volume: 26 start-page: 43 year: 1972 end-page: 47 ident: BIB26 publication-title: FEBS Lett. – volume: 5 start-page: 57 year: 1982 ident: 10.1016/0304-4165(89)90093-7_BIB7 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.05.030182.000421 – volume: 87 start-page: 206 year: 1978 ident: 10.1016/0304-4165(89)90093-7_BIB12 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(78)90586-9 – volume: 19 start-page: 890 year: 1980 ident: 10.1016/0304-4165(89)90093-7_BIB11 publication-title: Biochemistry doi: 10.1021/bi00546a010 – volume: 525 start-page: 112 year: 1978 ident: 10.1016/0304-4165(89)90093-7_BIB18 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(78)90205-X – volume: 55 start-page: 758 year: 1977 ident: 10.1016/0304-4165(89)90093-7_BIB2 publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y77-103 – volume: 257 start-page: 12283 year: 1982 ident: 10.1016/0304-4165(89)90093-7_BIB15 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)33712-8 – volume: 9 start-page: 267 year: 1981 ident: 10.1016/0304-4165(89)90093-7_BIB4 publication-title: Toxicol. Lett. doi: 10.1016/0378-4274(81)90159-4 – volume: 64 start-page: 694 year: 1986 ident: 10.1016/0304-4165(89)90093-7_BIB25 publication-title: Anesthesiology doi: 10.1097/00000542-198606000-00004 – volume: Vol. 3 start-page: 1 year: 1985 ident: 10.1016/0304-4165(89)90093-7_BIB31 – volume: 185 start-page: 583 year: 1973 ident: 10.1016/0304-4165(89)90093-7_BIB1 publication-title: J. Pharmacol. Exp. Ther. – volume: 284 start-page: 60 year: 1980 ident: 10.1016/0304-4165(89)90093-7_BIB5 publication-title: Nature doi: 10.1038/284060a0 – volume: 5 start-page: 537 year: 1980 ident: 10.1016/0304-4165(89)90093-7_BIB33 publication-title: Neurochem. Res. doi: 10.1007/BF00964990 – volume: 492 start-page: 71 year: 1987 ident: 10.1016/0304-4165(89)90093-7_BIB10 publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.1987.tb48656.x – volume: 64 start-page: 1162 year: 1984 ident: 10.1016/0304-4165(89)90093-7_BIB14 publication-title: Physiol. Rev. doi: 10.1152/physrev.1984.64.4.1162 – volume: 258 start-page: 4166 year: 1983 ident: 10.1016/0304-4165(89)90093-7_BIB13 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32600-0 – volume: 56 start-page: 602 year: 1979 ident: 10.1016/0304-4165(89)90093-7_BIB17 publication-title: Methods Enzymol. doi: 10.1016/0076-6879(79)56057-1 – volume: 227 start-page: 680 year: 1970 ident: 10.1016/0304-4165(89)90093-7_BIB16 publication-title: Nature doi: 10.1038/227680a0 – volume: 22 start-page: 382 year: 1971 ident: 10.1016/0304-4165(89)90093-7_BIB28 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1971.tb01555.x – volume: 10 start-page: 143 year: 1974 ident: 10.1016/0304-4165(89)90093-7_BIB20 publication-title: Thermochimia doi: 10.1016/0040-6031(74)85033-1 – volume: 3 start-page: 297 year: 1964 ident: 10.1016/0304-4165(89)90093-7_BIB24 publication-title: Biochemistry doi: 10.1021/bi00891a003 – volume: 77 start-page: 211 year: 1977 ident: 10.1016/0304-4165(89)90093-7_BIB30 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(77)80184-8 – volume: 37 start-page: 70 year: 1987 ident: 10.1016/0304-4165(89)90093-7_BIB3 publication-title: Enzyme doi: 10.1159/000469242 – volume: 7 start-page: 88 year: 1961 ident: 10.1016/0304-4165(89)90093-7_BIB22 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(61)90145-9 – volume: 85 start-page: 603 year: 1981 ident: 10.1016/0304-4165(89)90093-7_BIB21 publication-title: J. Phys. Chem. doi: 10.1021/j150605a030 – volume: 10 start-page: 93 year: 1987 ident: 10.1016/0304-4165(89)90093-7_BIB8 publication-title: Trends Neurochem. Sci. doi: 10.1016/0166-2236(87)90033-6 – volume: 68 start-page: 523 year: 1976 ident: 10.1016/0304-4165(89)90093-7_BIB23 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1976.tb10840.x – volume: Vol. 4 start-page: 417 year: 1982 ident: 10.1016/0304-4165(89)90093-7_BIB32 – volume: 257 start-page: 275 year: 1983 ident: 10.1016/0304-4165(89)90093-7_BIB19 publication-title: J. Chromatogr. doi: 10.1016/S0021-9673(01)88183-8 – start-page: 797 year: 1979 ident: 10.1016/0304-4165(89)90093-7_BIB6 – volume: 1 start-page: 317 year: 1985 ident: 10.1016/0304-4165(89)90093-7_BIB9 publication-title: Annu. Rev. Cell Biol. doi: 10.1146/annurev.cb.01.110185.001533 – volume: 4 start-page: 1034 year: 1967 ident: 10.1016/0304-4165(89)90093-7_BIB27 publication-title: Biochemistry doi: 10.1021/bi00856a012 – volume: 63 start-page: 519 year: 1976 ident: 10.1016/0304-4165(89)90093-7_BIB29 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1976.tb10255.x – volume: 26 start-page: 43 year: 1972 ident: 10.1016/0304-4165(89)90093-7_BIB26 publication-title: FEBS Lett. doi: 10.1016/0014-5793(72)80538-6 |
SSID | ssj0000595 ssj0025309 |
Score | 1.4089919 |
Snippet | The actions of ethanol on the structural stability of acetylcholine receptor (AchR)-enriched membrane vesicles and the activity of various molecular forms of... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 333 |
SubjectTerms | Acetylcholine receptor Acetylcholinesterase Acetylcholinesterase - isolation & purification Acetylcholinesterase - metabolism Animals Biological and medical sciences Bungarotoxins - pharmacology Calorimetry, Differential Scanning Cell Membrane - metabolism Cell physiology Cholinesterase Inhibitors Chromatography, Affinity Electric Organ - metabolism Ethanol Ethanol - pharmacology Fundamental and applied biological sciences. Psychology Kinetics Molecular and cellular biology Neurotransmission Protein Denaturation Receptors, Cholinergic - drug effects Receptors, Cholinergic - metabolism T. californica Thermodynamics Torpedo |
Title | The effects of ethanol on the structural stability of acetylcholine receptor and the activity of various molecular forms of acetylcholinesterase |
URI | https://dx.doi.org/10.1016/0304-4165(89)90093-7 https://www.ncbi.nlm.nih.gov/pubmed/2775789 https://www.proquest.com/docview/79204961 |
Volume | 992 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6F9AASQmwVYSlzAAlUubU93uYYRaWBiBxQq_ZmzWKLSMGOVFMJfgFHfjLveWbshFAFuDiJNUuS93ne95Z5Q8grUGGJijLmBYlkXsQi3xMSPsZp5JdRoQLRFkn6OE-m59GHy_hyMPixlrX0tZFH6vsf95X8j1ThHsgVd8n-g2S7QeEGvAf5whUkDNe_lvFaQkaBbvB6af3_h6Y0bFtWAyhgmwTbhtOFKppvS1z2kGHCilesmrVUStzpcG2bXoMljTmyX9whuu1mx6utUbDaggvzuAjxolafF1iMAL7XoVzUxocicPzeCTCemUyM06PeLTuZjuen3vTi5D0WbJj3fgmXeGV2ZhpnmdXsG4svptn5G4sv5-EaytjaUspMgQyrlZkp6rS14BvfA8Z3PaCWMbDyjL9GFetz5qW9knOB_d90X5eRCEQ3A-7k3yJ7IRgc4ZDsjWefLmad8R4zmy5kf4Tbhhkkx93sbzL-1s58E825uxJX8PCV5tSUm82alt6c3Sf3rF1CxwZkD8igqB6S2xN3HOAj8hPARi3YaF1SCzZaVxRQQ3uw0Q5s2GwDJtSBjQLY2m4ObNjUgo12YKMt2LZGsWB7TM7fnZxNpp49zsNTLEsbL9Ih0yHYryrzZVxiCDsJ0AfpyyLCVw73NC9DYNSx1FyLrAQKFwqlozhWAdsnw6quiieEaiDuTAeCs4BFSkJLIQMtuQByzQOtR4S5fz9XttY9HrmyzF1SI8osR5nlGc9bmeXpiHhdr5Wp9bKjfeoEm1u-anhoDujc0fNgAwf9dBaGI_LSASMHOWMQT1QFyCBPeQhGfRKMyL7BS9cXcAvqlz_dNfYzcqd_Xp-TIeCjeAHMupEHFvS_AFKKzwI |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+ethanol+on+the+structural+stability+of+acetylcholine+receptor+and+the+activity+of+various+molecular+forms+of+acetylcholinesterase&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=BAKER%2C+G.+M&rft.au=CHANG-HWEI+CHEN&rft.date=1989-09-15&rft.pub=Elsevier&rft.issn=0006-3002&rft.volume=992&rft.issue=3&rft.spage=333&rft.epage=340&rft_id=info:doi/10.1016%2F0304-4165%2889%2990093-7&rft.externalDBID=n%2Fa&rft.externalDocID=19285090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |