Transforming Growth Factor-β and Nuclear Factor E2–related Factor 2 Regulate Antioxidant Responses in Airway Smooth Muscle Cells Role in Asthma
Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferr...
Saved in:
Published in | American journal of respiratory and critical care medicine Vol. 184; no. 8; pp. 894 - 903 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
American Thoracic Society
15.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1073-449X 1535-4970 1535-4970 |
DOI | 10.1164/rccm.201011-1780OC |
Cover
Loading…
Abstract | Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress.
To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects.
ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs.
Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects.
Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma. |
---|---|
AbstractList | Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress.RATIONALEAberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress.To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects.OBJECTIVESTo determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects.ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs.METHODSASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs.Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects.MEASUREMENTS AND MAIN RESULTSActivation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects.Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.CONCLUSIONSNrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma. Rationale : Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. Objectives : To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. Methods : ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. Measurements and Main Results : Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1, ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. Conclusions : Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma. Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma. |
Author | Chung, Kian Fan Chang, Po-Jui Petrou, Mario Michaeloudes, Charalambos |
Author_xml | – sequence: 1 givenname: Charalambos surname: Michaeloudes fullname: Michaeloudes, Charalambos organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom – sequence: 2 givenname: Po-Jui surname: Chang fullname: Chang, Po-Jui organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom – sequence: 3 givenname: Mario surname: Petrou fullname: Petrou, Mario organization: Cardiovascular Science Heart Science Centre, Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield Hospital, United Kingdom – sequence: 4 givenname: Kian Fan surname: Chung fullname: Chung, Kian Fan organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24612058$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21799075$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1uFDEQhS0URJKBC7BA3iBWHaps998GaTRKAlIgEsyCneWx3ROjbnuwuwnZIXEEbsJBOAQnwaOZhJ8FK1vPX9VTud4xOfDBW0IeI5wgVuJ51Ho4YYCAWGDdwOXiHjnCkpeFaGs4yHeoeSFE-_6QHKf0AQBZg_CAHDKs2xbq8oh8XUblUxfi4PyansdwPV7RM6XHEIsf36nyhr6ZdG9V3Kv0lP388i3aXo3W3GqMvrXraSvRuR9d-OyM8mMW0yb4ZBN1ns5dvFY39N0QQrZ4PaXclS5s36eH5H6n-mQf7c8ZWZ6dLhcvi4vL81eL-UWheVOPeSjemQ4VCLAoGLLaAhpYMVG2ooasK9tqY-tmZXTZKTBgKtNxrlfIu4rPyItd2820GqzR1o9R9XIT3aDijQzKyb9fvLuS6_BJcgGszO4z8mzfIIaPk02jHFzSeQLlbZiSbJFzrFkFmXzyp9Wdx-2_Z-DpHlBJq77LS9Au_eZEhQzKJnNsx-kYUoq2u0MQ5DYEchsCuQuB3IUgFzX_FGk3qryW7Viu_1_pL8wHu7A |
CitedBy_id | crossref_primary_10_3109_1547691X_2014_914609 crossref_primary_10_1155_2021_6692110 crossref_primary_10_3390_cells13151271 crossref_primary_10_1016_j_matbio_2016_09_006 crossref_primary_10_1080_02770903_2019_1571081 crossref_primary_10_1186_s40360_018_0204_7 crossref_primary_10_14712_fb2014060040153 crossref_primary_10_1186_s12931_015_0253_z crossref_primary_10_1152_ajplung_00167_2011 crossref_primary_10_1165_rcmb_2016_0231TR crossref_primary_10_1016_j_rmed_2014_08_008 crossref_primary_10_1038_s41598_023_38366_5 crossref_primary_10_3390_antiox11081422 crossref_primary_10_1586_17476348_2014_856267 crossref_primary_10_3389_fcvm_2021_721814 crossref_primary_10_1042_BSR20171090 crossref_primary_10_1016_j_resinv_2018_10_005 crossref_primary_10_1165_rcmb_2013_0067OC crossref_primary_10_1164_rccm_201204_0634UP crossref_primary_10_1016_j_biopha_2016_12_040 crossref_primary_10_1089_jir_2015_0102 crossref_primary_10_1111_acer_12563 crossref_primary_10_1016_j_cell_2016_05_017 crossref_primary_10_1007_s00204_015_1557_y crossref_primary_10_1667_RR15059_1 crossref_primary_10_1139_cjpp_2019_0349 crossref_primary_10_1183_13993003_00202_2017 crossref_primary_10_1016_j_ejphar_2019_05_026 crossref_primary_10_1016_j_jff_2023_105581 crossref_primary_10_1016_j_phymed_2020_153295 crossref_primary_10_1002_jbio_201600061 crossref_primary_10_1074_jbc_M114_612671 crossref_primary_10_3389_fimmu_2021_786238 crossref_primary_10_1007_s13273_021_00155_4 crossref_primary_10_1016_j_jaci_2015_01_046 crossref_primary_10_1155_2013_323607 crossref_primary_10_1165_rcmb_2013_0414OC crossref_primary_10_1186_1465_9921_15_58 crossref_primary_10_1155_2013_875403 crossref_primary_10_1016_j_freeradbiomed_2020_07_027 crossref_primary_10_1152_ajplung_00117_2015 crossref_primary_10_1111_anae_12593 crossref_primary_10_1016_j_compbiomed_2022_105601 crossref_primary_10_1016_j_freeradbiomed_2022_04_011 crossref_primary_10_1007_s12272_019_01182_5 crossref_primary_10_1016_j_lfs_2020_117909 crossref_primary_10_3390_metabo12080674 crossref_primary_10_1016_j_mam_2021_101026 crossref_primary_10_1016_j_coph_2019_05_006 crossref_primary_10_1007_s00432_022_04353_y crossref_primary_10_3109_02770903_2015_1008138 crossref_primary_10_1038_srep29952 crossref_primary_10_1016_j_pulmoe_2019_07_001 crossref_primary_10_3892_mmr_2017_8180 crossref_primary_10_1152_ajplung_00398_2014 crossref_primary_10_1038_srep26928 crossref_primary_10_1016_j_biopha_2021_111796 crossref_primary_10_3109_15419061_2013_775257 crossref_primary_10_1016_j_jaci_2011_11_037 crossref_primary_10_1371_journal_pone_0124000 crossref_primary_10_1371_journal_pone_0093265 crossref_primary_10_1016_j_heliyon_2024_e29492 crossref_primary_10_1097_MPA_0000000000001501 crossref_primary_10_3390_antiox10091335 crossref_primary_10_1016_j_resinv_2019_10_003 |
Cites_doi | 10.1074/jbc.M300931200 10.1161/01.ATV.0000258868.80079.4d 10.1152/ajplung.00430.2006 10.1164/rccm.200512-1930OC 10.1016/j.pharmthera.2005.10.015 10.1074/jbc.274.28.20017 10.1128/MCB.01639-08 10.1038/onc.2008.188 10.1111/j.1365-2222.2009.03319.x 10.1165/rcmb.2005-0166OC 10.1074/jbc.M500166200 10.1164/rccm.200502-180OC 10.1074/jbc.M200315200 10.1074/jbc.M807397200 10.1084/jem.20050538 10.1021/tx1001628 10.1016/j.freeradbiomed.2004.10.033 10.1152/ajplung.00206.2001 10.1038/nrc2657 10.1165/rcmb.4715 10.1038/emm.2007.30 10.1152/ajplung.1997.273.3.L648 10.1158/1078-0432.CCR-08-2822 10.1034/j.1399-3003.2000.15e26.x 10.1158/0008-5472.CAN-05-3513 10.1152/ajplung.00134.2010 10.1096/fj.01-0570com 10.1073/pnas.0307301101 10.1016/j.clim.2008.05.005 10.1183/09031936.03.00064803 10.1016/S1053-2498(03)00099-8 10.1097/ACI.0b013e3282f3d913 10.1111/j.1440-1843.2008.01469.x 10.1186/1465-9921-6-148 10.1152/ajplung.00156.2004 10.1152/ajplung.00014.2004 10.1093/carcin/bgi265 10.1093/cvr/cvp072 10.1158/0008-5472.CAN-07-2170 10.1111/j.1582-4934.2009.00874.x 10.1074/jbc.M401368200 10.1152/physrev.00011.2005 10.1152/ajplung.00068.2007 10.1016/j.febslet.2005.04.058 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2011 American Thoracic Society 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2011 American Thoracic Society 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1164/rccm.201011-1780OC |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1535-4970 |
EndPage | 903 |
ExternalDocumentID | PMC3402549 21799075 24612058 10_1164_rccm_201011_1780OC |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Medical Research Council grantid: G1000758 |
GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 3O- 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFFNX AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M ZXP ~02 .GJ 1CY 1KJ AAEJM AAQQT ACBNA AFUWQ AI. AJJEV H13 IQODW N4W OHT PJZUB PPXIY VH1 YJK ZE2 ZGI CGR CUY CVF ECM EIF NPM PMFND 7X8 5PM |
ID | FETCH-LOGICAL-c387t-493fdf1a040e142127e01d0b2459470a04ae9cde78bdc5fa0d0d6df33cb13f63 |
ISSN | 1073-449X 1535-4970 |
IngestDate | Thu Aug 21 14:05:00 EDT 2025 Fri Jul 11 03:23:40 EDT 2025 Sat May 31 02:06:17 EDT 2025 Mon Jul 21 09:16:14 EDT 2025 Tue Jul 01 00:53:38 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Lung disease Intensive care Respiratory disease Transforming growth factor β nuclear factor E2-related factor 2 airway smooth muscle Smooth muscle Antioxidant Asthma transforming growth factor-β Bronchus disease Obstructive pulmonary disease Resuscitation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c387t-493fdf1a040e142127e01d0b2459470a04ae9cde78bdc5fa0d0d6df33cb13f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21799075 |
PQID | 913317260 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3402549 proquest_miscellaneous_913317260 pubmed_primary_21799075 pascalfrancis_primary_24612058 crossref_primary_10_1164_rccm_201011_1780OC crossref_citationtrail_10_1164_rccm_201011_1780OC |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-15 |
PublicationDateYYYYMMDD | 2011-10-15 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | American journal of respiratory and critical care medicine |
PublicationTitleAlternate | Am J Respir Crit Care Med |
PublicationYear | 2011 |
Publisher | American Thoracic Society |
Publisher_xml | – name: American Thoracic Society |
References | bib14 bib36 bib15 bib37 bib12 bib34 bib13 bib35 bib10 bib32 bib11 bib33 bib30 Shan Y (bib29) 2009; 34 bib31 bib27 bib28 bib40 bib25 bib26 bib23 bib45 bib24 bib46 bib21 bib43 bib22 bib44 bib41 bib20 bib42 bib9 bib7 bib8 bib5 bib18 bib6 bib19 bib3 bib16 bib38 bib4 bib17 bib39 bib1 bib2 |
References_xml | – ident: bib12 doi: 10.1074/jbc.M300931200 – ident: bib14 doi: 10.1161/01.ATV.0000258868.80079.4d – ident: bib39 doi: 10.1152/ajplung.00430.2006 – ident: bib25 doi: 10.1164/rccm.200512-1930OC – ident: bib4 doi: 10.1016/j.pharmthera.2005.10.015 – ident: bib9 doi: 10.1074/jbc.274.28.20017 – ident: bib41 doi: 10.1128/MCB.01639-08 – ident: bib33 doi: 10.1038/onc.2008.188 – ident: bib1 doi: 10.1111/j.1365-2222.2009.03319.x – ident: bib19 doi: 10.1165/rcmb.2005-0166OC – ident: bib42 doi: 10.1074/jbc.M500166200 – ident: bib3 doi: 10.1164/rccm.200502-180OC – ident: bib5 doi: 10.1074/jbc.M200315200 – ident: bib37 doi: 10.1074/jbc.M807397200 – ident: bib16 doi: 10.1084/jem.20050538 – ident: bib32 doi: 10.1021/tx1001628 – ident: bib38 doi: 10.1016/j.freeradbiomed.2004.10.033 – ident: bib8 doi: 10.1152/ajplung.00206.2001 – ident: bib45 doi: 10.1038/nrc2657 – ident: bib46 doi: 10.1165/rcmb.4715 – ident: bib30 doi: 10.1038/emm.2007.30 – ident: bib18 doi: 10.1152/ajplung.1997.273.3.L648 – ident: bib34 doi: 10.1158/1078-0432.CCR-08-2822 – ident: bib2 doi: 10.1034/j.1399-3003.2000.15e26.x – ident: bib40 doi: 10.1158/0008-5472.CAN-05-3513 – ident: bib22 doi: 10.1152/ajplung.00134.2010 – ident: bib31 doi: 10.1096/fj.01-0570com – ident: bib27 doi: 10.1073/pnas.0307301101 – ident: bib15 doi: 10.1016/j.clim.2008.05.005 – ident: bib6 doi: 10.1183/09031936.03.00064803 – ident: bib7 doi: 10.1016/S1053-2498(03)00099-8 – ident: bib10 doi: 10.1097/ACI.0b013e3282f3d913 – ident: bib17 doi: 10.1111/j.1440-1843.2008.01469.x – ident: bib20 doi: 10.1186/1465-9921-6-148 – ident: bib21 doi: 10.1152/ajplung.00156.2004 – ident: bib24 doi: 10.1152/ajplung.00014.2004 – ident: bib28 doi: 10.1093/carcin/bgi265 – ident: bib13 doi: 10.1093/cvr/cvp072 – volume: 34 start-page: 1129 year: 2009 ident: bib29 publication-title: Int J Oncol – ident: bib35 doi: 10.1158/0008-5472.CAN-07-2170 – ident: bib36 doi: 10.1111/j.1582-4934.2009.00874.x – ident: bib43 doi: 10.1074/jbc.M401368200 – ident: bib44 doi: 10.1152/physrev.00011.2005 – ident: bib23 – ident: bib26 doi: 10.1152/ajplung.00068.2007 – ident: bib11 doi: 10.1016/j.febslet.2005.04.058 |
SSID | ssj0012810 |
Score | 2.3194253 |
Snippet | Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and... Rationale : Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 894 |
SubjectTerms | Adenoviridae - genetics Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Antioxidants - metabolism Asthma - metabolism Biological and medical sciences Blood and lymphatic vessels Cardiology. Vascular system Cell Proliferation - drug effects Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Gene Expression - drug effects Gene Expression Regulation Genetic Vectors Humans Intensive care medicine Isothiocyanates Medical sciences Muscle, Smooth - cytology Muscle, Smooth - metabolism NF-E2 Transcription Factor - antagonists & inhibitors NF-E2 Transcription Factor - metabolism RNA, Small Interfering Sulfoxides Thiocyanates - pharmacology Transfection Transforming Growth Factor beta - metabolism Transforming Growth Factor beta - pharmacology |
Subtitle | Role in Asthma |
Title | Transforming Growth Factor-β and Nuclear Factor E2–related Factor 2 Regulate Antioxidant Responses in Airway Smooth Muscle Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21799075 https://www.proquest.com/docview/913317260 https://pubmed.ncbi.nlm.nih.gov/PMC3402549 |
Volume | 184 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2lrYSQEOJZwiOaBV1ZBj_GHptdmjpKC0mrkkjZWfbYViKlSZWHiljxD4gf4UP4CD6DFXdejhMiXotY0XjsjHKOZ-Z6zpyL0EvPpwUMHcwsaE5NQnPXTNOkMG0_8wsvdRNLWGx0e35nQM6G3rBW-1FRLa2W6Sv2cee-kv9BFcoAV75L9h-QLW8KBfAd8IUjIAzHv8NYzzrVW6Sb5choiwQ65lErOjp2xNJAj1sWJ3N1xogcLXDwxEYWmHGqMw782SIzPfcqgVZ_GGfwv_M3_FxGK5RbRnM8v0mgv7maAcRGd7WAexutfDKR0jquVeS1FsuR6vC1w61eGapYVcwry_xie51OuyDkaNur_sCXTjN6dz44id5roUACfE5nZVgAFeQWrIuZebYal91-1L88H6idSVJ3JsaY02bPaMOn1RkoW62sfJ_L1STemrC69f0RPDJszLTatdKnQy9mEiIy9lY6fVJhd1DpwgOZdFnNBkLhwLBjoPEJsGPO2JWQB_J20cBSPpwbrt5bo22pgeRGfo7lBXvowIEQh2ffODl9W66AOYFy0lCN1xu-fPL611_dmFTduU4WgFUhE7Psipy2BcCVGVX_HrqrQiHclLy-j2r59AG61VWwP0Sfq_TGkt5Y0fvbVwyMwYraqhRHzvdPXxSpdZmDNalxhdS4JDUeT7EkNZakxpLUWJD6DeaUFnUEpR-hfjvqtzqmyiFiMjegS5OEbpEVdgJjVW5z9QPNLTuzUod4IaEWlCd5yLKcBmnGvCKxMivzs8J1WWq7he8-RvvT2TR_gnCQ0szNmW2nlJAgC8MCIgmY3TOPJXZYJHVkawxipvz1eZqXSSzibJ_EHLdY4hZL3OrIKK-5lu4yv63d2IC2vERTqY6wxjqGUYIv_SXTfLZaxKHtQqDg-FYdHUro1xdzT0gIHOqIbpCirMAN6DfPTMcjYUTvEu6lET79U7ueodvrR_c52l_OV_kLmMsv0wbao0MKx6BlN9DBcdS7uGyIB-EnkIz88g |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+Growth+Factor-%CE%B2+and+Nuclear+Factor+E2%E2%80%95related+Factor+2+Regulate+Antioxidant+Responses+in+Airway+Smooth+Muscle+Cells%3A+Role+in+Asthma&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=MICHAELOUDES%2C+Charalambos&rft.au=CHANG%2C+Po-Jui&rft.au=PETROU%2C+Mario&rft.au=KIAN+FAN+CHUNG&rft.date=2011-10-15&rft.pub=American+Thoracic+Society&rft.issn=1073-449X&rft.volume=184&rft.issue=8&rft.spage=894&rft.epage=903&rft_id=info:doi/10.1164%2Frccm.201011-1780OC&rft.externalDBID=n%2Fa&rft.externalDocID=24612058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |