Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation
In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al 2 O 3 for optoelectronics. A systematic analysis of the FAGPTi film on various s...
Saved in:
Published in | Macromolecular research Vol. 29; no. 4; pp. 313 - 320 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.04.2021
Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-021-9035-2 |
Cover
Abstract | In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al
2
O
3
for optoelectronics. A systematic analysis of the FAGPTi film on various substrates reveals that the FAGPTi films fully covered all parts of the substrate, showing low roughness, high hydrophobicity, and good flexibility. These results demonstrate that FAGPTi is able to protect water corrosive Al
2
O
3
from the outer invasion of moisture or water. Therefore, the TFE with alternatively stacked Al
2
O
3
and FAGPTi shows excellent barrier film performance as low as 6.33 × 10
−5
g m
−2
day
−1
s at accelerated conditions (60 °C and 90% RH) and high visible transmittance above 95% in four pairs. In particular, the FAGPTi films displayed advanced side impermeability, with values comparable to those of the oxide layer. Thus, we expect our systematic work with FAGPTi layers to provide insights into barrier films to advance their integration in flexible optoelectronic devices and thereby accelerate their commercialization. |
---|---|
AbstractList | In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al2O3 for optoelectronics. A systematic analysis of the FAGPTi film on various substrates reveals that the FAGPTi films fully covered all parts of the substrate, showing low roughness, high hydrophobicity, and good flexibility. These results demonstrate that FAGPTi is able to protect water corrosive Al2O3 from the outer invasion of moisture or water. Therefore, the TFE with alternatively stacked Al2O3 and FAGPTi shows excellent barrier film performance as low as 6.33 × 10−5g m−2 day−1s at accelerated conditions (60 °C and 90% RH) and high visible transmittance above 95% in four pairs. In particular, the FAGPTi films displayed advanced side impermeability, with values comparable to those of the oxide layer. Thus, we expect our systematic work with FAGPTi layers to provide insights into barrier films to advance their integration in flexible optoelectronic devices and thereby accelerate their commercialization. In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al2O3 for optoelectronics. A systematic analysis of the FAGPTi film on various substrates reveals that the FAGPTi films fully covered all parts of the substrate, showing low roughness, high hydrophobicity, and good flexibility. These results demonstrate that FAGPTi is able to protect water corrosive Al2O3 from the outer invasion of moisture or water. Therefore, the TFE with alternatively stacked Al2O3 and FAGPTi shows excellent barrier film performance as low as 6.33 × 10-5 g m-2 day-1s at accelerated conditions (60 °C and 90% RH) and high visible transmittance above 95% in four pairs. In particular, the FAGPTi films displayed advanced side impermeability, with values comparable to those of the oxide layer. Thus, we expect our systematic work with FAGPTi layers to provide insights into barrier films to advance their integration in flexible optoelectronic devices and thereby accelerate their commercialization. KCI Citation Count: 2 In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE) with plasma-enhanced atomic layer deposition (PEALD)-based Al 2 O 3 for optoelectronics. A systematic analysis of the FAGPTi film on various substrates reveals that the FAGPTi films fully covered all parts of the substrate, showing low roughness, high hydrophobicity, and good flexibility. These results demonstrate that FAGPTi is able to protect water corrosive Al 2 O 3 from the outer invasion of moisture or water. Therefore, the TFE with alternatively stacked Al 2 O 3 and FAGPTi shows excellent barrier film performance as low as 6.33 × 10 −5 g m −2 day −1 s at accelerated conditions (60 °C and 90% RH) and high visible transmittance above 95% in four pairs. In particular, the FAGPTi films displayed advanced side impermeability, with values comparable to those of the oxide layer. Thus, we expect our systematic work with FAGPTi layers to provide insights into barrier films to advance their integration in flexible optoelectronic devices and thereby accelerate their commercialization. |
Author | Kim, Juyoung Hong, Jisu Le, Hong Nhung Moon, Hong Chul Kwon, Hyeok-jin Park, Chan Eon Jung, Cheolmin Kim, Se Hyun |
Author_xml | – sequence: 1 givenname: Hyeok-jin surname: Kwon fullname: Kwon, Hyeok-jin organization: Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 2 givenname: Jisu surname: Hong fullname: Hong, Jisu organization: Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 3 givenname: Hong Nhung surname: Le fullname: Le, Hong Nhung organization: Department of Advanced Materials Engineering, Kangwon National University – sequence: 4 givenname: Cheolmin surname: Jung fullname: Jung, Cheolmin organization: School of Chemical Engineering, Yeungnam University – sequence: 5 givenname: Chan Eon surname: Park fullname: Park, Chan Eon organization: Department of Chemical Engineering, Pohang University of Science and Technology – sequence: 6 givenname: Hong Chul surname: Moon fullname: Moon, Hong Chul email: hcmoon@uos.ac.kr organization: Department of Chemical Engineering, University of Seoul – sequence: 7 givenname: Juyoung surname: Kim fullname: Kim, Juyoung email: juyoungk@kangwon.ac.kr organization: Department of Advanced Materials Engineering, Kangwon National University – sequence: 8 givenname: Se Hyun surname: Kim fullname: Kim, Se Hyun email: shkim97@yu.ac.kr organization: School of Chemical Engineering, Yeungnam University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707288$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kcFqGzEQhkVJoU6aB-hNkFMOakbSarV7NCZODEkDjXMWilaylawlR5IDvuTZu84GCoX0NDPwfcMM_zE6CjFYhH5Q-EkB5EWmnHFOgFHSAheEfUETBi0jspb8CE2oaBsigLNv6DjnJ4Cackon6G3avepgbIfvfWfJYrO1aWP1o-992ePZWidtik0-F28yjg7P-11MPugyKHdppYM3ZBHi2OFfOsT1_jH5Dt_qg6f7jF1MeLn2Ac99v8GXweht3vW6-Bi-o69uQOzpRz1BD_PL5eya3NxdLWbTG2J4IwupKsZaJypmNdOilRSaitc1l5W0nLdN5VrHJEAHTpu6AyMMM7yratqAHSZ-gs7HvSE59Wy8itq_11VUz0lNfy8XqpVScMoG9mxktym-7Gwu6inuUhjOU0xQ2VTARD1QcqRMijkn65Tx5f2nkrTvFQV1CEaNwaghGHUIRh3203_MbfIbnfb_ddjo5IENK5v-3vS59AcwTKHV |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2023_105331 crossref_primary_10_1002_adfm_202111040 crossref_primary_10_1039_D2NH00158F |
Cites_doi | 10.1038/s41467-020-15369-8 10.1016/j.orgel.2014.07.004 10.1021/acsami.6b15404 10.1021/acsnano.8b05224 10.1039/c2jm13329f 10.1021/acsami.0c08683 10.1016/j.matchemphys.2010.11.041 10.1039/C6RA06571F 10.1016/j.orgel.2017.11.019 10.1016/S0257-8972(01)01002-7 10.1002/adfm.202009539 10.1016/j.ceramint.2018.03.117 10.1007/s10971-010-2173-1 10.1021/acs.jpcb.9b00680 10.1038/s41467-019-10260-7 10.1038/s41528-019-0058-0 10.1021/am5031165 10.1016/j.jiec.2018.07.047 10.1007/s10853-018-2704-7 10.1016/0257-8972(95)02420-4 10.1016/j.tsf.2012.07.025 10.1021/acs.nanolett.5b01634 10.1021/am3000165 10.1038/s41467-020-16551-8 10.1021/acsami.0c10539 10.1039/b419153f 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B 10.1039/C5CP06713H 10.1063/1.5021182 10.1016/j.optcom.2015.08.021 10.1039/C8RA02164C 10.1016/j.apsusc.2018.12.296 10.1063/1.1594284 10.1021/acsami.7b19053 10.1016/j.solmat.2008.01.005 10.1021/la034164f |
ContentType | Journal Article |
Copyright | The Polymer Society of Korea and Springer 2021 The Polymer Society of Korea and Springer 2021. |
Copyright_xml | – notice: The Polymer Society of Korea and Springer 2021 – notice: The Polymer Society of Korea and Springer 2021. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-021-9035-2 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-7673 |
EndPage | 320 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9775312 10_1007_s13233_021_9035_2 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7X Z7Y ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION 85H ACYCR |
ID | FETCH-LOGICAL-c387t-44229f542ea2a59710843663747e33984f9f2700d0fac6d0c5c2c3d46180e0c53 |
IEDL.DBID | AGYKE |
ISSN | 1598-5032 |
IngestDate | Sun Mar 09 07:53:29 EDT 2025 Sat Sep 13 14:21:38 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 29 01:58:50 EDT 2025 Fri Feb 21 02:48:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | side permeation plasma-enhanced atomic layer deposition (PEALD) fluorinated thin film encapsulation (TFE) organic-inorganic nanohybrid materials sol-gel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c387t-44229f542ea2a59710843663747e33984f9f2700d0fac6d0c5c2c3d46180e0c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2517840256 |
PQPubID | 2044280 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9775312 proquest_journals_2517840256 crossref_citationtrail_10_1007_s13233_021_9035_2 crossref_primary_10_1007_s13233_021_9035_2 springer_journals_10_1007_s13233_021_9035_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2021 |
Publisher | The Polymer Society of Korea Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer Nature B.V – name: 한국고분자학회 |
References | HanY CJeongE GKimHKwonSImH-GBaeB-SChoiK CRSC Adv.20166408351:CAS:528:DC%2BC28XmslKlt7Y%3D10.1039/C6RA06571F ZhengSLiJJ. Sol Gel Sci. Technol.2010541741:CAS:528:DC%2BC3cXltVynsLo%3D10.1007/s10971-010-2173-1 KwonH-JYeHBaekYHongJWangRChoiYLeeIParkC ENamSKimJKimS HAdv. Funct. Mater.20213120095391:CAS:528:DC%2BB3cXis1Gnt7jJ10.1002/adfm.202009539 KimL HJeongY JAnT KParkSJangJ HNamSJangJKimS HParkC EPhys. Chem. Chem. Phys.20161810421:CAS:528:DC%2BC2MXhvVygs73I10.1039/C5CP06713H WangSWangYZouYChenGOuyangJJiaDZhouYACS Appl. Mater. Interfaces202012355021:CAS:528:DC%2BB3cXhsVSms7nO10.1021/acsami.0c10539 KimS HYoonW MJangMYangHParkJ-JParkC EJ. Mater. Chem.20122277311:CAS:528:DC%2BC38XksFahtLo%3D10.1039/c2jm13329f ChathamHSurf. Coat. Technol.19967811:CAS:528:DyaK28Xnslejug%3D%3D10.1016/0257-8972(95)02420-4 BorattoM HCongiuMdos SantosS B OScalviL V ACeram. Int.201844107901:CAS:528:DC%2BC1cXltFWqsL4%3D10.1016/j.ceramint.2018.03.117 YooDKimYMinMAhnG HLienD-HJangJJeongHSongYChungSJaveyALeeTACS Nano201812110621:CAS:528:DC%2BC1cXhvV2js7%2FP10.1021/acsnano.8b05224 YuDYangY-QChenZTaoYLiuY-FOpt. Commun.2016362431:CAS:528:DC%2BC2MXhvFansL7P10.1016/j.optcom.2015.08.021 LianCPiksaMYoshidaKPersheyevSPawlikK JMatczyszynKSamuelI D Wnpj Flex. Electron.201931810.1038/s41528-019-0058-0 KimNLiXKimS HKimJJ. Ind. Eng. Chem.2018682091:CAS:528:DC%2BC1cXhsFWgsrbJ10.1016/j.jiec.2018.07.047 SchaerMNüeschFBernerDLeoWZuppiroliLAdv. Funct. Mater.2001111161:CAS:528:DC%2BD3MXivVCltrg%3D10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B ConaghanP JMatthewsC S BChotardFJonesS T EGreenhamN CBochmannMCredgingtonDRomanovA SNat. Commun.20201117581:CAS:528:DC%2BB3cXntVKktbs%3D10.1038/s41467-020-15369-8 TeshimaKSugimuraHInoueYTakaiOLangmuir20031983311:CAS:528:DC%2BD3sXmsl2ntbo%3D10.1021/la034164f J. Ma, W.-J. Lee, J. M. Bae, K. Jeong, S. Oh, J.-H. Kim, S.-H. Kim, J.-H. Seo, J.-P. Ahn, H. Kim, and M.-H. Cho, Nano Lett., 15 (2015). JørgensenMNorrmanKKrebsF CSol. Energy Mater. Sol. Cells20089268610.1016/j.solmat.2008.01.005 LiNWuZYangXWangCZongLPanYWangJJianXJ. Mater. Sci.201853163031:CAS:528:DC%2BC1cXhslehu7rL10.1007/s10853-018-2704-7 JangJ HKimNLiXAnT KKimJKimS HAppl. Surf. Sci.20194759261:CAS:528:DC%2BC1MXhtFShsb4%3D10.1016/j.apsusc.2018.12.296 de van WeijerPAkkermanH BBoutenP C PPandithaPKlaassenP J MSalemAOrg. Electron.20185325610.1016/j.orgel.2017.11.019 Feng-BoSYuDYong-QiangYPingCYa-HuiDXiaoWDanYKai-wenXOrg. Electron.201415254610.1016/j.orgel.2014.07.004 ZheludkevichM LSalvadoI MFerreiraM G SJ. Mater. Chem.20051550991:CAS:528:DC%2BD2MXht1OqtLrE10.1039/b419153f ZhuJHeJACS Appl. Mater. Interfaces2012417701:CAS:528:DC%2BC38XitFKltLc%3D10.1021/am3000165 ChoiSKangC-MByunC-WChoHKwonB-HHanJ-HYangJ-HShinJ-WHwangC-SChoN SLeeK MKimH-OKimEYooSLeeHNat. Commun.20201127321:CAS:528:DC%2BB3cXhtFahtb%2FI10.1038/s41467-020-16551-8 TangXKwonH-JHongJYeHWangRYunD-JParkC EJeongY JLeeH SKimS HACS Appl. Mater. Interfaces202012339991:CAS:528:DC%2BB3cXhtlCmtbrJ10.1021/acsami.0c08683 MaSQiaoWChengTZhangBYaoJAlsaediAHayatTDingYTanZ ADaiSACS Appl. Mater. Interfaces20181039021:CAS:528:DC%2BC1cXksVOrtg%3D%3D10.1021/acsami.7b19053 StraussMMaronezeC Mde Souzae SilvaJ MSigoliF AGushikemYMazaliI OMater. Chem. Phys.20111261881:CAS:528:DC%2BC3MXpsFCktQ%3D%3D10.1016/j.matchemphys.2010.11.041 BoldrighiniPFauveauAThériasSGardetteJ LHidalgoMCrosSRev. Sci. Instrum.20199001471010.1063/1.5021182 SalehiADongCShinD-HZhuLPapaCThy BuiACastellanoF NSoFNat. Commun.201910230510.1038/s41467-019-10260-7 YoonK HKimH SHanK SKimS HLeeY-E KShresthaN KSongS YSungM MACS Appl. Mater. Interfaces2017953991:CAS:528:DC%2BC2sXht1ynsbo%3D10.1021/acsami.6b15404 YangX FTallmanD EGellingV JBierwagenG PKastenL SBergJSurf. Coat. Technol.2001140441:CAS:528:DC%2BD3MXislOnsbw%3D10.1016/S0257-8972(01)01002-7 Vähä-NissiMSundbergPKauppiEHirvikorpiTSievänenJSoodAKarppinenMHarlinAThin Solid Films2012520678010.1016/j.tsf.2012.07.025 ChwangA BRothmanM AMaoS YHewittR HWeaverM SSilvernailJ ARajanKHackMBrownJ JChuXMoroLKrajewskiTRutherfordNAppl. Phys. Lett.2003834131:CAS:528:DC%2BD3sXlsFKisL8%3D10.1063/1.1594284 SunLHanCWuNWangBWangYRSC Adv.20188136971:CAS:528:DC%2BC1cXnsVehu7g%3D10.1039/C8RA02164C L. Kim, K. Kim, S. Park, Y. Jeong, H. Kim, D. Chung, S. Kim, and C. Park, ACS Appl. Mater. Interfaces, 6 (2014). SuganumaYMitsuokaTYamamotoSKinjoTYoneyamaHUmemotoKJ. Phys. Chem. B201912344341:CAS:528:DC%2BC1MXovVKmt74%3D31059261 N Li (9035_CR27) 2018; 53 M Schaer (9035_CR7) 2001; 11 H-J Kwon (9035_CR20) 2021; 31 D Yu (9035_CR9) 2016; 362 S Wang (9035_CR19) 2020; 12 M Strauss (9035_CR24) 2011; 126 X F Yang (9035_CR33) 2001; 140 P J Conaghan (9035_CR1) 2020; 11 S Choi (9035_CR2) 2020; 11 S Ma (9035_CR22) 2018; 10 9035_CR31 M Vähä-Nissi (9035_CR13) 2012; 520 L Sun (9035_CR26) 2018; 8 M Jørgensen (9035_CR6) 2008; 92 X Tang (9035_CR21) 2020; 12 L H Kim (9035_CR34) 2016; 18 P de van Weijer (9035_CR15) 2018; 53 Y C Han (9035_CR10) 2016; 6 C Lian (9035_CR4) 2019; 3 S H Kim (9035_CR5) 2012; 22 J H Jang (9035_CR17) 2019; 475 K Teshima (9035_CR8) 2003; 19 A Salehi (9035_CR3) 2019; 10 S Zheng (9035_CR29) 2010; 54 M H Boratto (9035_CR23) 2018; 44 H Chatham (9035_CR12) 1996; 78 K H Yoon (9035_CR14) 2017; 9 9035_CR25 M L Zheludkevich (9035_CR30) 2005; 15 A B Chwang (9035_CR11) 2003; 83 J Zhu (9035_CR32) 2012; 4 S Feng-Bo (9035_CR35) 2014; 15 N Kim (9035_CR16) 2018; 68 P Boldrighini (9035_CR36) 2019; 90 Y Suganuma (9035_CR28) 2019; 123 D Yoo (9035_CR18) 2018; 12 |
References_xml | – reference: ChoiSKangC-MByunC-WChoHKwonB-HHanJ-HYangJ-HShinJ-WHwangC-SChoN SLeeK MKimH-OKimEYooSLeeHNat. Commun.20201127321:CAS:528:DC%2BB3cXhtFahtb%2FI10.1038/s41467-020-16551-8 – reference: LianCPiksaMYoshidaKPersheyevSPawlikK JMatczyszynKSamuelI D Wnpj Flex. Electron.201931810.1038/s41528-019-0058-0 – reference: StraussMMaronezeC Mde Souzae SilvaJ MSigoliF AGushikemYMazaliI OMater. Chem. Phys.20111261881:CAS:528:DC%2BC3MXpsFCktQ%3D%3D10.1016/j.matchemphys.2010.11.041 – reference: ChathamHSurf. Coat. Technol.19967811:CAS:528:DyaK28Xnslejug%3D%3D10.1016/0257-8972(95)02420-4 – reference: J. Ma, W.-J. Lee, J. M. Bae, K. Jeong, S. Oh, J.-H. Kim, S.-H. Kim, J.-H. Seo, J.-P. Ahn, H. Kim, and M.-H. Cho, Nano Lett., 15 (2015). – reference: ZhengSLiJJ. Sol Gel Sci. Technol.2010541741:CAS:528:DC%2BC3cXltVynsLo%3D10.1007/s10971-010-2173-1 – reference: KimNLiXKimS HKimJJ. Ind. Eng. Chem.2018682091:CAS:528:DC%2BC1cXhsFWgsrbJ10.1016/j.jiec.2018.07.047 – reference: LiNWuZYangXWangCZongLPanYWangJJianXJ. Mater. Sci.201853163031:CAS:528:DC%2BC1cXhslehu7rL10.1007/s10853-018-2704-7 – reference: ZhuJHeJACS Appl. Mater. Interfaces2012417701:CAS:528:DC%2BC38XitFKltLc%3D10.1021/am3000165 – reference: BorattoM HCongiuMdos SantosS B OScalviL V ACeram. Int.201844107901:CAS:528:DC%2BC1cXltFWqsL4%3D10.1016/j.ceramint.2018.03.117 – reference: JangJ HKimNLiXAnT KKimJKimS HAppl. Surf. Sci.20194759261:CAS:528:DC%2BC1MXhtFShsb4%3D10.1016/j.apsusc.2018.12.296 – reference: TangXKwonH-JHongJYeHWangRYunD-JParkC EJeongY JLeeH SKimS HACS Appl. Mater. Interfaces202012339991:CAS:528:DC%2BB3cXhtlCmtbrJ10.1021/acsami.0c08683 – reference: SalehiADongCShinD-HZhuLPapaCThy BuiACastellanoF NSoFNat. Commun.201910230510.1038/s41467-019-10260-7 – reference: HanY CJeongE GKimHKwonSImH-GBaeB-SChoiK CRSC Adv.20166408351:CAS:528:DC%2BC28XmslKlt7Y%3D10.1039/C6RA06571F – reference: JørgensenMNorrmanKKrebsF CSol. Energy Mater. Sol. Cells20089268610.1016/j.solmat.2008.01.005 – reference: KimL HJeongY JAnT KParkSJangJ HNamSJangJKimS HParkC EPhys. Chem. Chem. Phys.20161810421:CAS:528:DC%2BC2MXhvVygs73I10.1039/C5CP06713H – reference: KimS HYoonW MJangMYangHParkJ-JParkC EJ. Mater. Chem.20122277311:CAS:528:DC%2BC38XksFahtLo%3D10.1039/c2jm13329f – reference: SunLHanCWuNWangBWangYRSC Adv.20188136971:CAS:528:DC%2BC1cXnsVehu7g%3D10.1039/C8RA02164C – reference: de van WeijerPAkkermanH BBoutenP C PPandithaPKlaassenP J MSalemAOrg. Electron.20185325610.1016/j.orgel.2017.11.019 – reference: ChwangA BRothmanM AMaoS YHewittR HWeaverM SSilvernailJ ARajanKHackMBrownJ JChuXMoroLKrajewskiTRutherfordNAppl. Phys. Lett.2003834131:CAS:528:DC%2BD3sXlsFKisL8%3D10.1063/1.1594284 – reference: ConaghanP JMatthewsC S BChotardFJonesS T EGreenhamN CBochmannMCredgingtonDRomanovA SNat. Commun.20201117581:CAS:528:DC%2BB3cXntVKktbs%3D10.1038/s41467-020-15369-8 – reference: WangSWangYZouYChenGOuyangJJiaDZhouYACS Appl. Mater. Interfaces202012355021:CAS:528:DC%2BB3cXhsVSms7nO10.1021/acsami.0c10539 – reference: YooDKimYMinMAhnG HLienD-HJangJJeongHSongYChungSJaveyALeeTACS Nano201812110621:CAS:528:DC%2BC1cXhvV2js7%2FP10.1021/acsnano.8b05224 – reference: MaSQiaoWChengTZhangBYaoJAlsaediAHayatTDingYTanZ ADaiSACS Appl. Mater. Interfaces20181039021:CAS:528:DC%2BC1cXksVOrtg%3D%3D10.1021/acsami.7b19053 – reference: Vähä-NissiMSundbergPKauppiEHirvikorpiTSievänenJSoodAKarppinenMHarlinAThin Solid Films2012520678010.1016/j.tsf.2012.07.025 – reference: YangX FTallmanD EGellingV JBierwagenG PKastenL SBergJSurf. Coat. Technol.2001140441:CAS:528:DC%2BD3MXislOnsbw%3D10.1016/S0257-8972(01)01002-7 – reference: Feng-BoSYuDYong-QiangYPingCYa-HuiDXiaoWDanYKai-wenXOrg. Electron.201415254610.1016/j.orgel.2014.07.004 – reference: ZheludkevichM LSalvadoI MFerreiraM G SJ. Mater. Chem.20051550991:CAS:528:DC%2BD2MXht1OqtLrE10.1039/b419153f – reference: L. Kim, K. Kim, S. Park, Y. Jeong, H. Kim, D. Chung, S. Kim, and C. Park, ACS Appl. Mater. Interfaces, 6 (2014). – reference: BoldrighiniPFauveauAThériasSGardetteJ LHidalgoMCrosSRev. Sci. Instrum.20199001471010.1063/1.5021182 – reference: SuganumaYMitsuokaTYamamotoSKinjoTYoneyamaHUmemotoKJ. Phys. Chem. B201912344341:CAS:528:DC%2BC1MXovVKmt74%3D31059261 – reference: TeshimaKSugimuraHInoueYTakaiOLangmuir20031983311:CAS:528:DC%2BD3sXmsl2ntbo%3D10.1021/la034164f – reference: SchaerMNüeschFBernerDLeoWZuppiroliLAdv. Funct. Mater.2001111161:CAS:528:DC%2BD3MXivVCltrg%3D10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B – reference: YuDYangY-QChenZTaoYLiuY-FOpt. Commun.2016362431:CAS:528:DC%2BC2MXhvFansL7P10.1016/j.optcom.2015.08.021 – reference: YoonK HKimH SHanK SKimS HLeeY-E KShresthaN KSongS YSungM MACS Appl. Mater. Interfaces2017953991:CAS:528:DC%2BC2sXht1ynsbo%3D10.1021/acsami.6b15404 – reference: KwonH-JYeHBaekYHongJWangRChoiYLeeIParkC ENamSKimJKimS HAdv. Funct. Mater.20213120095391:CAS:528:DC%2BB3cXis1Gnt7jJ10.1002/adfm.202009539 – volume: 11 start-page: 1758 year: 2020 ident: 9035_CR1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15369-8 – volume: 15 start-page: 2546 year: 2014 ident: 9035_CR35 publication-title: Org. Electron. doi: 10.1016/j.orgel.2014.07.004 – volume: 9 start-page: 5399 year: 2017 ident: 9035_CR14 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15404 – volume: 12 start-page: 11062 year: 2018 ident: 9035_CR18 publication-title: ACS Nano doi: 10.1021/acsnano.8b05224 – volume: 22 start-page: 7731 year: 2012 ident: 9035_CR5 publication-title: J. Mater. Chem. doi: 10.1039/c2jm13329f – volume: 12 start-page: 33999 year: 2020 ident: 9035_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08683 – volume: 126 start-page: 188 year: 2011 ident: 9035_CR24 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.11.041 – volume: 6 start-page: 40835 year: 2016 ident: 9035_CR10 publication-title: RSC Adv. doi: 10.1039/C6RA06571F – volume: 53 start-page: 256 year: 2018 ident: 9035_CR15 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.11.019 – volume: 140 start-page: 44 year: 2001 ident: 9035_CR33 publication-title: Surf. Coat. Technol. doi: 10.1016/S0257-8972(01)01002-7 – volume: 31 start-page: 2009539 year: 2021 ident: 9035_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009539 – volume: 44 start-page: 10790 year: 2018 ident: 9035_CR23 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.117 – volume: 54 start-page: 174 year: 2010 ident: 9035_CR29 publication-title: J. Sol Gel Sci. Technol. doi: 10.1007/s10971-010-2173-1 – volume: 123 start-page: 4434 year: 2019 ident: 9035_CR28 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b00680 – volume: 10 start-page: 2305 year: 2019 ident: 9035_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10260-7 – volume: 3 start-page: 18 year: 2019 ident: 9035_CR4 publication-title: npj Flex. Electron. doi: 10.1038/s41528-019-0058-0 – ident: 9035_CR31 doi: 10.1021/am5031165 – volume: 68 start-page: 209 year: 2018 ident: 9035_CR16 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2018.07.047 – volume: 53 start-page: 16303 year: 2018 ident: 9035_CR27 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2704-7 – volume: 78 start-page: 1 year: 1996 ident: 9035_CR12 publication-title: Surf. Coat. Technol. doi: 10.1016/0257-8972(95)02420-4 – volume: 520 start-page: 6780 year: 2012 ident: 9035_CR13 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.07.025 – ident: 9035_CR25 doi: 10.1021/acs.nanolett.5b01634 – volume: 4 start-page: 1770 year: 2012 ident: 9035_CR32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3000165 – volume: 11 start-page: 2732 year: 2020 ident: 9035_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16551-8 – volume: 12 start-page: 35502 year: 2020 ident: 9035_CR19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c10539 – volume: 15 start-page: 5099 year: 2005 ident: 9035_CR30 publication-title: J. Mater. Chem. doi: 10.1039/b419153f – volume: 11 start-page: 116 year: 2001 ident: 9035_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(200104)11:2<116::AID-ADFM116>3.0.CO;2-B – volume: 18 start-page: 1042 year: 2016 ident: 9035_CR34 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06713H – volume: 90 start-page: 014710 year: 2019 ident: 9035_CR36 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5021182 – volume: 362 start-page: 43 year: 2016 ident: 9035_CR9 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.08.021 – volume: 8 start-page: 13697 year: 2018 ident: 9035_CR26 publication-title: RSC Adv. doi: 10.1039/C8RA02164C – volume: 475 start-page: 926 year: 2019 ident: 9035_CR17 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.12.296 – volume: 83 start-page: 413 year: 2003 ident: 9035_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1594284 – volume: 10 start-page: 3902 year: 2018 ident: 9035_CR22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19053 – volume: 92 start-page: 686 year: 2008 ident: 9035_CR6 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.01.005 – volume: 19 start-page: 8331 year: 2003 ident: 9035_CR8 publication-title: Langmuir doi: 10.1021/la034164f |
SSID | ssj0061311 |
Score | 2.258842 |
Snippet | In this study, we introduce a sol-gel based fluorinated nanohybrid materials named FAGPTi to fabricate organic-inorganic hybrid thin film encapsulation (TFE)... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 313 |
SubjectTerms | Aluminum oxide Atomic layer epitaxy Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Commercialization Complex Fluids and Microfluidics Encapsulation Fluorination Hydrophobicity Nanochemistry Nanotechnology Optoelectronic devices Permeability Physical Chemistry Polymer Sciences Soft and Granular Matter Sol-gel processes Substrates Thin films 고분자공학 |
Title | Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation |
URI | https://link.springer.com/article/10.1007/s13233-021-9035-2 https://www.proquest.com/docview/2517840256 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002707288 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2021, 29(4), , pp.313-320 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9tAEB2VcGg50EKLCFC0qjhRLbL3w14foygpaUUvEImeVs56t40SHBScAxz47czG3qZBbSVOluX113p2_Ebz5g3ACZPKqjh21OYioSIZZTQbWUuVKaKkQEBeCF_gfPE9OR-Kr9fyuqnjvgts95CSXHrqVbEbZ9znHD2lgEuKfndTxipTLdjsfPnxrRcccOIVZJYyqZmiMuIsJDP_dpG139FGOXdrSPNZcnT5z-m_havwtDXVZHK2qEZn5uGZkOMLX-cdbDcYlHRqo9mBV7bchdfd0PptF7b-UCl8D4-dhidALseFpQME2vMbW-t735PuuuIzmTnSny48rQ9RbEHqWk9DB2XdP8oQ9OezX_e-UIxc5FW9AAhCZ-JbiJL-eHpDeqXJMXqvaXofYNjvXXXPadO2gRqu0ooKwVjmpGA2ZznGK3GkBEdgg4GL5TxTwmXOp7uLyOUmKSIjDTO8EEmsIot7fA9a5ay0-0DyjMciTdLUpVwYxJKxdBi_mjyVCEMj3oYofD1tGk1z31pjqldqzH6aNU6z9tOsWRtOf59yWwt6_G_wJzQJPTFj7WW4_fbnTE_mGoONgUbojB4MBx0Fi9GNA7jTXgkOY2cElG34HAxgdfifdzx40ehDeMO8BS2ZREfQquYL-xFBUjU6bhbFMWwMWecJAJoGQQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTxsxEB214UB7oC0tIhSohThRGXlt79cxipImQLgQJHqyNl67jRI2Vdgc6KG_vePsuiGoIHFardb75R3PvtG8eQNwzMPEJEFgqclkRGU0Smk6MoYmOmdRjoA8l67AeXAZ9a7l2U14U9dx33m2u09JLj31qthNcOFyjo5SIEKKfndDYgjOGrDR-vb9vOMdcOQUZJYyqWlCQya4T2b-7yJrv6PXxdyuIc1HydHlP6f7Dob-aSuqyeR0UY5O9e9HQo4vfJ33sFVjUNKqjOYDvDLFNmy2feu3bXj7QKXwI_xp1TwBcjXODe0j0J7fmkrf-5601xWfycyS7nThaH2IYnNS1Xpq2i-q_lGaoD-f_bx3hWJkkJXVAiAInYlrIUq64-kt6RQ6w-i9oul9gutuZ9ju0bptA9UiiUsqJeepDSU3Gc8wXglYIgUCGwxcjBBpIm1qXbo7ZzbTUc50qLkWuYyChBncEzvQKGaF2QWSpSKQcRTHNhZSI5YMQovxq87iEGEoE01g_uspXWuau9YaU7VSY3bTrHCalZtmxZtw8u-UX5Wgx3ODj9Ak1ESPlZPhdtsfMzWZKww2-gqhM3owHLTvLUbVDuBOOSU4jJ0RUDbhqzeA1eEn77j3otFfYLM3HFyoi_7l-Wd4w501LVlF-9Ao5wtzgICpHB3WC-QvFPcINQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7RIPVxQECLmhLoCvXUaoW9u34doxCLtAQhtZG4rZx9QJTEQcE55MJvZya2G1JRJE6W5bUt-RvPfqOZ-YaQbzyIbez7jtlMhkyGw4QlQ2tZrI0XGiDkRmKDc_8yPB_In9fBdTXn9L6udq9TkmVPA6o05cXpnXGn68Y3wQXmH7G8QAQMfPA2eGMfDX3A27UrDlFLZiWYmsQs8ASv05rPPWJjY3qTz90G5_wnTbrafdJdslPRRtoucd4jWzbfJ-869bS2ffLhibDgR_LQrlL79PfIWNYDbjyf2lKSe0k7myLNdOZoOllgJR4QT0PL9kzNenk58klTcMGz2yX2dtF-VpQ2S4HtUpz6SdPRZEq7uc4g4C4r6z6RQdr90zln1aQFpkUcFUxKzhMXSG4znkGI4XuxFMBFINawQiSxdInDDLXxXKZD4-lAcy2MDP3Ys3AmDkgjn-X2M6FZInwZhVHkIiE10D8_cBBy6iwKgDl6okm8-jMrXcmQ4zSMiVoLKCMyCpBRiIziTfL97y13pQbHS4tPADs11iOFytl4vJmp8VxBfNBTwHbB6cCiVg2tqv7Ze4XibRDuAgdskh813OvL_33jl1et_kreXp2l6qJ3-euQvOdof6s6oBZpFPOFPQKKUwyPV2b8CI4B76k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Side-Impermeability+Characteristics+of+Fluorinated+Organic-Inorganic+Nanohybrid+Materials+for+Thin+Film+Encapsulation&rft.jtitle=Macromolecular+research&rft.au=%EA%B6%8C%ED%98%81%EC%A7%84&rft.au=%ED%99%8D%EC%A7%80%EC%88%98&rft.au=LE+HONG+NHUNG&rft.au=%EC%A0%95%EC%B2%A0%EB%AF%BC&rft.date=2021-04-01&rft.pub=%ED%95%9C%EA%B5%AD%EA%B3%A0%EB%B6%84%EC%9E%90%ED%95%99%ED%9A%8C&rft.issn=1598-5032&rft.eissn=2092-7673&rft.spage=313&rft.epage=320&rft_id=info:doi/10.1007%2Fs13233-021-9035-2&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9775312 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |