The Essential Genome of Escherichia coli K-12
Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Cur...
Saved in:
Published in | mBio Vol. 9; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
20.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in
Escherichia coli
K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry.
IMPORTANCE
Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in
Escherichia coli
, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the
E. coli
model laboratory organism. This paper is important because it provides a better understanding of the essential genes of
E. coli
, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.
Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in
Escherichia coli
, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the
E. coli
model laboratory organism. This paper is important because it provides a better understanding of the essential genes of
E. coli
, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. |
---|---|
AbstractList | Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in
Escherichia coli
K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry.
IMPORTANCE
Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in
Escherichia coli
, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the
E. coli
model laboratory organism. This paper is important because it provides a better understanding of the essential genes of
E. coli
, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.
Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in
Escherichia coli
, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the
E. coli
model laboratory organism. This paper is important because it provides a better understanding of the essential genes of
E. coli
, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry.IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data.Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry.IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli, we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli, reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the model laboratory organism. This paper is important because it provides a better understanding of the essential genes of , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. |
Author | Johnston, Iain G. Henderson, Ian R. Goodall, Emily C. A. Turner, Keith A. Cunningham, Adam F. Cole, Jeffrey A. Jabbari, Sara Robinson, Ashley Lund, Peter A. |
Author_xml | – sequence: 1 givenname: Emily C. A. surname: Goodall fullname: Goodall, Emily C. A. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 2 givenname: Ashley surname: Robinson fullname: Robinson, Ashley organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 3 givenname: Iain G. surname: Johnston fullname: Johnston, Iain G. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 4 givenname: Sara surname: Jabbari fullname: Jabbari, Sara organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 5 givenname: Keith A. surname: Turner fullname: Turner, Keith A. organization: Discuva Ltd., Cambridge, United Kingdom – sequence: 6 givenname: Adam F. orcidid: 0000-0003-0248-964X surname: Cunningham fullname: Cunningham, Adam F. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 7 givenname: Peter A. surname: Lund fullname: Lund, Peter A. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 8 givenname: Jeffrey A. surname: Cole fullname: Cole, Jeffrey A. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom – sequence: 9 givenname: Ian R. surname: Henderson fullname: Henderson, Ian R. organization: Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29463657$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LxDAQxYMorh979Co9eolmJpumuQi6-IWCFz2HbHbqRtpGm67gf2_r6qKCc8kw-eW9IW-XbTaxIcYOQBwDYHFSn4d4LFCYnIPeYDsISnCtADaHPgeOgGbExik9i76khEKKbTZCM8llrvQO4w8Lyi5SoqYLrsquqIk1ZbHsZ35BbfCL4DIfq5DdcsB9tlW6KtH469xjj5cXD9Nrfnd_dTM9u-NeFrrjE62Mz11hSCiaG6SJcRJFjkgalEZSSko1L0B4M5flrNBeSwMzgzMjSoNyj52udF-Ws5rmvt-udZV9aUPt2ncbXbC_b5qwsE_xzaoCQRSTXuDoS6CNr0tKna1D8lRVrqG4TBaF0IAoNfTo4U-vtcn3H_UAXwG-jSm1VK4REHaIwQ4x2M8YLAy8_MP70LkuxGHVUP3z6gOGboio |
CitedBy_id | crossref_primary_10_1038_s41564_020_00839_y crossref_primary_10_1128_MMBR_00077_19 crossref_primary_10_1016_j_celrep_2023_113517 crossref_primary_10_1128_AEM_00543_20 crossref_primary_10_1038_s41598_022_07557_x crossref_primary_10_1128_mbio_01225_22 crossref_primary_10_1016_j_celrep_2021_109413 crossref_primary_10_1128_mBio_02430_19 crossref_primary_10_1186_s12864_023_09266_9 crossref_primary_10_1128_jb_00264_22 crossref_primary_10_1093_bioinformatics_btac376 crossref_primary_10_3389_fcimb_2020_592906 crossref_primary_10_1021_acssynbio_3c00239 crossref_primary_10_1007_s12010_023_04807_0 crossref_primary_10_1093_jac_dkaa204 crossref_primary_10_1093_nar_gkae174 crossref_primary_10_1111_nyas_14280 crossref_primary_10_3389_fmicb_2021_803307 crossref_primary_10_1016_j_csbj_2020_03_021 crossref_primary_10_3389_fbioe_2023_1296132 crossref_primary_10_1128_aem_00956_23 crossref_primary_10_1016_j_crmeth_2023_100693 crossref_primary_10_1126_science_adj8543 crossref_primary_10_1016_j_ymben_2025_02_011 crossref_primary_10_1103_PhysRevE_103_062412 crossref_primary_10_3390_antiox11102053 crossref_primary_10_1038_s41467_024_52816_2 crossref_primary_10_1002_bit_28958 crossref_primary_10_1038_s41592_019_0629_y crossref_primary_10_1128_msystems_00387_24 crossref_primary_10_1016_j_jmb_2019_05_004 crossref_primary_10_1042_BCJ20220062 crossref_primary_10_1038_s41598_019_43587_8 crossref_primary_10_1073_pnas_2211197119 crossref_primary_10_1128_mbio_03467_21 crossref_primary_10_1128_spectrum_02162_22 crossref_primary_10_1080_15476286_2020_1813411 crossref_primary_10_1016_j_celrep_2020_107927 crossref_primary_10_1016_j_jhazmat_2024_133849 crossref_primary_10_1128_AAC_01771_19 crossref_primary_10_1093_molbev_msae185 crossref_primary_10_1128_jb_00184_23 crossref_primary_10_1093_g3journal_jkac295 crossref_primary_10_1073_pnas_2001507117 crossref_primary_10_1128_spectrum_00833_22 crossref_primary_10_1042_BSR20231227 crossref_primary_10_3390_microorganisms9030592 crossref_primary_10_1038_s41598_024_57537_6 crossref_primary_10_1093_bioinformatics_btab508 crossref_primary_10_1093_molbev_msac069 crossref_primary_10_1007_s00203_022_03245_6 crossref_primary_10_1093_femsre_fuac005 crossref_primary_10_1074_jbc_RA120_012611 crossref_primary_10_7554_eLife_88971_3 crossref_primary_10_1038_s44320_024_00017_w crossref_primary_10_1186_s12934_022_01746_z crossref_primary_10_7554_eLife_60482 crossref_primary_10_1146_annurev_micro_020518_115822 crossref_primary_10_3389_fcimb_2022_1062682 crossref_primary_10_7554_eLife_88971 crossref_primary_10_1128_msystems_00282_20 crossref_primary_10_1111_mmi_14882 crossref_primary_10_1186_s12866_021_02184_4 crossref_primary_10_1021_acscentsci_0c01621 crossref_primary_10_1080_21541264_2021_1981713 crossref_primary_10_1186_s13062_023_00362_0 crossref_primary_10_7554_eLife_97465_3 crossref_primary_10_1074_jbc_RA119_012161 crossref_primary_10_1128_msystems_00896_22 crossref_primary_10_3389_fmicb_2021_755801 crossref_primary_10_1016_j_crmeth_2024_100697 crossref_primary_10_1016_j_gene_2021_145890 crossref_primary_10_3390_ijms25052957 crossref_primary_10_1021_acs_jafc_4c12842 crossref_primary_10_1093_nargab_lqae110 crossref_primary_10_1128_aem_00480_22 crossref_primary_10_1038_s41586_023_05824_z crossref_primary_10_3389_fmicb_2022_858983 crossref_primary_10_1016_j_critrevonc_2023_104088 crossref_primary_10_1016_j_micres_2022_127202 crossref_primary_10_1038_s41467_020_19235_5 crossref_primary_10_1094_MPMI_07_22_0152_R crossref_primary_10_1016_j_foodres_2022_112280 crossref_primary_10_1186_s12864_021_07448_x crossref_primary_10_1126_sciadv_abf5851 crossref_primary_10_1093_g3journal_jkac235 crossref_primary_10_1111_omi_12256 crossref_primary_10_1128_mbio_01798_24 crossref_primary_10_1038_s41586_019_1192_5 crossref_primary_10_1093_nar_gkad234 crossref_primary_10_1128_mBio_00836_21 crossref_primary_10_1016_j_virol_2024_110169 crossref_primary_10_1038_s41586_024_08124_2 crossref_primary_10_1038_s41467_018_04899_x crossref_primary_10_1128_mBio_02259_20 crossref_primary_10_15252_msb_202311596 crossref_primary_10_1093_nar_gkaa204 crossref_primary_10_3390_antibiotics10060632 crossref_primary_10_1099_mgen_0_000650 crossref_primary_10_1111_lam_13423 crossref_primary_10_1016_j_jgar_2022_01_026 crossref_primary_10_1016_j_tifs_2021_06_032 crossref_primary_10_1080_07388551_2023_2208285 crossref_primary_10_1101_gr_254391_119 crossref_primary_10_1128_jb_00268_22 crossref_primary_10_1128_JB_00432_20 crossref_primary_10_1128_spectrum_02043_22 crossref_primary_10_1099_mic_0_001385 crossref_primary_10_1021_acsomega_4c08427 crossref_primary_10_1146_annurev_genet_112618_043838 crossref_primary_10_3389_fmicb_2018_01059 crossref_primary_10_1093_nar_gkaa294 crossref_primary_10_1128_mBio_02846_21 crossref_primary_10_1016_j_ijmm_2020_151395 crossref_primary_10_1038_s41576_020_0244_x crossref_primary_10_1186_s12866_023_02835_8 crossref_primary_10_1186_s13059_021_02344_9 crossref_primary_10_1099_mgen_0_000546 crossref_primary_10_1128_spectrum_01338_23 crossref_primary_10_1615_IntJMedMushrooms_2023047722 crossref_primary_10_3390_genes12010053 crossref_primary_10_1016_j_micres_2020_126500 crossref_primary_10_1111_nyas_14991 crossref_primary_10_3390_microorganisms8010003 crossref_primary_10_1128_mSystems_00491_20 crossref_primary_10_7554_eLife_97465 crossref_primary_10_1186_s12918_018_0653_z crossref_primary_10_3389_fmicb_2019_01670 crossref_primary_10_1038_s41598_022_05028_x crossref_primary_10_1038_s41598_024_54169_8 crossref_primary_10_1101_gr_276747_122 crossref_primary_10_1016_j_mex_2020_101143 crossref_primary_10_7554_eLife_94919 crossref_primary_10_7554_eLife_55308 crossref_primary_10_1038_s41598_023_32525_4 crossref_primary_10_12688_f1000research_51873_1 crossref_primary_10_1039_D0ME00001A crossref_primary_10_1093_nar_gkac362 crossref_primary_10_1093_nar_gkad692 crossref_primary_10_1099_mic_0_001491 crossref_primary_10_12688_f1000research_51873_2 crossref_primary_10_1093_nar_gkab757 crossref_primary_10_3390_microorganisms10020423 crossref_primary_10_3390_genes15050590 crossref_primary_10_1016_j_ebiom_2023_104439 crossref_primary_10_1038_s41540_024_00426_5 crossref_primary_10_1126_science_add1417 crossref_primary_10_3389_fmicb_2024_1527113 crossref_primary_10_1093_nar_gkae745 crossref_primary_10_1073_pnas_1900570116 crossref_primary_10_1016_j_cell_2025_02_010 crossref_primary_10_1128_spectrum_00195_22 crossref_primary_10_1016_j_tibtech_2024_02_008 crossref_primary_10_1099_mgen_0_000554 crossref_primary_10_1016_j_celrep_2021_109635 crossref_primary_10_1038_s41598_019_54196_w crossref_primary_10_1128_spectrum_01662_21 crossref_primary_10_7717_peerj_6233 crossref_primary_10_1007_s12275_021_1130_8 crossref_primary_10_1128_JB_00698_20 crossref_primary_10_1080_21505594_2022_2158708 crossref_primary_10_1016_j_bbrc_2025_151546 crossref_primary_10_1016_j_jbc_2023_103003 crossref_primary_10_1111_mmi_14609 crossref_primary_10_1126_sciadv_ado3095 crossref_primary_10_1099_mgen_0_000719 crossref_primary_10_3390_microorganisms7100409 crossref_primary_10_1002_bit_27443 crossref_primary_10_1002_bit_28098 crossref_primary_10_1128_mBio_01129_21 crossref_primary_10_1186_s12864_021_08223_8 crossref_primary_10_1099_mgen_0_001017 crossref_primary_10_1038_s41587_020_00745_y crossref_primary_10_1111_mpp_12754 crossref_primary_10_1128_IAI_00758_19 crossref_primary_10_7554_eLife_62614 crossref_primary_10_1093_molbev_msab329 crossref_primary_10_3389_frabi_2022_957942 crossref_primary_10_1007_s12275_022_2425_0 crossref_primary_10_1111_mmi_14677 crossref_primary_10_1128_mSphere_00031_19 crossref_primary_10_15252_msb_202211081 crossref_primary_10_1128_msystems_00813_21 crossref_primary_10_1093_nar_gkaa320 crossref_primary_10_1038_s41598_022_15997_8 crossref_primary_10_1016_j_copbio_2020_09_010 |
Cites_doi | 10.1111/j.1365-2958.2007.05915.x 10.1073/pnas.0903229106 10.1038/msb.2009.92 10.1080/2159256X.2017.1313805 10.1111/mmi.13437 10.1128/jb.178.4.1154-1161.1996 10.1111/j.1365-2958.2008.06495.x 10.1006/geno.1997.4995 10.1371/journal.pone.0126070 10.1038/340245a0 10.1073/pnas.0404907101 10.1093/nar/gks1235 10.1046/j.1365-2958.2003.03658.x 10.1038/msb.2011.58 10.1111/j.1365-2958.2010.07412.x 10.7554/eLife.19042 10.1073/pnas.1117884109 10.1016/S0021-9258(18)49924-3 10.1111/j.1574-6968.1992.tb05378.x 10.1046/j.1365-2958.2002.02726.x 10.1371/journal.pone.0043012 10.1126/science.1109730 10.1093/bioinformatics/btp324 10.1007/978-1-59745-321-9_24 10.1016/j.chom.2015.03.003 10.1073/pnas.95.10.5752 10.1016/j.resmic.2005.11.014 10.1093/bioinformatics/16.10.944 10.1371/journal.ppat.1002946 10.1371/journal.pgen.1003834 10.1073/pnas.0906627106 10.1046/j.1365-2958.2001.02475.x 10.1128/JB.180.5.1296-1304.1998 10.1038/msb4100050 10.1101/gad.379506 10.1093/bioinformatics/btu170 10.1186/1471-2164-9-488 10.1016/j.chom.2009.08.003 10.1128/jb.178.4.1146-1153.1996 10.1186/1471-2105-14-303 10.1128/JB.185.10.3244-3248.2003 10.1128/IAI.01423-15 10.1046/j.1365-2958.1998.00986.x 10.1101/gad.13.18.2449 10.1093/bioinformatics/btp352 10.1093/nar/gkj405 10.1093/nar/gkt1274 10.1111/mmi.12686 10.1016/j.cell.2014.11.045 10.1093/genetics/162.4.1513 10.1126/science.276.5311.431 10.1093/bioinformatics/btq033 10.1038/nbt919 10.1093/emboj/20.15.4253 10.1534/genetics.107.081836 10.1038/nmeth.1377 10.1016/S0014-5793(00)01820-2 10.1186/s12866-016-0818-0 10.1042/BJ20110912 10.1371/journal.pgen.1004719 10.1128/JB.01713-06 10.1016/j.resmic.2011.03.007 10.1093/emboj/cdf362 10.1073/pnas.120163297 10.1101/gr.097097.109 10.1371/journal.ppat.1002788 10.1128/mBio.01200-16 10.1073/pnas.1220225110 10.1371/journal.pgen.1006114 10.1038/nmeth932 10.1046/j.1365-2958.1998.00958.x 10.1099/00221287-142-9-2429 10.1007/978-1-59745-321-9_26 10.1128/JB.134.3.1141-1156.1978 10.1128/JB.180.17.4621-4627.1998 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Goodall et al. Copyright © 2018 Goodall et al. 2018 Goodall et al. |
Copyright_xml | – notice: Copyright © 2018 Goodall et al. – notice: Copyright © 2018 Goodall et al. 2018 Goodall et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/mBio.02096-17 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | The Essential Genome of E. coli K-12 |
EISSN | 2150-7511 |
ExternalDocumentID | PMC5821084 29463657 10_1128_mBio_02096_17 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council – fundername: Medical Research Council grantid: G1002093 – fundername: ; grantid: MIBTP – fundername: ; grantid: Elite PhD – fundername: ; grantid: Birmingham Fellow |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS EJD FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c387t-4759c6a89e05ed92e49a320622e71572e55335d810c9d3fb87c7391b92b90f923 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Thu Aug 21 18:24:09 EDT 2025 Fri Jul 11 10:55:48 EDT 2025 Sat May 31 02:08:42 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Tue Jul 01 01:52:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | TraDIS genomics tn-seq Escherichia coli |
Language | English |
License | Copyright © 2018 Goodall et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-4759c6a89e05ed92e49a320622e71572e55335d810c9d3fb87c7391b92b90f923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 E.C.A.G. and A.R. contributed equally to this work. |
ORCID | 0000-0003-0248-964X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.02096-17 |
PMID | 29463657 |
PQID | 2007122371 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821084 proquest_miscellaneous_2007122371 pubmed_primary_29463657 crossref_primary_10_1128_mBio_02096_17 crossref_citationtrail_10_1128_mBio_02096_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180220 |
PublicationDateYYYYMMDD | 2018-02-20 |
PublicationDate_xml | – month: 2 year: 2018 text: 20180220 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2018 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_18_2 doi: 10.1111/j.1365-2958.2007.05915.x – ident: e_1_3_2_42_2 doi: 10.1073/pnas.0903229106 – ident: e_1_3_2_35_2 doi: 10.1038/msb.2009.92 – ident: e_1_3_2_12_2 doi: 10.1080/2159256X.2017.1313805 – ident: e_1_3_2_15_2 doi: 10.1111/mmi.13437 – ident: e_1_3_2_40_2 doi: 10.1128/jb.178.4.1154-1161.1996 – ident: e_1_3_2_53_2 doi: 10.1111/j.1365-2958.2008.06495.x – ident: e_1_3_2_68_2 doi: 10.1006/geno.1997.4995 – ident: e_1_3_2_20_2 doi: 10.1371/journal.pone.0126070 – ident: e_1_3_2_61_2 doi: 10.1038/340245a0 – ident: e_1_3_2_27_2 doi: 10.1073/pnas.0404907101 – ident: e_1_3_2_74_2 doi: 10.1093/nar/gks1235 – ident: e_1_3_2_50_2 doi: 10.1046/j.1365-2958.2003.03658.x – ident: e_1_3_2_9_2 doi: 10.1038/msb.2011.58 – ident: e_1_3_2_22_2 doi: 10.1111/j.1365-2958.2010.07412.x – ident: e_1_3_2_43_2 doi: 10.7554/eLife.19042 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.1117884109 – ident: e_1_3_2_36_2 doi: 10.1016/S0021-9258(18)49924-3 – ident: e_1_3_2_33_2 doi: 10.1111/j.1574-6968.1992.tb05378.x – ident: e_1_3_2_37_2 doi: 10.1046/j.1365-2958.2002.02726.x – ident: e_1_3_2_30_2 doi: 10.1371/journal.pone.0043012 – ident: e_1_3_2_56_2 doi: 10.1126/science.1109730 – ident: e_1_3_2_76_2 doi: 10.1093/bioinformatics/btp324 – ident: e_1_3_2_17_2 doi: 10.1007/978-1-59745-321-9_24 – ident: e_1_3_2_57_2 doi: 10.1016/j.chom.2015.03.003 – ident: e_1_3_2_62_2 doi: 10.1073/pnas.95.10.5752 – ident: e_1_3_2_65_2 doi: 10.1016/j.resmic.2005.11.014 – ident: e_1_3_2_73_2 doi: 10.1093/bioinformatics/16.10.944 – ident: e_1_3_2_32_2 doi: 10.1371/journal.ppat.1002946 – ident: e_1_3_2_10_2 doi: 10.1371/journal.pgen.1003834 – ident: e_1_3_2_7_2 doi: 10.1073/pnas.0906627106 – ident: e_1_3_2_39_2 doi: 10.1046/j.1365-2958.2001.02475.x – ident: e_1_3_2_24_2 doi: 10.1128/JB.180.5.1296-1304.1998 – ident: e_1_3_2_2_2 doi: 10.1038/msb4100050 – ident: e_1_3_2_45_2 doi: 10.1101/gad.379506 – ident: e_1_3_2_69_2 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_2_75_2 doi: 10.1186/1471-2164-9-488 – ident: e_1_3_2_8_2 doi: 10.1016/j.chom.2009.08.003 – ident: e_1_3_2_41_2 doi: 10.1128/jb.178.4.1146-1153.1996 – ident: e_1_3_2_28_2 doi: 10.1186/1471-2105-14-303 – ident: e_1_3_2_46_2 doi: 10.1128/JB.185.10.3244-3248.2003 – ident: e_1_3_2_14_2 doi: 10.1128/IAI.01423-15 – ident: e_1_3_2_21_2 doi: 10.1046/j.1365-2958.1998.00986.x – ident: e_1_3_2_38_2 doi: 10.1101/gad.13.18.2449 – ident: e_1_3_2_71_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_2_52_2 doi: 10.1093/nar/gkj405 – ident: e_1_3_2_70_2 doi: 10.1093/nar/gkt1274 – ident: e_1_3_2_19_2 doi: 10.1111/mmi.12686 – ident: e_1_3_2_59_2 doi: 10.1016/j.cell.2014.11.045 – ident: e_1_3_2_58_2 doi: 10.1093/genetics/162.4.1513 – ident: e_1_3_2_60_2 doi: 10.1126/science.276.5311.431 – ident: e_1_3_2_72_2 doi: 10.1093/bioinformatics/btq033 – ident: e_1_3_2_13_2 doi: 10.1038/nbt919 – ident: e_1_3_2_44_2 doi: 10.1093/emboj/20.15.4253 – ident: e_1_3_2_55_2 doi: 10.1534/genetics.107.081836 – ident: e_1_3_2_6_2 doi: 10.1038/nmeth.1377 – ident: e_1_3_2_25_2 doi: 10.1016/S0014-5793(00)01820-2 – ident: e_1_3_2_29_2 doi: 10.1186/s12866-016-0818-0 – ident: e_1_3_2_34_2 doi: 10.1042/BJ20110912 – ident: e_1_3_2_51_2 doi: 10.1371/journal.pgen.1004719 – ident: e_1_3_2_48_2 doi: 10.1128/JB.01713-06 – ident: e_1_3_2_64_2 doi: 10.1016/j.resmic.2011.03.007 – ident: e_1_3_2_47_2 doi: 10.1093/emboj/cdf362 – ident: e_1_3_2_66_2 doi: 10.1073/pnas.120163297 – ident: e_1_3_2_5_2 doi: 10.1101/gr.097097.109 – ident: e_1_3_2_16_2 doi: 10.1371/journal.ppat.1002788 – ident: e_1_3_2_11_2 doi: 10.1128/mBio.01200-16 – ident: e_1_3_2_31_2 doi: 10.1073/pnas.1220225110 – ident: e_1_3_2_49_2 doi: 10.1371/journal.pgen.1006114 – ident: e_1_3_2_63_2 doi: 10.1038/nmeth932 – ident: e_1_3_2_26_2 doi: 10.1046/j.1365-2958.1998.00958.x – ident: e_1_3_2_54_2 doi: 10.1099/00221287-142-9-2429 – ident: e_1_3_2_3_2 doi: 10.1007/978-1-59745-321-9_26 – ident: e_1_3_2_67_2 doi: 10.1128/JB.134.3.1141-1156.1978 – ident: e_1_3_2_23_2 doi: 10.1128/JB.180.17.4621-4627.1998 |
SSID | ssj0000331830 |
Score | 2.5838587 |
Snippet | Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Computational Biology DNA Transposable Elements Escherichia coli K12 - genetics Escherichia coli K12 - growth & development Genes, Essential Genome, Bacterial Molecular Biology - methods Mutagenesis, Insertional Sequence Analysis, DNA |
Title | The Essential Genome of Escherichia coli K-12 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29463657 https://www.proquest.com/docview/2007122371 https://pubmed.ncbi.nlm.nih.gov/PMC5821084 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IngR39ZHiSCe3JrdPHb3IKJiW5R6stBbSDYbLLSJ9gH23zuTpNVWBS85bGaXMDPZ_SaZ-YaQ81BELNEQ5GgTQoAiY4dK14lpIhX4l_F9LbHAuf3stzruY9frflEKlQoc_RraYT-pzrBf_3if3sALf10UwMirwV0vqwPsUT5lYpWswaEksJlBu0T6-absoPPiFxcOGIfChq1mjJvLKyyeUD9g53L25LfjqLFFNkscad0Wht8mKybdIetFZ8npLqFgfuthhJVF4GBW06TZwFhZAmNopR5mOFvgAz3riTK-RzqNh5f7Fi07I1DtSDGmSNKn_VAqY3smVty4KnS47XNuBPMENx6gOC-WzNYqdpJICi0cxSLFI2UngOn2SSXNUnNIrISZhEnfCXXkup5h0sZEEh-G3QTmiyq5nGkj0CVtOHav6Ad5-MBlgMoLcuUFDMQv5uJvBV_GX4JnM9UG4NH4myJMTTYZYWNMwQC1CFYlB4Wq50txhQRnHswWC0aYCyBb9uKdtPeas2ZjRbAt3aP_PuAx2QBwJPPydfuEVMbDiTkFADKOanngDtdml9VyN_sE0qrYEQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Essential+Genome+of+Escherichia+coli+K-12&rft.jtitle=mBio&rft.au=Goodall%2C+Emily+C.+A.&rft.au=Robinson%2C+Ashley&rft.au=Johnston%2C+Iain+G.&rft.au=Jabbari%2C+Sara&rft.date=2018-02-20&rft.issn=2161-2129&rft.eissn=2150-7511&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.02096-17&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_02096_17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |