Transforming Growth Factor-β and Nuclear Factor E2–related Factor 2 Regulate Antioxidant Responses in Airway Smooth Muscle Cells Role in Asthma

Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferr...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of respiratory and critical care medicine Vol. 184; no. 8; pp. 894 - 903
Main Authors Michaeloudes, Charalambos, Chang, Po-Jui, Petrou, Mario, Chung, Kian Fan
Format Journal Article
LanguageEnglish
Published New York, NY American Thoracic Society 15.10.2011
Subjects
Online AccessGet full text
ISSN1073-449X
1535-4970
1535-4970
DOI10.1164/rccm.201011-1780OC

Cover

Loading…
Abstract Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.
AbstractList Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress.RATIONALEAberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress.To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects.OBJECTIVESTo determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects.ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs.METHODSASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs.Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects.MEASUREMENTS AND MAIN RESULTSActivation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects.Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.CONCLUSIONSNrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.
Rationale : Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. Objectives : To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. Methods : ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. Measurements and Main Results : Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1, ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. Conclusions : Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.
Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and inflammatory function and induces oxidant release, are features of asthma. Nuclear factor E2-related factor 2 (Nrf2) activates antioxidant genes conferring protection against oxidative stress. To determine the role of Nrf2 in ASMCs and its modulation by TGF-β, and compare Nrf2 activity in ASMCs from subjects with severe and nonsevere asthma and healthy subjects. ASMCs were cultured from airways of subjects without asthma, and from airway biopsies from patients with severe and nonsevere asthma. We studied Nrf2 activation on antioxidant gene expression and proliferation, the effect of TGF-β on Nrf2 transcriptional activity, and the impact of Nrf2 activation on TGF-β–mediated proliferation and IL-6 release. Nrf2–antioxidant response elements binding and Nrf2-dependent antioxidant gene expression was determined in asthmatic ASMCs. Activation of Nrf2 led to up-regulation of the antioxidant genes heme oxygenase (HO)-1, NAD(P)H:quinone oxidoreductase, and manganese superoxide dismutase, and a reduction in proliferation. TGF-β reduced Nrf2-mediated antioxidant gene transcription through induction of activating transcription factor-3 expression. Nrf2 activation attenuated TGF-β–mediated reduction in HO-1,ASMC proliferation, and IL-6 release. Nrf2–antioxidant response elements binding was reduced in ASMCs from patients with severe asthma compared with ASMCs from patients with nonsevere asthma and normal subjects. HO-1 expression was reduced in ASMCs from patients with both nonsevere and severe asthma compared with healthy subjects. Nrf2 regulates antioxidant responses and proliferation in ASMCs and is inactivated by TGF-β. Nrf2 reduction may underlie compromised antioxidant protection and aberrant ASM function in asthma.
Author Chung, Kian Fan
Chang, Po-Jui
Petrou, Mario
Michaeloudes, Charalambos
Author_xml – sequence: 1
  givenname: Charalambos
  surname: Michaeloudes
  fullname: Michaeloudes, Charalambos
  organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
– sequence: 2
  givenname: Po-Jui
  surname: Chang
  fullname: Chang, Po-Jui
  organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
– sequence: 3
  givenname: Mario
  surname: Petrou
  fullname: Petrou, Mario
  organization: Cardiovascular Science Heart Science Centre, Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield Hospital, United Kingdom
– sequence: 4
  givenname: Kian Fan
  surname: Chung
  fullname: Chung, Kian Fan
  organization: Experimental Studies, Airway Disease Section, National Heart and Lung Institute, Imperial College London and Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24612058$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21799075$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1uFDEQhS0URJKBC7BA3iBWHaps998GaTRKAlIgEsyCneWx3ROjbnuwuwnZIXEEbsJBOAQnwaOZhJ8FK1vPX9VTud4xOfDBW0IeI5wgVuJ51Ho4YYCAWGDdwOXiHjnCkpeFaGs4yHeoeSFE-_6QHKf0AQBZg_CAHDKs2xbq8oh8XUblUxfi4PyansdwPV7RM6XHEIsf36nyhr6ZdG9V3Kv0lP388i3aXo3W3GqMvrXraSvRuR9d-OyM8mMW0yb4ZBN1ns5dvFY39N0QQrZ4PaXclS5s36eH5H6n-mQf7c8ZWZ6dLhcvi4vL81eL-UWheVOPeSjemQ4VCLAoGLLaAhpYMVG2ooasK9tqY-tmZXTZKTBgKtNxrlfIu4rPyItd2820GqzR1o9R9XIT3aDijQzKyb9fvLuS6_BJcgGszO4z8mzfIIaPk02jHFzSeQLlbZiSbJFzrFkFmXzyp9Wdx-2_Z-DpHlBJq77LS9Au_eZEhQzKJnNsx-kYUoq2u0MQ5DYEchsCuQuB3IUgFzX_FGk3qryW7Viu_1_pL8wHu7A
CitedBy_id crossref_primary_10_3109_1547691X_2014_914609
crossref_primary_10_1155_2021_6692110
crossref_primary_10_3390_cells13151271
crossref_primary_10_1016_j_matbio_2016_09_006
crossref_primary_10_1080_02770903_2019_1571081
crossref_primary_10_1186_s40360_018_0204_7
crossref_primary_10_14712_fb2014060040153
crossref_primary_10_1186_s12931_015_0253_z
crossref_primary_10_1152_ajplung_00167_2011
crossref_primary_10_1165_rcmb_2016_0231TR
crossref_primary_10_1016_j_rmed_2014_08_008
crossref_primary_10_1038_s41598_023_38366_5
crossref_primary_10_3390_antiox11081422
crossref_primary_10_1586_17476348_2014_856267
crossref_primary_10_3389_fcvm_2021_721814
crossref_primary_10_1042_BSR20171090
crossref_primary_10_1016_j_resinv_2018_10_005
crossref_primary_10_1165_rcmb_2013_0067OC
crossref_primary_10_1164_rccm_201204_0634UP
crossref_primary_10_1016_j_biopha_2016_12_040
crossref_primary_10_1089_jir_2015_0102
crossref_primary_10_1111_acer_12563
crossref_primary_10_1016_j_cell_2016_05_017
crossref_primary_10_1007_s00204_015_1557_y
crossref_primary_10_1667_RR15059_1
crossref_primary_10_1139_cjpp_2019_0349
crossref_primary_10_1183_13993003_00202_2017
crossref_primary_10_1016_j_ejphar_2019_05_026
crossref_primary_10_1016_j_jff_2023_105581
crossref_primary_10_1016_j_phymed_2020_153295
crossref_primary_10_1002_jbio_201600061
crossref_primary_10_1074_jbc_M114_612671
crossref_primary_10_3389_fimmu_2021_786238
crossref_primary_10_1007_s13273_021_00155_4
crossref_primary_10_1016_j_jaci_2015_01_046
crossref_primary_10_1155_2013_323607
crossref_primary_10_1165_rcmb_2013_0414OC
crossref_primary_10_1186_1465_9921_15_58
crossref_primary_10_1155_2013_875403
crossref_primary_10_1016_j_freeradbiomed_2020_07_027
crossref_primary_10_1152_ajplung_00117_2015
crossref_primary_10_1111_anae_12593
crossref_primary_10_1016_j_compbiomed_2022_105601
crossref_primary_10_1016_j_freeradbiomed_2022_04_011
crossref_primary_10_1007_s12272_019_01182_5
crossref_primary_10_1016_j_lfs_2020_117909
crossref_primary_10_3390_metabo12080674
crossref_primary_10_1016_j_mam_2021_101026
crossref_primary_10_1016_j_coph_2019_05_006
crossref_primary_10_1007_s00432_022_04353_y
crossref_primary_10_3109_02770903_2015_1008138
crossref_primary_10_1038_srep29952
crossref_primary_10_1016_j_pulmoe_2019_07_001
crossref_primary_10_3892_mmr_2017_8180
crossref_primary_10_1152_ajplung_00398_2014
crossref_primary_10_1038_srep26928
crossref_primary_10_1016_j_biopha_2021_111796
crossref_primary_10_3109_15419061_2013_775257
crossref_primary_10_1016_j_jaci_2011_11_037
crossref_primary_10_1371_journal_pone_0124000
crossref_primary_10_1371_journal_pone_0093265
crossref_primary_10_1016_j_heliyon_2024_e29492
crossref_primary_10_1097_MPA_0000000000001501
crossref_primary_10_3390_antiox10091335
crossref_primary_10_1016_j_resinv_2019_10_003
Cites_doi 10.1074/jbc.M300931200
10.1161/01.ATV.0000258868.80079.4d
10.1152/ajplung.00430.2006
10.1164/rccm.200512-1930OC
10.1016/j.pharmthera.2005.10.015
10.1074/jbc.274.28.20017
10.1128/MCB.01639-08
10.1038/onc.2008.188
10.1111/j.1365-2222.2009.03319.x
10.1165/rcmb.2005-0166OC
10.1074/jbc.M500166200
10.1164/rccm.200502-180OC
10.1074/jbc.M200315200
10.1074/jbc.M807397200
10.1084/jem.20050538
10.1021/tx1001628
10.1016/j.freeradbiomed.2004.10.033
10.1152/ajplung.00206.2001
10.1038/nrc2657
10.1165/rcmb.4715
10.1038/emm.2007.30
10.1152/ajplung.1997.273.3.L648
10.1158/1078-0432.CCR-08-2822
10.1034/j.1399-3003.2000.15e26.x
10.1158/0008-5472.CAN-05-3513
10.1152/ajplung.00134.2010
10.1096/fj.01-0570com
10.1073/pnas.0307301101
10.1016/j.clim.2008.05.005
10.1183/09031936.03.00064803
10.1016/S1053-2498(03)00099-8
10.1097/ACI.0b013e3282f3d913
10.1111/j.1440-1843.2008.01469.x
10.1186/1465-9921-6-148
10.1152/ajplung.00156.2004
10.1152/ajplung.00014.2004
10.1093/carcin/bgi265
10.1093/cvr/cvp072
10.1158/0008-5472.CAN-07-2170
10.1111/j.1582-4934.2009.00874.x
10.1074/jbc.M401368200
10.1152/physrev.00011.2005
10.1152/ajplung.00068.2007
10.1016/j.febslet.2005.04.058
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2011 American Thoracic Society 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2011 American Thoracic Society 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1164/rccm.201011-1780OC
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 903
ExternalDocumentID PMC3402549
21799075
24612058
10_1164_rccm_201011_1780OC
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G1000758
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
3O-
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFFNX
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
ZXP
~02
.GJ
1CY
1KJ
AAEJM
AAQQT
ACBNA
AFUWQ
AI.
AJJEV
H13
IQODW
N4W
OHT
PJZUB
PPXIY
VH1
YJK
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
5PM
ID FETCH-LOGICAL-c387t-493fdf1a040e142127e01d0b2459470a04ae9cde78bdc5fa0d0d6df33cb13f63
ISSN 1073-449X
1535-4970
IngestDate Thu Aug 21 14:05:00 EDT 2025
Fri Jul 11 03:23:40 EDT 2025
Sat May 31 02:06:17 EDT 2025
Mon Jul 21 09:16:14 EDT 2025
Tue Jul 01 00:53:38 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Lung disease
Intensive care
Respiratory disease
Transforming growth factor β
nuclear factor E2-related factor 2
airway smooth muscle
Smooth muscle
Antioxidant
Asthma
transforming growth factor-β
Bronchus disease
Obstructive pulmonary disease
Resuscitation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c387t-493fdf1a040e142127e01d0b2459470a04ae9cde78bdc5fa0d0d6df33cb13f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21799075
PQID 913317260
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3402549
proquest_miscellaneous_913317260
pubmed_primary_21799075
pascalfrancis_primary_24612058
crossref_primary_10_1164_rccm_201011_1780OC
crossref_citationtrail_10_1164_rccm_201011_1780OC
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-15
PublicationDateYYYYMMDD 2011-10-15
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2011
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib14
bib36
bib15
bib37
bib12
bib34
bib13
bib35
bib10
bib32
bib11
bib33
bib30
Shan Y (bib29) 2009; 34
bib31
bib27
bib28
bib40
bib25
bib26
bib23
bib45
bib24
bib46
bib21
bib43
bib22
bib44
bib41
bib20
bib42
bib9
bib7
bib8
bib5
bib18
bib6
bib19
bib3
bib16
bib38
bib4
bib17
bib39
bib1
bib2
References_xml – ident: bib12
  doi: 10.1074/jbc.M300931200
– ident: bib14
  doi: 10.1161/01.ATV.0000258868.80079.4d
– ident: bib39
  doi: 10.1152/ajplung.00430.2006
– ident: bib25
  doi: 10.1164/rccm.200512-1930OC
– ident: bib4
  doi: 10.1016/j.pharmthera.2005.10.015
– ident: bib9
  doi: 10.1074/jbc.274.28.20017
– ident: bib41
  doi: 10.1128/MCB.01639-08
– ident: bib33
  doi: 10.1038/onc.2008.188
– ident: bib1
  doi: 10.1111/j.1365-2222.2009.03319.x
– ident: bib19
  doi: 10.1165/rcmb.2005-0166OC
– ident: bib42
  doi: 10.1074/jbc.M500166200
– ident: bib3
  doi: 10.1164/rccm.200502-180OC
– ident: bib5
  doi: 10.1074/jbc.M200315200
– ident: bib37
  doi: 10.1074/jbc.M807397200
– ident: bib16
  doi: 10.1084/jem.20050538
– ident: bib32
  doi: 10.1021/tx1001628
– ident: bib38
  doi: 10.1016/j.freeradbiomed.2004.10.033
– ident: bib8
  doi: 10.1152/ajplung.00206.2001
– ident: bib45
  doi: 10.1038/nrc2657
– ident: bib46
  doi: 10.1165/rcmb.4715
– ident: bib30
  doi: 10.1038/emm.2007.30
– ident: bib18
  doi: 10.1152/ajplung.1997.273.3.L648
– ident: bib34
  doi: 10.1158/1078-0432.CCR-08-2822
– ident: bib2
  doi: 10.1034/j.1399-3003.2000.15e26.x
– ident: bib40
  doi: 10.1158/0008-5472.CAN-05-3513
– ident: bib22
  doi: 10.1152/ajplung.00134.2010
– ident: bib31
  doi: 10.1096/fj.01-0570com
– ident: bib27
  doi: 10.1073/pnas.0307301101
– ident: bib15
  doi: 10.1016/j.clim.2008.05.005
– ident: bib6
  doi: 10.1183/09031936.03.00064803
– ident: bib7
  doi: 10.1016/S1053-2498(03)00099-8
– ident: bib10
  doi: 10.1097/ACI.0b013e3282f3d913
– ident: bib17
  doi: 10.1111/j.1440-1843.2008.01469.x
– ident: bib20
  doi: 10.1186/1465-9921-6-148
– ident: bib21
  doi: 10.1152/ajplung.00156.2004
– ident: bib24
  doi: 10.1152/ajplung.00014.2004
– ident: bib28
  doi: 10.1093/carcin/bgi265
– ident: bib13
  doi: 10.1093/cvr/cvp072
– volume: 34
  start-page: 1129
  year: 2009
  ident: bib29
  publication-title: Int J Oncol
– ident: bib35
  doi: 10.1158/0008-5472.CAN-07-2170
– ident: bib36
  doi: 10.1111/j.1582-4934.2009.00874.x
– ident: bib43
  doi: 10.1074/jbc.M401368200
– ident: bib44
  doi: 10.1152/physrev.00011.2005
– ident: bib23
– ident: bib26
  doi: 10.1152/ajplung.00068.2007
– ident: bib11
  doi: 10.1016/j.febslet.2005.04.058
SSID ssj0012810
Score 2.3194253
Snippet Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and...
Rationale : Aberrant airway smooth muscle cell (ASMC) function and overexpression of transforming growth factor (TGF)-β, which modulates ASMC proliferative and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 894
SubjectTerms Adenoviridae - genetics
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Antioxidants - metabolism
Asthma - metabolism
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
Cell Proliferation - drug effects
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Gene Expression - drug effects
Gene Expression Regulation
Genetic Vectors
Humans
Intensive care medicine
Isothiocyanates
Medical sciences
Muscle, Smooth - cytology
Muscle, Smooth - metabolism
NF-E2 Transcription Factor - antagonists & inhibitors
NF-E2 Transcription Factor - metabolism
RNA, Small Interfering
Sulfoxides
Thiocyanates - pharmacology
Transfection
Transforming Growth Factor beta - metabolism
Transforming Growth Factor beta - pharmacology
Subtitle Role in Asthma
Title Transforming Growth Factor-β and Nuclear Factor E2–related Factor 2 Regulate Antioxidant Responses in Airway Smooth Muscle Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/21799075
https://www.proquest.com/docview/913317260
https://pubmed.ncbi.nlm.nih.gov/PMC3402549
Volume 184
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2lrYSQEOJZwiOaBV1ZBj_GHptdmjpKC0mrkkjZWfbYViKlSZWHiljxD4gf4UP4CD6DFXdejhMiXotY0XjsjHKOZ-Z6zpyL0EvPpwUMHcwsaE5NQnPXTNOkMG0_8wsvdRNLWGx0e35nQM6G3rBW-1FRLa2W6Sv2cee-kv9BFcoAV75L9h-QLW8KBfAd8IUjIAzHv8NYzzrVW6Sb5choiwQ65lErOjp2xNJAj1sWJ3N1xogcLXDwxEYWmHGqMw782SIzPfcqgVZ_GGfwv_M3_FxGK5RbRnM8v0mgv7maAcRGd7WAexutfDKR0jquVeS1FsuR6vC1w61eGapYVcwry_xie51OuyDkaNur_sCXTjN6dz44id5roUACfE5nZVgAFeQWrIuZebYal91-1L88H6idSVJ3JsaY02bPaMOn1RkoW62sfJ_L1STemrC69f0RPDJszLTatdKnQy9mEiIy9lY6fVJhd1DpwgOZdFnNBkLhwLBjoPEJsGPO2JWQB_J20cBSPpwbrt5bo22pgeRGfo7lBXvowIEQh2ffODl9W66AOYFy0lCN1xu-fPL611_dmFTduU4WgFUhE7Psipy2BcCVGVX_HrqrQiHclLy-j2r59AG61VWwP0Sfq_TGkt5Y0fvbVwyMwYraqhRHzvdPXxSpdZmDNalxhdS4JDUeT7EkNZakxpLUWJD6DeaUFnUEpR-hfjvqtzqmyiFiMjegS5OEbpEVdgJjVW5z9QPNLTuzUod4IaEWlCd5yLKcBmnGvCKxMivzs8J1WWq7he8-RvvT2TR_gnCQ0szNmW2nlJAgC8MCIgmY3TOPJXZYJHVkawxipvz1eZqXSSzibJ_EHLdY4hZL3OrIKK-5lu4yv63d2IC2vERTqY6wxjqGUYIv_SXTfLZaxKHtQqDg-FYdHUro1xdzT0gIHOqIbpCirMAN6DfPTMcjYUTvEu6lET79U7ueodvrR_c52l_OV_kLmMsv0wbao0MKx6BlN9DBcdS7uGyIB-EnkIz88g
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transforming+Growth+Factor-%CE%B2+and+Nuclear+Factor+E2%E2%80%95related+Factor+2+Regulate+Antioxidant+Responses+in+Airway+Smooth+Muscle+Cells%3A+Role+in+Asthma&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=MICHAELOUDES%2C+Charalambos&rft.au=CHANG%2C+Po-Jui&rft.au=PETROU%2C+Mario&rft.au=KIAN+FAN+CHUNG&rft.date=2011-10-15&rft.pub=American+Thoracic+Society&rft.issn=1073-449X&rft.volume=184&rft.issue=8&rft.spage=894&rft.epage=903&rft_id=info:doi/10.1164%2Frccm.201011-1780OC&rft.externalDBID=n%2Fa&rft.externalDocID=24612058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon